xref: /openbmc/linux/drivers/clk/clk.c (revision 160b8e75)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 #include <linux/stringify.h>
28 
29 #include "clk.h"
30 
31 static DEFINE_SPINLOCK(enable_lock);
32 static DEFINE_MUTEX(prepare_lock);
33 
34 static struct task_struct *prepare_owner;
35 static struct task_struct *enable_owner;
36 
37 static int prepare_refcnt;
38 static int enable_refcnt;
39 
40 static HLIST_HEAD(clk_root_list);
41 static HLIST_HEAD(clk_orphan_list);
42 static LIST_HEAD(clk_notifier_list);
43 
44 /***    private data structures    ***/
45 
46 struct clk_core {
47 	const char		*name;
48 	const struct clk_ops	*ops;
49 	struct clk_hw		*hw;
50 	struct module		*owner;
51 	struct device		*dev;
52 	struct clk_core		*parent;
53 	const char		**parent_names;
54 	struct clk_core		**parents;
55 	u8			num_parents;
56 	u8			new_parent_index;
57 	unsigned long		rate;
58 	unsigned long		req_rate;
59 	unsigned long		new_rate;
60 	struct clk_core		*new_parent;
61 	struct clk_core		*new_child;
62 	unsigned long		flags;
63 	bool			orphan;
64 	unsigned int		enable_count;
65 	unsigned int		prepare_count;
66 	unsigned int		protect_count;
67 	unsigned long		min_rate;
68 	unsigned long		max_rate;
69 	unsigned long		accuracy;
70 	int			phase;
71 	struct hlist_head	children;
72 	struct hlist_node	child_node;
73 	struct hlist_head	clks;
74 	unsigned int		notifier_count;
75 #ifdef CONFIG_DEBUG_FS
76 	struct dentry		*dentry;
77 	struct hlist_node	debug_node;
78 #endif
79 	struct kref		ref;
80 };
81 
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/clk.h>
84 
85 struct clk {
86 	struct clk_core	*core;
87 	const char *dev_id;
88 	const char *con_id;
89 	unsigned long min_rate;
90 	unsigned long max_rate;
91 	unsigned int exclusive_count;
92 	struct hlist_node clks_node;
93 };
94 
95 /***           runtime pm          ***/
96 static int clk_pm_runtime_get(struct clk_core *core)
97 {
98 	int ret = 0;
99 
100 	if (!core->dev)
101 		return 0;
102 
103 	ret = pm_runtime_get_sync(core->dev);
104 	return ret < 0 ? ret : 0;
105 }
106 
107 static void clk_pm_runtime_put(struct clk_core *core)
108 {
109 	if (!core->dev)
110 		return;
111 
112 	pm_runtime_put_sync(core->dev);
113 }
114 
115 /***           locking             ***/
116 static void clk_prepare_lock(void)
117 {
118 	if (!mutex_trylock(&prepare_lock)) {
119 		if (prepare_owner == current) {
120 			prepare_refcnt++;
121 			return;
122 		}
123 		mutex_lock(&prepare_lock);
124 	}
125 	WARN_ON_ONCE(prepare_owner != NULL);
126 	WARN_ON_ONCE(prepare_refcnt != 0);
127 	prepare_owner = current;
128 	prepare_refcnt = 1;
129 }
130 
131 static void clk_prepare_unlock(void)
132 {
133 	WARN_ON_ONCE(prepare_owner != current);
134 	WARN_ON_ONCE(prepare_refcnt == 0);
135 
136 	if (--prepare_refcnt)
137 		return;
138 	prepare_owner = NULL;
139 	mutex_unlock(&prepare_lock);
140 }
141 
142 static unsigned long clk_enable_lock(void)
143 	__acquires(enable_lock)
144 {
145 	unsigned long flags;
146 
147 	/*
148 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
149 	 * we already hold the lock. So, in that case, we rely only on
150 	 * reference counting.
151 	 */
152 	if (!IS_ENABLED(CONFIG_SMP) ||
153 	    !spin_trylock_irqsave(&enable_lock, flags)) {
154 		if (enable_owner == current) {
155 			enable_refcnt++;
156 			__acquire(enable_lock);
157 			if (!IS_ENABLED(CONFIG_SMP))
158 				local_save_flags(flags);
159 			return flags;
160 		}
161 		spin_lock_irqsave(&enable_lock, flags);
162 	}
163 	WARN_ON_ONCE(enable_owner != NULL);
164 	WARN_ON_ONCE(enable_refcnt != 0);
165 	enable_owner = current;
166 	enable_refcnt = 1;
167 	return flags;
168 }
169 
170 static void clk_enable_unlock(unsigned long flags)
171 	__releases(enable_lock)
172 {
173 	WARN_ON_ONCE(enable_owner != current);
174 	WARN_ON_ONCE(enable_refcnt == 0);
175 
176 	if (--enable_refcnt) {
177 		__release(enable_lock);
178 		return;
179 	}
180 	enable_owner = NULL;
181 	spin_unlock_irqrestore(&enable_lock, flags);
182 }
183 
184 static bool clk_core_rate_is_protected(struct clk_core *core)
185 {
186 	return core->protect_count;
187 }
188 
189 static bool clk_core_is_prepared(struct clk_core *core)
190 {
191 	bool ret = false;
192 
193 	/*
194 	 * .is_prepared is optional for clocks that can prepare
195 	 * fall back to software usage counter if it is missing
196 	 */
197 	if (!core->ops->is_prepared)
198 		return core->prepare_count;
199 
200 	if (!clk_pm_runtime_get(core)) {
201 		ret = core->ops->is_prepared(core->hw);
202 		clk_pm_runtime_put(core);
203 	}
204 
205 	return ret;
206 }
207 
208 static bool clk_core_is_enabled(struct clk_core *core)
209 {
210 	bool ret = false;
211 
212 	/*
213 	 * .is_enabled is only mandatory for clocks that gate
214 	 * fall back to software usage counter if .is_enabled is missing
215 	 */
216 	if (!core->ops->is_enabled)
217 		return core->enable_count;
218 
219 	/*
220 	 * Check if clock controller's device is runtime active before
221 	 * calling .is_enabled callback. If not, assume that clock is
222 	 * disabled, because we might be called from atomic context, from
223 	 * which pm_runtime_get() is not allowed.
224 	 * This function is called mainly from clk_disable_unused_subtree,
225 	 * which ensures proper runtime pm activation of controller before
226 	 * taking enable spinlock, but the below check is needed if one tries
227 	 * to call it from other places.
228 	 */
229 	if (core->dev) {
230 		pm_runtime_get_noresume(core->dev);
231 		if (!pm_runtime_active(core->dev)) {
232 			ret = false;
233 			goto done;
234 		}
235 	}
236 
237 	ret = core->ops->is_enabled(core->hw);
238 done:
239 	if (core->dev)
240 		pm_runtime_put(core->dev);
241 
242 	return ret;
243 }
244 
245 /***    helper functions   ***/
246 
247 const char *__clk_get_name(const struct clk *clk)
248 {
249 	return !clk ? NULL : clk->core->name;
250 }
251 EXPORT_SYMBOL_GPL(__clk_get_name);
252 
253 const char *clk_hw_get_name(const struct clk_hw *hw)
254 {
255 	return hw->core->name;
256 }
257 EXPORT_SYMBOL_GPL(clk_hw_get_name);
258 
259 struct clk_hw *__clk_get_hw(struct clk *clk)
260 {
261 	return !clk ? NULL : clk->core->hw;
262 }
263 EXPORT_SYMBOL_GPL(__clk_get_hw);
264 
265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
266 {
267 	return hw->core->num_parents;
268 }
269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
270 
271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
272 {
273 	return hw->core->parent ? hw->core->parent->hw : NULL;
274 }
275 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
276 
277 static struct clk_core *__clk_lookup_subtree(const char *name,
278 					     struct clk_core *core)
279 {
280 	struct clk_core *child;
281 	struct clk_core *ret;
282 
283 	if (!strcmp(core->name, name))
284 		return core;
285 
286 	hlist_for_each_entry(child, &core->children, child_node) {
287 		ret = __clk_lookup_subtree(name, child);
288 		if (ret)
289 			return ret;
290 	}
291 
292 	return NULL;
293 }
294 
295 static struct clk_core *clk_core_lookup(const char *name)
296 {
297 	struct clk_core *root_clk;
298 	struct clk_core *ret;
299 
300 	if (!name)
301 		return NULL;
302 
303 	/* search the 'proper' clk tree first */
304 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
305 		ret = __clk_lookup_subtree(name, root_clk);
306 		if (ret)
307 			return ret;
308 	}
309 
310 	/* if not found, then search the orphan tree */
311 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
312 		ret = __clk_lookup_subtree(name, root_clk);
313 		if (ret)
314 			return ret;
315 	}
316 
317 	return NULL;
318 }
319 
320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
321 							 u8 index)
322 {
323 	if (!core || index >= core->num_parents)
324 		return NULL;
325 
326 	if (!core->parents[index])
327 		core->parents[index] =
328 				clk_core_lookup(core->parent_names[index]);
329 
330 	return core->parents[index];
331 }
332 
333 struct clk_hw *
334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
335 {
336 	struct clk_core *parent;
337 
338 	parent = clk_core_get_parent_by_index(hw->core, index);
339 
340 	return !parent ? NULL : parent->hw;
341 }
342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
343 
344 unsigned int __clk_get_enable_count(struct clk *clk)
345 {
346 	return !clk ? 0 : clk->core->enable_count;
347 }
348 
349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
350 {
351 	unsigned long ret;
352 
353 	if (!core) {
354 		ret = 0;
355 		goto out;
356 	}
357 
358 	ret = core->rate;
359 
360 	if (!core->num_parents)
361 		goto out;
362 
363 	if (!core->parent)
364 		ret = 0;
365 
366 out:
367 	return ret;
368 }
369 
370 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
371 {
372 	return clk_core_get_rate_nolock(hw->core);
373 }
374 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
375 
376 static unsigned long __clk_get_accuracy(struct clk_core *core)
377 {
378 	if (!core)
379 		return 0;
380 
381 	return core->accuracy;
382 }
383 
384 unsigned long __clk_get_flags(struct clk *clk)
385 {
386 	return !clk ? 0 : clk->core->flags;
387 }
388 EXPORT_SYMBOL_GPL(__clk_get_flags);
389 
390 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
391 {
392 	return hw->core->flags;
393 }
394 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
395 
396 bool clk_hw_is_prepared(const struct clk_hw *hw)
397 {
398 	return clk_core_is_prepared(hw->core);
399 }
400 
401 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
402 {
403 	return clk_core_rate_is_protected(hw->core);
404 }
405 
406 bool clk_hw_is_enabled(const struct clk_hw *hw)
407 {
408 	return clk_core_is_enabled(hw->core);
409 }
410 
411 bool __clk_is_enabled(struct clk *clk)
412 {
413 	if (!clk)
414 		return false;
415 
416 	return clk_core_is_enabled(clk->core);
417 }
418 EXPORT_SYMBOL_GPL(__clk_is_enabled);
419 
420 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
421 			   unsigned long best, unsigned long flags)
422 {
423 	if (flags & CLK_MUX_ROUND_CLOSEST)
424 		return abs(now - rate) < abs(best - rate);
425 
426 	return now <= rate && now > best;
427 }
428 
429 static int
430 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
431 			     unsigned long flags)
432 {
433 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
434 	int i, num_parents, ret;
435 	unsigned long best = 0;
436 	struct clk_rate_request parent_req = *req;
437 
438 	/* if NO_REPARENT flag set, pass through to current parent */
439 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
440 		parent = core->parent;
441 		if (core->flags & CLK_SET_RATE_PARENT) {
442 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
443 						   &parent_req);
444 			if (ret)
445 				return ret;
446 
447 			best = parent_req.rate;
448 		} else if (parent) {
449 			best = clk_core_get_rate_nolock(parent);
450 		} else {
451 			best = clk_core_get_rate_nolock(core);
452 		}
453 
454 		goto out;
455 	}
456 
457 	/* find the parent that can provide the fastest rate <= rate */
458 	num_parents = core->num_parents;
459 	for (i = 0; i < num_parents; i++) {
460 		parent = clk_core_get_parent_by_index(core, i);
461 		if (!parent)
462 			continue;
463 
464 		if (core->flags & CLK_SET_RATE_PARENT) {
465 			parent_req = *req;
466 			ret = __clk_determine_rate(parent->hw, &parent_req);
467 			if (ret)
468 				continue;
469 		} else {
470 			parent_req.rate = clk_core_get_rate_nolock(parent);
471 		}
472 
473 		if (mux_is_better_rate(req->rate, parent_req.rate,
474 				       best, flags)) {
475 			best_parent = parent;
476 			best = parent_req.rate;
477 		}
478 	}
479 
480 	if (!best_parent)
481 		return -EINVAL;
482 
483 out:
484 	if (best_parent)
485 		req->best_parent_hw = best_parent->hw;
486 	req->best_parent_rate = best;
487 	req->rate = best;
488 
489 	return 0;
490 }
491 
492 struct clk *__clk_lookup(const char *name)
493 {
494 	struct clk_core *core = clk_core_lookup(name);
495 
496 	return !core ? NULL : core->hw->clk;
497 }
498 
499 static void clk_core_get_boundaries(struct clk_core *core,
500 				    unsigned long *min_rate,
501 				    unsigned long *max_rate)
502 {
503 	struct clk *clk_user;
504 
505 	*min_rate = core->min_rate;
506 	*max_rate = core->max_rate;
507 
508 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
509 		*min_rate = max(*min_rate, clk_user->min_rate);
510 
511 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
512 		*max_rate = min(*max_rate, clk_user->max_rate);
513 }
514 
515 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
516 			   unsigned long max_rate)
517 {
518 	hw->core->min_rate = min_rate;
519 	hw->core->max_rate = max_rate;
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
522 
523 /*
524  * Helper for finding best parent to provide a given frequency. This can be used
525  * directly as a determine_rate callback (e.g. for a mux), or from a more
526  * complex clock that may combine a mux with other operations.
527  */
528 int __clk_mux_determine_rate(struct clk_hw *hw,
529 			     struct clk_rate_request *req)
530 {
531 	return clk_mux_determine_rate_flags(hw, req, 0);
532 }
533 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
534 
535 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
536 				     struct clk_rate_request *req)
537 {
538 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
539 }
540 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
541 
542 /***        clk api        ***/
543 
544 static void clk_core_rate_unprotect(struct clk_core *core)
545 {
546 	lockdep_assert_held(&prepare_lock);
547 
548 	if (!core)
549 		return;
550 
551 	if (WARN_ON(core->protect_count == 0))
552 		return;
553 
554 	if (--core->protect_count > 0)
555 		return;
556 
557 	clk_core_rate_unprotect(core->parent);
558 }
559 
560 static int clk_core_rate_nuke_protect(struct clk_core *core)
561 {
562 	int ret;
563 
564 	lockdep_assert_held(&prepare_lock);
565 
566 	if (!core)
567 		return -EINVAL;
568 
569 	if (core->protect_count == 0)
570 		return 0;
571 
572 	ret = core->protect_count;
573 	core->protect_count = 1;
574 	clk_core_rate_unprotect(core);
575 
576 	return ret;
577 }
578 
579 /**
580  * clk_rate_exclusive_put - release exclusivity over clock rate control
581  * @clk: the clk over which the exclusivity is released
582  *
583  * clk_rate_exclusive_put() completes a critical section during which a clock
584  * consumer cannot tolerate any other consumer making any operation on the
585  * clock which could result in a rate change or rate glitch. Exclusive clocks
586  * cannot have their rate changed, either directly or indirectly due to changes
587  * further up the parent chain of clocks. As a result, clocks up parent chain
588  * also get under exclusive control of the calling consumer.
589  *
590  * If exlusivity is claimed more than once on clock, even by the same consumer,
591  * the rate effectively gets locked as exclusivity can't be preempted.
592  *
593  * Calls to clk_rate_exclusive_put() must be balanced with calls to
594  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
595  * error status.
596  */
597 void clk_rate_exclusive_put(struct clk *clk)
598 {
599 	if (!clk)
600 		return;
601 
602 	clk_prepare_lock();
603 
604 	/*
605 	 * if there is something wrong with this consumer protect count, stop
606 	 * here before messing with the provider
607 	 */
608 	if (WARN_ON(clk->exclusive_count <= 0))
609 		goto out;
610 
611 	clk_core_rate_unprotect(clk->core);
612 	clk->exclusive_count--;
613 out:
614 	clk_prepare_unlock();
615 }
616 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
617 
618 static void clk_core_rate_protect(struct clk_core *core)
619 {
620 	lockdep_assert_held(&prepare_lock);
621 
622 	if (!core)
623 		return;
624 
625 	if (core->protect_count == 0)
626 		clk_core_rate_protect(core->parent);
627 
628 	core->protect_count++;
629 }
630 
631 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
632 {
633 	lockdep_assert_held(&prepare_lock);
634 
635 	if (!core)
636 		return;
637 
638 	if (count == 0)
639 		return;
640 
641 	clk_core_rate_protect(core);
642 	core->protect_count = count;
643 }
644 
645 /**
646  * clk_rate_exclusive_get - get exclusivity over the clk rate control
647  * @clk: the clk over which the exclusity of rate control is requested
648  *
649  * clk_rate_exlusive_get() begins a critical section during which a clock
650  * consumer cannot tolerate any other consumer making any operation on the
651  * clock which could result in a rate change or rate glitch. Exclusive clocks
652  * cannot have their rate changed, either directly or indirectly due to changes
653  * further up the parent chain of clocks. As a result, clocks up parent chain
654  * also get under exclusive control of the calling consumer.
655  *
656  * If exlusivity is claimed more than once on clock, even by the same consumer,
657  * the rate effectively gets locked as exclusivity can't be preempted.
658  *
659  * Calls to clk_rate_exclusive_get() should be balanced with calls to
660  * clk_rate_exclusive_put(). Calls to this function may sleep.
661  * Returns 0 on success, -EERROR otherwise
662  */
663 int clk_rate_exclusive_get(struct clk *clk)
664 {
665 	if (!clk)
666 		return 0;
667 
668 	clk_prepare_lock();
669 	clk_core_rate_protect(clk->core);
670 	clk->exclusive_count++;
671 	clk_prepare_unlock();
672 
673 	return 0;
674 }
675 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
676 
677 static void clk_core_unprepare(struct clk_core *core)
678 {
679 	lockdep_assert_held(&prepare_lock);
680 
681 	if (!core)
682 		return;
683 
684 	if (WARN_ON(core->prepare_count == 0))
685 		return;
686 
687 	if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
688 		return;
689 
690 	if (--core->prepare_count > 0)
691 		return;
692 
693 	WARN_ON(core->enable_count > 0);
694 
695 	trace_clk_unprepare(core);
696 
697 	if (core->ops->unprepare)
698 		core->ops->unprepare(core->hw);
699 
700 	clk_pm_runtime_put(core);
701 
702 	trace_clk_unprepare_complete(core);
703 	clk_core_unprepare(core->parent);
704 }
705 
706 static void clk_core_unprepare_lock(struct clk_core *core)
707 {
708 	clk_prepare_lock();
709 	clk_core_unprepare(core);
710 	clk_prepare_unlock();
711 }
712 
713 /**
714  * clk_unprepare - undo preparation of a clock source
715  * @clk: the clk being unprepared
716  *
717  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
718  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
719  * if the operation may sleep.  One example is a clk which is accessed over
720  * I2c.  In the complex case a clk gate operation may require a fast and a slow
721  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
722  * exclusive.  In fact clk_disable must be called before clk_unprepare.
723  */
724 void clk_unprepare(struct clk *clk)
725 {
726 	if (IS_ERR_OR_NULL(clk))
727 		return;
728 
729 	clk_core_unprepare_lock(clk->core);
730 }
731 EXPORT_SYMBOL_GPL(clk_unprepare);
732 
733 static int clk_core_prepare(struct clk_core *core)
734 {
735 	int ret = 0;
736 
737 	lockdep_assert_held(&prepare_lock);
738 
739 	if (!core)
740 		return 0;
741 
742 	if (core->prepare_count == 0) {
743 		ret = clk_pm_runtime_get(core);
744 		if (ret)
745 			return ret;
746 
747 		ret = clk_core_prepare(core->parent);
748 		if (ret)
749 			goto runtime_put;
750 
751 		trace_clk_prepare(core);
752 
753 		if (core->ops->prepare)
754 			ret = core->ops->prepare(core->hw);
755 
756 		trace_clk_prepare_complete(core);
757 
758 		if (ret)
759 			goto unprepare;
760 	}
761 
762 	core->prepare_count++;
763 
764 	return 0;
765 unprepare:
766 	clk_core_unprepare(core->parent);
767 runtime_put:
768 	clk_pm_runtime_put(core);
769 	return ret;
770 }
771 
772 static int clk_core_prepare_lock(struct clk_core *core)
773 {
774 	int ret;
775 
776 	clk_prepare_lock();
777 	ret = clk_core_prepare(core);
778 	clk_prepare_unlock();
779 
780 	return ret;
781 }
782 
783 /**
784  * clk_prepare - prepare a clock source
785  * @clk: the clk being prepared
786  *
787  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
788  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
789  * operation may sleep.  One example is a clk which is accessed over I2c.  In
790  * the complex case a clk ungate operation may require a fast and a slow part.
791  * It is this reason that clk_prepare and clk_enable are not mutually
792  * exclusive.  In fact clk_prepare must be called before clk_enable.
793  * Returns 0 on success, -EERROR otherwise.
794  */
795 int clk_prepare(struct clk *clk)
796 {
797 	if (!clk)
798 		return 0;
799 
800 	return clk_core_prepare_lock(clk->core);
801 }
802 EXPORT_SYMBOL_GPL(clk_prepare);
803 
804 static void clk_core_disable(struct clk_core *core)
805 {
806 	lockdep_assert_held(&enable_lock);
807 
808 	if (!core)
809 		return;
810 
811 	if (WARN_ON(core->enable_count == 0))
812 		return;
813 
814 	if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
815 		return;
816 
817 	if (--core->enable_count > 0)
818 		return;
819 
820 	trace_clk_disable_rcuidle(core);
821 
822 	if (core->ops->disable)
823 		core->ops->disable(core->hw);
824 
825 	trace_clk_disable_complete_rcuidle(core);
826 
827 	clk_core_disable(core->parent);
828 }
829 
830 static void clk_core_disable_lock(struct clk_core *core)
831 {
832 	unsigned long flags;
833 
834 	flags = clk_enable_lock();
835 	clk_core_disable(core);
836 	clk_enable_unlock(flags);
837 }
838 
839 /**
840  * clk_disable - gate a clock
841  * @clk: the clk being gated
842  *
843  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
844  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
845  * clk if the operation is fast and will never sleep.  One example is a
846  * SoC-internal clk which is controlled via simple register writes.  In the
847  * complex case a clk gate operation may require a fast and a slow part.  It is
848  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
849  * In fact clk_disable must be called before clk_unprepare.
850  */
851 void clk_disable(struct clk *clk)
852 {
853 	if (IS_ERR_OR_NULL(clk))
854 		return;
855 
856 	clk_core_disable_lock(clk->core);
857 }
858 EXPORT_SYMBOL_GPL(clk_disable);
859 
860 static int clk_core_enable(struct clk_core *core)
861 {
862 	int ret = 0;
863 
864 	lockdep_assert_held(&enable_lock);
865 
866 	if (!core)
867 		return 0;
868 
869 	if (WARN_ON(core->prepare_count == 0))
870 		return -ESHUTDOWN;
871 
872 	if (core->enable_count == 0) {
873 		ret = clk_core_enable(core->parent);
874 
875 		if (ret)
876 			return ret;
877 
878 		trace_clk_enable_rcuidle(core);
879 
880 		if (core->ops->enable)
881 			ret = core->ops->enable(core->hw);
882 
883 		trace_clk_enable_complete_rcuidle(core);
884 
885 		if (ret) {
886 			clk_core_disable(core->parent);
887 			return ret;
888 		}
889 	}
890 
891 	core->enable_count++;
892 	return 0;
893 }
894 
895 static int clk_core_enable_lock(struct clk_core *core)
896 {
897 	unsigned long flags;
898 	int ret;
899 
900 	flags = clk_enable_lock();
901 	ret = clk_core_enable(core);
902 	clk_enable_unlock(flags);
903 
904 	return ret;
905 }
906 
907 /**
908  * clk_enable - ungate a clock
909  * @clk: the clk being ungated
910  *
911  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
912  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
913  * if the operation will never sleep.  One example is a SoC-internal clk which
914  * is controlled via simple register writes.  In the complex case a clk ungate
915  * operation may require a fast and a slow part.  It is this reason that
916  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
917  * must be called before clk_enable.  Returns 0 on success, -EERROR
918  * otherwise.
919  */
920 int clk_enable(struct clk *clk)
921 {
922 	if (!clk)
923 		return 0;
924 
925 	return clk_core_enable_lock(clk->core);
926 }
927 EXPORT_SYMBOL_GPL(clk_enable);
928 
929 static int clk_core_prepare_enable(struct clk_core *core)
930 {
931 	int ret;
932 
933 	ret = clk_core_prepare_lock(core);
934 	if (ret)
935 		return ret;
936 
937 	ret = clk_core_enable_lock(core);
938 	if (ret)
939 		clk_core_unprepare_lock(core);
940 
941 	return ret;
942 }
943 
944 static void clk_core_disable_unprepare(struct clk_core *core)
945 {
946 	clk_core_disable_lock(core);
947 	clk_core_unprepare_lock(core);
948 }
949 
950 static void clk_unprepare_unused_subtree(struct clk_core *core)
951 {
952 	struct clk_core *child;
953 
954 	lockdep_assert_held(&prepare_lock);
955 
956 	hlist_for_each_entry(child, &core->children, child_node)
957 		clk_unprepare_unused_subtree(child);
958 
959 	if (core->prepare_count)
960 		return;
961 
962 	if (core->flags & CLK_IGNORE_UNUSED)
963 		return;
964 
965 	if (clk_pm_runtime_get(core))
966 		return;
967 
968 	if (clk_core_is_prepared(core)) {
969 		trace_clk_unprepare(core);
970 		if (core->ops->unprepare_unused)
971 			core->ops->unprepare_unused(core->hw);
972 		else if (core->ops->unprepare)
973 			core->ops->unprepare(core->hw);
974 		trace_clk_unprepare_complete(core);
975 	}
976 
977 	clk_pm_runtime_put(core);
978 }
979 
980 static void clk_disable_unused_subtree(struct clk_core *core)
981 {
982 	struct clk_core *child;
983 	unsigned long flags;
984 
985 	lockdep_assert_held(&prepare_lock);
986 
987 	hlist_for_each_entry(child, &core->children, child_node)
988 		clk_disable_unused_subtree(child);
989 
990 	if (core->flags & CLK_OPS_PARENT_ENABLE)
991 		clk_core_prepare_enable(core->parent);
992 
993 	if (clk_pm_runtime_get(core))
994 		goto unprepare_out;
995 
996 	flags = clk_enable_lock();
997 
998 	if (core->enable_count)
999 		goto unlock_out;
1000 
1001 	if (core->flags & CLK_IGNORE_UNUSED)
1002 		goto unlock_out;
1003 
1004 	/*
1005 	 * some gate clocks have special needs during the disable-unused
1006 	 * sequence.  call .disable_unused if available, otherwise fall
1007 	 * back to .disable
1008 	 */
1009 	if (clk_core_is_enabled(core)) {
1010 		trace_clk_disable(core);
1011 		if (core->ops->disable_unused)
1012 			core->ops->disable_unused(core->hw);
1013 		else if (core->ops->disable)
1014 			core->ops->disable(core->hw);
1015 		trace_clk_disable_complete(core);
1016 	}
1017 
1018 unlock_out:
1019 	clk_enable_unlock(flags);
1020 	clk_pm_runtime_put(core);
1021 unprepare_out:
1022 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1023 		clk_core_disable_unprepare(core->parent);
1024 }
1025 
1026 static bool clk_ignore_unused;
1027 static int __init clk_ignore_unused_setup(char *__unused)
1028 {
1029 	clk_ignore_unused = true;
1030 	return 1;
1031 }
1032 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1033 
1034 static int clk_disable_unused(void)
1035 {
1036 	struct clk_core *core;
1037 
1038 	if (clk_ignore_unused) {
1039 		pr_warn("clk: Not disabling unused clocks\n");
1040 		return 0;
1041 	}
1042 
1043 	clk_prepare_lock();
1044 
1045 	hlist_for_each_entry(core, &clk_root_list, child_node)
1046 		clk_disable_unused_subtree(core);
1047 
1048 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1049 		clk_disable_unused_subtree(core);
1050 
1051 	hlist_for_each_entry(core, &clk_root_list, child_node)
1052 		clk_unprepare_unused_subtree(core);
1053 
1054 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1055 		clk_unprepare_unused_subtree(core);
1056 
1057 	clk_prepare_unlock();
1058 
1059 	return 0;
1060 }
1061 late_initcall_sync(clk_disable_unused);
1062 
1063 static int clk_core_determine_round_nolock(struct clk_core *core,
1064 					   struct clk_rate_request *req)
1065 {
1066 	long rate;
1067 
1068 	lockdep_assert_held(&prepare_lock);
1069 
1070 	if (!core)
1071 		return 0;
1072 
1073 	/*
1074 	 * At this point, core protection will be disabled if
1075 	 * - if the provider is not protected at all
1076 	 * - if the calling consumer is the only one which has exclusivity
1077 	 *   over the provider
1078 	 */
1079 	if (clk_core_rate_is_protected(core)) {
1080 		req->rate = core->rate;
1081 	} else if (core->ops->determine_rate) {
1082 		return core->ops->determine_rate(core->hw, req);
1083 	} else if (core->ops->round_rate) {
1084 		rate = core->ops->round_rate(core->hw, req->rate,
1085 					     &req->best_parent_rate);
1086 		if (rate < 0)
1087 			return rate;
1088 
1089 		req->rate = rate;
1090 	} else {
1091 		return -EINVAL;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 static void clk_core_init_rate_req(struct clk_core * const core,
1098 				   struct clk_rate_request *req)
1099 {
1100 	struct clk_core *parent;
1101 
1102 	if (WARN_ON(!core || !req))
1103 		return;
1104 
1105 	parent = core->parent;
1106 	if (parent) {
1107 		req->best_parent_hw = parent->hw;
1108 		req->best_parent_rate = parent->rate;
1109 	} else {
1110 		req->best_parent_hw = NULL;
1111 		req->best_parent_rate = 0;
1112 	}
1113 }
1114 
1115 static bool clk_core_can_round(struct clk_core * const core)
1116 {
1117 	if (core->ops->determine_rate || core->ops->round_rate)
1118 		return true;
1119 
1120 	return false;
1121 }
1122 
1123 static int clk_core_round_rate_nolock(struct clk_core *core,
1124 				      struct clk_rate_request *req)
1125 {
1126 	lockdep_assert_held(&prepare_lock);
1127 
1128 	if (!core)
1129 		return 0;
1130 
1131 	clk_core_init_rate_req(core, req);
1132 
1133 	if (clk_core_can_round(core))
1134 		return clk_core_determine_round_nolock(core, req);
1135 	else if (core->flags & CLK_SET_RATE_PARENT)
1136 		return clk_core_round_rate_nolock(core->parent, req);
1137 
1138 	req->rate = core->rate;
1139 	return 0;
1140 }
1141 
1142 /**
1143  * __clk_determine_rate - get the closest rate actually supported by a clock
1144  * @hw: determine the rate of this clock
1145  * @req: target rate request
1146  *
1147  * Useful for clk_ops such as .set_rate and .determine_rate.
1148  */
1149 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1150 {
1151 	if (!hw) {
1152 		req->rate = 0;
1153 		return 0;
1154 	}
1155 
1156 	return clk_core_round_rate_nolock(hw->core, req);
1157 }
1158 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1159 
1160 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1161 {
1162 	int ret;
1163 	struct clk_rate_request req;
1164 
1165 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1166 	req.rate = rate;
1167 
1168 	ret = clk_core_round_rate_nolock(hw->core, &req);
1169 	if (ret)
1170 		return 0;
1171 
1172 	return req.rate;
1173 }
1174 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1175 
1176 /**
1177  * clk_round_rate - round the given rate for a clk
1178  * @clk: the clk for which we are rounding a rate
1179  * @rate: the rate which is to be rounded
1180  *
1181  * Takes in a rate as input and rounds it to a rate that the clk can actually
1182  * use which is then returned.  If clk doesn't support round_rate operation
1183  * then the parent rate is returned.
1184  */
1185 long clk_round_rate(struct clk *clk, unsigned long rate)
1186 {
1187 	struct clk_rate_request req;
1188 	int ret;
1189 
1190 	if (!clk)
1191 		return 0;
1192 
1193 	clk_prepare_lock();
1194 
1195 	if (clk->exclusive_count)
1196 		clk_core_rate_unprotect(clk->core);
1197 
1198 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1199 	req.rate = rate;
1200 
1201 	ret = clk_core_round_rate_nolock(clk->core, &req);
1202 
1203 	if (clk->exclusive_count)
1204 		clk_core_rate_protect(clk->core);
1205 
1206 	clk_prepare_unlock();
1207 
1208 	if (ret)
1209 		return ret;
1210 
1211 	return req.rate;
1212 }
1213 EXPORT_SYMBOL_GPL(clk_round_rate);
1214 
1215 /**
1216  * __clk_notify - call clk notifier chain
1217  * @core: clk that is changing rate
1218  * @msg: clk notifier type (see include/linux/clk.h)
1219  * @old_rate: old clk rate
1220  * @new_rate: new clk rate
1221  *
1222  * Triggers a notifier call chain on the clk rate-change notification
1223  * for 'clk'.  Passes a pointer to the struct clk and the previous
1224  * and current rates to the notifier callback.  Intended to be called by
1225  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1226  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1227  * a driver returns that.
1228  */
1229 static int __clk_notify(struct clk_core *core, unsigned long msg,
1230 		unsigned long old_rate, unsigned long new_rate)
1231 {
1232 	struct clk_notifier *cn;
1233 	struct clk_notifier_data cnd;
1234 	int ret = NOTIFY_DONE;
1235 
1236 	cnd.old_rate = old_rate;
1237 	cnd.new_rate = new_rate;
1238 
1239 	list_for_each_entry(cn, &clk_notifier_list, node) {
1240 		if (cn->clk->core == core) {
1241 			cnd.clk = cn->clk;
1242 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1243 					&cnd);
1244 			if (ret & NOTIFY_STOP_MASK)
1245 				return ret;
1246 		}
1247 	}
1248 
1249 	return ret;
1250 }
1251 
1252 /**
1253  * __clk_recalc_accuracies
1254  * @core: first clk in the subtree
1255  *
1256  * Walks the subtree of clks starting with clk and recalculates accuracies as
1257  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1258  * callback then it is assumed that the clock will take on the accuracy of its
1259  * parent.
1260  */
1261 static void __clk_recalc_accuracies(struct clk_core *core)
1262 {
1263 	unsigned long parent_accuracy = 0;
1264 	struct clk_core *child;
1265 
1266 	lockdep_assert_held(&prepare_lock);
1267 
1268 	if (core->parent)
1269 		parent_accuracy = core->parent->accuracy;
1270 
1271 	if (core->ops->recalc_accuracy)
1272 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1273 							  parent_accuracy);
1274 	else
1275 		core->accuracy = parent_accuracy;
1276 
1277 	hlist_for_each_entry(child, &core->children, child_node)
1278 		__clk_recalc_accuracies(child);
1279 }
1280 
1281 static long clk_core_get_accuracy(struct clk_core *core)
1282 {
1283 	unsigned long accuracy;
1284 
1285 	clk_prepare_lock();
1286 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1287 		__clk_recalc_accuracies(core);
1288 
1289 	accuracy = __clk_get_accuracy(core);
1290 	clk_prepare_unlock();
1291 
1292 	return accuracy;
1293 }
1294 
1295 /**
1296  * clk_get_accuracy - return the accuracy of clk
1297  * @clk: the clk whose accuracy is being returned
1298  *
1299  * Simply returns the cached accuracy of the clk, unless
1300  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1301  * issued.
1302  * If clk is NULL then returns 0.
1303  */
1304 long clk_get_accuracy(struct clk *clk)
1305 {
1306 	if (!clk)
1307 		return 0;
1308 
1309 	return clk_core_get_accuracy(clk->core);
1310 }
1311 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1312 
1313 static unsigned long clk_recalc(struct clk_core *core,
1314 				unsigned long parent_rate)
1315 {
1316 	unsigned long rate = parent_rate;
1317 
1318 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1319 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1320 		clk_pm_runtime_put(core);
1321 	}
1322 	return rate;
1323 }
1324 
1325 /**
1326  * __clk_recalc_rates
1327  * @core: first clk in the subtree
1328  * @msg: notification type (see include/linux/clk.h)
1329  *
1330  * Walks the subtree of clks starting with clk and recalculates rates as it
1331  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1332  * it is assumed that the clock will take on the rate of its parent.
1333  *
1334  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1335  * if necessary.
1336  */
1337 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1338 {
1339 	unsigned long old_rate;
1340 	unsigned long parent_rate = 0;
1341 	struct clk_core *child;
1342 
1343 	lockdep_assert_held(&prepare_lock);
1344 
1345 	old_rate = core->rate;
1346 
1347 	if (core->parent)
1348 		parent_rate = core->parent->rate;
1349 
1350 	core->rate = clk_recalc(core, parent_rate);
1351 
1352 	/*
1353 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1354 	 * & ABORT_RATE_CHANGE notifiers
1355 	 */
1356 	if (core->notifier_count && msg)
1357 		__clk_notify(core, msg, old_rate, core->rate);
1358 
1359 	hlist_for_each_entry(child, &core->children, child_node)
1360 		__clk_recalc_rates(child, msg);
1361 }
1362 
1363 static unsigned long clk_core_get_rate(struct clk_core *core)
1364 {
1365 	unsigned long rate;
1366 
1367 	clk_prepare_lock();
1368 
1369 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1370 		__clk_recalc_rates(core, 0);
1371 
1372 	rate = clk_core_get_rate_nolock(core);
1373 	clk_prepare_unlock();
1374 
1375 	return rate;
1376 }
1377 
1378 /**
1379  * clk_get_rate - return the rate of clk
1380  * @clk: the clk whose rate is being returned
1381  *
1382  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1383  * is set, which means a recalc_rate will be issued.
1384  * If clk is NULL then returns 0.
1385  */
1386 unsigned long clk_get_rate(struct clk *clk)
1387 {
1388 	if (!clk)
1389 		return 0;
1390 
1391 	return clk_core_get_rate(clk->core);
1392 }
1393 EXPORT_SYMBOL_GPL(clk_get_rate);
1394 
1395 static int clk_fetch_parent_index(struct clk_core *core,
1396 				  struct clk_core *parent)
1397 {
1398 	int i;
1399 
1400 	if (!parent)
1401 		return -EINVAL;
1402 
1403 	for (i = 0; i < core->num_parents; i++)
1404 		if (clk_core_get_parent_by_index(core, i) == parent)
1405 			return i;
1406 
1407 	return -EINVAL;
1408 }
1409 
1410 /*
1411  * Update the orphan status of @core and all its children.
1412  */
1413 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1414 {
1415 	struct clk_core *child;
1416 
1417 	core->orphan = is_orphan;
1418 
1419 	hlist_for_each_entry(child, &core->children, child_node)
1420 		clk_core_update_orphan_status(child, is_orphan);
1421 }
1422 
1423 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1424 {
1425 	bool was_orphan = core->orphan;
1426 
1427 	hlist_del(&core->child_node);
1428 
1429 	if (new_parent) {
1430 		bool becomes_orphan = new_parent->orphan;
1431 
1432 		/* avoid duplicate POST_RATE_CHANGE notifications */
1433 		if (new_parent->new_child == core)
1434 			new_parent->new_child = NULL;
1435 
1436 		hlist_add_head(&core->child_node, &new_parent->children);
1437 
1438 		if (was_orphan != becomes_orphan)
1439 			clk_core_update_orphan_status(core, becomes_orphan);
1440 	} else {
1441 		hlist_add_head(&core->child_node, &clk_orphan_list);
1442 		if (!was_orphan)
1443 			clk_core_update_orphan_status(core, true);
1444 	}
1445 
1446 	core->parent = new_parent;
1447 }
1448 
1449 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1450 					   struct clk_core *parent)
1451 {
1452 	unsigned long flags;
1453 	struct clk_core *old_parent = core->parent;
1454 
1455 	/*
1456 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1457 	 *
1458 	 * 2. Migrate prepare state between parents and prevent race with
1459 	 * clk_enable().
1460 	 *
1461 	 * If the clock is not prepared, then a race with
1462 	 * clk_enable/disable() is impossible since we already have the
1463 	 * prepare lock (future calls to clk_enable() need to be preceded by
1464 	 * a clk_prepare()).
1465 	 *
1466 	 * If the clock is prepared, migrate the prepared state to the new
1467 	 * parent and also protect against a race with clk_enable() by
1468 	 * forcing the clock and the new parent on.  This ensures that all
1469 	 * future calls to clk_enable() are practically NOPs with respect to
1470 	 * hardware and software states.
1471 	 *
1472 	 * See also: Comment for clk_set_parent() below.
1473 	 */
1474 
1475 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1476 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1477 		clk_core_prepare_enable(old_parent);
1478 		clk_core_prepare_enable(parent);
1479 	}
1480 
1481 	/* migrate prepare count if > 0 */
1482 	if (core->prepare_count) {
1483 		clk_core_prepare_enable(parent);
1484 		clk_core_enable_lock(core);
1485 	}
1486 
1487 	/* update the clk tree topology */
1488 	flags = clk_enable_lock();
1489 	clk_reparent(core, parent);
1490 	clk_enable_unlock(flags);
1491 
1492 	return old_parent;
1493 }
1494 
1495 static void __clk_set_parent_after(struct clk_core *core,
1496 				   struct clk_core *parent,
1497 				   struct clk_core *old_parent)
1498 {
1499 	/*
1500 	 * Finish the migration of prepare state and undo the changes done
1501 	 * for preventing a race with clk_enable().
1502 	 */
1503 	if (core->prepare_count) {
1504 		clk_core_disable_lock(core);
1505 		clk_core_disable_unprepare(old_parent);
1506 	}
1507 
1508 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1509 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1510 		clk_core_disable_unprepare(parent);
1511 		clk_core_disable_unprepare(old_parent);
1512 	}
1513 }
1514 
1515 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1516 			    u8 p_index)
1517 {
1518 	unsigned long flags;
1519 	int ret = 0;
1520 	struct clk_core *old_parent;
1521 
1522 	old_parent = __clk_set_parent_before(core, parent);
1523 
1524 	trace_clk_set_parent(core, parent);
1525 
1526 	/* change clock input source */
1527 	if (parent && core->ops->set_parent)
1528 		ret = core->ops->set_parent(core->hw, p_index);
1529 
1530 	trace_clk_set_parent_complete(core, parent);
1531 
1532 	if (ret) {
1533 		flags = clk_enable_lock();
1534 		clk_reparent(core, old_parent);
1535 		clk_enable_unlock(flags);
1536 		__clk_set_parent_after(core, old_parent, parent);
1537 
1538 		return ret;
1539 	}
1540 
1541 	__clk_set_parent_after(core, parent, old_parent);
1542 
1543 	return 0;
1544 }
1545 
1546 /**
1547  * __clk_speculate_rates
1548  * @core: first clk in the subtree
1549  * @parent_rate: the "future" rate of clk's parent
1550  *
1551  * Walks the subtree of clks starting with clk, speculating rates as it
1552  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1553  *
1554  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1555  * pre-rate change notifications and returns early if no clks in the
1556  * subtree have subscribed to the notifications.  Note that if a clk does not
1557  * implement the .recalc_rate callback then it is assumed that the clock will
1558  * take on the rate of its parent.
1559  */
1560 static int __clk_speculate_rates(struct clk_core *core,
1561 				 unsigned long parent_rate)
1562 {
1563 	struct clk_core *child;
1564 	unsigned long new_rate;
1565 	int ret = NOTIFY_DONE;
1566 
1567 	lockdep_assert_held(&prepare_lock);
1568 
1569 	new_rate = clk_recalc(core, parent_rate);
1570 
1571 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1572 	if (core->notifier_count)
1573 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1574 
1575 	if (ret & NOTIFY_STOP_MASK) {
1576 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1577 				__func__, core->name, ret);
1578 		goto out;
1579 	}
1580 
1581 	hlist_for_each_entry(child, &core->children, child_node) {
1582 		ret = __clk_speculate_rates(child, new_rate);
1583 		if (ret & NOTIFY_STOP_MASK)
1584 			break;
1585 	}
1586 
1587 out:
1588 	return ret;
1589 }
1590 
1591 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1592 			     struct clk_core *new_parent, u8 p_index)
1593 {
1594 	struct clk_core *child;
1595 
1596 	core->new_rate = new_rate;
1597 	core->new_parent = new_parent;
1598 	core->new_parent_index = p_index;
1599 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1600 	core->new_child = NULL;
1601 	if (new_parent && new_parent != core->parent)
1602 		new_parent->new_child = core;
1603 
1604 	hlist_for_each_entry(child, &core->children, child_node) {
1605 		child->new_rate = clk_recalc(child, new_rate);
1606 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1607 	}
1608 }
1609 
1610 /*
1611  * calculate the new rates returning the topmost clock that has to be
1612  * changed.
1613  */
1614 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1615 					   unsigned long rate)
1616 {
1617 	struct clk_core *top = core;
1618 	struct clk_core *old_parent, *parent;
1619 	unsigned long best_parent_rate = 0;
1620 	unsigned long new_rate;
1621 	unsigned long min_rate;
1622 	unsigned long max_rate;
1623 	int p_index = 0;
1624 	long ret;
1625 
1626 	/* sanity */
1627 	if (IS_ERR_OR_NULL(core))
1628 		return NULL;
1629 
1630 	/* save parent rate, if it exists */
1631 	parent = old_parent = core->parent;
1632 	if (parent)
1633 		best_parent_rate = parent->rate;
1634 
1635 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1636 
1637 	/* find the closest rate and parent clk/rate */
1638 	if (clk_core_can_round(core)) {
1639 		struct clk_rate_request req;
1640 
1641 		req.rate = rate;
1642 		req.min_rate = min_rate;
1643 		req.max_rate = max_rate;
1644 
1645 		clk_core_init_rate_req(core, &req);
1646 
1647 		ret = clk_core_determine_round_nolock(core, &req);
1648 		if (ret < 0)
1649 			return NULL;
1650 
1651 		best_parent_rate = req.best_parent_rate;
1652 		new_rate = req.rate;
1653 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1654 
1655 		if (new_rate < min_rate || new_rate > max_rate)
1656 			return NULL;
1657 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1658 		/* pass-through clock without adjustable parent */
1659 		core->new_rate = core->rate;
1660 		return NULL;
1661 	} else {
1662 		/* pass-through clock with adjustable parent */
1663 		top = clk_calc_new_rates(parent, rate);
1664 		new_rate = parent->new_rate;
1665 		goto out;
1666 	}
1667 
1668 	/* some clocks must be gated to change parent */
1669 	if (parent != old_parent &&
1670 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1671 		pr_debug("%s: %s not gated but wants to reparent\n",
1672 			 __func__, core->name);
1673 		return NULL;
1674 	}
1675 
1676 	/* try finding the new parent index */
1677 	if (parent && core->num_parents > 1) {
1678 		p_index = clk_fetch_parent_index(core, parent);
1679 		if (p_index < 0) {
1680 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1681 				 __func__, parent->name, core->name);
1682 			return NULL;
1683 		}
1684 	}
1685 
1686 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1687 	    best_parent_rate != parent->rate)
1688 		top = clk_calc_new_rates(parent, best_parent_rate);
1689 
1690 out:
1691 	clk_calc_subtree(core, new_rate, parent, p_index);
1692 
1693 	return top;
1694 }
1695 
1696 /*
1697  * Notify about rate changes in a subtree. Always walk down the whole tree
1698  * so that in case of an error we can walk down the whole tree again and
1699  * abort the change.
1700  */
1701 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1702 						  unsigned long event)
1703 {
1704 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1705 	int ret = NOTIFY_DONE;
1706 
1707 	if (core->rate == core->new_rate)
1708 		return NULL;
1709 
1710 	if (core->notifier_count) {
1711 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1712 		if (ret & NOTIFY_STOP_MASK)
1713 			fail_clk = core;
1714 	}
1715 
1716 	hlist_for_each_entry(child, &core->children, child_node) {
1717 		/* Skip children who will be reparented to another clock */
1718 		if (child->new_parent && child->new_parent != core)
1719 			continue;
1720 		tmp_clk = clk_propagate_rate_change(child, event);
1721 		if (tmp_clk)
1722 			fail_clk = tmp_clk;
1723 	}
1724 
1725 	/* handle the new child who might not be in core->children yet */
1726 	if (core->new_child) {
1727 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1728 		if (tmp_clk)
1729 			fail_clk = tmp_clk;
1730 	}
1731 
1732 	return fail_clk;
1733 }
1734 
1735 /*
1736  * walk down a subtree and set the new rates notifying the rate
1737  * change on the way
1738  */
1739 static void clk_change_rate(struct clk_core *core)
1740 {
1741 	struct clk_core *child;
1742 	struct hlist_node *tmp;
1743 	unsigned long old_rate;
1744 	unsigned long best_parent_rate = 0;
1745 	bool skip_set_rate = false;
1746 	struct clk_core *old_parent;
1747 	struct clk_core *parent = NULL;
1748 
1749 	old_rate = core->rate;
1750 
1751 	if (core->new_parent) {
1752 		parent = core->new_parent;
1753 		best_parent_rate = core->new_parent->rate;
1754 	} else if (core->parent) {
1755 		parent = core->parent;
1756 		best_parent_rate = core->parent->rate;
1757 	}
1758 
1759 	if (clk_pm_runtime_get(core))
1760 		return;
1761 
1762 	if (core->flags & CLK_SET_RATE_UNGATE) {
1763 		unsigned long flags;
1764 
1765 		clk_core_prepare(core);
1766 		flags = clk_enable_lock();
1767 		clk_core_enable(core);
1768 		clk_enable_unlock(flags);
1769 	}
1770 
1771 	if (core->new_parent && core->new_parent != core->parent) {
1772 		old_parent = __clk_set_parent_before(core, core->new_parent);
1773 		trace_clk_set_parent(core, core->new_parent);
1774 
1775 		if (core->ops->set_rate_and_parent) {
1776 			skip_set_rate = true;
1777 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1778 					best_parent_rate,
1779 					core->new_parent_index);
1780 		} else if (core->ops->set_parent) {
1781 			core->ops->set_parent(core->hw, core->new_parent_index);
1782 		}
1783 
1784 		trace_clk_set_parent_complete(core, core->new_parent);
1785 		__clk_set_parent_after(core, core->new_parent, old_parent);
1786 	}
1787 
1788 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1789 		clk_core_prepare_enable(parent);
1790 
1791 	trace_clk_set_rate(core, core->new_rate);
1792 
1793 	if (!skip_set_rate && core->ops->set_rate)
1794 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1795 
1796 	trace_clk_set_rate_complete(core, core->new_rate);
1797 
1798 	core->rate = clk_recalc(core, best_parent_rate);
1799 
1800 	if (core->flags & CLK_SET_RATE_UNGATE) {
1801 		unsigned long flags;
1802 
1803 		flags = clk_enable_lock();
1804 		clk_core_disable(core);
1805 		clk_enable_unlock(flags);
1806 		clk_core_unprepare(core);
1807 	}
1808 
1809 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1810 		clk_core_disable_unprepare(parent);
1811 
1812 	if (core->notifier_count && old_rate != core->rate)
1813 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1814 
1815 	if (core->flags & CLK_RECALC_NEW_RATES)
1816 		(void)clk_calc_new_rates(core, core->new_rate);
1817 
1818 	/*
1819 	 * Use safe iteration, as change_rate can actually swap parents
1820 	 * for certain clock types.
1821 	 */
1822 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1823 		/* Skip children who will be reparented to another clock */
1824 		if (child->new_parent && child->new_parent != core)
1825 			continue;
1826 		clk_change_rate(child);
1827 	}
1828 
1829 	/* handle the new child who might not be in core->children yet */
1830 	if (core->new_child)
1831 		clk_change_rate(core->new_child);
1832 
1833 	clk_pm_runtime_put(core);
1834 }
1835 
1836 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1837 						     unsigned long req_rate)
1838 {
1839 	int ret, cnt;
1840 	struct clk_rate_request req;
1841 
1842 	lockdep_assert_held(&prepare_lock);
1843 
1844 	if (!core)
1845 		return 0;
1846 
1847 	/* simulate what the rate would be if it could be freely set */
1848 	cnt = clk_core_rate_nuke_protect(core);
1849 	if (cnt < 0)
1850 		return cnt;
1851 
1852 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1853 	req.rate = req_rate;
1854 
1855 	ret = clk_core_round_rate_nolock(core, &req);
1856 
1857 	/* restore the protection */
1858 	clk_core_rate_restore_protect(core, cnt);
1859 
1860 	return ret ? 0 : req.rate;
1861 }
1862 
1863 static int clk_core_set_rate_nolock(struct clk_core *core,
1864 				    unsigned long req_rate)
1865 {
1866 	struct clk_core *top, *fail_clk;
1867 	unsigned long rate;
1868 	int ret = 0;
1869 
1870 	if (!core)
1871 		return 0;
1872 
1873 	rate = clk_core_req_round_rate_nolock(core, req_rate);
1874 
1875 	/* bail early if nothing to do */
1876 	if (rate == clk_core_get_rate_nolock(core))
1877 		return 0;
1878 
1879 	/* fail on a direct rate set of a protected provider */
1880 	if (clk_core_rate_is_protected(core))
1881 		return -EBUSY;
1882 
1883 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1884 		return -EBUSY;
1885 
1886 	/* calculate new rates and get the topmost changed clock */
1887 	top = clk_calc_new_rates(core, req_rate);
1888 	if (!top)
1889 		return -EINVAL;
1890 
1891 	ret = clk_pm_runtime_get(core);
1892 	if (ret)
1893 		return ret;
1894 
1895 	/* notify that we are about to change rates */
1896 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1897 	if (fail_clk) {
1898 		pr_debug("%s: failed to set %s rate\n", __func__,
1899 				fail_clk->name);
1900 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1901 		ret = -EBUSY;
1902 		goto err;
1903 	}
1904 
1905 	/* change the rates */
1906 	clk_change_rate(top);
1907 
1908 	core->req_rate = req_rate;
1909 err:
1910 	clk_pm_runtime_put(core);
1911 
1912 	return ret;
1913 }
1914 
1915 /**
1916  * clk_set_rate - specify a new rate for clk
1917  * @clk: the clk whose rate is being changed
1918  * @rate: the new rate for clk
1919  *
1920  * In the simplest case clk_set_rate will only adjust the rate of clk.
1921  *
1922  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1923  * propagate up to clk's parent; whether or not this happens depends on the
1924  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1925  * after calling .round_rate then upstream parent propagation is ignored.  If
1926  * *parent_rate comes back with a new rate for clk's parent then we propagate
1927  * up to clk's parent and set its rate.  Upward propagation will continue
1928  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1929  * .round_rate stops requesting changes to clk's parent_rate.
1930  *
1931  * Rate changes are accomplished via tree traversal that also recalculates the
1932  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1933  *
1934  * Returns 0 on success, -EERROR otherwise.
1935  */
1936 int clk_set_rate(struct clk *clk, unsigned long rate)
1937 {
1938 	int ret;
1939 
1940 	if (!clk)
1941 		return 0;
1942 
1943 	/* prevent racing with updates to the clock topology */
1944 	clk_prepare_lock();
1945 
1946 	if (clk->exclusive_count)
1947 		clk_core_rate_unprotect(clk->core);
1948 
1949 	ret = clk_core_set_rate_nolock(clk->core, rate);
1950 
1951 	if (clk->exclusive_count)
1952 		clk_core_rate_protect(clk->core);
1953 
1954 	clk_prepare_unlock();
1955 
1956 	return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(clk_set_rate);
1959 
1960 /**
1961  * clk_set_rate_exclusive - specify a new rate get exclusive control
1962  * @clk: the clk whose rate is being changed
1963  * @rate: the new rate for clk
1964  *
1965  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1966  * within a critical section
1967  *
1968  * This can be used initially to ensure that at least 1 consumer is
1969  * statisfied when several consumers are competing for exclusivity over the
1970  * same clock provider.
1971  *
1972  * The exclusivity is not applied if setting the rate failed.
1973  *
1974  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1975  * clk_rate_exclusive_put().
1976  *
1977  * Returns 0 on success, -EERROR otherwise.
1978  */
1979 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1980 {
1981 	int ret;
1982 
1983 	if (!clk)
1984 		return 0;
1985 
1986 	/* prevent racing with updates to the clock topology */
1987 	clk_prepare_lock();
1988 
1989 	/*
1990 	 * The temporary protection removal is not here, on purpose
1991 	 * This function is meant to be used instead of clk_rate_protect,
1992 	 * so before the consumer code path protect the clock provider
1993 	 */
1994 
1995 	ret = clk_core_set_rate_nolock(clk->core, rate);
1996 	if (!ret) {
1997 		clk_core_rate_protect(clk->core);
1998 		clk->exclusive_count++;
1999 	}
2000 
2001 	clk_prepare_unlock();
2002 
2003 	return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2006 
2007 /**
2008  * clk_set_rate_range - set a rate range for a clock source
2009  * @clk: clock source
2010  * @min: desired minimum clock rate in Hz, inclusive
2011  * @max: desired maximum clock rate in Hz, inclusive
2012  *
2013  * Returns success (0) or negative errno.
2014  */
2015 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2016 {
2017 	int ret = 0;
2018 	unsigned long old_min, old_max, rate;
2019 
2020 	if (!clk)
2021 		return 0;
2022 
2023 	if (min > max) {
2024 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2025 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2026 		       min, max);
2027 		return -EINVAL;
2028 	}
2029 
2030 	clk_prepare_lock();
2031 
2032 	if (clk->exclusive_count)
2033 		clk_core_rate_unprotect(clk->core);
2034 
2035 	/* Save the current values in case we need to rollback the change */
2036 	old_min = clk->min_rate;
2037 	old_max = clk->max_rate;
2038 	clk->min_rate = min;
2039 	clk->max_rate = max;
2040 
2041 	rate = clk_core_get_rate_nolock(clk->core);
2042 	if (rate < min || rate > max) {
2043 		/*
2044 		 * FIXME:
2045 		 * We are in bit of trouble here, current rate is outside the
2046 		 * the requested range. We are going try to request appropriate
2047 		 * range boundary but there is a catch. It may fail for the
2048 		 * usual reason (clock broken, clock protected, etc) but also
2049 		 * because:
2050 		 * - round_rate() was not favorable and fell on the wrong
2051 		 *   side of the boundary
2052 		 * - the determine_rate() callback does not really check for
2053 		 *   this corner case when determining the rate
2054 		 */
2055 
2056 		if (rate < min)
2057 			rate = min;
2058 		else
2059 			rate = max;
2060 
2061 		ret = clk_core_set_rate_nolock(clk->core, rate);
2062 		if (ret) {
2063 			/* rollback the changes */
2064 			clk->min_rate = old_min;
2065 			clk->max_rate = old_max;
2066 		}
2067 	}
2068 
2069 	if (clk->exclusive_count)
2070 		clk_core_rate_protect(clk->core);
2071 
2072 	clk_prepare_unlock();
2073 
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2077 
2078 /**
2079  * clk_set_min_rate - set a minimum clock rate for a clock source
2080  * @clk: clock source
2081  * @rate: desired minimum clock rate in Hz, inclusive
2082  *
2083  * Returns success (0) or negative errno.
2084  */
2085 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2086 {
2087 	if (!clk)
2088 		return 0;
2089 
2090 	return clk_set_rate_range(clk, rate, clk->max_rate);
2091 }
2092 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2093 
2094 /**
2095  * clk_set_max_rate - set a maximum clock rate for a clock source
2096  * @clk: clock source
2097  * @rate: desired maximum clock rate in Hz, inclusive
2098  *
2099  * Returns success (0) or negative errno.
2100  */
2101 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2102 {
2103 	if (!clk)
2104 		return 0;
2105 
2106 	return clk_set_rate_range(clk, clk->min_rate, rate);
2107 }
2108 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2109 
2110 /**
2111  * clk_get_parent - return the parent of a clk
2112  * @clk: the clk whose parent gets returned
2113  *
2114  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2115  */
2116 struct clk *clk_get_parent(struct clk *clk)
2117 {
2118 	struct clk *parent;
2119 
2120 	if (!clk)
2121 		return NULL;
2122 
2123 	clk_prepare_lock();
2124 	/* TODO: Create a per-user clk and change callers to call clk_put */
2125 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2126 	clk_prepare_unlock();
2127 
2128 	return parent;
2129 }
2130 EXPORT_SYMBOL_GPL(clk_get_parent);
2131 
2132 static struct clk_core *__clk_init_parent(struct clk_core *core)
2133 {
2134 	u8 index = 0;
2135 
2136 	if (core->num_parents > 1 && core->ops->get_parent)
2137 		index = core->ops->get_parent(core->hw);
2138 
2139 	return clk_core_get_parent_by_index(core, index);
2140 }
2141 
2142 static void clk_core_reparent(struct clk_core *core,
2143 				  struct clk_core *new_parent)
2144 {
2145 	clk_reparent(core, new_parent);
2146 	__clk_recalc_accuracies(core);
2147 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2148 }
2149 
2150 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2151 {
2152 	if (!hw)
2153 		return;
2154 
2155 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2156 }
2157 
2158 /**
2159  * clk_has_parent - check if a clock is a possible parent for another
2160  * @clk: clock source
2161  * @parent: parent clock source
2162  *
2163  * This function can be used in drivers that need to check that a clock can be
2164  * the parent of another without actually changing the parent.
2165  *
2166  * Returns true if @parent is a possible parent for @clk, false otherwise.
2167  */
2168 bool clk_has_parent(struct clk *clk, struct clk *parent)
2169 {
2170 	struct clk_core *core, *parent_core;
2171 	unsigned int i;
2172 
2173 	/* NULL clocks should be nops, so return success if either is NULL. */
2174 	if (!clk || !parent)
2175 		return true;
2176 
2177 	core = clk->core;
2178 	parent_core = parent->core;
2179 
2180 	/* Optimize for the case where the parent is already the parent. */
2181 	if (core->parent == parent_core)
2182 		return true;
2183 
2184 	for (i = 0; i < core->num_parents; i++)
2185 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
2186 			return true;
2187 
2188 	return false;
2189 }
2190 EXPORT_SYMBOL_GPL(clk_has_parent);
2191 
2192 static int clk_core_set_parent_nolock(struct clk_core *core,
2193 				      struct clk_core *parent)
2194 {
2195 	int ret = 0;
2196 	int p_index = 0;
2197 	unsigned long p_rate = 0;
2198 
2199 	lockdep_assert_held(&prepare_lock);
2200 
2201 	if (!core)
2202 		return 0;
2203 
2204 	if (core->parent == parent)
2205 		return 0;
2206 
2207 	/* verify ops for for multi-parent clks */
2208 	if (core->num_parents > 1 && !core->ops->set_parent)
2209 		return -EPERM;
2210 
2211 	/* check that we are allowed to re-parent if the clock is in use */
2212 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2213 		return -EBUSY;
2214 
2215 	if (clk_core_rate_is_protected(core))
2216 		return -EBUSY;
2217 
2218 	/* try finding the new parent index */
2219 	if (parent) {
2220 		p_index = clk_fetch_parent_index(core, parent);
2221 		if (p_index < 0) {
2222 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2223 					__func__, parent->name, core->name);
2224 			return p_index;
2225 		}
2226 		p_rate = parent->rate;
2227 	}
2228 
2229 	ret = clk_pm_runtime_get(core);
2230 	if (ret)
2231 		return ret;
2232 
2233 	/* propagate PRE_RATE_CHANGE notifications */
2234 	ret = __clk_speculate_rates(core, p_rate);
2235 
2236 	/* abort if a driver objects */
2237 	if (ret & NOTIFY_STOP_MASK)
2238 		goto runtime_put;
2239 
2240 	/* do the re-parent */
2241 	ret = __clk_set_parent(core, parent, p_index);
2242 
2243 	/* propagate rate an accuracy recalculation accordingly */
2244 	if (ret) {
2245 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2246 	} else {
2247 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2248 		__clk_recalc_accuracies(core);
2249 	}
2250 
2251 runtime_put:
2252 	clk_pm_runtime_put(core);
2253 
2254 	return ret;
2255 }
2256 
2257 /**
2258  * clk_set_parent - switch the parent of a mux clk
2259  * @clk: the mux clk whose input we are switching
2260  * @parent: the new input to clk
2261  *
2262  * Re-parent clk to use parent as its new input source.  If clk is in
2263  * prepared state, the clk will get enabled for the duration of this call. If
2264  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2265  * that, the reparenting is glitchy in hardware, etc), use the
2266  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2267  *
2268  * After successfully changing clk's parent clk_set_parent will update the
2269  * clk topology, sysfs topology and propagate rate recalculation via
2270  * __clk_recalc_rates.
2271  *
2272  * Returns 0 on success, -EERROR otherwise.
2273  */
2274 int clk_set_parent(struct clk *clk, struct clk *parent)
2275 {
2276 	int ret;
2277 
2278 	if (!clk)
2279 		return 0;
2280 
2281 	clk_prepare_lock();
2282 
2283 	if (clk->exclusive_count)
2284 		clk_core_rate_unprotect(clk->core);
2285 
2286 	ret = clk_core_set_parent_nolock(clk->core,
2287 					 parent ? parent->core : NULL);
2288 
2289 	if (clk->exclusive_count)
2290 		clk_core_rate_protect(clk->core);
2291 
2292 	clk_prepare_unlock();
2293 
2294 	return ret;
2295 }
2296 EXPORT_SYMBOL_GPL(clk_set_parent);
2297 
2298 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2299 {
2300 	int ret = -EINVAL;
2301 
2302 	lockdep_assert_held(&prepare_lock);
2303 
2304 	if (!core)
2305 		return 0;
2306 
2307 	if (clk_core_rate_is_protected(core))
2308 		return -EBUSY;
2309 
2310 	trace_clk_set_phase(core, degrees);
2311 
2312 	if (core->ops->set_phase)
2313 		ret = core->ops->set_phase(core->hw, degrees);
2314 
2315 	trace_clk_set_phase_complete(core, degrees);
2316 
2317 	return ret;
2318 }
2319 
2320 /**
2321  * clk_set_phase - adjust the phase shift of a clock signal
2322  * @clk: clock signal source
2323  * @degrees: number of degrees the signal is shifted
2324  *
2325  * Shifts the phase of a clock signal by the specified
2326  * degrees. Returns 0 on success, -EERROR otherwise.
2327  *
2328  * This function makes no distinction about the input or reference
2329  * signal that we adjust the clock signal phase against. For example
2330  * phase locked-loop clock signal generators we may shift phase with
2331  * respect to feedback clock signal input, but for other cases the
2332  * clock phase may be shifted with respect to some other, unspecified
2333  * signal.
2334  *
2335  * Additionally the concept of phase shift does not propagate through
2336  * the clock tree hierarchy, which sets it apart from clock rates and
2337  * clock accuracy. A parent clock phase attribute does not have an
2338  * impact on the phase attribute of a child clock.
2339  */
2340 int clk_set_phase(struct clk *clk, int degrees)
2341 {
2342 	int ret;
2343 
2344 	if (!clk)
2345 		return 0;
2346 
2347 	/* sanity check degrees */
2348 	degrees %= 360;
2349 	if (degrees < 0)
2350 		degrees += 360;
2351 
2352 	clk_prepare_lock();
2353 
2354 	if (clk->exclusive_count)
2355 		clk_core_rate_unprotect(clk->core);
2356 
2357 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2358 
2359 	if (clk->exclusive_count)
2360 		clk_core_rate_protect(clk->core);
2361 
2362 	clk_prepare_unlock();
2363 
2364 	return ret;
2365 }
2366 EXPORT_SYMBOL_GPL(clk_set_phase);
2367 
2368 static int clk_core_get_phase(struct clk_core *core)
2369 {
2370 	int ret;
2371 
2372 	clk_prepare_lock();
2373 	ret = core->phase;
2374 	clk_prepare_unlock();
2375 
2376 	return ret;
2377 }
2378 
2379 /**
2380  * clk_get_phase - return the phase shift of a clock signal
2381  * @clk: clock signal source
2382  *
2383  * Returns the phase shift of a clock node in degrees, otherwise returns
2384  * -EERROR.
2385  */
2386 int clk_get_phase(struct clk *clk)
2387 {
2388 	if (!clk)
2389 		return 0;
2390 
2391 	return clk_core_get_phase(clk->core);
2392 }
2393 EXPORT_SYMBOL_GPL(clk_get_phase);
2394 
2395 /**
2396  * clk_is_match - check if two clk's point to the same hardware clock
2397  * @p: clk compared against q
2398  * @q: clk compared against p
2399  *
2400  * Returns true if the two struct clk pointers both point to the same hardware
2401  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2402  * share the same struct clk_core object.
2403  *
2404  * Returns false otherwise. Note that two NULL clks are treated as matching.
2405  */
2406 bool clk_is_match(const struct clk *p, const struct clk *q)
2407 {
2408 	/* trivial case: identical struct clk's or both NULL */
2409 	if (p == q)
2410 		return true;
2411 
2412 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2413 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2414 		if (p->core == q->core)
2415 			return true;
2416 
2417 	return false;
2418 }
2419 EXPORT_SYMBOL_GPL(clk_is_match);
2420 
2421 /***        debugfs support        ***/
2422 
2423 #ifdef CONFIG_DEBUG_FS
2424 #include <linux/debugfs.h>
2425 
2426 static struct dentry *rootdir;
2427 static int inited = 0;
2428 static DEFINE_MUTEX(clk_debug_lock);
2429 static HLIST_HEAD(clk_debug_list);
2430 
2431 static struct hlist_head *all_lists[] = {
2432 	&clk_root_list,
2433 	&clk_orphan_list,
2434 	NULL,
2435 };
2436 
2437 static struct hlist_head *orphan_list[] = {
2438 	&clk_orphan_list,
2439 	NULL,
2440 };
2441 
2442 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2443 				 int level)
2444 {
2445 	if (!c)
2446 		return;
2447 
2448 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n",
2449 		   level * 3 + 1, "",
2450 		   30 - level * 3, c->name,
2451 		   c->enable_count, c->prepare_count, c->protect_count,
2452 		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2453 		   clk_core_get_phase(c));
2454 }
2455 
2456 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2457 				     int level)
2458 {
2459 	struct clk_core *child;
2460 
2461 	if (!c)
2462 		return;
2463 
2464 	clk_summary_show_one(s, c, level);
2465 
2466 	hlist_for_each_entry(child, &c->children, child_node)
2467 		clk_summary_show_subtree(s, child, level + 1);
2468 }
2469 
2470 static int clk_summary_show(struct seq_file *s, void *data)
2471 {
2472 	struct clk_core *c;
2473 	struct hlist_head **lists = (struct hlist_head **)s->private;
2474 
2475 	seq_puts(s, "                                 enable  prepare  protect                               \n");
2476 	seq_puts(s, "   clock                          count    count    count        rate   accuracy   phase\n");
2477 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2478 
2479 	clk_prepare_lock();
2480 
2481 	for (; *lists; lists++)
2482 		hlist_for_each_entry(c, *lists, child_node)
2483 			clk_summary_show_subtree(s, c, 0);
2484 
2485 	clk_prepare_unlock();
2486 
2487 	return 0;
2488 }
2489 
2490 
2491 static int clk_summary_open(struct inode *inode, struct file *file)
2492 {
2493 	return single_open(file, clk_summary_show, inode->i_private);
2494 }
2495 
2496 static const struct file_operations clk_summary_fops = {
2497 	.open		= clk_summary_open,
2498 	.read		= seq_read,
2499 	.llseek		= seq_lseek,
2500 	.release	= single_release,
2501 };
2502 
2503 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2504 {
2505 	if (!c)
2506 		return;
2507 
2508 	/* This should be JSON format, i.e. elements separated with a comma */
2509 	seq_printf(s, "\"%s\": { ", c->name);
2510 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2511 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2512 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2513 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2514 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2515 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2516 }
2517 
2518 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2519 {
2520 	struct clk_core *child;
2521 
2522 	if (!c)
2523 		return;
2524 
2525 	clk_dump_one(s, c, level);
2526 
2527 	hlist_for_each_entry(child, &c->children, child_node) {
2528 		seq_putc(s, ',');
2529 		clk_dump_subtree(s, child, level + 1);
2530 	}
2531 
2532 	seq_putc(s, '}');
2533 }
2534 
2535 static int clk_dump(struct seq_file *s, void *data)
2536 {
2537 	struct clk_core *c;
2538 	bool first_node = true;
2539 	struct hlist_head **lists = (struct hlist_head **)s->private;
2540 
2541 	seq_putc(s, '{');
2542 	clk_prepare_lock();
2543 
2544 	for (; *lists; lists++) {
2545 		hlist_for_each_entry(c, *lists, child_node) {
2546 			if (!first_node)
2547 				seq_putc(s, ',');
2548 			first_node = false;
2549 			clk_dump_subtree(s, c, 0);
2550 		}
2551 	}
2552 
2553 	clk_prepare_unlock();
2554 
2555 	seq_puts(s, "}\n");
2556 	return 0;
2557 }
2558 
2559 
2560 static int clk_dump_open(struct inode *inode, struct file *file)
2561 {
2562 	return single_open(file, clk_dump, inode->i_private);
2563 }
2564 
2565 static const struct file_operations clk_dump_fops = {
2566 	.open		= clk_dump_open,
2567 	.read		= seq_read,
2568 	.llseek		= seq_lseek,
2569 	.release	= single_release,
2570 };
2571 
2572 static const struct {
2573 	unsigned long flag;
2574 	const char *name;
2575 } clk_flags[] = {
2576 #define ENTRY(f) { f, __stringify(f) }
2577 	ENTRY(CLK_SET_RATE_GATE),
2578 	ENTRY(CLK_SET_PARENT_GATE),
2579 	ENTRY(CLK_SET_RATE_PARENT),
2580 	ENTRY(CLK_IGNORE_UNUSED),
2581 	ENTRY(CLK_IS_BASIC),
2582 	ENTRY(CLK_GET_RATE_NOCACHE),
2583 	ENTRY(CLK_SET_RATE_NO_REPARENT),
2584 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2585 	ENTRY(CLK_RECALC_NEW_RATES),
2586 	ENTRY(CLK_SET_RATE_UNGATE),
2587 	ENTRY(CLK_IS_CRITICAL),
2588 	ENTRY(CLK_OPS_PARENT_ENABLE),
2589 #undef ENTRY
2590 };
2591 
2592 static int clk_flags_dump(struct seq_file *s, void *data)
2593 {
2594 	struct clk_core *core = s->private;
2595 	unsigned long flags = core->flags;
2596 	unsigned int i;
2597 
2598 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2599 		if (flags & clk_flags[i].flag) {
2600 			seq_printf(s, "%s\n", clk_flags[i].name);
2601 			flags &= ~clk_flags[i].flag;
2602 		}
2603 	}
2604 	if (flags) {
2605 		/* Unknown flags */
2606 		seq_printf(s, "0x%lx\n", flags);
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 static int clk_flags_open(struct inode *inode, struct file *file)
2613 {
2614 	return single_open(file, clk_flags_dump, inode->i_private);
2615 }
2616 
2617 static const struct file_operations clk_flags_fops = {
2618 	.open		= clk_flags_open,
2619 	.read		= seq_read,
2620 	.llseek		= seq_lseek,
2621 	.release	= single_release,
2622 };
2623 
2624 static int possible_parents_dump(struct seq_file *s, void *data)
2625 {
2626 	struct clk_core *core = s->private;
2627 	int i;
2628 
2629 	for (i = 0; i < core->num_parents - 1; i++)
2630 		seq_printf(s, "%s ", core->parent_names[i]);
2631 
2632 	seq_printf(s, "%s\n", core->parent_names[i]);
2633 
2634 	return 0;
2635 }
2636 
2637 static int possible_parents_open(struct inode *inode, struct file *file)
2638 {
2639 	return single_open(file, possible_parents_dump, inode->i_private);
2640 }
2641 
2642 static const struct file_operations possible_parents_fops = {
2643 	.open		= possible_parents_open,
2644 	.read		= seq_read,
2645 	.llseek		= seq_lseek,
2646 	.release	= single_release,
2647 };
2648 
2649 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2650 {
2651 	struct dentry *d;
2652 	int ret = -ENOMEM;
2653 
2654 	if (!core || !pdentry) {
2655 		ret = -EINVAL;
2656 		goto out;
2657 	}
2658 
2659 	d = debugfs_create_dir(core->name, pdentry);
2660 	if (!d)
2661 		goto out;
2662 
2663 	core->dentry = d;
2664 
2665 	d = debugfs_create_ulong("clk_rate", 0444, core->dentry, &core->rate);
2666 	if (!d)
2667 		goto err_out;
2668 
2669 	d = debugfs_create_ulong("clk_accuracy", 0444, core->dentry,
2670 				 &core->accuracy);
2671 	if (!d)
2672 		goto err_out;
2673 
2674 	d = debugfs_create_u32("clk_phase", 0444, core->dentry, &core->phase);
2675 	if (!d)
2676 		goto err_out;
2677 
2678 	d = debugfs_create_file("clk_flags", 0444, core->dentry, core,
2679 				&clk_flags_fops);
2680 	if (!d)
2681 		goto err_out;
2682 
2683 	d = debugfs_create_u32("clk_prepare_count", 0444, core->dentry,
2684 			       &core->prepare_count);
2685 	if (!d)
2686 		goto err_out;
2687 
2688 	d = debugfs_create_u32("clk_enable_count", 0444, core->dentry,
2689 			       &core->enable_count);
2690 	if (!d)
2691 		goto err_out;
2692 
2693 	d = debugfs_create_u32("clk_protect_count", 0444, core->dentry,
2694 			       &core->protect_count);
2695 	if (!d)
2696 		goto err_out;
2697 
2698 	d = debugfs_create_u32("clk_notifier_count", 0444, core->dentry,
2699 			       &core->notifier_count);
2700 	if (!d)
2701 		goto err_out;
2702 
2703 	if (core->num_parents > 1) {
2704 		d = debugfs_create_file("clk_possible_parents", 0444,
2705 				core->dentry, core, &possible_parents_fops);
2706 		if (!d)
2707 			goto err_out;
2708 	}
2709 
2710 	if (core->ops->debug_init) {
2711 		ret = core->ops->debug_init(core->hw, core->dentry);
2712 		if (ret)
2713 			goto err_out;
2714 	}
2715 
2716 	ret = 0;
2717 	goto out;
2718 
2719 err_out:
2720 	debugfs_remove_recursive(core->dentry);
2721 	core->dentry = NULL;
2722 out:
2723 	return ret;
2724 }
2725 
2726 /**
2727  * clk_debug_register - add a clk node to the debugfs clk directory
2728  * @core: the clk being added to the debugfs clk directory
2729  *
2730  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2731  * initialized.  Otherwise it bails out early since the debugfs clk directory
2732  * will be created lazily by clk_debug_init as part of a late_initcall.
2733  */
2734 static int clk_debug_register(struct clk_core *core)
2735 {
2736 	int ret = 0;
2737 
2738 	mutex_lock(&clk_debug_lock);
2739 	hlist_add_head(&core->debug_node, &clk_debug_list);
2740 	if (inited)
2741 		ret = clk_debug_create_one(core, rootdir);
2742 	mutex_unlock(&clk_debug_lock);
2743 
2744 	return ret;
2745 }
2746 
2747  /**
2748  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2749  * @core: the clk being removed from the debugfs clk directory
2750  *
2751  * Dynamically removes a clk and all its child nodes from the
2752  * debugfs clk directory if clk->dentry points to debugfs created by
2753  * clk_debug_register in __clk_core_init.
2754  */
2755 static void clk_debug_unregister(struct clk_core *core)
2756 {
2757 	mutex_lock(&clk_debug_lock);
2758 	hlist_del_init(&core->debug_node);
2759 	debugfs_remove_recursive(core->dentry);
2760 	core->dentry = NULL;
2761 	mutex_unlock(&clk_debug_lock);
2762 }
2763 
2764 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2765 				void *data, const struct file_operations *fops)
2766 {
2767 	struct dentry *d = NULL;
2768 
2769 	if (hw->core->dentry)
2770 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2771 					fops);
2772 
2773 	return d;
2774 }
2775 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2776 
2777 /**
2778  * clk_debug_init - lazily populate the debugfs clk directory
2779  *
2780  * clks are often initialized very early during boot before memory can be
2781  * dynamically allocated and well before debugfs is setup. This function
2782  * populates the debugfs clk directory once at boot-time when we know that
2783  * debugfs is setup. It should only be called once at boot-time, all other clks
2784  * added dynamically will be done so with clk_debug_register.
2785  */
2786 static int __init clk_debug_init(void)
2787 {
2788 	struct clk_core *core;
2789 	struct dentry *d;
2790 
2791 	rootdir = debugfs_create_dir("clk", NULL);
2792 
2793 	if (!rootdir)
2794 		return -ENOMEM;
2795 
2796 	d = debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2797 				&clk_summary_fops);
2798 	if (!d)
2799 		return -ENOMEM;
2800 
2801 	d = debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2802 				&clk_dump_fops);
2803 	if (!d)
2804 		return -ENOMEM;
2805 
2806 	d = debugfs_create_file("clk_orphan_summary", 0444, rootdir,
2807 				&orphan_list, &clk_summary_fops);
2808 	if (!d)
2809 		return -ENOMEM;
2810 
2811 	d = debugfs_create_file("clk_orphan_dump", 0444, rootdir,
2812 				&orphan_list, &clk_dump_fops);
2813 	if (!d)
2814 		return -ENOMEM;
2815 
2816 	mutex_lock(&clk_debug_lock);
2817 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2818 		clk_debug_create_one(core, rootdir);
2819 
2820 	inited = 1;
2821 	mutex_unlock(&clk_debug_lock);
2822 
2823 	return 0;
2824 }
2825 late_initcall(clk_debug_init);
2826 #else
2827 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2828 static inline void clk_debug_reparent(struct clk_core *core,
2829 				      struct clk_core *new_parent)
2830 {
2831 }
2832 static inline void clk_debug_unregister(struct clk_core *core)
2833 {
2834 }
2835 #endif
2836 
2837 /**
2838  * __clk_core_init - initialize the data structures in a struct clk_core
2839  * @core:	clk_core being initialized
2840  *
2841  * Initializes the lists in struct clk_core, queries the hardware for the
2842  * parent and rate and sets them both.
2843  */
2844 static int __clk_core_init(struct clk_core *core)
2845 {
2846 	int i, ret;
2847 	struct clk_core *orphan;
2848 	struct hlist_node *tmp2;
2849 	unsigned long rate;
2850 
2851 	if (!core)
2852 		return -EINVAL;
2853 
2854 	clk_prepare_lock();
2855 
2856 	ret = clk_pm_runtime_get(core);
2857 	if (ret)
2858 		goto unlock;
2859 
2860 	/* check to see if a clock with this name is already registered */
2861 	if (clk_core_lookup(core->name)) {
2862 		pr_debug("%s: clk %s already initialized\n",
2863 				__func__, core->name);
2864 		ret = -EEXIST;
2865 		goto out;
2866 	}
2867 
2868 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2869 	if (core->ops->set_rate &&
2870 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2871 	      core->ops->recalc_rate)) {
2872 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2873 		       __func__, core->name);
2874 		ret = -EINVAL;
2875 		goto out;
2876 	}
2877 
2878 	if (core->ops->set_parent && !core->ops->get_parent) {
2879 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2880 		       __func__, core->name);
2881 		ret = -EINVAL;
2882 		goto out;
2883 	}
2884 
2885 	if (core->num_parents > 1 && !core->ops->get_parent) {
2886 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2887 		       __func__, core->name);
2888 		ret = -EINVAL;
2889 		goto out;
2890 	}
2891 
2892 	if (core->ops->set_rate_and_parent &&
2893 			!(core->ops->set_parent && core->ops->set_rate)) {
2894 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2895 				__func__, core->name);
2896 		ret = -EINVAL;
2897 		goto out;
2898 	}
2899 
2900 	/* throw a WARN if any entries in parent_names are NULL */
2901 	for (i = 0; i < core->num_parents; i++)
2902 		WARN(!core->parent_names[i],
2903 				"%s: invalid NULL in %s's .parent_names\n",
2904 				__func__, core->name);
2905 
2906 	core->parent = __clk_init_parent(core);
2907 
2908 	/*
2909 	 * Populate core->parent if parent has already been clk_core_init'd. If
2910 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2911 	 * list.  If clk doesn't have any parents then place it in the root
2912 	 * clk list.
2913 	 *
2914 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2915 	 * clocks and re-parent any that are children of the clock currently
2916 	 * being clk_init'd.
2917 	 */
2918 	if (core->parent) {
2919 		hlist_add_head(&core->child_node,
2920 				&core->parent->children);
2921 		core->orphan = core->parent->orphan;
2922 	} else if (!core->num_parents) {
2923 		hlist_add_head(&core->child_node, &clk_root_list);
2924 		core->orphan = false;
2925 	} else {
2926 		hlist_add_head(&core->child_node, &clk_orphan_list);
2927 		core->orphan = true;
2928 	}
2929 
2930 	/*
2931 	 * Set clk's accuracy.  The preferred method is to use
2932 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2933 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2934 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2935 	 * clock).
2936 	 */
2937 	if (core->ops->recalc_accuracy)
2938 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2939 					__clk_get_accuracy(core->parent));
2940 	else if (core->parent)
2941 		core->accuracy = core->parent->accuracy;
2942 	else
2943 		core->accuracy = 0;
2944 
2945 	/*
2946 	 * Set clk's phase.
2947 	 * Since a phase is by definition relative to its parent, just
2948 	 * query the current clock phase, or just assume it's in phase.
2949 	 */
2950 	if (core->ops->get_phase)
2951 		core->phase = core->ops->get_phase(core->hw);
2952 	else
2953 		core->phase = 0;
2954 
2955 	/*
2956 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2957 	 * simple clocks and lazy developers the default fallback is to use the
2958 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2959 	 * then rate is set to zero.
2960 	 */
2961 	if (core->ops->recalc_rate)
2962 		rate = core->ops->recalc_rate(core->hw,
2963 				clk_core_get_rate_nolock(core->parent));
2964 	else if (core->parent)
2965 		rate = core->parent->rate;
2966 	else
2967 		rate = 0;
2968 	core->rate = core->req_rate = rate;
2969 
2970 	/*
2971 	 * walk the list of orphan clocks and reparent any that newly finds a
2972 	 * parent.
2973 	 */
2974 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2975 		struct clk_core *parent = __clk_init_parent(orphan);
2976 		unsigned long flags;
2977 
2978 		/*
2979 		 * we could call __clk_set_parent, but that would result in a
2980 		 * redundant call to the .set_rate op, if it exists
2981 		 */
2982 		if (parent) {
2983 			/* update the clk tree topology */
2984 			flags = clk_enable_lock();
2985 			clk_reparent(orphan, parent);
2986 			clk_enable_unlock(flags);
2987 			__clk_recalc_accuracies(orphan);
2988 			__clk_recalc_rates(orphan, 0);
2989 		}
2990 	}
2991 
2992 	/*
2993 	 * optional platform-specific magic
2994 	 *
2995 	 * The .init callback is not used by any of the basic clock types, but
2996 	 * exists for weird hardware that must perform initialization magic.
2997 	 * Please consider other ways of solving initialization problems before
2998 	 * using this callback, as its use is discouraged.
2999 	 */
3000 	if (core->ops->init)
3001 		core->ops->init(core->hw);
3002 
3003 	if (core->flags & CLK_IS_CRITICAL) {
3004 		unsigned long flags;
3005 
3006 		clk_core_prepare(core);
3007 
3008 		flags = clk_enable_lock();
3009 		clk_core_enable(core);
3010 		clk_enable_unlock(flags);
3011 	}
3012 
3013 	kref_init(&core->ref);
3014 out:
3015 	clk_pm_runtime_put(core);
3016 unlock:
3017 	clk_prepare_unlock();
3018 
3019 	if (!ret)
3020 		clk_debug_register(core);
3021 
3022 	return ret;
3023 }
3024 
3025 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
3026 			     const char *con_id)
3027 {
3028 	struct clk *clk;
3029 
3030 	/* This is to allow this function to be chained to others */
3031 	if (IS_ERR_OR_NULL(hw))
3032 		return ERR_CAST(hw);
3033 
3034 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3035 	if (!clk)
3036 		return ERR_PTR(-ENOMEM);
3037 
3038 	clk->core = hw->core;
3039 	clk->dev_id = dev_id;
3040 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3041 	clk->max_rate = ULONG_MAX;
3042 
3043 	clk_prepare_lock();
3044 	hlist_add_head(&clk->clks_node, &hw->core->clks);
3045 	clk_prepare_unlock();
3046 
3047 	return clk;
3048 }
3049 
3050 void __clk_free_clk(struct clk *clk)
3051 {
3052 	clk_prepare_lock();
3053 	hlist_del(&clk->clks_node);
3054 	clk_prepare_unlock();
3055 
3056 	kfree_const(clk->con_id);
3057 	kfree(clk);
3058 }
3059 
3060 /**
3061  * clk_register - allocate a new clock, register it and return an opaque cookie
3062  * @dev: device that is registering this clock
3063  * @hw: link to hardware-specific clock data
3064  *
3065  * clk_register is the primary interface for populating the clock tree with new
3066  * clock nodes.  It returns a pointer to the newly allocated struct clk which
3067  * cannot be dereferenced by driver code but may be used in conjunction with the
3068  * rest of the clock API.  In the event of an error clk_register will return an
3069  * error code; drivers must test for an error code after calling clk_register.
3070  */
3071 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3072 {
3073 	int i, ret;
3074 	struct clk_core *core;
3075 
3076 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3077 	if (!core) {
3078 		ret = -ENOMEM;
3079 		goto fail_out;
3080 	}
3081 
3082 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3083 	if (!core->name) {
3084 		ret = -ENOMEM;
3085 		goto fail_name;
3086 	}
3087 
3088 	if (WARN_ON(!hw->init->ops)) {
3089 		ret = -EINVAL;
3090 		goto fail_ops;
3091 	}
3092 	core->ops = hw->init->ops;
3093 
3094 	if (dev && pm_runtime_enabled(dev))
3095 		core->dev = dev;
3096 	if (dev && dev->driver)
3097 		core->owner = dev->driver->owner;
3098 	core->hw = hw;
3099 	core->flags = hw->init->flags;
3100 	core->num_parents = hw->init->num_parents;
3101 	core->min_rate = 0;
3102 	core->max_rate = ULONG_MAX;
3103 	hw->core = core;
3104 
3105 	/* allocate local copy in case parent_names is __initdata */
3106 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
3107 					GFP_KERNEL);
3108 
3109 	if (!core->parent_names) {
3110 		ret = -ENOMEM;
3111 		goto fail_parent_names;
3112 	}
3113 
3114 
3115 	/* copy each string name in case parent_names is __initdata */
3116 	for (i = 0; i < core->num_parents; i++) {
3117 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3118 						GFP_KERNEL);
3119 		if (!core->parent_names[i]) {
3120 			ret = -ENOMEM;
3121 			goto fail_parent_names_copy;
3122 		}
3123 	}
3124 
3125 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
3126 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3127 				GFP_KERNEL);
3128 	if (!core->parents) {
3129 		ret = -ENOMEM;
3130 		goto fail_parents;
3131 	};
3132 
3133 	INIT_HLIST_HEAD(&core->clks);
3134 
3135 	hw->clk = __clk_create_clk(hw, NULL, NULL);
3136 	if (IS_ERR(hw->clk)) {
3137 		ret = PTR_ERR(hw->clk);
3138 		goto fail_parents;
3139 	}
3140 
3141 	ret = __clk_core_init(core);
3142 	if (!ret)
3143 		return hw->clk;
3144 
3145 	__clk_free_clk(hw->clk);
3146 	hw->clk = NULL;
3147 
3148 fail_parents:
3149 	kfree(core->parents);
3150 fail_parent_names_copy:
3151 	while (--i >= 0)
3152 		kfree_const(core->parent_names[i]);
3153 	kfree(core->parent_names);
3154 fail_parent_names:
3155 fail_ops:
3156 	kfree_const(core->name);
3157 fail_name:
3158 	kfree(core);
3159 fail_out:
3160 	return ERR_PTR(ret);
3161 }
3162 EXPORT_SYMBOL_GPL(clk_register);
3163 
3164 /**
3165  * clk_hw_register - register a clk_hw and return an error code
3166  * @dev: device that is registering this clock
3167  * @hw: link to hardware-specific clock data
3168  *
3169  * clk_hw_register is the primary interface for populating the clock tree with
3170  * new clock nodes. It returns an integer equal to zero indicating success or
3171  * less than zero indicating failure. Drivers must test for an error code after
3172  * calling clk_hw_register().
3173  */
3174 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3175 {
3176 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3177 }
3178 EXPORT_SYMBOL_GPL(clk_hw_register);
3179 
3180 /* Free memory allocated for a clock. */
3181 static void __clk_release(struct kref *ref)
3182 {
3183 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3184 	int i = core->num_parents;
3185 
3186 	lockdep_assert_held(&prepare_lock);
3187 
3188 	kfree(core->parents);
3189 	while (--i >= 0)
3190 		kfree_const(core->parent_names[i]);
3191 
3192 	kfree(core->parent_names);
3193 	kfree_const(core->name);
3194 	kfree(core);
3195 }
3196 
3197 /*
3198  * Empty clk_ops for unregistered clocks. These are used temporarily
3199  * after clk_unregister() was called on a clock and until last clock
3200  * consumer calls clk_put() and the struct clk object is freed.
3201  */
3202 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3203 {
3204 	return -ENXIO;
3205 }
3206 
3207 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3208 {
3209 	WARN_ON_ONCE(1);
3210 }
3211 
3212 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3213 					unsigned long parent_rate)
3214 {
3215 	return -ENXIO;
3216 }
3217 
3218 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3219 {
3220 	return -ENXIO;
3221 }
3222 
3223 static const struct clk_ops clk_nodrv_ops = {
3224 	.enable		= clk_nodrv_prepare_enable,
3225 	.disable	= clk_nodrv_disable_unprepare,
3226 	.prepare	= clk_nodrv_prepare_enable,
3227 	.unprepare	= clk_nodrv_disable_unprepare,
3228 	.set_rate	= clk_nodrv_set_rate,
3229 	.set_parent	= clk_nodrv_set_parent,
3230 };
3231 
3232 /**
3233  * clk_unregister - unregister a currently registered clock
3234  * @clk: clock to unregister
3235  */
3236 void clk_unregister(struct clk *clk)
3237 {
3238 	unsigned long flags;
3239 
3240 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3241 		return;
3242 
3243 	clk_debug_unregister(clk->core);
3244 
3245 	clk_prepare_lock();
3246 
3247 	if (clk->core->ops == &clk_nodrv_ops) {
3248 		pr_err("%s: unregistered clock: %s\n", __func__,
3249 		       clk->core->name);
3250 		goto unlock;
3251 	}
3252 	/*
3253 	 * Assign empty clock ops for consumers that might still hold
3254 	 * a reference to this clock.
3255 	 */
3256 	flags = clk_enable_lock();
3257 	clk->core->ops = &clk_nodrv_ops;
3258 	clk_enable_unlock(flags);
3259 
3260 	if (!hlist_empty(&clk->core->children)) {
3261 		struct clk_core *child;
3262 		struct hlist_node *t;
3263 
3264 		/* Reparent all children to the orphan list. */
3265 		hlist_for_each_entry_safe(child, t, &clk->core->children,
3266 					  child_node)
3267 			clk_core_set_parent_nolock(child, NULL);
3268 	}
3269 
3270 	hlist_del_init(&clk->core->child_node);
3271 
3272 	if (clk->core->prepare_count)
3273 		pr_warn("%s: unregistering prepared clock: %s\n",
3274 					__func__, clk->core->name);
3275 
3276 	if (clk->core->protect_count)
3277 		pr_warn("%s: unregistering protected clock: %s\n",
3278 					__func__, clk->core->name);
3279 
3280 	kref_put(&clk->core->ref, __clk_release);
3281 unlock:
3282 	clk_prepare_unlock();
3283 }
3284 EXPORT_SYMBOL_GPL(clk_unregister);
3285 
3286 /**
3287  * clk_hw_unregister - unregister a currently registered clk_hw
3288  * @hw: hardware-specific clock data to unregister
3289  */
3290 void clk_hw_unregister(struct clk_hw *hw)
3291 {
3292 	clk_unregister(hw->clk);
3293 }
3294 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3295 
3296 static void devm_clk_release(struct device *dev, void *res)
3297 {
3298 	clk_unregister(*(struct clk **)res);
3299 }
3300 
3301 static void devm_clk_hw_release(struct device *dev, void *res)
3302 {
3303 	clk_hw_unregister(*(struct clk_hw **)res);
3304 }
3305 
3306 /**
3307  * devm_clk_register - resource managed clk_register()
3308  * @dev: device that is registering this clock
3309  * @hw: link to hardware-specific clock data
3310  *
3311  * Managed clk_register(). Clocks returned from this function are
3312  * automatically clk_unregister()ed on driver detach. See clk_register() for
3313  * more information.
3314  */
3315 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3316 {
3317 	struct clk *clk;
3318 	struct clk **clkp;
3319 
3320 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3321 	if (!clkp)
3322 		return ERR_PTR(-ENOMEM);
3323 
3324 	clk = clk_register(dev, hw);
3325 	if (!IS_ERR(clk)) {
3326 		*clkp = clk;
3327 		devres_add(dev, clkp);
3328 	} else {
3329 		devres_free(clkp);
3330 	}
3331 
3332 	return clk;
3333 }
3334 EXPORT_SYMBOL_GPL(devm_clk_register);
3335 
3336 /**
3337  * devm_clk_hw_register - resource managed clk_hw_register()
3338  * @dev: device that is registering this clock
3339  * @hw: link to hardware-specific clock data
3340  *
3341  * Managed clk_hw_register(). Clocks registered by this function are
3342  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3343  * for more information.
3344  */
3345 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3346 {
3347 	struct clk_hw **hwp;
3348 	int ret;
3349 
3350 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3351 	if (!hwp)
3352 		return -ENOMEM;
3353 
3354 	ret = clk_hw_register(dev, hw);
3355 	if (!ret) {
3356 		*hwp = hw;
3357 		devres_add(dev, hwp);
3358 	} else {
3359 		devres_free(hwp);
3360 	}
3361 
3362 	return ret;
3363 }
3364 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3365 
3366 static int devm_clk_match(struct device *dev, void *res, void *data)
3367 {
3368 	struct clk *c = res;
3369 	if (WARN_ON(!c))
3370 		return 0;
3371 	return c == data;
3372 }
3373 
3374 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3375 {
3376 	struct clk_hw *hw = res;
3377 
3378 	if (WARN_ON(!hw))
3379 		return 0;
3380 	return hw == data;
3381 }
3382 
3383 /**
3384  * devm_clk_unregister - resource managed clk_unregister()
3385  * @clk: clock to unregister
3386  *
3387  * Deallocate a clock allocated with devm_clk_register(). Normally
3388  * this function will not need to be called and the resource management
3389  * code will ensure that the resource is freed.
3390  */
3391 void devm_clk_unregister(struct device *dev, struct clk *clk)
3392 {
3393 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3394 }
3395 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3396 
3397 /**
3398  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3399  * @dev: device that is unregistering the hardware-specific clock data
3400  * @hw: link to hardware-specific clock data
3401  *
3402  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3403  * this function will not need to be called and the resource management
3404  * code will ensure that the resource is freed.
3405  */
3406 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3407 {
3408 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3409 				hw));
3410 }
3411 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3412 
3413 /*
3414  * clkdev helpers
3415  */
3416 int __clk_get(struct clk *clk)
3417 {
3418 	struct clk_core *core = !clk ? NULL : clk->core;
3419 
3420 	if (core) {
3421 		if (!try_module_get(core->owner))
3422 			return 0;
3423 
3424 		kref_get(&core->ref);
3425 	}
3426 	return 1;
3427 }
3428 
3429 void __clk_put(struct clk *clk)
3430 {
3431 	struct module *owner;
3432 
3433 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3434 		return;
3435 
3436 	clk_prepare_lock();
3437 
3438 	/*
3439 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3440 	 * given user should be balanced with calls to clk_rate_exclusive_put()
3441 	 * and by that same consumer
3442 	 */
3443 	if (WARN_ON(clk->exclusive_count)) {
3444 		/* We voiced our concern, let's sanitize the situation */
3445 		clk->core->protect_count -= (clk->exclusive_count - 1);
3446 		clk_core_rate_unprotect(clk->core);
3447 		clk->exclusive_count = 0;
3448 	}
3449 
3450 	hlist_del(&clk->clks_node);
3451 	if (clk->min_rate > clk->core->req_rate ||
3452 	    clk->max_rate < clk->core->req_rate)
3453 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3454 
3455 	owner = clk->core->owner;
3456 	kref_put(&clk->core->ref, __clk_release);
3457 
3458 	clk_prepare_unlock();
3459 
3460 	module_put(owner);
3461 
3462 	kfree(clk);
3463 }
3464 
3465 /***        clk rate change notifiers        ***/
3466 
3467 /**
3468  * clk_notifier_register - add a clk rate change notifier
3469  * @clk: struct clk * to watch
3470  * @nb: struct notifier_block * with callback info
3471  *
3472  * Request notification when clk's rate changes.  This uses an SRCU
3473  * notifier because we want it to block and notifier unregistrations are
3474  * uncommon.  The callbacks associated with the notifier must not
3475  * re-enter into the clk framework by calling any top-level clk APIs;
3476  * this will cause a nested prepare_lock mutex.
3477  *
3478  * In all notification cases (pre, post and abort rate change) the original
3479  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3480  * and the new frequency is passed via struct clk_notifier_data.new_rate.
3481  *
3482  * clk_notifier_register() must be called from non-atomic context.
3483  * Returns -EINVAL if called with null arguments, -ENOMEM upon
3484  * allocation failure; otherwise, passes along the return value of
3485  * srcu_notifier_chain_register().
3486  */
3487 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3488 {
3489 	struct clk_notifier *cn;
3490 	int ret = -ENOMEM;
3491 
3492 	if (!clk || !nb)
3493 		return -EINVAL;
3494 
3495 	clk_prepare_lock();
3496 
3497 	/* search the list of notifiers for this clk */
3498 	list_for_each_entry(cn, &clk_notifier_list, node)
3499 		if (cn->clk == clk)
3500 			break;
3501 
3502 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3503 	if (cn->clk != clk) {
3504 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3505 		if (!cn)
3506 			goto out;
3507 
3508 		cn->clk = clk;
3509 		srcu_init_notifier_head(&cn->notifier_head);
3510 
3511 		list_add(&cn->node, &clk_notifier_list);
3512 	}
3513 
3514 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3515 
3516 	clk->core->notifier_count++;
3517 
3518 out:
3519 	clk_prepare_unlock();
3520 
3521 	return ret;
3522 }
3523 EXPORT_SYMBOL_GPL(clk_notifier_register);
3524 
3525 /**
3526  * clk_notifier_unregister - remove a clk rate change notifier
3527  * @clk: struct clk *
3528  * @nb: struct notifier_block * with callback info
3529  *
3530  * Request no further notification for changes to 'clk' and frees memory
3531  * allocated in clk_notifier_register.
3532  *
3533  * Returns -EINVAL if called with null arguments; otherwise, passes
3534  * along the return value of srcu_notifier_chain_unregister().
3535  */
3536 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3537 {
3538 	struct clk_notifier *cn = NULL;
3539 	int ret = -EINVAL;
3540 
3541 	if (!clk || !nb)
3542 		return -EINVAL;
3543 
3544 	clk_prepare_lock();
3545 
3546 	list_for_each_entry(cn, &clk_notifier_list, node)
3547 		if (cn->clk == clk)
3548 			break;
3549 
3550 	if (cn->clk == clk) {
3551 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3552 
3553 		clk->core->notifier_count--;
3554 
3555 		/* XXX the notifier code should handle this better */
3556 		if (!cn->notifier_head.head) {
3557 			srcu_cleanup_notifier_head(&cn->notifier_head);
3558 			list_del(&cn->node);
3559 			kfree(cn);
3560 		}
3561 
3562 	} else {
3563 		ret = -ENOENT;
3564 	}
3565 
3566 	clk_prepare_unlock();
3567 
3568 	return ret;
3569 }
3570 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3571 
3572 #ifdef CONFIG_OF
3573 /**
3574  * struct of_clk_provider - Clock provider registration structure
3575  * @link: Entry in global list of clock providers
3576  * @node: Pointer to device tree node of clock provider
3577  * @get: Get clock callback.  Returns NULL or a struct clk for the
3578  *       given clock specifier
3579  * @data: context pointer to be passed into @get callback
3580  */
3581 struct of_clk_provider {
3582 	struct list_head link;
3583 
3584 	struct device_node *node;
3585 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3586 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3587 	void *data;
3588 };
3589 
3590 static const struct of_device_id __clk_of_table_sentinel
3591 	__used __section(__clk_of_table_end);
3592 
3593 static LIST_HEAD(of_clk_providers);
3594 static DEFINE_MUTEX(of_clk_mutex);
3595 
3596 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3597 				     void *data)
3598 {
3599 	return data;
3600 }
3601 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3602 
3603 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3604 {
3605 	return data;
3606 }
3607 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3608 
3609 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3610 {
3611 	struct clk_onecell_data *clk_data = data;
3612 	unsigned int idx = clkspec->args[0];
3613 
3614 	if (idx >= clk_data->clk_num) {
3615 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3616 		return ERR_PTR(-EINVAL);
3617 	}
3618 
3619 	return clk_data->clks[idx];
3620 }
3621 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3622 
3623 struct clk_hw *
3624 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3625 {
3626 	struct clk_hw_onecell_data *hw_data = data;
3627 	unsigned int idx = clkspec->args[0];
3628 
3629 	if (idx >= hw_data->num) {
3630 		pr_err("%s: invalid index %u\n", __func__, idx);
3631 		return ERR_PTR(-EINVAL);
3632 	}
3633 
3634 	return hw_data->hws[idx];
3635 }
3636 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3637 
3638 /**
3639  * of_clk_add_provider() - Register a clock provider for a node
3640  * @np: Device node pointer associated with clock provider
3641  * @clk_src_get: callback for decoding clock
3642  * @data: context pointer for @clk_src_get callback.
3643  */
3644 int of_clk_add_provider(struct device_node *np,
3645 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3646 						   void *data),
3647 			void *data)
3648 {
3649 	struct of_clk_provider *cp;
3650 	int ret;
3651 
3652 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3653 	if (!cp)
3654 		return -ENOMEM;
3655 
3656 	cp->node = of_node_get(np);
3657 	cp->data = data;
3658 	cp->get = clk_src_get;
3659 
3660 	mutex_lock(&of_clk_mutex);
3661 	list_add(&cp->link, &of_clk_providers);
3662 	mutex_unlock(&of_clk_mutex);
3663 	pr_debug("Added clock from %pOF\n", np);
3664 
3665 	ret = of_clk_set_defaults(np, true);
3666 	if (ret < 0)
3667 		of_clk_del_provider(np);
3668 
3669 	return ret;
3670 }
3671 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3672 
3673 /**
3674  * of_clk_add_hw_provider() - Register a clock provider for a node
3675  * @np: Device node pointer associated with clock provider
3676  * @get: callback for decoding clk_hw
3677  * @data: context pointer for @get callback.
3678  */
3679 int of_clk_add_hw_provider(struct device_node *np,
3680 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3681 						 void *data),
3682 			   void *data)
3683 {
3684 	struct of_clk_provider *cp;
3685 	int ret;
3686 
3687 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3688 	if (!cp)
3689 		return -ENOMEM;
3690 
3691 	cp->node = of_node_get(np);
3692 	cp->data = data;
3693 	cp->get_hw = get;
3694 
3695 	mutex_lock(&of_clk_mutex);
3696 	list_add(&cp->link, &of_clk_providers);
3697 	mutex_unlock(&of_clk_mutex);
3698 	pr_debug("Added clk_hw provider from %pOF\n", np);
3699 
3700 	ret = of_clk_set_defaults(np, true);
3701 	if (ret < 0)
3702 		of_clk_del_provider(np);
3703 
3704 	return ret;
3705 }
3706 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3707 
3708 static void devm_of_clk_release_provider(struct device *dev, void *res)
3709 {
3710 	of_clk_del_provider(*(struct device_node **)res);
3711 }
3712 
3713 int devm_of_clk_add_hw_provider(struct device *dev,
3714 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3715 					      void *data),
3716 			void *data)
3717 {
3718 	struct device_node **ptr, *np;
3719 	int ret;
3720 
3721 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3722 			   GFP_KERNEL);
3723 	if (!ptr)
3724 		return -ENOMEM;
3725 
3726 	np = dev->of_node;
3727 	ret = of_clk_add_hw_provider(np, get, data);
3728 	if (!ret) {
3729 		*ptr = np;
3730 		devres_add(dev, ptr);
3731 	} else {
3732 		devres_free(ptr);
3733 	}
3734 
3735 	return ret;
3736 }
3737 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3738 
3739 /**
3740  * of_clk_del_provider() - Remove a previously registered clock provider
3741  * @np: Device node pointer associated with clock provider
3742  */
3743 void of_clk_del_provider(struct device_node *np)
3744 {
3745 	struct of_clk_provider *cp;
3746 
3747 	mutex_lock(&of_clk_mutex);
3748 	list_for_each_entry(cp, &of_clk_providers, link) {
3749 		if (cp->node == np) {
3750 			list_del(&cp->link);
3751 			of_node_put(cp->node);
3752 			kfree(cp);
3753 			break;
3754 		}
3755 	}
3756 	mutex_unlock(&of_clk_mutex);
3757 }
3758 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3759 
3760 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3761 {
3762 	struct device_node **np = res;
3763 
3764 	if (WARN_ON(!np || !*np))
3765 		return 0;
3766 
3767 	return *np == data;
3768 }
3769 
3770 void devm_of_clk_del_provider(struct device *dev)
3771 {
3772 	int ret;
3773 
3774 	ret = devres_release(dev, devm_of_clk_release_provider,
3775 			     devm_clk_provider_match, dev->of_node);
3776 
3777 	WARN_ON(ret);
3778 }
3779 EXPORT_SYMBOL(devm_of_clk_del_provider);
3780 
3781 static struct clk_hw *
3782 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3783 			      struct of_phandle_args *clkspec)
3784 {
3785 	struct clk *clk;
3786 
3787 	if (provider->get_hw)
3788 		return provider->get_hw(clkspec, provider->data);
3789 
3790 	clk = provider->get(clkspec, provider->data);
3791 	if (IS_ERR(clk))
3792 		return ERR_CAST(clk);
3793 	return __clk_get_hw(clk);
3794 }
3795 
3796 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3797 				       const char *dev_id, const char *con_id)
3798 {
3799 	struct of_clk_provider *provider;
3800 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3801 	struct clk_hw *hw;
3802 
3803 	if (!clkspec)
3804 		return ERR_PTR(-EINVAL);
3805 
3806 	/* Check if we have such a provider in our array */
3807 	mutex_lock(&of_clk_mutex);
3808 	list_for_each_entry(provider, &of_clk_providers, link) {
3809 		if (provider->node == clkspec->np) {
3810 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3811 			clk = __clk_create_clk(hw, dev_id, con_id);
3812 		}
3813 
3814 		if (!IS_ERR(clk)) {
3815 			if (!__clk_get(clk)) {
3816 				__clk_free_clk(clk);
3817 				clk = ERR_PTR(-ENOENT);
3818 			}
3819 
3820 			break;
3821 		}
3822 	}
3823 	mutex_unlock(&of_clk_mutex);
3824 
3825 	return clk;
3826 }
3827 
3828 /**
3829  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3830  * @clkspec: pointer to a clock specifier data structure
3831  *
3832  * This function looks up a struct clk from the registered list of clock
3833  * providers, an input is a clock specifier data structure as returned
3834  * from the of_parse_phandle_with_args() function call.
3835  */
3836 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3837 {
3838 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3839 }
3840 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3841 
3842 /**
3843  * of_clk_get_parent_count() - Count the number of clocks a device node has
3844  * @np: device node to count
3845  *
3846  * Returns: The number of clocks that are possible parents of this node
3847  */
3848 unsigned int of_clk_get_parent_count(struct device_node *np)
3849 {
3850 	int count;
3851 
3852 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3853 	if (count < 0)
3854 		return 0;
3855 
3856 	return count;
3857 }
3858 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3859 
3860 const char *of_clk_get_parent_name(struct device_node *np, int index)
3861 {
3862 	struct of_phandle_args clkspec;
3863 	struct property *prop;
3864 	const char *clk_name;
3865 	const __be32 *vp;
3866 	u32 pv;
3867 	int rc;
3868 	int count;
3869 	struct clk *clk;
3870 
3871 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3872 					&clkspec);
3873 	if (rc)
3874 		return NULL;
3875 
3876 	index = clkspec.args_count ? clkspec.args[0] : 0;
3877 	count = 0;
3878 
3879 	/* if there is an indices property, use it to transfer the index
3880 	 * specified into an array offset for the clock-output-names property.
3881 	 */
3882 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3883 		if (index == pv) {
3884 			index = count;
3885 			break;
3886 		}
3887 		count++;
3888 	}
3889 	/* We went off the end of 'clock-indices' without finding it */
3890 	if (prop && !vp)
3891 		return NULL;
3892 
3893 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3894 					  index,
3895 					  &clk_name) < 0) {
3896 		/*
3897 		 * Best effort to get the name if the clock has been
3898 		 * registered with the framework. If the clock isn't
3899 		 * registered, we return the node name as the name of
3900 		 * the clock as long as #clock-cells = 0.
3901 		 */
3902 		clk = of_clk_get_from_provider(&clkspec);
3903 		if (IS_ERR(clk)) {
3904 			if (clkspec.args_count == 0)
3905 				clk_name = clkspec.np->name;
3906 			else
3907 				clk_name = NULL;
3908 		} else {
3909 			clk_name = __clk_get_name(clk);
3910 			clk_put(clk);
3911 		}
3912 	}
3913 
3914 
3915 	of_node_put(clkspec.np);
3916 	return clk_name;
3917 }
3918 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3919 
3920 /**
3921  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3922  * number of parents
3923  * @np: Device node pointer associated with clock provider
3924  * @parents: pointer to char array that hold the parents' names
3925  * @size: size of the @parents array
3926  *
3927  * Return: number of parents for the clock node.
3928  */
3929 int of_clk_parent_fill(struct device_node *np, const char **parents,
3930 		       unsigned int size)
3931 {
3932 	unsigned int i = 0;
3933 
3934 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3935 		i++;
3936 
3937 	return i;
3938 }
3939 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3940 
3941 struct clock_provider {
3942 	of_clk_init_cb_t clk_init_cb;
3943 	struct device_node *np;
3944 	struct list_head node;
3945 };
3946 
3947 /*
3948  * This function looks for a parent clock. If there is one, then it
3949  * checks that the provider for this parent clock was initialized, in
3950  * this case the parent clock will be ready.
3951  */
3952 static int parent_ready(struct device_node *np)
3953 {
3954 	int i = 0;
3955 
3956 	while (true) {
3957 		struct clk *clk = of_clk_get(np, i);
3958 
3959 		/* this parent is ready we can check the next one */
3960 		if (!IS_ERR(clk)) {
3961 			clk_put(clk);
3962 			i++;
3963 			continue;
3964 		}
3965 
3966 		/* at least one parent is not ready, we exit now */
3967 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3968 			return 0;
3969 
3970 		/*
3971 		 * Here we make assumption that the device tree is
3972 		 * written correctly. So an error means that there is
3973 		 * no more parent. As we didn't exit yet, then the
3974 		 * previous parent are ready. If there is no clock
3975 		 * parent, no need to wait for them, then we can
3976 		 * consider their absence as being ready
3977 		 */
3978 		return 1;
3979 	}
3980 }
3981 
3982 /**
3983  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3984  * @np: Device node pointer associated with clock provider
3985  * @index: clock index
3986  * @flags: pointer to top-level framework flags
3987  *
3988  * Detects if the clock-critical property exists and, if so, sets the
3989  * corresponding CLK_IS_CRITICAL flag.
3990  *
3991  * Do not use this function. It exists only for legacy Device Tree
3992  * bindings, such as the one-clock-per-node style that are outdated.
3993  * Those bindings typically put all clock data into .dts and the Linux
3994  * driver has no clock data, thus making it impossible to set this flag
3995  * correctly from the driver. Only those drivers may call
3996  * of_clk_detect_critical from their setup functions.
3997  *
3998  * Return: error code or zero on success
3999  */
4000 int of_clk_detect_critical(struct device_node *np,
4001 					  int index, unsigned long *flags)
4002 {
4003 	struct property *prop;
4004 	const __be32 *cur;
4005 	uint32_t idx;
4006 
4007 	if (!np || !flags)
4008 		return -EINVAL;
4009 
4010 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4011 		if (index == idx)
4012 			*flags |= CLK_IS_CRITICAL;
4013 
4014 	return 0;
4015 }
4016 
4017 /**
4018  * of_clk_init() - Scan and init clock providers from the DT
4019  * @matches: array of compatible values and init functions for providers.
4020  *
4021  * This function scans the device tree for matching clock providers
4022  * and calls their initialization functions. It also does it by trying
4023  * to follow the dependencies.
4024  */
4025 void __init of_clk_init(const struct of_device_id *matches)
4026 {
4027 	const struct of_device_id *match;
4028 	struct device_node *np;
4029 	struct clock_provider *clk_provider, *next;
4030 	bool is_init_done;
4031 	bool force = false;
4032 	LIST_HEAD(clk_provider_list);
4033 
4034 	if (!matches)
4035 		matches = &__clk_of_table;
4036 
4037 	/* First prepare the list of the clocks providers */
4038 	for_each_matching_node_and_match(np, matches, &match) {
4039 		struct clock_provider *parent;
4040 
4041 		if (!of_device_is_available(np))
4042 			continue;
4043 
4044 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4045 		if (!parent) {
4046 			list_for_each_entry_safe(clk_provider, next,
4047 						 &clk_provider_list, node) {
4048 				list_del(&clk_provider->node);
4049 				of_node_put(clk_provider->np);
4050 				kfree(clk_provider);
4051 			}
4052 			of_node_put(np);
4053 			return;
4054 		}
4055 
4056 		parent->clk_init_cb = match->data;
4057 		parent->np = of_node_get(np);
4058 		list_add_tail(&parent->node, &clk_provider_list);
4059 	}
4060 
4061 	while (!list_empty(&clk_provider_list)) {
4062 		is_init_done = false;
4063 		list_for_each_entry_safe(clk_provider, next,
4064 					&clk_provider_list, node) {
4065 			if (force || parent_ready(clk_provider->np)) {
4066 
4067 				/* Don't populate platform devices */
4068 				of_node_set_flag(clk_provider->np,
4069 						 OF_POPULATED);
4070 
4071 				clk_provider->clk_init_cb(clk_provider->np);
4072 				of_clk_set_defaults(clk_provider->np, true);
4073 
4074 				list_del(&clk_provider->node);
4075 				of_node_put(clk_provider->np);
4076 				kfree(clk_provider);
4077 				is_init_done = true;
4078 			}
4079 		}
4080 
4081 		/*
4082 		 * We didn't manage to initialize any of the
4083 		 * remaining providers during the last loop, so now we
4084 		 * initialize all the remaining ones unconditionally
4085 		 * in case the clock parent was not mandatory
4086 		 */
4087 		if (!is_init_done)
4088 			force = true;
4089 	}
4090 }
4091 #endif
4092