xref: /openbmc/linux/drivers/clk/clk.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26 
27 #include "clk.h"
28 
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31 
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34 
35 static int prepare_refcnt;
36 static int enable_refcnt;
37 
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41 
42 /***    private data structures    ***/
43 
44 struct clk_core {
45 	const char		*name;
46 	const struct clk_ops	*ops;
47 	struct clk_hw		*hw;
48 	struct module		*owner;
49 	struct clk_core		*parent;
50 	const char		**parent_names;
51 	struct clk_core		**parents;
52 	u8			num_parents;
53 	u8			new_parent_index;
54 	unsigned long		rate;
55 	unsigned long		req_rate;
56 	unsigned long		new_rate;
57 	struct clk_core		*new_parent;
58 	struct clk_core		*new_child;
59 	unsigned long		flags;
60 	bool			orphan;
61 	unsigned int		enable_count;
62 	unsigned int		prepare_count;
63 	unsigned long		min_rate;
64 	unsigned long		max_rate;
65 	unsigned long		accuracy;
66 	int			phase;
67 	struct hlist_head	children;
68 	struct hlist_node	child_node;
69 	struct hlist_head	clks;
70 	unsigned int		notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 	struct dentry		*dentry;
73 	struct hlist_node	debug_node;
74 #endif
75 	struct kref		ref;
76 };
77 
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80 
81 struct clk {
82 	struct clk_core	*core;
83 	const char *dev_id;
84 	const char *con_id;
85 	unsigned long min_rate;
86 	unsigned long max_rate;
87 	struct hlist_node clks_node;
88 };
89 
90 /***           locking             ***/
91 static void clk_prepare_lock(void)
92 {
93 	if (!mutex_trylock(&prepare_lock)) {
94 		if (prepare_owner == current) {
95 			prepare_refcnt++;
96 			return;
97 		}
98 		mutex_lock(&prepare_lock);
99 	}
100 	WARN_ON_ONCE(prepare_owner != NULL);
101 	WARN_ON_ONCE(prepare_refcnt != 0);
102 	prepare_owner = current;
103 	prepare_refcnt = 1;
104 }
105 
106 static void clk_prepare_unlock(void)
107 {
108 	WARN_ON_ONCE(prepare_owner != current);
109 	WARN_ON_ONCE(prepare_refcnt == 0);
110 
111 	if (--prepare_refcnt)
112 		return;
113 	prepare_owner = NULL;
114 	mutex_unlock(&prepare_lock);
115 }
116 
117 static unsigned long clk_enable_lock(void)
118 	__acquires(enable_lock)
119 {
120 	unsigned long flags;
121 
122 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 		if (enable_owner == current) {
124 			enable_refcnt++;
125 			__acquire(enable_lock);
126 			return flags;
127 		}
128 		spin_lock_irqsave(&enable_lock, flags);
129 	}
130 	WARN_ON_ONCE(enable_owner != NULL);
131 	WARN_ON_ONCE(enable_refcnt != 0);
132 	enable_owner = current;
133 	enable_refcnt = 1;
134 	return flags;
135 }
136 
137 static void clk_enable_unlock(unsigned long flags)
138 	__releases(enable_lock)
139 {
140 	WARN_ON_ONCE(enable_owner != current);
141 	WARN_ON_ONCE(enable_refcnt == 0);
142 
143 	if (--enable_refcnt) {
144 		__release(enable_lock);
145 		return;
146 	}
147 	enable_owner = NULL;
148 	spin_unlock_irqrestore(&enable_lock, flags);
149 }
150 
151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 	/*
154 	 * .is_prepared is optional for clocks that can prepare
155 	 * fall back to software usage counter if it is missing
156 	 */
157 	if (!core->ops->is_prepared)
158 		return core->prepare_count;
159 
160 	return core->ops->is_prepared(core->hw);
161 }
162 
163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 	/*
166 	 * .is_enabled is only mandatory for clocks that gate
167 	 * fall back to software usage counter if .is_enabled is missing
168 	 */
169 	if (!core->ops->is_enabled)
170 		return core->enable_count;
171 
172 	return core->ops->is_enabled(core->hw);
173 }
174 
175 static void clk_unprepare_unused_subtree(struct clk_core *core)
176 {
177 	struct clk_core *child;
178 
179 	lockdep_assert_held(&prepare_lock);
180 
181 	hlist_for_each_entry(child, &core->children, child_node)
182 		clk_unprepare_unused_subtree(child);
183 
184 	if (core->prepare_count)
185 		return;
186 
187 	if (core->flags & CLK_IGNORE_UNUSED)
188 		return;
189 
190 	if (clk_core_is_prepared(core)) {
191 		trace_clk_unprepare(core);
192 		if (core->ops->unprepare_unused)
193 			core->ops->unprepare_unused(core->hw);
194 		else if (core->ops->unprepare)
195 			core->ops->unprepare(core->hw);
196 		trace_clk_unprepare_complete(core);
197 	}
198 }
199 
200 static void clk_disable_unused_subtree(struct clk_core *core)
201 {
202 	struct clk_core *child;
203 	unsigned long flags;
204 
205 	lockdep_assert_held(&prepare_lock);
206 
207 	hlist_for_each_entry(child, &core->children, child_node)
208 		clk_disable_unused_subtree(child);
209 
210 	flags = clk_enable_lock();
211 
212 	if (core->enable_count)
213 		goto unlock_out;
214 
215 	if (core->flags & CLK_IGNORE_UNUSED)
216 		goto unlock_out;
217 
218 	/*
219 	 * some gate clocks have special needs during the disable-unused
220 	 * sequence.  call .disable_unused if available, otherwise fall
221 	 * back to .disable
222 	 */
223 	if (clk_core_is_enabled(core)) {
224 		trace_clk_disable(core);
225 		if (core->ops->disable_unused)
226 			core->ops->disable_unused(core->hw);
227 		else if (core->ops->disable)
228 			core->ops->disable(core->hw);
229 		trace_clk_disable_complete(core);
230 	}
231 
232 unlock_out:
233 	clk_enable_unlock(flags);
234 }
235 
236 static bool clk_ignore_unused;
237 static int __init clk_ignore_unused_setup(char *__unused)
238 {
239 	clk_ignore_unused = true;
240 	return 1;
241 }
242 __setup("clk_ignore_unused", clk_ignore_unused_setup);
243 
244 static int clk_disable_unused(void)
245 {
246 	struct clk_core *core;
247 
248 	if (clk_ignore_unused) {
249 		pr_warn("clk: Not disabling unused clocks\n");
250 		return 0;
251 	}
252 
253 	clk_prepare_lock();
254 
255 	hlist_for_each_entry(core, &clk_root_list, child_node)
256 		clk_disable_unused_subtree(core);
257 
258 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
259 		clk_disable_unused_subtree(core);
260 
261 	hlist_for_each_entry(core, &clk_root_list, child_node)
262 		clk_unprepare_unused_subtree(core);
263 
264 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
265 		clk_unprepare_unused_subtree(core);
266 
267 	clk_prepare_unlock();
268 
269 	return 0;
270 }
271 late_initcall_sync(clk_disable_unused);
272 
273 /***    helper functions   ***/
274 
275 const char *__clk_get_name(const struct clk *clk)
276 {
277 	return !clk ? NULL : clk->core->name;
278 }
279 EXPORT_SYMBOL_GPL(__clk_get_name);
280 
281 const char *clk_hw_get_name(const struct clk_hw *hw)
282 {
283 	return hw->core->name;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_name);
286 
287 struct clk_hw *__clk_get_hw(struct clk *clk)
288 {
289 	return !clk ? NULL : clk->core->hw;
290 }
291 EXPORT_SYMBOL_GPL(__clk_get_hw);
292 
293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
294 {
295 	return hw->core->num_parents;
296 }
297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
298 
299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
300 {
301 	return hw->core->parent ? hw->core->parent->hw : NULL;
302 }
303 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
304 
305 static struct clk_core *__clk_lookup_subtree(const char *name,
306 					     struct clk_core *core)
307 {
308 	struct clk_core *child;
309 	struct clk_core *ret;
310 
311 	if (!strcmp(core->name, name))
312 		return core;
313 
314 	hlist_for_each_entry(child, &core->children, child_node) {
315 		ret = __clk_lookup_subtree(name, child);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	return NULL;
321 }
322 
323 static struct clk_core *clk_core_lookup(const char *name)
324 {
325 	struct clk_core *root_clk;
326 	struct clk_core *ret;
327 
328 	if (!name)
329 		return NULL;
330 
331 	/* search the 'proper' clk tree first */
332 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	/* if not found, then search the orphan tree */
339 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
340 		ret = __clk_lookup_subtree(name, root_clk);
341 		if (ret)
342 			return ret;
343 	}
344 
345 	return NULL;
346 }
347 
348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
349 							 u8 index)
350 {
351 	if (!core || index >= core->num_parents)
352 		return NULL;
353 
354 	if (!core->parents[index])
355 		core->parents[index] =
356 				clk_core_lookup(core->parent_names[index]);
357 
358 	return core->parents[index];
359 }
360 
361 struct clk_hw *
362 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
363 {
364 	struct clk_core *parent;
365 
366 	parent = clk_core_get_parent_by_index(hw->core, index);
367 
368 	return !parent ? NULL : parent->hw;
369 }
370 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
371 
372 unsigned int __clk_get_enable_count(struct clk *clk)
373 {
374 	return !clk ? 0 : clk->core->enable_count;
375 }
376 
377 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
378 {
379 	unsigned long ret;
380 
381 	if (!core) {
382 		ret = 0;
383 		goto out;
384 	}
385 
386 	ret = core->rate;
387 
388 	if (!core->num_parents)
389 		goto out;
390 
391 	if (!core->parent)
392 		ret = 0;
393 
394 out:
395 	return ret;
396 }
397 
398 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
399 {
400 	return clk_core_get_rate_nolock(hw->core);
401 }
402 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
403 
404 static unsigned long __clk_get_accuracy(struct clk_core *core)
405 {
406 	if (!core)
407 		return 0;
408 
409 	return core->accuracy;
410 }
411 
412 unsigned long __clk_get_flags(struct clk *clk)
413 {
414 	return !clk ? 0 : clk->core->flags;
415 }
416 EXPORT_SYMBOL_GPL(__clk_get_flags);
417 
418 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
419 {
420 	return hw->core->flags;
421 }
422 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
423 
424 bool clk_hw_is_prepared(const struct clk_hw *hw)
425 {
426 	return clk_core_is_prepared(hw->core);
427 }
428 
429 bool clk_hw_is_enabled(const struct clk_hw *hw)
430 {
431 	return clk_core_is_enabled(hw->core);
432 }
433 
434 bool __clk_is_enabled(struct clk *clk)
435 {
436 	if (!clk)
437 		return false;
438 
439 	return clk_core_is_enabled(clk->core);
440 }
441 EXPORT_SYMBOL_GPL(__clk_is_enabled);
442 
443 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
444 			   unsigned long best, unsigned long flags)
445 {
446 	if (flags & CLK_MUX_ROUND_CLOSEST)
447 		return abs(now - rate) < abs(best - rate);
448 
449 	return now <= rate && now > best;
450 }
451 
452 static int
453 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
454 			     unsigned long flags)
455 {
456 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
457 	int i, num_parents, ret;
458 	unsigned long best = 0;
459 	struct clk_rate_request parent_req = *req;
460 
461 	/* if NO_REPARENT flag set, pass through to current parent */
462 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
463 		parent = core->parent;
464 		if (core->flags & CLK_SET_RATE_PARENT) {
465 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
466 						   &parent_req);
467 			if (ret)
468 				return ret;
469 
470 			best = parent_req.rate;
471 		} else if (parent) {
472 			best = clk_core_get_rate_nolock(parent);
473 		} else {
474 			best = clk_core_get_rate_nolock(core);
475 		}
476 
477 		goto out;
478 	}
479 
480 	/* find the parent that can provide the fastest rate <= rate */
481 	num_parents = core->num_parents;
482 	for (i = 0; i < num_parents; i++) {
483 		parent = clk_core_get_parent_by_index(core, i);
484 		if (!parent)
485 			continue;
486 
487 		if (core->flags & CLK_SET_RATE_PARENT) {
488 			parent_req = *req;
489 			ret = __clk_determine_rate(parent->hw, &parent_req);
490 			if (ret)
491 				continue;
492 		} else {
493 			parent_req.rate = clk_core_get_rate_nolock(parent);
494 		}
495 
496 		if (mux_is_better_rate(req->rate, parent_req.rate,
497 				       best, flags)) {
498 			best_parent = parent;
499 			best = parent_req.rate;
500 		}
501 	}
502 
503 	if (!best_parent)
504 		return -EINVAL;
505 
506 out:
507 	if (best_parent)
508 		req->best_parent_hw = best_parent->hw;
509 	req->best_parent_rate = best;
510 	req->rate = best;
511 
512 	return 0;
513 }
514 
515 struct clk *__clk_lookup(const char *name)
516 {
517 	struct clk_core *core = clk_core_lookup(name);
518 
519 	return !core ? NULL : core->hw->clk;
520 }
521 
522 static void clk_core_get_boundaries(struct clk_core *core,
523 				    unsigned long *min_rate,
524 				    unsigned long *max_rate)
525 {
526 	struct clk *clk_user;
527 
528 	*min_rate = core->min_rate;
529 	*max_rate = core->max_rate;
530 
531 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
532 		*min_rate = max(*min_rate, clk_user->min_rate);
533 
534 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
535 		*max_rate = min(*max_rate, clk_user->max_rate);
536 }
537 
538 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
539 			   unsigned long max_rate)
540 {
541 	hw->core->min_rate = min_rate;
542 	hw->core->max_rate = max_rate;
543 }
544 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
545 
546 /*
547  * Helper for finding best parent to provide a given frequency. This can be used
548  * directly as a determine_rate callback (e.g. for a mux), or from a more
549  * complex clock that may combine a mux with other operations.
550  */
551 int __clk_mux_determine_rate(struct clk_hw *hw,
552 			     struct clk_rate_request *req)
553 {
554 	return clk_mux_determine_rate_flags(hw, req, 0);
555 }
556 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
557 
558 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
559 				     struct clk_rate_request *req)
560 {
561 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
562 }
563 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
564 
565 /***        clk api        ***/
566 
567 static void clk_core_unprepare(struct clk_core *core)
568 {
569 	lockdep_assert_held(&prepare_lock);
570 
571 	if (!core)
572 		return;
573 
574 	if (WARN_ON(core->prepare_count == 0))
575 		return;
576 
577 	if (--core->prepare_count > 0)
578 		return;
579 
580 	WARN_ON(core->enable_count > 0);
581 
582 	trace_clk_unprepare(core);
583 
584 	if (core->ops->unprepare)
585 		core->ops->unprepare(core->hw);
586 
587 	trace_clk_unprepare_complete(core);
588 	clk_core_unprepare(core->parent);
589 }
590 
591 /**
592  * clk_unprepare - undo preparation of a clock source
593  * @clk: the clk being unprepared
594  *
595  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
596  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
597  * if the operation may sleep.  One example is a clk which is accessed over
598  * I2c.  In the complex case a clk gate operation may require a fast and a slow
599  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
600  * exclusive.  In fact clk_disable must be called before clk_unprepare.
601  */
602 void clk_unprepare(struct clk *clk)
603 {
604 	if (IS_ERR_OR_NULL(clk))
605 		return;
606 
607 	clk_prepare_lock();
608 	clk_core_unprepare(clk->core);
609 	clk_prepare_unlock();
610 }
611 EXPORT_SYMBOL_GPL(clk_unprepare);
612 
613 static int clk_core_prepare(struct clk_core *core)
614 {
615 	int ret = 0;
616 
617 	lockdep_assert_held(&prepare_lock);
618 
619 	if (!core)
620 		return 0;
621 
622 	if (core->prepare_count == 0) {
623 		ret = clk_core_prepare(core->parent);
624 		if (ret)
625 			return ret;
626 
627 		trace_clk_prepare(core);
628 
629 		if (core->ops->prepare)
630 			ret = core->ops->prepare(core->hw);
631 
632 		trace_clk_prepare_complete(core);
633 
634 		if (ret) {
635 			clk_core_unprepare(core->parent);
636 			return ret;
637 		}
638 	}
639 
640 	core->prepare_count++;
641 
642 	return 0;
643 }
644 
645 /**
646  * clk_prepare - prepare a clock source
647  * @clk: the clk being prepared
648  *
649  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
650  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
651  * operation may sleep.  One example is a clk which is accessed over I2c.  In
652  * the complex case a clk ungate operation may require a fast and a slow part.
653  * It is this reason that clk_prepare and clk_enable are not mutually
654  * exclusive.  In fact clk_prepare must be called before clk_enable.
655  * Returns 0 on success, -EERROR otherwise.
656  */
657 int clk_prepare(struct clk *clk)
658 {
659 	int ret;
660 
661 	if (!clk)
662 		return 0;
663 
664 	clk_prepare_lock();
665 	ret = clk_core_prepare(clk->core);
666 	clk_prepare_unlock();
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL_GPL(clk_prepare);
671 
672 static void clk_core_disable(struct clk_core *core)
673 {
674 	lockdep_assert_held(&enable_lock);
675 
676 	if (!core)
677 		return;
678 
679 	if (WARN_ON(core->enable_count == 0))
680 		return;
681 
682 	if (--core->enable_count > 0)
683 		return;
684 
685 	trace_clk_disable(core);
686 
687 	if (core->ops->disable)
688 		core->ops->disable(core->hw);
689 
690 	trace_clk_disable_complete(core);
691 
692 	clk_core_disable(core->parent);
693 }
694 
695 /**
696  * clk_disable - gate a clock
697  * @clk: the clk being gated
698  *
699  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
700  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
701  * clk if the operation is fast and will never sleep.  One example is a
702  * SoC-internal clk which is controlled via simple register writes.  In the
703  * complex case a clk gate operation may require a fast and a slow part.  It is
704  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
705  * In fact clk_disable must be called before clk_unprepare.
706  */
707 void clk_disable(struct clk *clk)
708 {
709 	unsigned long flags;
710 
711 	if (IS_ERR_OR_NULL(clk))
712 		return;
713 
714 	flags = clk_enable_lock();
715 	clk_core_disable(clk->core);
716 	clk_enable_unlock(flags);
717 }
718 EXPORT_SYMBOL_GPL(clk_disable);
719 
720 static int clk_core_enable(struct clk_core *core)
721 {
722 	int ret = 0;
723 
724 	lockdep_assert_held(&enable_lock);
725 
726 	if (!core)
727 		return 0;
728 
729 	if (WARN_ON(core->prepare_count == 0))
730 		return -ESHUTDOWN;
731 
732 	if (core->enable_count == 0) {
733 		ret = clk_core_enable(core->parent);
734 
735 		if (ret)
736 			return ret;
737 
738 		trace_clk_enable(core);
739 
740 		if (core->ops->enable)
741 			ret = core->ops->enable(core->hw);
742 
743 		trace_clk_enable_complete(core);
744 
745 		if (ret) {
746 			clk_core_disable(core->parent);
747 			return ret;
748 		}
749 	}
750 
751 	core->enable_count++;
752 	return 0;
753 }
754 
755 /**
756  * clk_enable - ungate a clock
757  * @clk: the clk being ungated
758  *
759  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
760  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
761  * if the operation will never sleep.  One example is a SoC-internal clk which
762  * is controlled via simple register writes.  In the complex case a clk ungate
763  * operation may require a fast and a slow part.  It is this reason that
764  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
765  * must be called before clk_enable.  Returns 0 on success, -EERROR
766  * otherwise.
767  */
768 int clk_enable(struct clk *clk)
769 {
770 	unsigned long flags;
771 	int ret;
772 
773 	if (!clk)
774 		return 0;
775 
776 	flags = clk_enable_lock();
777 	ret = clk_core_enable(clk->core);
778 	clk_enable_unlock(flags);
779 
780 	return ret;
781 }
782 EXPORT_SYMBOL_GPL(clk_enable);
783 
784 static int clk_core_round_rate_nolock(struct clk_core *core,
785 				      struct clk_rate_request *req)
786 {
787 	struct clk_core *parent;
788 	long rate;
789 
790 	lockdep_assert_held(&prepare_lock);
791 
792 	if (!core)
793 		return 0;
794 
795 	parent = core->parent;
796 	if (parent) {
797 		req->best_parent_hw = parent->hw;
798 		req->best_parent_rate = parent->rate;
799 	} else {
800 		req->best_parent_hw = NULL;
801 		req->best_parent_rate = 0;
802 	}
803 
804 	if (core->ops->determine_rate) {
805 		return core->ops->determine_rate(core->hw, req);
806 	} else if (core->ops->round_rate) {
807 		rate = core->ops->round_rate(core->hw, req->rate,
808 					     &req->best_parent_rate);
809 		if (rate < 0)
810 			return rate;
811 
812 		req->rate = rate;
813 	} else if (core->flags & CLK_SET_RATE_PARENT) {
814 		return clk_core_round_rate_nolock(parent, req);
815 	} else {
816 		req->rate = core->rate;
817 	}
818 
819 	return 0;
820 }
821 
822 /**
823  * __clk_determine_rate - get the closest rate actually supported by a clock
824  * @hw: determine the rate of this clock
825  * @rate: target rate
826  * @min_rate: returned rate must be greater than this rate
827  * @max_rate: returned rate must be less than this rate
828  *
829  * Useful for clk_ops such as .set_rate and .determine_rate.
830  */
831 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
832 {
833 	if (!hw) {
834 		req->rate = 0;
835 		return 0;
836 	}
837 
838 	return clk_core_round_rate_nolock(hw->core, req);
839 }
840 EXPORT_SYMBOL_GPL(__clk_determine_rate);
841 
842 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
843 {
844 	int ret;
845 	struct clk_rate_request req;
846 
847 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
848 	req.rate = rate;
849 
850 	ret = clk_core_round_rate_nolock(hw->core, &req);
851 	if (ret)
852 		return 0;
853 
854 	return req.rate;
855 }
856 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
857 
858 /**
859  * clk_round_rate - round the given rate for a clk
860  * @clk: the clk for which we are rounding a rate
861  * @rate: the rate which is to be rounded
862  *
863  * Takes in a rate as input and rounds it to a rate that the clk can actually
864  * use which is then returned.  If clk doesn't support round_rate operation
865  * then the parent rate is returned.
866  */
867 long clk_round_rate(struct clk *clk, unsigned long rate)
868 {
869 	struct clk_rate_request req;
870 	int ret;
871 
872 	if (!clk)
873 		return 0;
874 
875 	clk_prepare_lock();
876 
877 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
878 	req.rate = rate;
879 
880 	ret = clk_core_round_rate_nolock(clk->core, &req);
881 	clk_prepare_unlock();
882 
883 	if (ret)
884 		return ret;
885 
886 	return req.rate;
887 }
888 EXPORT_SYMBOL_GPL(clk_round_rate);
889 
890 /**
891  * __clk_notify - call clk notifier chain
892  * @core: clk that is changing rate
893  * @msg: clk notifier type (see include/linux/clk.h)
894  * @old_rate: old clk rate
895  * @new_rate: new clk rate
896  *
897  * Triggers a notifier call chain on the clk rate-change notification
898  * for 'clk'.  Passes a pointer to the struct clk and the previous
899  * and current rates to the notifier callback.  Intended to be called by
900  * internal clock code only.  Returns NOTIFY_DONE from the last driver
901  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
902  * a driver returns that.
903  */
904 static int __clk_notify(struct clk_core *core, unsigned long msg,
905 		unsigned long old_rate, unsigned long new_rate)
906 {
907 	struct clk_notifier *cn;
908 	struct clk_notifier_data cnd;
909 	int ret = NOTIFY_DONE;
910 
911 	cnd.old_rate = old_rate;
912 	cnd.new_rate = new_rate;
913 
914 	list_for_each_entry(cn, &clk_notifier_list, node) {
915 		if (cn->clk->core == core) {
916 			cnd.clk = cn->clk;
917 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
918 					&cnd);
919 		}
920 	}
921 
922 	return ret;
923 }
924 
925 /**
926  * __clk_recalc_accuracies
927  * @core: first clk in the subtree
928  *
929  * Walks the subtree of clks starting with clk and recalculates accuracies as
930  * it goes.  Note that if a clk does not implement the .recalc_accuracy
931  * callback then it is assumed that the clock will take on the accuracy of its
932  * parent.
933  */
934 static void __clk_recalc_accuracies(struct clk_core *core)
935 {
936 	unsigned long parent_accuracy = 0;
937 	struct clk_core *child;
938 
939 	lockdep_assert_held(&prepare_lock);
940 
941 	if (core->parent)
942 		parent_accuracy = core->parent->accuracy;
943 
944 	if (core->ops->recalc_accuracy)
945 		core->accuracy = core->ops->recalc_accuracy(core->hw,
946 							  parent_accuracy);
947 	else
948 		core->accuracy = parent_accuracy;
949 
950 	hlist_for_each_entry(child, &core->children, child_node)
951 		__clk_recalc_accuracies(child);
952 }
953 
954 static long clk_core_get_accuracy(struct clk_core *core)
955 {
956 	unsigned long accuracy;
957 
958 	clk_prepare_lock();
959 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
960 		__clk_recalc_accuracies(core);
961 
962 	accuracy = __clk_get_accuracy(core);
963 	clk_prepare_unlock();
964 
965 	return accuracy;
966 }
967 
968 /**
969  * clk_get_accuracy - return the accuracy of clk
970  * @clk: the clk whose accuracy is being returned
971  *
972  * Simply returns the cached accuracy of the clk, unless
973  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
974  * issued.
975  * If clk is NULL then returns 0.
976  */
977 long clk_get_accuracy(struct clk *clk)
978 {
979 	if (!clk)
980 		return 0;
981 
982 	return clk_core_get_accuracy(clk->core);
983 }
984 EXPORT_SYMBOL_GPL(clk_get_accuracy);
985 
986 static unsigned long clk_recalc(struct clk_core *core,
987 				unsigned long parent_rate)
988 {
989 	if (core->ops->recalc_rate)
990 		return core->ops->recalc_rate(core->hw, parent_rate);
991 	return parent_rate;
992 }
993 
994 /**
995  * __clk_recalc_rates
996  * @core: first clk in the subtree
997  * @msg: notification type (see include/linux/clk.h)
998  *
999  * Walks the subtree of clks starting with clk and recalculates rates as it
1000  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1001  * it is assumed that the clock will take on the rate of its parent.
1002  *
1003  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1004  * if necessary.
1005  */
1006 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1007 {
1008 	unsigned long old_rate;
1009 	unsigned long parent_rate = 0;
1010 	struct clk_core *child;
1011 
1012 	lockdep_assert_held(&prepare_lock);
1013 
1014 	old_rate = core->rate;
1015 
1016 	if (core->parent)
1017 		parent_rate = core->parent->rate;
1018 
1019 	core->rate = clk_recalc(core, parent_rate);
1020 
1021 	/*
1022 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1023 	 * & ABORT_RATE_CHANGE notifiers
1024 	 */
1025 	if (core->notifier_count && msg)
1026 		__clk_notify(core, msg, old_rate, core->rate);
1027 
1028 	hlist_for_each_entry(child, &core->children, child_node)
1029 		__clk_recalc_rates(child, msg);
1030 }
1031 
1032 static unsigned long clk_core_get_rate(struct clk_core *core)
1033 {
1034 	unsigned long rate;
1035 
1036 	clk_prepare_lock();
1037 
1038 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1039 		__clk_recalc_rates(core, 0);
1040 
1041 	rate = clk_core_get_rate_nolock(core);
1042 	clk_prepare_unlock();
1043 
1044 	return rate;
1045 }
1046 
1047 /**
1048  * clk_get_rate - return the rate of clk
1049  * @clk: the clk whose rate is being returned
1050  *
1051  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1052  * is set, which means a recalc_rate will be issued.
1053  * If clk is NULL then returns 0.
1054  */
1055 unsigned long clk_get_rate(struct clk *clk)
1056 {
1057 	if (!clk)
1058 		return 0;
1059 
1060 	return clk_core_get_rate(clk->core);
1061 }
1062 EXPORT_SYMBOL_GPL(clk_get_rate);
1063 
1064 static int clk_fetch_parent_index(struct clk_core *core,
1065 				  struct clk_core *parent)
1066 {
1067 	int i;
1068 
1069 	if (!parent)
1070 		return -EINVAL;
1071 
1072 	for (i = 0; i < core->num_parents; i++)
1073 		if (clk_core_get_parent_by_index(core, i) == parent)
1074 			return i;
1075 
1076 	return -EINVAL;
1077 }
1078 
1079 /*
1080  * Update the orphan status of @core and all its children.
1081  */
1082 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1083 {
1084 	struct clk_core *child;
1085 
1086 	core->orphan = is_orphan;
1087 
1088 	hlist_for_each_entry(child, &core->children, child_node)
1089 		clk_core_update_orphan_status(child, is_orphan);
1090 }
1091 
1092 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1093 {
1094 	bool was_orphan = core->orphan;
1095 
1096 	hlist_del(&core->child_node);
1097 
1098 	if (new_parent) {
1099 		bool becomes_orphan = new_parent->orphan;
1100 
1101 		/* avoid duplicate POST_RATE_CHANGE notifications */
1102 		if (new_parent->new_child == core)
1103 			new_parent->new_child = NULL;
1104 
1105 		hlist_add_head(&core->child_node, &new_parent->children);
1106 
1107 		if (was_orphan != becomes_orphan)
1108 			clk_core_update_orphan_status(core, becomes_orphan);
1109 	} else {
1110 		hlist_add_head(&core->child_node, &clk_orphan_list);
1111 		if (!was_orphan)
1112 			clk_core_update_orphan_status(core, true);
1113 	}
1114 
1115 	core->parent = new_parent;
1116 }
1117 
1118 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1119 					   struct clk_core *parent)
1120 {
1121 	unsigned long flags;
1122 	struct clk_core *old_parent = core->parent;
1123 
1124 	/*
1125 	 * Migrate prepare state between parents and prevent race with
1126 	 * clk_enable().
1127 	 *
1128 	 * If the clock is not prepared, then a race with
1129 	 * clk_enable/disable() is impossible since we already have the
1130 	 * prepare lock (future calls to clk_enable() need to be preceded by
1131 	 * a clk_prepare()).
1132 	 *
1133 	 * If the clock is prepared, migrate the prepared state to the new
1134 	 * parent and also protect against a race with clk_enable() by
1135 	 * forcing the clock and the new parent on.  This ensures that all
1136 	 * future calls to clk_enable() are practically NOPs with respect to
1137 	 * hardware and software states.
1138 	 *
1139 	 * See also: Comment for clk_set_parent() below.
1140 	 */
1141 	if (core->prepare_count) {
1142 		clk_core_prepare(parent);
1143 		flags = clk_enable_lock();
1144 		clk_core_enable(parent);
1145 		clk_core_enable(core);
1146 		clk_enable_unlock(flags);
1147 	}
1148 
1149 	/* update the clk tree topology */
1150 	flags = clk_enable_lock();
1151 	clk_reparent(core, parent);
1152 	clk_enable_unlock(flags);
1153 
1154 	return old_parent;
1155 }
1156 
1157 static void __clk_set_parent_after(struct clk_core *core,
1158 				   struct clk_core *parent,
1159 				   struct clk_core *old_parent)
1160 {
1161 	unsigned long flags;
1162 
1163 	/*
1164 	 * Finish the migration of prepare state and undo the changes done
1165 	 * for preventing a race with clk_enable().
1166 	 */
1167 	if (core->prepare_count) {
1168 		flags = clk_enable_lock();
1169 		clk_core_disable(core);
1170 		clk_core_disable(old_parent);
1171 		clk_enable_unlock(flags);
1172 		clk_core_unprepare(old_parent);
1173 	}
1174 }
1175 
1176 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1177 			    u8 p_index)
1178 {
1179 	unsigned long flags;
1180 	int ret = 0;
1181 	struct clk_core *old_parent;
1182 
1183 	old_parent = __clk_set_parent_before(core, parent);
1184 
1185 	trace_clk_set_parent(core, parent);
1186 
1187 	/* change clock input source */
1188 	if (parent && core->ops->set_parent)
1189 		ret = core->ops->set_parent(core->hw, p_index);
1190 
1191 	trace_clk_set_parent_complete(core, parent);
1192 
1193 	if (ret) {
1194 		flags = clk_enable_lock();
1195 		clk_reparent(core, old_parent);
1196 		clk_enable_unlock(flags);
1197 		__clk_set_parent_after(core, old_parent, parent);
1198 
1199 		return ret;
1200 	}
1201 
1202 	__clk_set_parent_after(core, parent, old_parent);
1203 
1204 	return 0;
1205 }
1206 
1207 /**
1208  * __clk_speculate_rates
1209  * @core: first clk in the subtree
1210  * @parent_rate: the "future" rate of clk's parent
1211  *
1212  * Walks the subtree of clks starting with clk, speculating rates as it
1213  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1214  *
1215  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1216  * pre-rate change notifications and returns early if no clks in the
1217  * subtree have subscribed to the notifications.  Note that if a clk does not
1218  * implement the .recalc_rate callback then it is assumed that the clock will
1219  * take on the rate of its parent.
1220  */
1221 static int __clk_speculate_rates(struct clk_core *core,
1222 				 unsigned long parent_rate)
1223 {
1224 	struct clk_core *child;
1225 	unsigned long new_rate;
1226 	int ret = NOTIFY_DONE;
1227 
1228 	lockdep_assert_held(&prepare_lock);
1229 
1230 	new_rate = clk_recalc(core, parent_rate);
1231 
1232 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1233 	if (core->notifier_count)
1234 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1235 
1236 	if (ret & NOTIFY_STOP_MASK) {
1237 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1238 				__func__, core->name, ret);
1239 		goto out;
1240 	}
1241 
1242 	hlist_for_each_entry(child, &core->children, child_node) {
1243 		ret = __clk_speculate_rates(child, new_rate);
1244 		if (ret & NOTIFY_STOP_MASK)
1245 			break;
1246 	}
1247 
1248 out:
1249 	return ret;
1250 }
1251 
1252 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1253 			     struct clk_core *new_parent, u8 p_index)
1254 {
1255 	struct clk_core *child;
1256 
1257 	core->new_rate = new_rate;
1258 	core->new_parent = new_parent;
1259 	core->new_parent_index = p_index;
1260 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1261 	core->new_child = NULL;
1262 	if (new_parent && new_parent != core->parent)
1263 		new_parent->new_child = core;
1264 
1265 	hlist_for_each_entry(child, &core->children, child_node) {
1266 		child->new_rate = clk_recalc(child, new_rate);
1267 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1268 	}
1269 }
1270 
1271 /*
1272  * calculate the new rates returning the topmost clock that has to be
1273  * changed.
1274  */
1275 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1276 					   unsigned long rate)
1277 {
1278 	struct clk_core *top = core;
1279 	struct clk_core *old_parent, *parent;
1280 	unsigned long best_parent_rate = 0;
1281 	unsigned long new_rate;
1282 	unsigned long min_rate;
1283 	unsigned long max_rate;
1284 	int p_index = 0;
1285 	long ret;
1286 
1287 	/* sanity */
1288 	if (IS_ERR_OR_NULL(core))
1289 		return NULL;
1290 
1291 	/* save parent rate, if it exists */
1292 	parent = old_parent = core->parent;
1293 	if (parent)
1294 		best_parent_rate = parent->rate;
1295 
1296 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1297 
1298 	/* find the closest rate and parent clk/rate */
1299 	if (core->ops->determine_rate) {
1300 		struct clk_rate_request req;
1301 
1302 		req.rate = rate;
1303 		req.min_rate = min_rate;
1304 		req.max_rate = max_rate;
1305 		if (parent) {
1306 			req.best_parent_hw = parent->hw;
1307 			req.best_parent_rate = parent->rate;
1308 		} else {
1309 			req.best_parent_hw = NULL;
1310 			req.best_parent_rate = 0;
1311 		}
1312 
1313 		ret = core->ops->determine_rate(core->hw, &req);
1314 		if (ret < 0)
1315 			return NULL;
1316 
1317 		best_parent_rate = req.best_parent_rate;
1318 		new_rate = req.rate;
1319 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1320 	} else if (core->ops->round_rate) {
1321 		ret = core->ops->round_rate(core->hw, rate,
1322 					    &best_parent_rate);
1323 		if (ret < 0)
1324 			return NULL;
1325 
1326 		new_rate = ret;
1327 		if (new_rate < min_rate || new_rate > max_rate)
1328 			return NULL;
1329 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1330 		/* pass-through clock without adjustable parent */
1331 		core->new_rate = core->rate;
1332 		return NULL;
1333 	} else {
1334 		/* pass-through clock with adjustable parent */
1335 		top = clk_calc_new_rates(parent, rate);
1336 		new_rate = parent->new_rate;
1337 		goto out;
1338 	}
1339 
1340 	/* some clocks must be gated to change parent */
1341 	if (parent != old_parent &&
1342 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1343 		pr_debug("%s: %s not gated but wants to reparent\n",
1344 			 __func__, core->name);
1345 		return NULL;
1346 	}
1347 
1348 	/* try finding the new parent index */
1349 	if (parent && core->num_parents > 1) {
1350 		p_index = clk_fetch_parent_index(core, parent);
1351 		if (p_index < 0) {
1352 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1353 				 __func__, parent->name, core->name);
1354 			return NULL;
1355 		}
1356 	}
1357 
1358 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1359 	    best_parent_rate != parent->rate)
1360 		top = clk_calc_new_rates(parent, best_parent_rate);
1361 
1362 out:
1363 	clk_calc_subtree(core, new_rate, parent, p_index);
1364 
1365 	return top;
1366 }
1367 
1368 /*
1369  * Notify about rate changes in a subtree. Always walk down the whole tree
1370  * so that in case of an error we can walk down the whole tree again and
1371  * abort the change.
1372  */
1373 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1374 						  unsigned long event)
1375 {
1376 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1377 	int ret = NOTIFY_DONE;
1378 
1379 	if (core->rate == core->new_rate)
1380 		return NULL;
1381 
1382 	if (core->notifier_count) {
1383 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1384 		if (ret & NOTIFY_STOP_MASK)
1385 			fail_clk = core;
1386 	}
1387 
1388 	hlist_for_each_entry(child, &core->children, child_node) {
1389 		/* Skip children who will be reparented to another clock */
1390 		if (child->new_parent && child->new_parent != core)
1391 			continue;
1392 		tmp_clk = clk_propagate_rate_change(child, event);
1393 		if (tmp_clk)
1394 			fail_clk = tmp_clk;
1395 	}
1396 
1397 	/* handle the new child who might not be in core->children yet */
1398 	if (core->new_child) {
1399 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1400 		if (tmp_clk)
1401 			fail_clk = tmp_clk;
1402 	}
1403 
1404 	return fail_clk;
1405 }
1406 
1407 /*
1408  * walk down a subtree and set the new rates notifying the rate
1409  * change on the way
1410  */
1411 static void clk_change_rate(struct clk_core *core)
1412 {
1413 	struct clk_core *child;
1414 	struct hlist_node *tmp;
1415 	unsigned long old_rate;
1416 	unsigned long best_parent_rate = 0;
1417 	bool skip_set_rate = false;
1418 	struct clk_core *old_parent;
1419 
1420 	old_rate = core->rate;
1421 
1422 	if (core->new_parent)
1423 		best_parent_rate = core->new_parent->rate;
1424 	else if (core->parent)
1425 		best_parent_rate = core->parent->rate;
1426 
1427 	if (core->flags & CLK_SET_RATE_UNGATE) {
1428 		unsigned long flags;
1429 
1430 		clk_core_prepare(core);
1431 		flags = clk_enable_lock();
1432 		clk_core_enable(core);
1433 		clk_enable_unlock(flags);
1434 	}
1435 
1436 	if (core->new_parent && core->new_parent != core->parent) {
1437 		old_parent = __clk_set_parent_before(core, core->new_parent);
1438 		trace_clk_set_parent(core, core->new_parent);
1439 
1440 		if (core->ops->set_rate_and_parent) {
1441 			skip_set_rate = true;
1442 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1443 					best_parent_rate,
1444 					core->new_parent_index);
1445 		} else if (core->ops->set_parent) {
1446 			core->ops->set_parent(core->hw, core->new_parent_index);
1447 		}
1448 
1449 		trace_clk_set_parent_complete(core, core->new_parent);
1450 		__clk_set_parent_after(core, core->new_parent, old_parent);
1451 	}
1452 
1453 	trace_clk_set_rate(core, core->new_rate);
1454 
1455 	if (!skip_set_rate && core->ops->set_rate)
1456 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1457 
1458 	trace_clk_set_rate_complete(core, core->new_rate);
1459 
1460 	core->rate = clk_recalc(core, best_parent_rate);
1461 
1462 	if (core->flags & CLK_SET_RATE_UNGATE) {
1463 		unsigned long flags;
1464 
1465 		flags = clk_enable_lock();
1466 		clk_core_disable(core);
1467 		clk_enable_unlock(flags);
1468 		clk_core_unprepare(core);
1469 	}
1470 
1471 	if (core->notifier_count && old_rate != core->rate)
1472 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1473 
1474 	if (core->flags & CLK_RECALC_NEW_RATES)
1475 		(void)clk_calc_new_rates(core, core->new_rate);
1476 
1477 	/*
1478 	 * Use safe iteration, as change_rate can actually swap parents
1479 	 * for certain clock types.
1480 	 */
1481 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1482 		/* Skip children who will be reparented to another clock */
1483 		if (child->new_parent && child->new_parent != core)
1484 			continue;
1485 		clk_change_rate(child);
1486 	}
1487 
1488 	/* handle the new child who might not be in core->children yet */
1489 	if (core->new_child)
1490 		clk_change_rate(core->new_child);
1491 }
1492 
1493 static int clk_core_set_rate_nolock(struct clk_core *core,
1494 				    unsigned long req_rate)
1495 {
1496 	struct clk_core *top, *fail_clk;
1497 	unsigned long rate = req_rate;
1498 	int ret = 0;
1499 
1500 	if (!core)
1501 		return 0;
1502 
1503 	/* bail early if nothing to do */
1504 	if (rate == clk_core_get_rate_nolock(core))
1505 		return 0;
1506 
1507 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1508 		return -EBUSY;
1509 
1510 	/* calculate new rates and get the topmost changed clock */
1511 	top = clk_calc_new_rates(core, rate);
1512 	if (!top)
1513 		return -EINVAL;
1514 
1515 	/* notify that we are about to change rates */
1516 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1517 	if (fail_clk) {
1518 		pr_debug("%s: failed to set %s rate\n", __func__,
1519 				fail_clk->name);
1520 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1521 		return -EBUSY;
1522 	}
1523 
1524 	/* change the rates */
1525 	clk_change_rate(top);
1526 
1527 	core->req_rate = req_rate;
1528 
1529 	return ret;
1530 }
1531 
1532 /**
1533  * clk_set_rate - specify a new rate for clk
1534  * @clk: the clk whose rate is being changed
1535  * @rate: the new rate for clk
1536  *
1537  * In the simplest case clk_set_rate will only adjust the rate of clk.
1538  *
1539  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1540  * propagate up to clk's parent; whether or not this happens depends on the
1541  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1542  * after calling .round_rate then upstream parent propagation is ignored.  If
1543  * *parent_rate comes back with a new rate for clk's parent then we propagate
1544  * up to clk's parent and set its rate.  Upward propagation will continue
1545  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1546  * .round_rate stops requesting changes to clk's parent_rate.
1547  *
1548  * Rate changes are accomplished via tree traversal that also recalculates the
1549  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1550  *
1551  * Returns 0 on success, -EERROR otherwise.
1552  */
1553 int clk_set_rate(struct clk *clk, unsigned long rate)
1554 {
1555 	int ret;
1556 
1557 	if (!clk)
1558 		return 0;
1559 
1560 	/* prevent racing with updates to the clock topology */
1561 	clk_prepare_lock();
1562 
1563 	ret = clk_core_set_rate_nolock(clk->core, rate);
1564 
1565 	clk_prepare_unlock();
1566 
1567 	return ret;
1568 }
1569 EXPORT_SYMBOL_GPL(clk_set_rate);
1570 
1571 /**
1572  * clk_set_rate_range - set a rate range for a clock source
1573  * @clk: clock source
1574  * @min: desired minimum clock rate in Hz, inclusive
1575  * @max: desired maximum clock rate in Hz, inclusive
1576  *
1577  * Returns success (0) or negative errno.
1578  */
1579 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1580 {
1581 	int ret = 0;
1582 
1583 	if (!clk)
1584 		return 0;
1585 
1586 	if (min > max) {
1587 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1588 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1589 		       min, max);
1590 		return -EINVAL;
1591 	}
1592 
1593 	clk_prepare_lock();
1594 
1595 	if (min != clk->min_rate || max != clk->max_rate) {
1596 		clk->min_rate = min;
1597 		clk->max_rate = max;
1598 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1599 	}
1600 
1601 	clk_prepare_unlock();
1602 
1603 	return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1606 
1607 /**
1608  * clk_set_min_rate - set a minimum clock rate for a clock source
1609  * @clk: clock source
1610  * @rate: desired minimum clock rate in Hz, inclusive
1611  *
1612  * Returns success (0) or negative errno.
1613  */
1614 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1615 {
1616 	if (!clk)
1617 		return 0;
1618 
1619 	return clk_set_rate_range(clk, rate, clk->max_rate);
1620 }
1621 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1622 
1623 /**
1624  * clk_set_max_rate - set a maximum clock rate for a clock source
1625  * @clk: clock source
1626  * @rate: desired maximum clock rate in Hz, inclusive
1627  *
1628  * Returns success (0) or negative errno.
1629  */
1630 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1631 {
1632 	if (!clk)
1633 		return 0;
1634 
1635 	return clk_set_rate_range(clk, clk->min_rate, rate);
1636 }
1637 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1638 
1639 /**
1640  * clk_get_parent - return the parent of a clk
1641  * @clk: the clk whose parent gets returned
1642  *
1643  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1644  */
1645 struct clk *clk_get_parent(struct clk *clk)
1646 {
1647 	struct clk *parent;
1648 
1649 	if (!clk)
1650 		return NULL;
1651 
1652 	clk_prepare_lock();
1653 	/* TODO: Create a per-user clk and change callers to call clk_put */
1654 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1655 	clk_prepare_unlock();
1656 
1657 	return parent;
1658 }
1659 EXPORT_SYMBOL_GPL(clk_get_parent);
1660 
1661 static struct clk_core *__clk_init_parent(struct clk_core *core)
1662 {
1663 	u8 index = 0;
1664 
1665 	if (core->num_parents > 1 && core->ops->get_parent)
1666 		index = core->ops->get_parent(core->hw);
1667 
1668 	return clk_core_get_parent_by_index(core, index);
1669 }
1670 
1671 static void clk_core_reparent(struct clk_core *core,
1672 				  struct clk_core *new_parent)
1673 {
1674 	clk_reparent(core, new_parent);
1675 	__clk_recalc_accuracies(core);
1676 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1677 }
1678 
1679 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1680 {
1681 	if (!hw)
1682 		return;
1683 
1684 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1685 }
1686 
1687 /**
1688  * clk_has_parent - check if a clock is a possible parent for another
1689  * @clk: clock source
1690  * @parent: parent clock source
1691  *
1692  * This function can be used in drivers that need to check that a clock can be
1693  * the parent of another without actually changing the parent.
1694  *
1695  * Returns true if @parent is a possible parent for @clk, false otherwise.
1696  */
1697 bool clk_has_parent(struct clk *clk, struct clk *parent)
1698 {
1699 	struct clk_core *core, *parent_core;
1700 	unsigned int i;
1701 
1702 	/* NULL clocks should be nops, so return success if either is NULL. */
1703 	if (!clk || !parent)
1704 		return true;
1705 
1706 	core = clk->core;
1707 	parent_core = parent->core;
1708 
1709 	/* Optimize for the case where the parent is already the parent. */
1710 	if (core->parent == parent_core)
1711 		return true;
1712 
1713 	for (i = 0; i < core->num_parents; i++)
1714 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1715 			return true;
1716 
1717 	return false;
1718 }
1719 EXPORT_SYMBOL_GPL(clk_has_parent);
1720 
1721 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1722 {
1723 	int ret = 0;
1724 	int p_index = 0;
1725 	unsigned long p_rate = 0;
1726 
1727 	if (!core)
1728 		return 0;
1729 
1730 	/* prevent racing with updates to the clock topology */
1731 	clk_prepare_lock();
1732 
1733 	if (core->parent == parent)
1734 		goto out;
1735 
1736 	/* verify ops for for multi-parent clks */
1737 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1738 		ret = -ENOSYS;
1739 		goto out;
1740 	}
1741 
1742 	/* check that we are allowed to re-parent if the clock is in use */
1743 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1744 		ret = -EBUSY;
1745 		goto out;
1746 	}
1747 
1748 	/* try finding the new parent index */
1749 	if (parent) {
1750 		p_index = clk_fetch_parent_index(core, parent);
1751 		if (p_index < 0) {
1752 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1753 					__func__, parent->name, core->name);
1754 			ret = p_index;
1755 			goto out;
1756 		}
1757 		p_rate = parent->rate;
1758 	}
1759 
1760 	/* propagate PRE_RATE_CHANGE notifications */
1761 	ret = __clk_speculate_rates(core, p_rate);
1762 
1763 	/* abort if a driver objects */
1764 	if (ret & NOTIFY_STOP_MASK)
1765 		goto out;
1766 
1767 	/* do the re-parent */
1768 	ret = __clk_set_parent(core, parent, p_index);
1769 
1770 	/* propagate rate an accuracy recalculation accordingly */
1771 	if (ret) {
1772 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1773 	} else {
1774 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1775 		__clk_recalc_accuracies(core);
1776 	}
1777 
1778 out:
1779 	clk_prepare_unlock();
1780 
1781 	return ret;
1782 }
1783 
1784 /**
1785  * clk_set_parent - switch the parent of a mux clk
1786  * @clk: the mux clk whose input we are switching
1787  * @parent: the new input to clk
1788  *
1789  * Re-parent clk to use parent as its new input source.  If clk is in
1790  * prepared state, the clk will get enabled for the duration of this call. If
1791  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1792  * that, the reparenting is glitchy in hardware, etc), use the
1793  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1794  *
1795  * After successfully changing clk's parent clk_set_parent will update the
1796  * clk topology, sysfs topology and propagate rate recalculation via
1797  * __clk_recalc_rates.
1798  *
1799  * Returns 0 on success, -EERROR otherwise.
1800  */
1801 int clk_set_parent(struct clk *clk, struct clk *parent)
1802 {
1803 	if (!clk)
1804 		return 0;
1805 
1806 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1807 }
1808 EXPORT_SYMBOL_GPL(clk_set_parent);
1809 
1810 /**
1811  * clk_set_phase - adjust the phase shift of a clock signal
1812  * @clk: clock signal source
1813  * @degrees: number of degrees the signal is shifted
1814  *
1815  * Shifts the phase of a clock signal by the specified
1816  * degrees. Returns 0 on success, -EERROR otherwise.
1817  *
1818  * This function makes no distinction about the input or reference
1819  * signal that we adjust the clock signal phase against. For example
1820  * phase locked-loop clock signal generators we may shift phase with
1821  * respect to feedback clock signal input, but for other cases the
1822  * clock phase may be shifted with respect to some other, unspecified
1823  * signal.
1824  *
1825  * Additionally the concept of phase shift does not propagate through
1826  * the clock tree hierarchy, which sets it apart from clock rates and
1827  * clock accuracy. A parent clock phase attribute does not have an
1828  * impact on the phase attribute of a child clock.
1829  */
1830 int clk_set_phase(struct clk *clk, int degrees)
1831 {
1832 	int ret = -EINVAL;
1833 
1834 	if (!clk)
1835 		return 0;
1836 
1837 	/* sanity check degrees */
1838 	degrees %= 360;
1839 	if (degrees < 0)
1840 		degrees += 360;
1841 
1842 	clk_prepare_lock();
1843 
1844 	/* bail early if nothing to do */
1845 	if (degrees == clk->core->phase)
1846 		goto out;
1847 
1848 	trace_clk_set_phase(clk->core, degrees);
1849 
1850 	if (clk->core->ops->set_phase)
1851 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1852 
1853 	trace_clk_set_phase_complete(clk->core, degrees);
1854 
1855 	if (!ret)
1856 		clk->core->phase = degrees;
1857 
1858 out:
1859 	clk_prepare_unlock();
1860 
1861 	return ret;
1862 }
1863 EXPORT_SYMBOL_GPL(clk_set_phase);
1864 
1865 static int clk_core_get_phase(struct clk_core *core)
1866 {
1867 	int ret;
1868 
1869 	clk_prepare_lock();
1870 	ret = core->phase;
1871 	clk_prepare_unlock();
1872 
1873 	return ret;
1874 }
1875 
1876 /**
1877  * clk_get_phase - return the phase shift of a clock signal
1878  * @clk: clock signal source
1879  *
1880  * Returns the phase shift of a clock node in degrees, otherwise returns
1881  * -EERROR.
1882  */
1883 int clk_get_phase(struct clk *clk)
1884 {
1885 	if (!clk)
1886 		return 0;
1887 
1888 	return clk_core_get_phase(clk->core);
1889 }
1890 EXPORT_SYMBOL_GPL(clk_get_phase);
1891 
1892 /**
1893  * clk_is_match - check if two clk's point to the same hardware clock
1894  * @p: clk compared against q
1895  * @q: clk compared against p
1896  *
1897  * Returns true if the two struct clk pointers both point to the same hardware
1898  * clock node. Put differently, returns true if struct clk *p and struct clk *q
1899  * share the same struct clk_core object.
1900  *
1901  * Returns false otherwise. Note that two NULL clks are treated as matching.
1902  */
1903 bool clk_is_match(const struct clk *p, const struct clk *q)
1904 {
1905 	/* trivial case: identical struct clk's or both NULL */
1906 	if (p == q)
1907 		return true;
1908 
1909 	/* true if clk->core pointers match. Avoid dereferencing garbage */
1910 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1911 		if (p->core == q->core)
1912 			return true;
1913 
1914 	return false;
1915 }
1916 EXPORT_SYMBOL_GPL(clk_is_match);
1917 
1918 /***        debugfs support        ***/
1919 
1920 #ifdef CONFIG_DEBUG_FS
1921 #include <linux/debugfs.h>
1922 
1923 static struct dentry *rootdir;
1924 static int inited = 0;
1925 static DEFINE_MUTEX(clk_debug_lock);
1926 static HLIST_HEAD(clk_debug_list);
1927 
1928 static struct hlist_head *all_lists[] = {
1929 	&clk_root_list,
1930 	&clk_orphan_list,
1931 	NULL,
1932 };
1933 
1934 static struct hlist_head *orphan_list[] = {
1935 	&clk_orphan_list,
1936 	NULL,
1937 };
1938 
1939 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1940 				 int level)
1941 {
1942 	if (!c)
1943 		return;
1944 
1945 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1946 		   level * 3 + 1, "",
1947 		   30 - level * 3, c->name,
1948 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
1949 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
1950 }
1951 
1952 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1953 				     int level)
1954 {
1955 	struct clk_core *child;
1956 
1957 	if (!c)
1958 		return;
1959 
1960 	clk_summary_show_one(s, c, level);
1961 
1962 	hlist_for_each_entry(child, &c->children, child_node)
1963 		clk_summary_show_subtree(s, child, level + 1);
1964 }
1965 
1966 static int clk_summary_show(struct seq_file *s, void *data)
1967 {
1968 	struct clk_core *c;
1969 	struct hlist_head **lists = (struct hlist_head **)s->private;
1970 
1971 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
1972 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
1973 
1974 	clk_prepare_lock();
1975 
1976 	for (; *lists; lists++)
1977 		hlist_for_each_entry(c, *lists, child_node)
1978 			clk_summary_show_subtree(s, c, 0);
1979 
1980 	clk_prepare_unlock();
1981 
1982 	return 0;
1983 }
1984 
1985 
1986 static int clk_summary_open(struct inode *inode, struct file *file)
1987 {
1988 	return single_open(file, clk_summary_show, inode->i_private);
1989 }
1990 
1991 static const struct file_operations clk_summary_fops = {
1992 	.open		= clk_summary_open,
1993 	.read		= seq_read,
1994 	.llseek		= seq_lseek,
1995 	.release	= single_release,
1996 };
1997 
1998 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
1999 {
2000 	if (!c)
2001 		return;
2002 
2003 	/* This should be JSON format, i.e. elements separated with a comma */
2004 	seq_printf(s, "\"%s\": { ", c->name);
2005 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2006 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2007 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2008 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2009 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2010 }
2011 
2012 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2013 {
2014 	struct clk_core *child;
2015 
2016 	if (!c)
2017 		return;
2018 
2019 	clk_dump_one(s, c, level);
2020 
2021 	hlist_for_each_entry(child, &c->children, child_node) {
2022 		seq_printf(s, ",");
2023 		clk_dump_subtree(s, child, level + 1);
2024 	}
2025 
2026 	seq_printf(s, "}");
2027 }
2028 
2029 static int clk_dump(struct seq_file *s, void *data)
2030 {
2031 	struct clk_core *c;
2032 	bool first_node = true;
2033 	struct hlist_head **lists = (struct hlist_head **)s->private;
2034 
2035 	seq_printf(s, "{");
2036 
2037 	clk_prepare_lock();
2038 
2039 	for (; *lists; lists++) {
2040 		hlist_for_each_entry(c, *lists, child_node) {
2041 			if (!first_node)
2042 				seq_puts(s, ",");
2043 			first_node = false;
2044 			clk_dump_subtree(s, c, 0);
2045 		}
2046 	}
2047 
2048 	clk_prepare_unlock();
2049 
2050 	seq_puts(s, "}\n");
2051 	return 0;
2052 }
2053 
2054 
2055 static int clk_dump_open(struct inode *inode, struct file *file)
2056 {
2057 	return single_open(file, clk_dump, inode->i_private);
2058 }
2059 
2060 static const struct file_operations clk_dump_fops = {
2061 	.open		= clk_dump_open,
2062 	.read		= seq_read,
2063 	.llseek		= seq_lseek,
2064 	.release	= single_release,
2065 };
2066 
2067 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2068 {
2069 	struct dentry *d;
2070 	int ret = -ENOMEM;
2071 
2072 	if (!core || !pdentry) {
2073 		ret = -EINVAL;
2074 		goto out;
2075 	}
2076 
2077 	d = debugfs_create_dir(core->name, pdentry);
2078 	if (!d)
2079 		goto out;
2080 
2081 	core->dentry = d;
2082 
2083 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2084 			(u32 *)&core->rate);
2085 	if (!d)
2086 		goto err_out;
2087 
2088 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2089 			(u32 *)&core->accuracy);
2090 	if (!d)
2091 		goto err_out;
2092 
2093 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2094 			(u32 *)&core->phase);
2095 	if (!d)
2096 		goto err_out;
2097 
2098 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2099 			(u32 *)&core->flags);
2100 	if (!d)
2101 		goto err_out;
2102 
2103 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2104 			(u32 *)&core->prepare_count);
2105 	if (!d)
2106 		goto err_out;
2107 
2108 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2109 			(u32 *)&core->enable_count);
2110 	if (!d)
2111 		goto err_out;
2112 
2113 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2114 			(u32 *)&core->notifier_count);
2115 	if (!d)
2116 		goto err_out;
2117 
2118 	if (core->ops->debug_init) {
2119 		ret = core->ops->debug_init(core->hw, core->dentry);
2120 		if (ret)
2121 			goto err_out;
2122 	}
2123 
2124 	ret = 0;
2125 	goto out;
2126 
2127 err_out:
2128 	debugfs_remove_recursive(core->dentry);
2129 	core->dentry = NULL;
2130 out:
2131 	return ret;
2132 }
2133 
2134 /**
2135  * clk_debug_register - add a clk node to the debugfs clk directory
2136  * @core: the clk being added to the debugfs clk directory
2137  *
2138  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2139  * initialized.  Otherwise it bails out early since the debugfs clk directory
2140  * will be created lazily by clk_debug_init as part of a late_initcall.
2141  */
2142 static int clk_debug_register(struct clk_core *core)
2143 {
2144 	int ret = 0;
2145 
2146 	mutex_lock(&clk_debug_lock);
2147 	hlist_add_head(&core->debug_node, &clk_debug_list);
2148 
2149 	if (!inited)
2150 		goto unlock;
2151 
2152 	ret = clk_debug_create_one(core, rootdir);
2153 unlock:
2154 	mutex_unlock(&clk_debug_lock);
2155 
2156 	return ret;
2157 }
2158 
2159  /**
2160  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2161  * @core: the clk being removed from the debugfs clk directory
2162  *
2163  * Dynamically removes a clk and all its child nodes from the
2164  * debugfs clk directory if clk->dentry points to debugfs created by
2165  * clk_debug_register in __clk_core_init.
2166  */
2167 static void clk_debug_unregister(struct clk_core *core)
2168 {
2169 	mutex_lock(&clk_debug_lock);
2170 	hlist_del_init(&core->debug_node);
2171 	debugfs_remove_recursive(core->dentry);
2172 	core->dentry = NULL;
2173 	mutex_unlock(&clk_debug_lock);
2174 }
2175 
2176 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2177 				void *data, const struct file_operations *fops)
2178 {
2179 	struct dentry *d = NULL;
2180 
2181 	if (hw->core->dentry)
2182 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2183 					fops);
2184 
2185 	return d;
2186 }
2187 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2188 
2189 /**
2190  * clk_debug_init - lazily populate the debugfs clk directory
2191  *
2192  * clks are often initialized very early during boot before memory can be
2193  * dynamically allocated and well before debugfs is setup. This function
2194  * populates the debugfs clk directory once at boot-time when we know that
2195  * debugfs is setup. It should only be called once at boot-time, all other clks
2196  * added dynamically will be done so with clk_debug_register.
2197  */
2198 static int __init clk_debug_init(void)
2199 {
2200 	struct clk_core *core;
2201 	struct dentry *d;
2202 
2203 	rootdir = debugfs_create_dir("clk", NULL);
2204 
2205 	if (!rootdir)
2206 		return -ENOMEM;
2207 
2208 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2209 				&clk_summary_fops);
2210 	if (!d)
2211 		return -ENOMEM;
2212 
2213 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2214 				&clk_dump_fops);
2215 	if (!d)
2216 		return -ENOMEM;
2217 
2218 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2219 				&orphan_list, &clk_summary_fops);
2220 	if (!d)
2221 		return -ENOMEM;
2222 
2223 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2224 				&orphan_list, &clk_dump_fops);
2225 	if (!d)
2226 		return -ENOMEM;
2227 
2228 	mutex_lock(&clk_debug_lock);
2229 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2230 		clk_debug_create_one(core, rootdir);
2231 
2232 	inited = 1;
2233 	mutex_unlock(&clk_debug_lock);
2234 
2235 	return 0;
2236 }
2237 late_initcall(clk_debug_init);
2238 #else
2239 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2240 static inline void clk_debug_reparent(struct clk_core *core,
2241 				      struct clk_core *new_parent)
2242 {
2243 }
2244 static inline void clk_debug_unregister(struct clk_core *core)
2245 {
2246 }
2247 #endif
2248 
2249 /**
2250  * __clk_core_init - initialize the data structures in a struct clk_core
2251  * @core:	clk_core being initialized
2252  *
2253  * Initializes the lists in struct clk_core, queries the hardware for the
2254  * parent and rate and sets them both.
2255  */
2256 static int __clk_core_init(struct clk_core *core)
2257 {
2258 	int i, ret = 0;
2259 	struct clk_core *orphan;
2260 	struct hlist_node *tmp2;
2261 	unsigned long rate;
2262 
2263 	if (!core)
2264 		return -EINVAL;
2265 
2266 	clk_prepare_lock();
2267 
2268 	/* check to see if a clock with this name is already registered */
2269 	if (clk_core_lookup(core->name)) {
2270 		pr_debug("%s: clk %s already initialized\n",
2271 				__func__, core->name);
2272 		ret = -EEXIST;
2273 		goto out;
2274 	}
2275 
2276 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2277 	if (core->ops->set_rate &&
2278 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2279 	      core->ops->recalc_rate)) {
2280 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2281 		       __func__, core->name);
2282 		ret = -EINVAL;
2283 		goto out;
2284 	}
2285 
2286 	if (core->ops->set_parent && !core->ops->get_parent) {
2287 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2288 		       __func__, core->name);
2289 		ret = -EINVAL;
2290 		goto out;
2291 	}
2292 
2293 	if (core->num_parents > 1 && !core->ops->get_parent) {
2294 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2295 		       __func__, core->name);
2296 		ret = -EINVAL;
2297 		goto out;
2298 	}
2299 
2300 	if (core->ops->set_rate_and_parent &&
2301 			!(core->ops->set_parent && core->ops->set_rate)) {
2302 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2303 				__func__, core->name);
2304 		ret = -EINVAL;
2305 		goto out;
2306 	}
2307 
2308 	/* throw a WARN if any entries in parent_names are NULL */
2309 	for (i = 0; i < core->num_parents; i++)
2310 		WARN(!core->parent_names[i],
2311 				"%s: invalid NULL in %s's .parent_names\n",
2312 				__func__, core->name);
2313 
2314 	core->parent = __clk_init_parent(core);
2315 
2316 	/*
2317 	 * Populate core->parent if parent has already been clk_core_init'd. If
2318 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2319 	 * list.  If clk doesn't have any parents then place it in the root
2320 	 * clk list.
2321 	 *
2322 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2323 	 * clocks and re-parent any that are children of the clock currently
2324 	 * being clk_init'd.
2325 	 */
2326 	if (core->parent) {
2327 		hlist_add_head(&core->child_node,
2328 				&core->parent->children);
2329 		core->orphan = core->parent->orphan;
2330 	} else if (!core->num_parents) {
2331 		hlist_add_head(&core->child_node, &clk_root_list);
2332 		core->orphan = false;
2333 	} else {
2334 		hlist_add_head(&core->child_node, &clk_orphan_list);
2335 		core->orphan = true;
2336 	}
2337 
2338 	/*
2339 	 * Set clk's accuracy.  The preferred method is to use
2340 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2341 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2342 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2343 	 * clock).
2344 	 */
2345 	if (core->ops->recalc_accuracy)
2346 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2347 					__clk_get_accuracy(core->parent));
2348 	else if (core->parent)
2349 		core->accuracy = core->parent->accuracy;
2350 	else
2351 		core->accuracy = 0;
2352 
2353 	/*
2354 	 * Set clk's phase.
2355 	 * Since a phase is by definition relative to its parent, just
2356 	 * query the current clock phase, or just assume it's in phase.
2357 	 */
2358 	if (core->ops->get_phase)
2359 		core->phase = core->ops->get_phase(core->hw);
2360 	else
2361 		core->phase = 0;
2362 
2363 	/*
2364 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2365 	 * simple clocks and lazy developers the default fallback is to use the
2366 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2367 	 * then rate is set to zero.
2368 	 */
2369 	if (core->ops->recalc_rate)
2370 		rate = core->ops->recalc_rate(core->hw,
2371 				clk_core_get_rate_nolock(core->parent));
2372 	else if (core->parent)
2373 		rate = core->parent->rate;
2374 	else
2375 		rate = 0;
2376 	core->rate = core->req_rate = rate;
2377 
2378 	/*
2379 	 * walk the list of orphan clocks and reparent any that newly finds a
2380 	 * parent.
2381 	 */
2382 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2383 		struct clk_core *parent = __clk_init_parent(orphan);
2384 
2385 		if (parent)
2386 			clk_core_reparent(orphan, parent);
2387 	}
2388 
2389 	/*
2390 	 * optional platform-specific magic
2391 	 *
2392 	 * The .init callback is not used by any of the basic clock types, but
2393 	 * exists for weird hardware that must perform initialization magic.
2394 	 * Please consider other ways of solving initialization problems before
2395 	 * using this callback, as its use is discouraged.
2396 	 */
2397 	if (core->ops->init)
2398 		core->ops->init(core->hw);
2399 
2400 	kref_init(&core->ref);
2401 out:
2402 	clk_prepare_unlock();
2403 
2404 	if (!ret)
2405 		clk_debug_register(core);
2406 
2407 	return ret;
2408 }
2409 
2410 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2411 			     const char *con_id)
2412 {
2413 	struct clk *clk;
2414 
2415 	/* This is to allow this function to be chained to others */
2416 	if (IS_ERR_OR_NULL(hw))
2417 		return (struct clk *) hw;
2418 
2419 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2420 	if (!clk)
2421 		return ERR_PTR(-ENOMEM);
2422 
2423 	clk->core = hw->core;
2424 	clk->dev_id = dev_id;
2425 	clk->con_id = con_id;
2426 	clk->max_rate = ULONG_MAX;
2427 
2428 	clk_prepare_lock();
2429 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2430 	clk_prepare_unlock();
2431 
2432 	return clk;
2433 }
2434 
2435 void __clk_free_clk(struct clk *clk)
2436 {
2437 	clk_prepare_lock();
2438 	hlist_del(&clk->clks_node);
2439 	clk_prepare_unlock();
2440 
2441 	kfree(clk);
2442 }
2443 
2444 /**
2445  * clk_register - allocate a new clock, register it and return an opaque cookie
2446  * @dev: device that is registering this clock
2447  * @hw: link to hardware-specific clock data
2448  *
2449  * clk_register is the primary interface for populating the clock tree with new
2450  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2451  * cannot be dereferenced by driver code but may be used in conjunction with the
2452  * rest of the clock API.  In the event of an error clk_register will return an
2453  * error code; drivers must test for an error code after calling clk_register.
2454  */
2455 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2456 {
2457 	int i, ret;
2458 	struct clk_core *core;
2459 
2460 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2461 	if (!core) {
2462 		ret = -ENOMEM;
2463 		goto fail_out;
2464 	}
2465 
2466 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2467 	if (!core->name) {
2468 		ret = -ENOMEM;
2469 		goto fail_name;
2470 	}
2471 	core->ops = hw->init->ops;
2472 	if (dev && dev->driver)
2473 		core->owner = dev->driver->owner;
2474 	core->hw = hw;
2475 	core->flags = hw->init->flags;
2476 	core->num_parents = hw->init->num_parents;
2477 	core->min_rate = 0;
2478 	core->max_rate = ULONG_MAX;
2479 	hw->core = core;
2480 
2481 	/* allocate local copy in case parent_names is __initdata */
2482 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2483 					GFP_KERNEL);
2484 
2485 	if (!core->parent_names) {
2486 		ret = -ENOMEM;
2487 		goto fail_parent_names;
2488 	}
2489 
2490 
2491 	/* copy each string name in case parent_names is __initdata */
2492 	for (i = 0; i < core->num_parents; i++) {
2493 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2494 						GFP_KERNEL);
2495 		if (!core->parent_names[i]) {
2496 			ret = -ENOMEM;
2497 			goto fail_parent_names_copy;
2498 		}
2499 	}
2500 
2501 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2502 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2503 				GFP_KERNEL);
2504 	if (!core->parents) {
2505 		ret = -ENOMEM;
2506 		goto fail_parents;
2507 	};
2508 
2509 	INIT_HLIST_HEAD(&core->clks);
2510 
2511 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2512 	if (IS_ERR(hw->clk)) {
2513 		ret = PTR_ERR(hw->clk);
2514 		goto fail_parents;
2515 	}
2516 
2517 	ret = __clk_core_init(core);
2518 	if (!ret)
2519 		return hw->clk;
2520 
2521 	__clk_free_clk(hw->clk);
2522 	hw->clk = NULL;
2523 
2524 fail_parents:
2525 	kfree(core->parents);
2526 fail_parent_names_copy:
2527 	while (--i >= 0)
2528 		kfree_const(core->parent_names[i]);
2529 	kfree(core->parent_names);
2530 fail_parent_names:
2531 	kfree_const(core->name);
2532 fail_name:
2533 	kfree(core);
2534 fail_out:
2535 	return ERR_PTR(ret);
2536 }
2537 EXPORT_SYMBOL_GPL(clk_register);
2538 
2539 /* Free memory allocated for a clock. */
2540 static void __clk_release(struct kref *ref)
2541 {
2542 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2543 	int i = core->num_parents;
2544 
2545 	lockdep_assert_held(&prepare_lock);
2546 
2547 	kfree(core->parents);
2548 	while (--i >= 0)
2549 		kfree_const(core->parent_names[i]);
2550 
2551 	kfree(core->parent_names);
2552 	kfree_const(core->name);
2553 	kfree(core);
2554 }
2555 
2556 /*
2557  * Empty clk_ops for unregistered clocks. These are used temporarily
2558  * after clk_unregister() was called on a clock and until last clock
2559  * consumer calls clk_put() and the struct clk object is freed.
2560  */
2561 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2562 {
2563 	return -ENXIO;
2564 }
2565 
2566 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2567 {
2568 	WARN_ON_ONCE(1);
2569 }
2570 
2571 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2572 					unsigned long parent_rate)
2573 {
2574 	return -ENXIO;
2575 }
2576 
2577 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2578 {
2579 	return -ENXIO;
2580 }
2581 
2582 static const struct clk_ops clk_nodrv_ops = {
2583 	.enable		= clk_nodrv_prepare_enable,
2584 	.disable	= clk_nodrv_disable_unprepare,
2585 	.prepare	= clk_nodrv_prepare_enable,
2586 	.unprepare	= clk_nodrv_disable_unprepare,
2587 	.set_rate	= clk_nodrv_set_rate,
2588 	.set_parent	= clk_nodrv_set_parent,
2589 };
2590 
2591 /**
2592  * clk_unregister - unregister a currently registered clock
2593  * @clk: clock to unregister
2594  */
2595 void clk_unregister(struct clk *clk)
2596 {
2597 	unsigned long flags;
2598 
2599 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2600 		return;
2601 
2602 	clk_debug_unregister(clk->core);
2603 
2604 	clk_prepare_lock();
2605 
2606 	if (clk->core->ops == &clk_nodrv_ops) {
2607 		pr_err("%s: unregistered clock: %s\n", __func__,
2608 		       clk->core->name);
2609 		goto unlock;
2610 	}
2611 	/*
2612 	 * Assign empty clock ops for consumers that might still hold
2613 	 * a reference to this clock.
2614 	 */
2615 	flags = clk_enable_lock();
2616 	clk->core->ops = &clk_nodrv_ops;
2617 	clk_enable_unlock(flags);
2618 
2619 	if (!hlist_empty(&clk->core->children)) {
2620 		struct clk_core *child;
2621 		struct hlist_node *t;
2622 
2623 		/* Reparent all children to the orphan list. */
2624 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2625 					  child_node)
2626 			clk_core_set_parent(child, NULL);
2627 	}
2628 
2629 	hlist_del_init(&clk->core->child_node);
2630 
2631 	if (clk->core->prepare_count)
2632 		pr_warn("%s: unregistering prepared clock: %s\n",
2633 					__func__, clk->core->name);
2634 	kref_put(&clk->core->ref, __clk_release);
2635 unlock:
2636 	clk_prepare_unlock();
2637 }
2638 EXPORT_SYMBOL_GPL(clk_unregister);
2639 
2640 static void devm_clk_release(struct device *dev, void *res)
2641 {
2642 	clk_unregister(*(struct clk **)res);
2643 }
2644 
2645 /**
2646  * devm_clk_register - resource managed clk_register()
2647  * @dev: device that is registering this clock
2648  * @hw: link to hardware-specific clock data
2649  *
2650  * Managed clk_register(). Clocks returned from this function are
2651  * automatically clk_unregister()ed on driver detach. See clk_register() for
2652  * more information.
2653  */
2654 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2655 {
2656 	struct clk *clk;
2657 	struct clk **clkp;
2658 
2659 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2660 	if (!clkp)
2661 		return ERR_PTR(-ENOMEM);
2662 
2663 	clk = clk_register(dev, hw);
2664 	if (!IS_ERR(clk)) {
2665 		*clkp = clk;
2666 		devres_add(dev, clkp);
2667 	} else {
2668 		devres_free(clkp);
2669 	}
2670 
2671 	return clk;
2672 }
2673 EXPORT_SYMBOL_GPL(devm_clk_register);
2674 
2675 static int devm_clk_match(struct device *dev, void *res, void *data)
2676 {
2677 	struct clk *c = res;
2678 	if (WARN_ON(!c))
2679 		return 0;
2680 	return c == data;
2681 }
2682 
2683 /**
2684  * devm_clk_unregister - resource managed clk_unregister()
2685  * @clk: clock to unregister
2686  *
2687  * Deallocate a clock allocated with devm_clk_register(). Normally
2688  * this function will not need to be called and the resource management
2689  * code will ensure that the resource is freed.
2690  */
2691 void devm_clk_unregister(struct device *dev, struct clk *clk)
2692 {
2693 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2694 }
2695 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2696 
2697 /*
2698  * clkdev helpers
2699  */
2700 int __clk_get(struct clk *clk)
2701 {
2702 	struct clk_core *core = !clk ? NULL : clk->core;
2703 
2704 	if (core) {
2705 		if (!try_module_get(core->owner))
2706 			return 0;
2707 
2708 		kref_get(&core->ref);
2709 	}
2710 	return 1;
2711 }
2712 
2713 void __clk_put(struct clk *clk)
2714 {
2715 	struct module *owner;
2716 
2717 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2718 		return;
2719 
2720 	clk_prepare_lock();
2721 
2722 	hlist_del(&clk->clks_node);
2723 	if (clk->min_rate > clk->core->req_rate ||
2724 	    clk->max_rate < clk->core->req_rate)
2725 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2726 
2727 	owner = clk->core->owner;
2728 	kref_put(&clk->core->ref, __clk_release);
2729 
2730 	clk_prepare_unlock();
2731 
2732 	module_put(owner);
2733 
2734 	kfree(clk);
2735 }
2736 
2737 /***        clk rate change notifiers        ***/
2738 
2739 /**
2740  * clk_notifier_register - add a clk rate change notifier
2741  * @clk: struct clk * to watch
2742  * @nb: struct notifier_block * with callback info
2743  *
2744  * Request notification when clk's rate changes.  This uses an SRCU
2745  * notifier because we want it to block and notifier unregistrations are
2746  * uncommon.  The callbacks associated with the notifier must not
2747  * re-enter into the clk framework by calling any top-level clk APIs;
2748  * this will cause a nested prepare_lock mutex.
2749  *
2750  * In all notification cases (pre, post and abort rate change) the original
2751  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2752  * and the new frequency is passed via struct clk_notifier_data.new_rate.
2753  *
2754  * clk_notifier_register() must be called from non-atomic context.
2755  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2756  * allocation failure; otherwise, passes along the return value of
2757  * srcu_notifier_chain_register().
2758  */
2759 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2760 {
2761 	struct clk_notifier *cn;
2762 	int ret = -ENOMEM;
2763 
2764 	if (!clk || !nb)
2765 		return -EINVAL;
2766 
2767 	clk_prepare_lock();
2768 
2769 	/* search the list of notifiers for this clk */
2770 	list_for_each_entry(cn, &clk_notifier_list, node)
2771 		if (cn->clk == clk)
2772 			break;
2773 
2774 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2775 	if (cn->clk != clk) {
2776 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2777 		if (!cn)
2778 			goto out;
2779 
2780 		cn->clk = clk;
2781 		srcu_init_notifier_head(&cn->notifier_head);
2782 
2783 		list_add(&cn->node, &clk_notifier_list);
2784 	}
2785 
2786 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2787 
2788 	clk->core->notifier_count++;
2789 
2790 out:
2791 	clk_prepare_unlock();
2792 
2793 	return ret;
2794 }
2795 EXPORT_SYMBOL_GPL(clk_notifier_register);
2796 
2797 /**
2798  * clk_notifier_unregister - remove a clk rate change notifier
2799  * @clk: struct clk *
2800  * @nb: struct notifier_block * with callback info
2801  *
2802  * Request no further notification for changes to 'clk' and frees memory
2803  * allocated in clk_notifier_register.
2804  *
2805  * Returns -EINVAL if called with null arguments; otherwise, passes
2806  * along the return value of srcu_notifier_chain_unregister().
2807  */
2808 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2809 {
2810 	struct clk_notifier *cn = NULL;
2811 	int ret = -EINVAL;
2812 
2813 	if (!clk || !nb)
2814 		return -EINVAL;
2815 
2816 	clk_prepare_lock();
2817 
2818 	list_for_each_entry(cn, &clk_notifier_list, node)
2819 		if (cn->clk == clk)
2820 			break;
2821 
2822 	if (cn->clk == clk) {
2823 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2824 
2825 		clk->core->notifier_count--;
2826 
2827 		/* XXX the notifier code should handle this better */
2828 		if (!cn->notifier_head.head) {
2829 			srcu_cleanup_notifier_head(&cn->notifier_head);
2830 			list_del(&cn->node);
2831 			kfree(cn);
2832 		}
2833 
2834 	} else {
2835 		ret = -ENOENT;
2836 	}
2837 
2838 	clk_prepare_unlock();
2839 
2840 	return ret;
2841 }
2842 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2843 
2844 #ifdef CONFIG_OF
2845 /**
2846  * struct of_clk_provider - Clock provider registration structure
2847  * @link: Entry in global list of clock providers
2848  * @node: Pointer to device tree node of clock provider
2849  * @get: Get clock callback.  Returns NULL or a struct clk for the
2850  *       given clock specifier
2851  * @data: context pointer to be passed into @get callback
2852  */
2853 struct of_clk_provider {
2854 	struct list_head link;
2855 
2856 	struct device_node *node;
2857 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2858 	void *data;
2859 };
2860 
2861 static const struct of_device_id __clk_of_table_sentinel
2862 	__used __section(__clk_of_table_end);
2863 
2864 static LIST_HEAD(of_clk_providers);
2865 static DEFINE_MUTEX(of_clk_mutex);
2866 
2867 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2868 				     void *data)
2869 {
2870 	return data;
2871 }
2872 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2873 
2874 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2875 {
2876 	struct clk_onecell_data *clk_data = data;
2877 	unsigned int idx = clkspec->args[0];
2878 
2879 	if (idx >= clk_data->clk_num) {
2880 		pr_err("%s: invalid clock index %u\n", __func__, idx);
2881 		return ERR_PTR(-EINVAL);
2882 	}
2883 
2884 	return clk_data->clks[idx];
2885 }
2886 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2887 
2888 /**
2889  * of_clk_add_provider() - Register a clock provider for a node
2890  * @np: Device node pointer associated with clock provider
2891  * @clk_src_get: callback for decoding clock
2892  * @data: context pointer for @clk_src_get callback.
2893  */
2894 int of_clk_add_provider(struct device_node *np,
2895 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2896 						   void *data),
2897 			void *data)
2898 {
2899 	struct of_clk_provider *cp;
2900 	int ret;
2901 
2902 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2903 	if (!cp)
2904 		return -ENOMEM;
2905 
2906 	cp->node = of_node_get(np);
2907 	cp->data = data;
2908 	cp->get = clk_src_get;
2909 
2910 	mutex_lock(&of_clk_mutex);
2911 	list_add(&cp->link, &of_clk_providers);
2912 	mutex_unlock(&of_clk_mutex);
2913 	pr_debug("Added clock from %s\n", np->full_name);
2914 
2915 	ret = of_clk_set_defaults(np, true);
2916 	if (ret < 0)
2917 		of_clk_del_provider(np);
2918 
2919 	return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2922 
2923 /**
2924  * of_clk_del_provider() - Remove a previously registered clock provider
2925  * @np: Device node pointer associated with clock provider
2926  */
2927 void of_clk_del_provider(struct device_node *np)
2928 {
2929 	struct of_clk_provider *cp;
2930 
2931 	mutex_lock(&of_clk_mutex);
2932 	list_for_each_entry(cp, &of_clk_providers, link) {
2933 		if (cp->node == np) {
2934 			list_del(&cp->link);
2935 			of_node_put(cp->node);
2936 			kfree(cp);
2937 			break;
2938 		}
2939 	}
2940 	mutex_unlock(&of_clk_mutex);
2941 }
2942 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2943 
2944 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2945 				       const char *dev_id, const char *con_id)
2946 {
2947 	struct of_clk_provider *provider;
2948 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2949 
2950 	if (!clkspec)
2951 		return ERR_PTR(-EINVAL);
2952 
2953 	/* Check if we have such a provider in our array */
2954 	mutex_lock(&of_clk_mutex);
2955 	list_for_each_entry(provider, &of_clk_providers, link) {
2956 		if (provider->node == clkspec->np)
2957 			clk = provider->get(clkspec, provider->data);
2958 		if (!IS_ERR(clk)) {
2959 			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2960 					       con_id);
2961 
2962 			if (!IS_ERR(clk) && !__clk_get(clk)) {
2963 				__clk_free_clk(clk);
2964 				clk = ERR_PTR(-ENOENT);
2965 			}
2966 
2967 			break;
2968 		}
2969 	}
2970 	mutex_unlock(&of_clk_mutex);
2971 
2972 	return clk;
2973 }
2974 
2975 /**
2976  * of_clk_get_from_provider() - Lookup a clock from a clock provider
2977  * @clkspec: pointer to a clock specifier data structure
2978  *
2979  * This function looks up a struct clk from the registered list of clock
2980  * providers, an input is a clock specifier data structure as returned
2981  * from the of_parse_phandle_with_args() function call.
2982  */
2983 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2984 {
2985 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
2986 }
2987 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
2988 
2989 /**
2990  * of_clk_get_parent_count() - Count the number of clocks a device node has
2991  * @np: device node to count
2992  *
2993  * Returns: The number of clocks that are possible parents of this node
2994  */
2995 unsigned int of_clk_get_parent_count(struct device_node *np)
2996 {
2997 	int count;
2998 
2999 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3000 	if (count < 0)
3001 		return 0;
3002 
3003 	return count;
3004 }
3005 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3006 
3007 const char *of_clk_get_parent_name(struct device_node *np, int index)
3008 {
3009 	struct of_phandle_args clkspec;
3010 	struct property *prop;
3011 	const char *clk_name;
3012 	const __be32 *vp;
3013 	u32 pv;
3014 	int rc;
3015 	int count;
3016 	struct clk *clk;
3017 
3018 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3019 					&clkspec);
3020 	if (rc)
3021 		return NULL;
3022 
3023 	index = clkspec.args_count ? clkspec.args[0] : 0;
3024 	count = 0;
3025 
3026 	/* if there is an indices property, use it to transfer the index
3027 	 * specified into an array offset for the clock-output-names property.
3028 	 */
3029 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3030 		if (index == pv) {
3031 			index = count;
3032 			break;
3033 		}
3034 		count++;
3035 	}
3036 	/* We went off the end of 'clock-indices' without finding it */
3037 	if (prop && !vp)
3038 		return NULL;
3039 
3040 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3041 					  index,
3042 					  &clk_name) < 0) {
3043 		/*
3044 		 * Best effort to get the name if the clock has been
3045 		 * registered with the framework. If the clock isn't
3046 		 * registered, we return the node name as the name of
3047 		 * the clock as long as #clock-cells = 0.
3048 		 */
3049 		clk = of_clk_get_from_provider(&clkspec);
3050 		if (IS_ERR(clk)) {
3051 			if (clkspec.args_count == 0)
3052 				clk_name = clkspec.np->name;
3053 			else
3054 				clk_name = NULL;
3055 		} else {
3056 			clk_name = __clk_get_name(clk);
3057 			clk_put(clk);
3058 		}
3059 	}
3060 
3061 
3062 	of_node_put(clkspec.np);
3063 	return clk_name;
3064 }
3065 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3066 
3067 /**
3068  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3069  * number of parents
3070  * @np: Device node pointer associated with clock provider
3071  * @parents: pointer to char array that hold the parents' names
3072  * @size: size of the @parents array
3073  *
3074  * Return: number of parents for the clock node.
3075  */
3076 int of_clk_parent_fill(struct device_node *np, const char **parents,
3077 		       unsigned int size)
3078 {
3079 	unsigned int i = 0;
3080 
3081 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3082 		i++;
3083 
3084 	return i;
3085 }
3086 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3087 
3088 struct clock_provider {
3089 	of_clk_init_cb_t clk_init_cb;
3090 	struct device_node *np;
3091 	struct list_head node;
3092 };
3093 
3094 /*
3095  * This function looks for a parent clock. If there is one, then it
3096  * checks that the provider for this parent clock was initialized, in
3097  * this case the parent clock will be ready.
3098  */
3099 static int parent_ready(struct device_node *np)
3100 {
3101 	int i = 0;
3102 
3103 	while (true) {
3104 		struct clk *clk = of_clk_get(np, i);
3105 
3106 		/* this parent is ready we can check the next one */
3107 		if (!IS_ERR(clk)) {
3108 			clk_put(clk);
3109 			i++;
3110 			continue;
3111 		}
3112 
3113 		/* at least one parent is not ready, we exit now */
3114 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3115 			return 0;
3116 
3117 		/*
3118 		 * Here we make assumption that the device tree is
3119 		 * written correctly. So an error means that there is
3120 		 * no more parent. As we didn't exit yet, then the
3121 		 * previous parent are ready. If there is no clock
3122 		 * parent, no need to wait for them, then we can
3123 		 * consider their absence as being ready
3124 		 */
3125 		return 1;
3126 	}
3127 }
3128 
3129 /**
3130  * of_clk_init() - Scan and init clock providers from the DT
3131  * @matches: array of compatible values and init functions for providers.
3132  *
3133  * This function scans the device tree for matching clock providers
3134  * and calls their initialization functions. It also does it by trying
3135  * to follow the dependencies.
3136  */
3137 void __init of_clk_init(const struct of_device_id *matches)
3138 {
3139 	const struct of_device_id *match;
3140 	struct device_node *np;
3141 	struct clock_provider *clk_provider, *next;
3142 	bool is_init_done;
3143 	bool force = false;
3144 	LIST_HEAD(clk_provider_list);
3145 
3146 	if (!matches)
3147 		matches = &__clk_of_table;
3148 
3149 	/* First prepare the list of the clocks providers */
3150 	for_each_matching_node_and_match(np, matches, &match) {
3151 		struct clock_provider *parent;
3152 
3153 		if (!of_device_is_available(np))
3154 			continue;
3155 
3156 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3157 		if (!parent) {
3158 			list_for_each_entry_safe(clk_provider, next,
3159 						 &clk_provider_list, node) {
3160 				list_del(&clk_provider->node);
3161 				of_node_put(clk_provider->np);
3162 				kfree(clk_provider);
3163 			}
3164 			of_node_put(np);
3165 			return;
3166 		}
3167 
3168 		parent->clk_init_cb = match->data;
3169 		parent->np = of_node_get(np);
3170 		list_add_tail(&parent->node, &clk_provider_list);
3171 	}
3172 
3173 	while (!list_empty(&clk_provider_list)) {
3174 		is_init_done = false;
3175 		list_for_each_entry_safe(clk_provider, next,
3176 					&clk_provider_list, node) {
3177 			if (force || parent_ready(clk_provider->np)) {
3178 
3179 				clk_provider->clk_init_cb(clk_provider->np);
3180 				of_clk_set_defaults(clk_provider->np, true);
3181 
3182 				list_del(&clk_provider->node);
3183 				of_node_put(clk_provider->np);
3184 				kfree(clk_provider);
3185 				is_init_done = true;
3186 			}
3187 		}
3188 
3189 		/*
3190 		 * We didn't manage to initialize any of the
3191 		 * remaining providers during the last loop, so now we
3192 		 * initialize all the remaining ones unconditionally
3193 		 * in case the clock parent was not mandatory
3194 		 */
3195 		if (!is_init_done)
3196 			force = true;
3197 	}
3198 }
3199 #endif
3200