xref: /openbmc/linux/drivers/clk/clk.c (revision 0bea2a65)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 
28 #include "clk.h"
29 
30 static DEFINE_SPINLOCK(enable_lock);
31 static DEFINE_MUTEX(prepare_lock);
32 
33 static struct task_struct *prepare_owner;
34 static struct task_struct *enable_owner;
35 
36 static int prepare_refcnt;
37 static int enable_refcnt;
38 
39 static HLIST_HEAD(clk_root_list);
40 static HLIST_HEAD(clk_orphan_list);
41 static LIST_HEAD(clk_notifier_list);
42 
43 /***    private data structures    ***/
44 
45 struct clk_core {
46 	const char		*name;
47 	const struct clk_ops	*ops;
48 	struct clk_hw		*hw;
49 	struct module		*owner;
50 	struct device		*dev;
51 	struct clk_core		*parent;
52 	const char		**parent_names;
53 	struct clk_core		**parents;
54 	u8			num_parents;
55 	u8			new_parent_index;
56 	unsigned long		rate;
57 	unsigned long		req_rate;
58 	unsigned long		new_rate;
59 	struct clk_core		*new_parent;
60 	struct clk_core		*new_child;
61 	unsigned long		flags;
62 	bool			orphan;
63 	unsigned int		enable_count;
64 	unsigned int		prepare_count;
65 	unsigned long		min_rate;
66 	unsigned long		max_rate;
67 	unsigned long		accuracy;
68 	int			phase;
69 	struct hlist_head	children;
70 	struct hlist_node	child_node;
71 	struct hlist_head	clks;
72 	unsigned int		notifier_count;
73 #ifdef CONFIG_DEBUG_FS
74 	struct dentry		*dentry;
75 	struct hlist_node	debug_node;
76 #endif
77 	struct kref		ref;
78 };
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/clk.h>
82 
83 struct clk {
84 	struct clk_core	*core;
85 	const char *dev_id;
86 	const char *con_id;
87 	unsigned long min_rate;
88 	unsigned long max_rate;
89 	struct hlist_node clks_node;
90 };
91 
92 /***           runtime pm          ***/
93 static int clk_pm_runtime_get(struct clk_core *core)
94 {
95 	int ret = 0;
96 
97 	if (!core->dev)
98 		return 0;
99 
100 	ret = pm_runtime_get_sync(core->dev);
101 	return ret < 0 ? ret : 0;
102 }
103 
104 static void clk_pm_runtime_put(struct clk_core *core)
105 {
106 	if (!core->dev)
107 		return;
108 
109 	pm_runtime_put_sync(core->dev);
110 }
111 
112 /***           locking             ***/
113 static void clk_prepare_lock(void)
114 {
115 	if (!mutex_trylock(&prepare_lock)) {
116 		if (prepare_owner == current) {
117 			prepare_refcnt++;
118 			return;
119 		}
120 		mutex_lock(&prepare_lock);
121 	}
122 	WARN_ON_ONCE(prepare_owner != NULL);
123 	WARN_ON_ONCE(prepare_refcnt != 0);
124 	prepare_owner = current;
125 	prepare_refcnt = 1;
126 }
127 
128 static void clk_prepare_unlock(void)
129 {
130 	WARN_ON_ONCE(prepare_owner != current);
131 	WARN_ON_ONCE(prepare_refcnt == 0);
132 
133 	if (--prepare_refcnt)
134 		return;
135 	prepare_owner = NULL;
136 	mutex_unlock(&prepare_lock);
137 }
138 
139 static unsigned long clk_enable_lock(void)
140 	__acquires(enable_lock)
141 {
142 	unsigned long flags;
143 
144 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
145 		if (enable_owner == current) {
146 			enable_refcnt++;
147 			__acquire(enable_lock);
148 			return flags;
149 		}
150 		spin_lock_irqsave(&enable_lock, flags);
151 	}
152 	WARN_ON_ONCE(enable_owner != NULL);
153 	WARN_ON_ONCE(enable_refcnt != 0);
154 	enable_owner = current;
155 	enable_refcnt = 1;
156 	return flags;
157 }
158 
159 static void clk_enable_unlock(unsigned long flags)
160 	__releases(enable_lock)
161 {
162 	WARN_ON_ONCE(enable_owner != current);
163 	WARN_ON_ONCE(enable_refcnt == 0);
164 
165 	if (--enable_refcnt) {
166 		__release(enable_lock);
167 		return;
168 	}
169 	enable_owner = NULL;
170 	spin_unlock_irqrestore(&enable_lock, flags);
171 }
172 
173 static bool clk_core_is_prepared(struct clk_core *core)
174 {
175 	bool ret = false;
176 
177 	/*
178 	 * .is_prepared is optional for clocks that can prepare
179 	 * fall back to software usage counter if it is missing
180 	 */
181 	if (!core->ops->is_prepared)
182 		return core->prepare_count;
183 
184 	if (!clk_pm_runtime_get(core)) {
185 		ret = core->ops->is_prepared(core->hw);
186 		clk_pm_runtime_put(core);
187 	}
188 
189 	return ret;
190 }
191 
192 static bool clk_core_is_enabled(struct clk_core *core)
193 {
194 	bool ret = false;
195 
196 	/*
197 	 * .is_enabled is only mandatory for clocks that gate
198 	 * fall back to software usage counter if .is_enabled is missing
199 	 */
200 	if (!core->ops->is_enabled)
201 		return core->enable_count;
202 
203 	/*
204 	 * Check if clock controller's device is runtime active before
205 	 * calling .is_enabled callback. If not, assume that clock is
206 	 * disabled, because we might be called from atomic context, from
207 	 * which pm_runtime_get() is not allowed.
208 	 * This function is called mainly from clk_disable_unused_subtree,
209 	 * which ensures proper runtime pm activation of controller before
210 	 * taking enable spinlock, but the below check is needed if one tries
211 	 * to call it from other places.
212 	 */
213 	if (core->dev) {
214 		pm_runtime_get_noresume(core->dev);
215 		if (!pm_runtime_active(core->dev)) {
216 			ret = false;
217 			goto done;
218 		}
219 	}
220 
221 	ret = core->ops->is_enabled(core->hw);
222 done:
223 	clk_pm_runtime_put(core);
224 
225 	return ret;
226 }
227 
228 /***    helper functions   ***/
229 
230 const char *__clk_get_name(const struct clk *clk)
231 {
232 	return !clk ? NULL : clk->core->name;
233 }
234 EXPORT_SYMBOL_GPL(__clk_get_name);
235 
236 const char *clk_hw_get_name(const struct clk_hw *hw)
237 {
238 	return hw->core->name;
239 }
240 EXPORT_SYMBOL_GPL(clk_hw_get_name);
241 
242 struct clk_hw *__clk_get_hw(struct clk *clk)
243 {
244 	return !clk ? NULL : clk->core->hw;
245 }
246 EXPORT_SYMBOL_GPL(__clk_get_hw);
247 
248 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
249 {
250 	return hw->core->num_parents;
251 }
252 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
253 
254 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
255 {
256 	return hw->core->parent ? hw->core->parent->hw : NULL;
257 }
258 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
259 
260 static struct clk_core *__clk_lookup_subtree(const char *name,
261 					     struct clk_core *core)
262 {
263 	struct clk_core *child;
264 	struct clk_core *ret;
265 
266 	if (!strcmp(core->name, name))
267 		return core;
268 
269 	hlist_for_each_entry(child, &core->children, child_node) {
270 		ret = __clk_lookup_subtree(name, child);
271 		if (ret)
272 			return ret;
273 	}
274 
275 	return NULL;
276 }
277 
278 static struct clk_core *clk_core_lookup(const char *name)
279 {
280 	struct clk_core *root_clk;
281 	struct clk_core *ret;
282 
283 	if (!name)
284 		return NULL;
285 
286 	/* search the 'proper' clk tree first */
287 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
288 		ret = __clk_lookup_subtree(name, root_clk);
289 		if (ret)
290 			return ret;
291 	}
292 
293 	/* if not found, then search the orphan tree */
294 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
295 		ret = __clk_lookup_subtree(name, root_clk);
296 		if (ret)
297 			return ret;
298 	}
299 
300 	return NULL;
301 }
302 
303 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
304 							 u8 index)
305 {
306 	if (!core || index >= core->num_parents)
307 		return NULL;
308 
309 	if (!core->parents[index])
310 		core->parents[index] =
311 				clk_core_lookup(core->parent_names[index]);
312 
313 	return core->parents[index];
314 }
315 
316 struct clk_hw *
317 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
318 {
319 	struct clk_core *parent;
320 
321 	parent = clk_core_get_parent_by_index(hw->core, index);
322 
323 	return !parent ? NULL : parent->hw;
324 }
325 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
326 
327 unsigned int __clk_get_enable_count(struct clk *clk)
328 {
329 	return !clk ? 0 : clk->core->enable_count;
330 }
331 
332 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
333 {
334 	unsigned long ret;
335 
336 	if (!core) {
337 		ret = 0;
338 		goto out;
339 	}
340 
341 	ret = core->rate;
342 
343 	if (!core->num_parents)
344 		goto out;
345 
346 	if (!core->parent)
347 		ret = 0;
348 
349 out:
350 	return ret;
351 }
352 
353 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
354 {
355 	return clk_core_get_rate_nolock(hw->core);
356 }
357 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
358 
359 static unsigned long __clk_get_accuracy(struct clk_core *core)
360 {
361 	if (!core)
362 		return 0;
363 
364 	return core->accuracy;
365 }
366 
367 unsigned long __clk_get_flags(struct clk *clk)
368 {
369 	return !clk ? 0 : clk->core->flags;
370 }
371 EXPORT_SYMBOL_GPL(__clk_get_flags);
372 
373 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
374 {
375 	return hw->core->flags;
376 }
377 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
378 
379 bool clk_hw_is_prepared(const struct clk_hw *hw)
380 {
381 	return clk_core_is_prepared(hw->core);
382 }
383 
384 bool clk_hw_is_enabled(const struct clk_hw *hw)
385 {
386 	return clk_core_is_enabled(hw->core);
387 }
388 
389 bool __clk_is_enabled(struct clk *clk)
390 {
391 	if (!clk)
392 		return false;
393 
394 	return clk_core_is_enabled(clk->core);
395 }
396 EXPORT_SYMBOL_GPL(__clk_is_enabled);
397 
398 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
399 			   unsigned long best, unsigned long flags)
400 {
401 	if (flags & CLK_MUX_ROUND_CLOSEST)
402 		return abs(now - rate) < abs(best - rate);
403 
404 	return now <= rate && now > best;
405 }
406 
407 static int
408 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
409 			     unsigned long flags)
410 {
411 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
412 	int i, num_parents, ret;
413 	unsigned long best = 0;
414 	struct clk_rate_request parent_req = *req;
415 
416 	/* if NO_REPARENT flag set, pass through to current parent */
417 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
418 		parent = core->parent;
419 		if (core->flags & CLK_SET_RATE_PARENT) {
420 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
421 						   &parent_req);
422 			if (ret)
423 				return ret;
424 
425 			best = parent_req.rate;
426 		} else if (parent) {
427 			best = clk_core_get_rate_nolock(parent);
428 		} else {
429 			best = clk_core_get_rate_nolock(core);
430 		}
431 
432 		goto out;
433 	}
434 
435 	/* find the parent that can provide the fastest rate <= rate */
436 	num_parents = core->num_parents;
437 	for (i = 0; i < num_parents; i++) {
438 		parent = clk_core_get_parent_by_index(core, i);
439 		if (!parent)
440 			continue;
441 
442 		if (core->flags & CLK_SET_RATE_PARENT) {
443 			parent_req = *req;
444 			ret = __clk_determine_rate(parent->hw, &parent_req);
445 			if (ret)
446 				continue;
447 		} else {
448 			parent_req.rate = clk_core_get_rate_nolock(parent);
449 		}
450 
451 		if (mux_is_better_rate(req->rate, parent_req.rate,
452 				       best, flags)) {
453 			best_parent = parent;
454 			best = parent_req.rate;
455 		}
456 	}
457 
458 	if (!best_parent)
459 		return -EINVAL;
460 
461 out:
462 	if (best_parent)
463 		req->best_parent_hw = best_parent->hw;
464 	req->best_parent_rate = best;
465 	req->rate = best;
466 
467 	return 0;
468 }
469 
470 struct clk *__clk_lookup(const char *name)
471 {
472 	struct clk_core *core = clk_core_lookup(name);
473 
474 	return !core ? NULL : core->hw->clk;
475 }
476 
477 static void clk_core_get_boundaries(struct clk_core *core,
478 				    unsigned long *min_rate,
479 				    unsigned long *max_rate)
480 {
481 	struct clk *clk_user;
482 
483 	*min_rate = core->min_rate;
484 	*max_rate = core->max_rate;
485 
486 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
487 		*min_rate = max(*min_rate, clk_user->min_rate);
488 
489 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
490 		*max_rate = min(*max_rate, clk_user->max_rate);
491 }
492 
493 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
494 			   unsigned long max_rate)
495 {
496 	hw->core->min_rate = min_rate;
497 	hw->core->max_rate = max_rate;
498 }
499 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
500 
501 /*
502  * Helper for finding best parent to provide a given frequency. This can be used
503  * directly as a determine_rate callback (e.g. for a mux), or from a more
504  * complex clock that may combine a mux with other operations.
505  */
506 int __clk_mux_determine_rate(struct clk_hw *hw,
507 			     struct clk_rate_request *req)
508 {
509 	return clk_mux_determine_rate_flags(hw, req, 0);
510 }
511 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
512 
513 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
514 				     struct clk_rate_request *req)
515 {
516 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
517 }
518 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
519 
520 /***        clk api        ***/
521 
522 static void clk_core_unprepare(struct clk_core *core)
523 {
524 	lockdep_assert_held(&prepare_lock);
525 
526 	if (!core)
527 		return;
528 
529 	if (WARN_ON(core->prepare_count == 0))
530 		return;
531 
532 	if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
533 		return;
534 
535 	if (--core->prepare_count > 0)
536 		return;
537 
538 	WARN_ON(core->enable_count > 0);
539 
540 	trace_clk_unprepare(core);
541 
542 	if (core->ops->unprepare)
543 		core->ops->unprepare(core->hw);
544 
545 	clk_pm_runtime_put(core);
546 
547 	trace_clk_unprepare_complete(core);
548 	clk_core_unprepare(core->parent);
549 }
550 
551 static void clk_core_unprepare_lock(struct clk_core *core)
552 {
553 	clk_prepare_lock();
554 	clk_core_unprepare(core);
555 	clk_prepare_unlock();
556 }
557 
558 /**
559  * clk_unprepare - undo preparation of a clock source
560  * @clk: the clk being unprepared
561  *
562  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
563  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
564  * if the operation may sleep.  One example is a clk which is accessed over
565  * I2c.  In the complex case a clk gate operation may require a fast and a slow
566  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
567  * exclusive.  In fact clk_disable must be called before clk_unprepare.
568  */
569 void clk_unprepare(struct clk *clk)
570 {
571 	if (IS_ERR_OR_NULL(clk))
572 		return;
573 
574 	clk_core_unprepare_lock(clk->core);
575 }
576 EXPORT_SYMBOL_GPL(clk_unprepare);
577 
578 static int clk_core_prepare(struct clk_core *core)
579 {
580 	int ret = 0;
581 
582 	lockdep_assert_held(&prepare_lock);
583 
584 	if (!core)
585 		return 0;
586 
587 	if (core->prepare_count == 0) {
588 		ret = clk_pm_runtime_get(core);
589 		if (ret)
590 			return ret;
591 
592 		ret = clk_core_prepare(core->parent);
593 		if (ret)
594 			goto runtime_put;
595 
596 		trace_clk_prepare(core);
597 
598 		if (core->ops->prepare)
599 			ret = core->ops->prepare(core->hw);
600 
601 		trace_clk_prepare_complete(core);
602 
603 		if (ret)
604 			goto unprepare;
605 	}
606 
607 	core->prepare_count++;
608 
609 	return 0;
610 unprepare:
611 	clk_core_unprepare(core->parent);
612 runtime_put:
613 	clk_pm_runtime_put(core);
614 	return ret;
615 }
616 
617 static int clk_core_prepare_lock(struct clk_core *core)
618 {
619 	int ret;
620 
621 	clk_prepare_lock();
622 	ret = clk_core_prepare(core);
623 	clk_prepare_unlock();
624 
625 	return ret;
626 }
627 
628 /**
629  * clk_prepare - prepare a clock source
630  * @clk: the clk being prepared
631  *
632  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
633  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
634  * operation may sleep.  One example is a clk which is accessed over I2c.  In
635  * the complex case a clk ungate operation may require a fast and a slow part.
636  * It is this reason that clk_prepare and clk_enable are not mutually
637  * exclusive.  In fact clk_prepare must be called before clk_enable.
638  * Returns 0 on success, -EERROR otherwise.
639  */
640 int clk_prepare(struct clk *clk)
641 {
642 	if (!clk)
643 		return 0;
644 
645 	return clk_core_prepare_lock(clk->core);
646 }
647 EXPORT_SYMBOL_GPL(clk_prepare);
648 
649 static void clk_core_disable(struct clk_core *core)
650 {
651 	lockdep_assert_held(&enable_lock);
652 
653 	if (!core)
654 		return;
655 
656 	if (WARN_ON(core->enable_count == 0))
657 		return;
658 
659 	if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
660 		return;
661 
662 	if (--core->enable_count > 0)
663 		return;
664 
665 	trace_clk_disable_rcuidle(core);
666 
667 	if (core->ops->disable)
668 		core->ops->disable(core->hw);
669 
670 	trace_clk_disable_complete_rcuidle(core);
671 
672 	clk_core_disable(core->parent);
673 }
674 
675 static void clk_core_disable_lock(struct clk_core *core)
676 {
677 	unsigned long flags;
678 
679 	flags = clk_enable_lock();
680 	clk_core_disable(core);
681 	clk_enable_unlock(flags);
682 }
683 
684 /**
685  * clk_disable - gate a clock
686  * @clk: the clk being gated
687  *
688  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
689  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
690  * clk if the operation is fast and will never sleep.  One example is a
691  * SoC-internal clk which is controlled via simple register writes.  In the
692  * complex case a clk gate operation may require a fast and a slow part.  It is
693  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
694  * In fact clk_disable must be called before clk_unprepare.
695  */
696 void clk_disable(struct clk *clk)
697 {
698 	if (IS_ERR_OR_NULL(clk))
699 		return;
700 
701 	clk_core_disable_lock(clk->core);
702 }
703 EXPORT_SYMBOL_GPL(clk_disable);
704 
705 static int clk_core_enable(struct clk_core *core)
706 {
707 	int ret = 0;
708 
709 	lockdep_assert_held(&enable_lock);
710 
711 	if (!core)
712 		return 0;
713 
714 	if (WARN_ON(core->prepare_count == 0))
715 		return -ESHUTDOWN;
716 
717 	if (core->enable_count == 0) {
718 		ret = clk_core_enable(core->parent);
719 
720 		if (ret)
721 			return ret;
722 
723 		trace_clk_enable_rcuidle(core);
724 
725 		if (core->ops->enable)
726 			ret = core->ops->enable(core->hw);
727 
728 		trace_clk_enable_complete_rcuidle(core);
729 
730 		if (ret) {
731 			clk_core_disable(core->parent);
732 			return ret;
733 		}
734 	}
735 
736 	core->enable_count++;
737 	return 0;
738 }
739 
740 static int clk_core_enable_lock(struct clk_core *core)
741 {
742 	unsigned long flags;
743 	int ret;
744 
745 	flags = clk_enable_lock();
746 	ret = clk_core_enable(core);
747 	clk_enable_unlock(flags);
748 
749 	return ret;
750 }
751 
752 /**
753  * clk_enable - ungate a clock
754  * @clk: the clk being ungated
755  *
756  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
757  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
758  * if the operation will never sleep.  One example is a SoC-internal clk which
759  * is controlled via simple register writes.  In the complex case a clk ungate
760  * operation may require a fast and a slow part.  It is this reason that
761  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
762  * must be called before clk_enable.  Returns 0 on success, -EERROR
763  * otherwise.
764  */
765 int clk_enable(struct clk *clk)
766 {
767 	if (!clk)
768 		return 0;
769 
770 	return clk_core_enable_lock(clk->core);
771 }
772 EXPORT_SYMBOL_GPL(clk_enable);
773 
774 static int clk_core_prepare_enable(struct clk_core *core)
775 {
776 	int ret;
777 
778 	ret = clk_core_prepare_lock(core);
779 	if (ret)
780 		return ret;
781 
782 	ret = clk_core_enable_lock(core);
783 	if (ret)
784 		clk_core_unprepare_lock(core);
785 
786 	return ret;
787 }
788 
789 static void clk_core_disable_unprepare(struct clk_core *core)
790 {
791 	clk_core_disable_lock(core);
792 	clk_core_unprepare_lock(core);
793 }
794 
795 static void clk_unprepare_unused_subtree(struct clk_core *core)
796 {
797 	struct clk_core *child;
798 
799 	lockdep_assert_held(&prepare_lock);
800 
801 	hlist_for_each_entry(child, &core->children, child_node)
802 		clk_unprepare_unused_subtree(child);
803 
804 	if (core->prepare_count)
805 		return;
806 
807 	if (core->flags & CLK_IGNORE_UNUSED)
808 		return;
809 
810 	if (clk_pm_runtime_get(core))
811 		return;
812 
813 	if (clk_core_is_prepared(core)) {
814 		trace_clk_unprepare(core);
815 		if (core->ops->unprepare_unused)
816 			core->ops->unprepare_unused(core->hw);
817 		else if (core->ops->unprepare)
818 			core->ops->unprepare(core->hw);
819 		trace_clk_unprepare_complete(core);
820 	}
821 
822 	clk_pm_runtime_put(core);
823 }
824 
825 static void clk_disable_unused_subtree(struct clk_core *core)
826 {
827 	struct clk_core *child;
828 	unsigned long flags;
829 
830 	lockdep_assert_held(&prepare_lock);
831 
832 	hlist_for_each_entry(child, &core->children, child_node)
833 		clk_disable_unused_subtree(child);
834 
835 	if (core->flags & CLK_OPS_PARENT_ENABLE)
836 		clk_core_prepare_enable(core->parent);
837 
838 	if (clk_pm_runtime_get(core))
839 		goto unprepare_out;
840 
841 	flags = clk_enable_lock();
842 
843 	if (core->enable_count)
844 		goto unlock_out;
845 
846 	if (core->flags & CLK_IGNORE_UNUSED)
847 		goto unlock_out;
848 
849 	/*
850 	 * some gate clocks have special needs during the disable-unused
851 	 * sequence.  call .disable_unused if available, otherwise fall
852 	 * back to .disable
853 	 */
854 	if (clk_core_is_enabled(core)) {
855 		trace_clk_disable(core);
856 		if (core->ops->disable_unused)
857 			core->ops->disable_unused(core->hw);
858 		else if (core->ops->disable)
859 			core->ops->disable(core->hw);
860 		trace_clk_disable_complete(core);
861 	}
862 
863 unlock_out:
864 	clk_enable_unlock(flags);
865 	clk_pm_runtime_put(core);
866 unprepare_out:
867 	if (core->flags & CLK_OPS_PARENT_ENABLE)
868 		clk_core_disable_unprepare(core->parent);
869 }
870 
871 static bool clk_ignore_unused;
872 static int __init clk_ignore_unused_setup(char *__unused)
873 {
874 	clk_ignore_unused = true;
875 	return 1;
876 }
877 __setup("clk_ignore_unused", clk_ignore_unused_setup);
878 
879 static int clk_disable_unused(void)
880 {
881 	struct clk_core *core;
882 
883 	if (clk_ignore_unused) {
884 		pr_warn("clk: Not disabling unused clocks\n");
885 		return 0;
886 	}
887 
888 	clk_prepare_lock();
889 
890 	hlist_for_each_entry(core, &clk_root_list, child_node)
891 		clk_disable_unused_subtree(core);
892 
893 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
894 		clk_disable_unused_subtree(core);
895 
896 	hlist_for_each_entry(core, &clk_root_list, child_node)
897 		clk_unprepare_unused_subtree(core);
898 
899 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
900 		clk_unprepare_unused_subtree(core);
901 
902 	clk_prepare_unlock();
903 
904 	return 0;
905 }
906 late_initcall_sync(clk_disable_unused);
907 
908 static int clk_core_round_rate_nolock(struct clk_core *core,
909 				      struct clk_rate_request *req)
910 {
911 	struct clk_core *parent;
912 	long rate;
913 
914 	lockdep_assert_held(&prepare_lock);
915 
916 	if (!core)
917 		return 0;
918 
919 	parent = core->parent;
920 	if (parent) {
921 		req->best_parent_hw = parent->hw;
922 		req->best_parent_rate = parent->rate;
923 	} else {
924 		req->best_parent_hw = NULL;
925 		req->best_parent_rate = 0;
926 	}
927 
928 	if (core->ops->determine_rate) {
929 		return core->ops->determine_rate(core->hw, req);
930 	} else if (core->ops->round_rate) {
931 		rate = core->ops->round_rate(core->hw, req->rate,
932 					     &req->best_parent_rate);
933 		if (rate < 0)
934 			return rate;
935 
936 		req->rate = rate;
937 	} else if (core->flags & CLK_SET_RATE_PARENT) {
938 		return clk_core_round_rate_nolock(parent, req);
939 	} else {
940 		req->rate = core->rate;
941 	}
942 
943 	return 0;
944 }
945 
946 /**
947  * __clk_determine_rate - get the closest rate actually supported by a clock
948  * @hw: determine the rate of this clock
949  * @req: target rate request
950  *
951  * Useful for clk_ops such as .set_rate and .determine_rate.
952  */
953 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
954 {
955 	if (!hw) {
956 		req->rate = 0;
957 		return 0;
958 	}
959 
960 	return clk_core_round_rate_nolock(hw->core, req);
961 }
962 EXPORT_SYMBOL_GPL(__clk_determine_rate);
963 
964 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
965 {
966 	int ret;
967 	struct clk_rate_request req;
968 
969 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
970 	req.rate = rate;
971 
972 	ret = clk_core_round_rate_nolock(hw->core, &req);
973 	if (ret)
974 		return 0;
975 
976 	return req.rate;
977 }
978 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
979 
980 /**
981  * clk_round_rate - round the given rate for a clk
982  * @clk: the clk for which we are rounding a rate
983  * @rate: the rate which is to be rounded
984  *
985  * Takes in a rate as input and rounds it to a rate that the clk can actually
986  * use which is then returned.  If clk doesn't support round_rate operation
987  * then the parent rate is returned.
988  */
989 long clk_round_rate(struct clk *clk, unsigned long rate)
990 {
991 	struct clk_rate_request req;
992 	int ret;
993 
994 	if (!clk)
995 		return 0;
996 
997 	clk_prepare_lock();
998 
999 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1000 	req.rate = rate;
1001 
1002 	ret = clk_core_round_rate_nolock(clk->core, &req);
1003 	clk_prepare_unlock();
1004 
1005 	if (ret)
1006 		return ret;
1007 
1008 	return req.rate;
1009 }
1010 EXPORT_SYMBOL_GPL(clk_round_rate);
1011 
1012 /**
1013  * __clk_notify - call clk notifier chain
1014  * @core: clk that is changing rate
1015  * @msg: clk notifier type (see include/linux/clk.h)
1016  * @old_rate: old clk rate
1017  * @new_rate: new clk rate
1018  *
1019  * Triggers a notifier call chain on the clk rate-change notification
1020  * for 'clk'.  Passes a pointer to the struct clk and the previous
1021  * and current rates to the notifier callback.  Intended to be called by
1022  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1023  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1024  * a driver returns that.
1025  */
1026 static int __clk_notify(struct clk_core *core, unsigned long msg,
1027 		unsigned long old_rate, unsigned long new_rate)
1028 {
1029 	struct clk_notifier *cn;
1030 	struct clk_notifier_data cnd;
1031 	int ret = NOTIFY_DONE;
1032 
1033 	cnd.old_rate = old_rate;
1034 	cnd.new_rate = new_rate;
1035 
1036 	list_for_each_entry(cn, &clk_notifier_list, node) {
1037 		if (cn->clk->core == core) {
1038 			cnd.clk = cn->clk;
1039 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1040 					&cnd);
1041 			if (ret & NOTIFY_STOP_MASK)
1042 				return ret;
1043 		}
1044 	}
1045 
1046 	return ret;
1047 }
1048 
1049 /**
1050  * __clk_recalc_accuracies
1051  * @core: first clk in the subtree
1052  *
1053  * Walks the subtree of clks starting with clk and recalculates accuracies as
1054  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1055  * callback then it is assumed that the clock will take on the accuracy of its
1056  * parent.
1057  */
1058 static void __clk_recalc_accuracies(struct clk_core *core)
1059 {
1060 	unsigned long parent_accuracy = 0;
1061 	struct clk_core *child;
1062 
1063 	lockdep_assert_held(&prepare_lock);
1064 
1065 	if (core->parent)
1066 		parent_accuracy = core->parent->accuracy;
1067 
1068 	if (core->ops->recalc_accuracy)
1069 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1070 							  parent_accuracy);
1071 	else
1072 		core->accuracy = parent_accuracy;
1073 
1074 	hlist_for_each_entry(child, &core->children, child_node)
1075 		__clk_recalc_accuracies(child);
1076 }
1077 
1078 static long clk_core_get_accuracy(struct clk_core *core)
1079 {
1080 	unsigned long accuracy;
1081 
1082 	clk_prepare_lock();
1083 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1084 		__clk_recalc_accuracies(core);
1085 
1086 	accuracy = __clk_get_accuracy(core);
1087 	clk_prepare_unlock();
1088 
1089 	return accuracy;
1090 }
1091 
1092 /**
1093  * clk_get_accuracy - return the accuracy of clk
1094  * @clk: the clk whose accuracy is being returned
1095  *
1096  * Simply returns the cached accuracy of the clk, unless
1097  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1098  * issued.
1099  * If clk is NULL then returns 0.
1100  */
1101 long clk_get_accuracy(struct clk *clk)
1102 {
1103 	if (!clk)
1104 		return 0;
1105 
1106 	return clk_core_get_accuracy(clk->core);
1107 }
1108 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1109 
1110 static unsigned long clk_recalc(struct clk_core *core,
1111 				unsigned long parent_rate)
1112 {
1113 	unsigned long rate = parent_rate;
1114 
1115 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1116 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1117 		clk_pm_runtime_put(core);
1118 	}
1119 	return rate;
1120 }
1121 
1122 /**
1123  * __clk_recalc_rates
1124  * @core: first clk in the subtree
1125  * @msg: notification type (see include/linux/clk.h)
1126  *
1127  * Walks the subtree of clks starting with clk and recalculates rates as it
1128  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1129  * it is assumed that the clock will take on the rate of its parent.
1130  *
1131  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1132  * if necessary.
1133  */
1134 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1135 {
1136 	unsigned long old_rate;
1137 	unsigned long parent_rate = 0;
1138 	struct clk_core *child;
1139 
1140 	lockdep_assert_held(&prepare_lock);
1141 
1142 	old_rate = core->rate;
1143 
1144 	if (core->parent)
1145 		parent_rate = core->parent->rate;
1146 
1147 	core->rate = clk_recalc(core, parent_rate);
1148 
1149 	/*
1150 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1151 	 * & ABORT_RATE_CHANGE notifiers
1152 	 */
1153 	if (core->notifier_count && msg)
1154 		__clk_notify(core, msg, old_rate, core->rate);
1155 
1156 	hlist_for_each_entry(child, &core->children, child_node)
1157 		__clk_recalc_rates(child, msg);
1158 }
1159 
1160 static unsigned long clk_core_get_rate(struct clk_core *core)
1161 {
1162 	unsigned long rate;
1163 
1164 	clk_prepare_lock();
1165 
1166 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1167 		__clk_recalc_rates(core, 0);
1168 
1169 	rate = clk_core_get_rate_nolock(core);
1170 	clk_prepare_unlock();
1171 
1172 	return rate;
1173 }
1174 
1175 /**
1176  * clk_get_rate - return the rate of clk
1177  * @clk: the clk whose rate is being returned
1178  *
1179  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1180  * is set, which means a recalc_rate will be issued.
1181  * If clk is NULL then returns 0.
1182  */
1183 unsigned long clk_get_rate(struct clk *clk)
1184 {
1185 	if (!clk)
1186 		return 0;
1187 
1188 	return clk_core_get_rate(clk->core);
1189 }
1190 EXPORT_SYMBOL_GPL(clk_get_rate);
1191 
1192 static int clk_fetch_parent_index(struct clk_core *core,
1193 				  struct clk_core *parent)
1194 {
1195 	int i;
1196 
1197 	if (!parent)
1198 		return -EINVAL;
1199 
1200 	for (i = 0; i < core->num_parents; i++)
1201 		if (clk_core_get_parent_by_index(core, i) == parent)
1202 			return i;
1203 
1204 	return -EINVAL;
1205 }
1206 
1207 /*
1208  * Update the orphan status of @core and all its children.
1209  */
1210 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1211 {
1212 	struct clk_core *child;
1213 
1214 	core->orphan = is_orphan;
1215 
1216 	hlist_for_each_entry(child, &core->children, child_node)
1217 		clk_core_update_orphan_status(child, is_orphan);
1218 }
1219 
1220 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1221 {
1222 	bool was_orphan = core->orphan;
1223 
1224 	hlist_del(&core->child_node);
1225 
1226 	if (new_parent) {
1227 		bool becomes_orphan = new_parent->orphan;
1228 
1229 		/* avoid duplicate POST_RATE_CHANGE notifications */
1230 		if (new_parent->new_child == core)
1231 			new_parent->new_child = NULL;
1232 
1233 		hlist_add_head(&core->child_node, &new_parent->children);
1234 
1235 		if (was_orphan != becomes_orphan)
1236 			clk_core_update_orphan_status(core, becomes_orphan);
1237 	} else {
1238 		hlist_add_head(&core->child_node, &clk_orphan_list);
1239 		if (!was_orphan)
1240 			clk_core_update_orphan_status(core, true);
1241 	}
1242 
1243 	core->parent = new_parent;
1244 }
1245 
1246 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1247 					   struct clk_core *parent)
1248 {
1249 	unsigned long flags;
1250 	struct clk_core *old_parent = core->parent;
1251 
1252 	/*
1253 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1254 	 *
1255 	 * 2. Migrate prepare state between parents and prevent race with
1256 	 * clk_enable().
1257 	 *
1258 	 * If the clock is not prepared, then a race with
1259 	 * clk_enable/disable() is impossible since we already have the
1260 	 * prepare lock (future calls to clk_enable() need to be preceded by
1261 	 * a clk_prepare()).
1262 	 *
1263 	 * If the clock is prepared, migrate the prepared state to the new
1264 	 * parent and also protect against a race with clk_enable() by
1265 	 * forcing the clock and the new parent on.  This ensures that all
1266 	 * future calls to clk_enable() are practically NOPs with respect to
1267 	 * hardware and software states.
1268 	 *
1269 	 * See also: Comment for clk_set_parent() below.
1270 	 */
1271 
1272 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1273 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1274 		clk_core_prepare_enable(old_parent);
1275 		clk_core_prepare_enable(parent);
1276 	}
1277 
1278 	/* migrate prepare count if > 0 */
1279 	if (core->prepare_count) {
1280 		clk_core_prepare_enable(parent);
1281 		clk_core_enable_lock(core);
1282 	}
1283 
1284 	/* update the clk tree topology */
1285 	flags = clk_enable_lock();
1286 	clk_reparent(core, parent);
1287 	clk_enable_unlock(flags);
1288 
1289 	return old_parent;
1290 }
1291 
1292 static void __clk_set_parent_after(struct clk_core *core,
1293 				   struct clk_core *parent,
1294 				   struct clk_core *old_parent)
1295 {
1296 	/*
1297 	 * Finish the migration of prepare state and undo the changes done
1298 	 * for preventing a race with clk_enable().
1299 	 */
1300 	if (core->prepare_count) {
1301 		clk_core_disable_lock(core);
1302 		clk_core_disable_unprepare(old_parent);
1303 	}
1304 
1305 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1306 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1307 		clk_core_disable_unprepare(parent);
1308 		clk_core_disable_unprepare(old_parent);
1309 	}
1310 }
1311 
1312 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1313 			    u8 p_index)
1314 {
1315 	unsigned long flags;
1316 	int ret = 0;
1317 	struct clk_core *old_parent;
1318 
1319 	old_parent = __clk_set_parent_before(core, parent);
1320 
1321 	trace_clk_set_parent(core, parent);
1322 
1323 	/* change clock input source */
1324 	if (parent && core->ops->set_parent)
1325 		ret = core->ops->set_parent(core->hw, p_index);
1326 
1327 	trace_clk_set_parent_complete(core, parent);
1328 
1329 	if (ret) {
1330 		flags = clk_enable_lock();
1331 		clk_reparent(core, old_parent);
1332 		clk_enable_unlock(flags);
1333 		__clk_set_parent_after(core, old_parent, parent);
1334 
1335 		return ret;
1336 	}
1337 
1338 	__clk_set_parent_after(core, parent, old_parent);
1339 
1340 	return 0;
1341 }
1342 
1343 /**
1344  * __clk_speculate_rates
1345  * @core: first clk in the subtree
1346  * @parent_rate: the "future" rate of clk's parent
1347  *
1348  * Walks the subtree of clks starting with clk, speculating rates as it
1349  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1350  *
1351  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1352  * pre-rate change notifications and returns early if no clks in the
1353  * subtree have subscribed to the notifications.  Note that if a clk does not
1354  * implement the .recalc_rate callback then it is assumed that the clock will
1355  * take on the rate of its parent.
1356  */
1357 static int __clk_speculate_rates(struct clk_core *core,
1358 				 unsigned long parent_rate)
1359 {
1360 	struct clk_core *child;
1361 	unsigned long new_rate;
1362 	int ret = NOTIFY_DONE;
1363 
1364 	lockdep_assert_held(&prepare_lock);
1365 
1366 	new_rate = clk_recalc(core, parent_rate);
1367 
1368 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1369 	if (core->notifier_count)
1370 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1371 
1372 	if (ret & NOTIFY_STOP_MASK) {
1373 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1374 				__func__, core->name, ret);
1375 		goto out;
1376 	}
1377 
1378 	hlist_for_each_entry(child, &core->children, child_node) {
1379 		ret = __clk_speculate_rates(child, new_rate);
1380 		if (ret & NOTIFY_STOP_MASK)
1381 			break;
1382 	}
1383 
1384 out:
1385 	return ret;
1386 }
1387 
1388 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1389 			     struct clk_core *new_parent, u8 p_index)
1390 {
1391 	struct clk_core *child;
1392 
1393 	core->new_rate = new_rate;
1394 	core->new_parent = new_parent;
1395 	core->new_parent_index = p_index;
1396 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1397 	core->new_child = NULL;
1398 	if (new_parent && new_parent != core->parent)
1399 		new_parent->new_child = core;
1400 
1401 	hlist_for_each_entry(child, &core->children, child_node) {
1402 		child->new_rate = clk_recalc(child, new_rate);
1403 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1404 	}
1405 }
1406 
1407 /*
1408  * calculate the new rates returning the topmost clock that has to be
1409  * changed.
1410  */
1411 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1412 					   unsigned long rate)
1413 {
1414 	struct clk_core *top = core;
1415 	struct clk_core *old_parent, *parent;
1416 	unsigned long best_parent_rate = 0;
1417 	unsigned long new_rate;
1418 	unsigned long min_rate;
1419 	unsigned long max_rate;
1420 	int p_index = 0;
1421 	long ret;
1422 
1423 	/* sanity */
1424 	if (IS_ERR_OR_NULL(core))
1425 		return NULL;
1426 
1427 	/* save parent rate, if it exists */
1428 	parent = old_parent = core->parent;
1429 	if (parent)
1430 		best_parent_rate = parent->rate;
1431 
1432 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1433 
1434 	/* find the closest rate and parent clk/rate */
1435 	if (core->ops->determine_rate) {
1436 		struct clk_rate_request req;
1437 
1438 		req.rate = rate;
1439 		req.min_rate = min_rate;
1440 		req.max_rate = max_rate;
1441 		if (parent) {
1442 			req.best_parent_hw = parent->hw;
1443 			req.best_parent_rate = parent->rate;
1444 		} else {
1445 			req.best_parent_hw = NULL;
1446 			req.best_parent_rate = 0;
1447 		}
1448 
1449 		ret = core->ops->determine_rate(core->hw, &req);
1450 		if (ret < 0)
1451 			return NULL;
1452 
1453 		best_parent_rate = req.best_parent_rate;
1454 		new_rate = req.rate;
1455 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1456 	} else if (core->ops->round_rate) {
1457 		ret = core->ops->round_rate(core->hw, rate,
1458 					    &best_parent_rate);
1459 		if (ret < 0)
1460 			return NULL;
1461 
1462 		new_rate = ret;
1463 		if (new_rate < min_rate || new_rate > max_rate)
1464 			return NULL;
1465 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1466 		/* pass-through clock without adjustable parent */
1467 		core->new_rate = core->rate;
1468 		return NULL;
1469 	} else {
1470 		/* pass-through clock with adjustable parent */
1471 		top = clk_calc_new_rates(parent, rate);
1472 		new_rate = parent->new_rate;
1473 		goto out;
1474 	}
1475 
1476 	/* some clocks must be gated to change parent */
1477 	if (parent != old_parent &&
1478 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1479 		pr_debug("%s: %s not gated but wants to reparent\n",
1480 			 __func__, core->name);
1481 		return NULL;
1482 	}
1483 
1484 	/* try finding the new parent index */
1485 	if (parent && core->num_parents > 1) {
1486 		p_index = clk_fetch_parent_index(core, parent);
1487 		if (p_index < 0) {
1488 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1489 				 __func__, parent->name, core->name);
1490 			return NULL;
1491 		}
1492 	}
1493 
1494 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1495 	    best_parent_rate != parent->rate)
1496 		top = clk_calc_new_rates(parent, best_parent_rate);
1497 
1498 out:
1499 	clk_calc_subtree(core, new_rate, parent, p_index);
1500 
1501 	return top;
1502 }
1503 
1504 /*
1505  * Notify about rate changes in a subtree. Always walk down the whole tree
1506  * so that in case of an error we can walk down the whole tree again and
1507  * abort the change.
1508  */
1509 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1510 						  unsigned long event)
1511 {
1512 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1513 	int ret = NOTIFY_DONE;
1514 
1515 	if (core->rate == core->new_rate)
1516 		return NULL;
1517 
1518 	if (core->notifier_count) {
1519 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1520 		if (ret & NOTIFY_STOP_MASK)
1521 			fail_clk = core;
1522 	}
1523 
1524 	hlist_for_each_entry(child, &core->children, child_node) {
1525 		/* Skip children who will be reparented to another clock */
1526 		if (child->new_parent && child->new_parent != core)
1527 			continue;
1528 		tmp_clk = clk_propagate_rate_change(child, event);
1529 		if (tmp_clk)
1530 			fail_clk = tmp_clk;
1531 	}
1532 
1533 	/* handle the new child who might not be in core->children yet */
1534 	if (core->new_child) {
1535 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1536 		if (tmp_clk)
1537 			fail_clk = tmp_clk;
1538 	}
1539 
1540 	return fail_clk;
1541 }
1542 
1543 /*
1544  * walk down a subtree and set the new rates notifying the rate
1545  * change on the way
1546  */
1547 static void clk_change_rate(struct clk_core *core)
1548 {
1549 	struct clk_core *child;
1550 	struct hlist_node *tmp;
1551 	unsigned long old_rate;
1552 	unsigned long best_parent_rate = 0;
1553 	bool skip_set_rate = false;
1554 	struct clk_core *old_parent;
1555 	struct clk_core *parent = NULL;
1556 
1557 	old_rate = core->rate;
1558 
1559 	if (core->new_parent) {
1560 		parent = core->new_parent;
1561 		best_parent_rate = core->new_parent->rate;
1562 	} else if (core->parent) {
1563 		parent = core->parent;
1564 		best_parent_rate = core->parent->rate;
1565 	}
1566 
1567 	if (core->flags & CLK_SET_RATE_UNGATE) {
1568 		unsigned long flags;
1569 
1570 		clk_core_prepare(core);
1571 		flags = clk_enable_lock();
1572 		clk_core_enable(core);
1573 		clk_enable_unlock(flags);
1574 	}
1575 
1576 	if (core->new_parent && core->new_parent != core->parent) {
1577 		old_parent = __clk_set_parent_before(core, core->new_parent);
1578 		trace_clk_set_parent(core, core->new_parent);
1579 
1580 		if (core->ops->set_rate_and_parent) {
1581 			skip_set_rate = true;
1582 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1583 					best_parent_rate,
1584 					core->new_parent_index);
1585 		} else if (core->ops->set_parent) {
1586 			core->ops->set_parent(core->hw, core->new_parent_index);
1587 		}
1588 
1589 		trace_clk_set_parent_complete(core, core->new_parent);
1590 		__clk_set_parent_after(core, core->new_parent, old_parent);
1591 	}
1592 
1593 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1594 		clk_core_prepare_enable(parent);
1595 
1596 	trace_clk_set_rate(core, core->new_rate);
1597 
1598 	if (!skip_set_rate && core->ops->set_rate)
1599 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1600 
1601 	trace_clk_set_rate_complete(core, core->new_rate);
1602 
1603 	core->rate = clk_recalc(core, best_parent_rate);
1604 
1605 	if (core->flags & CLK_SET_RATE_UNGATE) {
1606 		unsigned long flags;
1607 
1608 		flags = clk_enable_lock();
1609 		clk_core_disable(core);
1610 		clk_enable_unlock(flags);
1611 		clk_core_unprepare(core);
1612 	}
1613 
1614 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1615 		clk_core_disable_unprepare(parent);
1616 
1617 	if (core->notifier_count && old_rate != core->rate)
1618 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1619 
1620 	if (core->flags & CLK_RECALC_NEW_RATES)
1621 		(void)clk_calc_new_rates(core, core->new_rate);
1622 
1623 	/*
1624 	 * Use safe iteration, as change_rate can actually swap parents
1625 	 * for certain clock types.
1626 	 */
1627 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1628 		/* Skip children who will be reparented to another clock */
1629 		if (child->new_parent && child->new_parent != core)
1630 			continue;
1631 		clk_change_rate(child);
1632 	}
1633 
1634 	/* handle the new child who might not be in core->children yet */
1635 	if (core->new_child)
1636 		clk_change_rate(core->new_child);
1637 }
1638 
1639 static int clk_core_set_rate_nolock(struct clk_core *core,
1640 				    unsigned long req_rate)
1641 {
1642 	struct clk_core *top, *fail_clk;
1643 	unsigned long rate = req_rate;
1644 	int ret = 0;
1645 
1646 	if (!core)
1647 		return 0;
1648 
1649 	/* bail early if nothing to do */
1650 	if (rate == clk_core_get_rate_nolock(core))
1651 		return 0;
1652 
1653 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1654 		return -EBUSY;
1655 
1656 	/* calculate new rates and get the topmost changed clock */
1657 	top = clk_calc_new_rates(core, rate);
1658 	if (!top)
1659 		return -EINVAL;
1660 
1661 	ret = clk_pm_runtime_get(core);
1662 	if (ret)
1663 		return ret;
1664 
1665 	/* notify that we are about to change rates */
1666 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1667 	if (fail_clk) {
1668 		pr_debug("%s: failed to set %s rate\n", __func__,
1669 				fail_clk->name);
1670 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1671 		ret = -EBUSY;
1672 		goto err;
1673 	}
1674 
1675 	/* change the rates */
1676 	clk_change_rate(top);
1677 
1678 	core->req_rate = req_rate;
1679 err:
1680 	clk_pm_runtime_put(core);
1681 
1682 	return ret;
1683 }
1684 
1685 /**
1686  * clk_set_rate - specify a new rate for clk
1687  * @clk: the clk whose rate is being changed
1688  * @rate: the new rate for clk
1689  *
1690  * In the simplest case clk_set_rate will only adjust the rate of clk.
1691  *
1692  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1693  * propagate up to clk's parent; whether or not this happens depends on the
1694  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1695  * after calling .round_rate then upstream parent propagation is ignored.  If
1696  * *parent_rate comes back with a new rate for clk's parent then we propagate
1697  * up to clk's parent and set its rate.  Upward propagation will continue
1698  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1699  * .round_rate stops requesting changes to clk's parent_rate.
1700  *
1701  * Rate changes are accomplished via tree traversal that also recalculates the
1702  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1703  *
1704  * Returns 0 on success, -EERROR otherwise.
1705  */
1706 int clk_set_rate(struct clk *clk, unsigned long rate)
1707 {
1708 	int ret;
1709 
1710 	if (!clk)
1711 		return 0;
1712 
1713 	/* prevent racing with updates to the clock topology */
1714 	clk_prepare_lock();
1715 
1716 	ret = clk_core_set_rate_nolock(clk->core, rate);
1717 
1718 	clk_prepare_unlock();
1719 
1720 	return ret;
1721 }
1722 EXPORT_SYMBOL_GPL(clk_set_rate);
1723 
1724 /**
1725  * clk_set_rate_range - set a rate range for a clock source
1726  * @clk: clock source
1727  * @min: desired minimum clock rate in Hz, inclusive
1728  * @max: desired maximum clock rate in Hz, inclusive
1729  *
1730  * Returns success (0) or negative errno.
1731  */
1732 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1733 {
1734 	int ret = 0;
1735 
1736 	if (!clk)
1737 		return 0;
1738 
1739 	if (min > max) {
1740 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1741 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1742 		       min, max);
1743 		return -EINVAL;
1744 	}
1745 
1746 	clk_prepare_lock();
1747 
1748 	if (min != clk->min_rate || max != clk->max_rate) {
1749 		clk->min_rate = min;
1750 		clk->max_rate = max;
1751 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1752 	}
1753 
1754 	clk_prepare_unlock();
1755 
1756 	return ret;
1757 }
1758 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1759 
1760 /**
1761  * clk_set_min_rate - set a minimum clock rate for a clock source
1762  * @clk: clock source
1763  * @rate: desired minimum clock rate in Hz, inclusive
1764  *
1765  * Returns success (0) or negative errno.
1766  */
1767 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1768 {
1769 	if (!clk)
1770 		return 0;
1771 
1772 	return clk_set_rate_range(clk, rate, clk->max_rate);
1773 }
1774 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1775 
1776 /**
1777  * clk_set_max_rate - set a maximum clock rate for a clock source
1778  * @clk: clock source
1779  * @rate: desired maximum clock rate in Hz, inclusive
1780  *
1781  * Returns success (0) or negative errno.
1782  */
1783 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1784 {
1785 	if (!clk)
1786 		return 0;
1787 
1788 	return clk_set_rate_range(clk, clk->min_rate, rate);
1789 }
1790 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1791 
1792 /**
1793  * clk_get_parent - return the parent of a clk
1794  * @clk: the clk whose parent gets returned
1795  *
1796  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1797  */
1798 struct clk *clk_get_parent(struct clk *clk)
1799 {
1800 	struct clk *parent;
1801 
1802 	if (!clk)
1803 		return NULL;
1804 
1805 	clk_prepare_lock();
1806 	/* TODO: Create a per-user clk and change callers to call clk_put */
1807 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1808 	clk_prepare_unlock();
1809 
1810 	return parent;
1811 }
1812 EXPORT_SYMBOL_GPL(clk_get_parent);
1813 
1814 static struct clk_core *__clk_init_parent(struct clk_core *core)
1815 {
1816 	u8 index = 0;
1817 
1818 	if (core->num_parents > 1 && core->ops->get_parent)
1819 		index = core->ops->get_parent(core->hw);
1820 
1821 	return clk_core_get_parent_by_index(core, index);
1822 }
1823 
1824 static void clk_core_reparent(struct clk_core *core,
1825 				  struct clk_core *new_parent)
1826 {
1827 	clk_reparent(core, new_parent);
1828 	__clk_recalc_accuracies(core);
1829 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1830 }
1831 
1832 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1833 {
1834 	if (!hw)
1835 		return;
1836 
1837 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1838 }
1839 
1840 /**
1841  * clk_has_parent - check if a clock is a possible parent for another
1842  * @clk: clock source
1843  * @parent: parent clock source
1844  *
1845  * This function can be used in drivers that need to check that a clock can be
1846  * the parent of another without actually changing the parent.
1847  *
1848  * Returns true if @parent is a possible parent for @clk, false otherwise.
1849  */
1850 bool clk_has_parent(struct clk *clk, struct clk *parent)
1851 {
1852 	struct clk_core *core, *parent_core;
1853 	unsigned int i;
1854 
1855 	/* NULL clocks should be nops, so return success if either is NULL. */
1856 	if (!clk || !parent)
1857 		return true;
1858 
1859 	core = clk->core;
1860 	parent_core = parent->core;
1861 
1862 	/* Optimize for the case where the parent is already the parent. */
1863 	if (core->parent == parent_core)
1864 		return true;
1865 
1866 	for (i = 0; i < core->num_parents; i++)
1867 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1868 			return true;
1869 
1870 	return false;
1871 }
1872 EXPORT_SYMBOL_GPL(clk_has_parent);
1873 
1874 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1875 {
1876 	int ret = 0;
1877 	int p_index = 0;
1878 	unsigned long p_rate = 0;
1879 
1880 	if (!core)
1881 		return 0;
1882 
1883 	/* prevent racing with updates to the clock topology */
1884 	clk_prepare_lock();
1885 
1886 	if (core->parent == parent)
1887 		goto out;
1888 
1889 	/* verify ops for for multi-parent clks */
1890 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1891 		ret = -ENOSYS;
1892 		goto out;
1893 	}
1894 
1895 	/* check that we are allowed to re-parent if the clock is in use */
1896 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1897 		ret = -EBUSY;
1898 		goto out;
1899 	}
1900 
1901 	/* try finding the new parent index */
1902 	if (parent) {
1903 		p_index = clk_fetch_parent_index(core, parent);
1904 		if (p_index < 0) {
1905 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1906 					__func__, parent->name, core->name);
1907 			ret = p_index;
1908 			goto out;
1909 		}
1910 		p_rate = parent->rate;
1911 	}
1912 
1913 	ret = clk_pm_runtime_get(core);
1914 	if (ret)
1915 		goto out;
1916 
1917 	/* propagate PRE_RATE_CHANGE notifications */
1918 	ret = __clk_speculate_rates(core, p_rate);
1919 
1920 	/* abort if a driver objects */
1921 	if (ret & NOTIFY_STOP_MASK)
1922 		goto runtime_put;
1923 
1924 	/* do the re-parent */
1925 	ret = __clk_set_parent(core, parent, p_index);
1926 
1927 	/* propagate rate an accuracy recalculation accordingly */
1928 	if (ret) {
1929 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1930 	} else {
1931 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1932 		__clk_recalc_accuracies(core);
1933 	}
1934 
1935 runtime_put:
1936 	clk_pm_runtime_put(core);
1937 out:
1938 	clk_prepare_unlock();
1939 
1940 	return ret;
1941 }
1942 
1943 /**
1944  * clk_set_parent - switch the parent of a mux clk
1945  * @clk: the mux clk whose input we are switching
1946  * @parent: the new input to clk
1947  *
1948  * Re-parent clk to use parent as its new input source.  If clk is in
1949  * prepared state, the clk will get enabled for the duration of this call. If
1950  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1951  * that, the reparenting is glitchy in hardware, etc), use the
1952  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1953  *
1954  * After successfully changing clk's parent clk_set_parent will update the
1955  * clk topology, sysfs topology and propagate rate recalculation via
1956  * __clk_recalc_rates.
1957  *
1958  * Returns 0 on success, -EERROR otherwise.
1959  */
1960 int clk_set_parent(struct clk *clk, struct clk *parent)
1961 {
1962 	if (!clk)
1963 		return 0;
1964 
1965 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1966 }
1967 EXPORT_SYMBOL_GPL(clk_set_parent);
1968 
1969 /**
1970  * clk_set_phase - adjust the phase shift of a clock signal
1971  * @clk: clock signal source
1972  * @degrees: number of degrees the signal is shifted
1973  *
1974  * Shifts the phase of a clock signal by the specified
1975  * degrees. Returns 0 on success, -EERROR otherwise.
1976  *
1977  * This function makes no distinction about the input or reference
1978  * signal that we adjust the clock signal phase against. For example
1979  * phase locked-loop clock signal generators we may shift phase with
1980  * respect to feedback clock signal input, but for other cases the
1981  * clock phase may be shifted with respect to some other, unspecified
1982  * signal.
1983  *
1984  * Additionally the concept of phase shift does not propagate through
1985  * the clock tree hierarchy, which sets it apart from clock rates and
1986  * clock accuracy. A parent clock phase attribute does not have an
1987  * impact on the phase attribute of a child clock.
1988  */
1989 int clk_set_phase(struct clk *clk, int degrees)
1990 {
1991 	int ret = -EINVAL;
1992 
1993 	if (!clk)
1994 		return 0;
1995 
1996 	/* sanity check degrees */
1997 	degrees %= 360;
1998 	if (degrees < 0)
1999 		degrees += 360;
2000 
2001 	clk_prepare_lock();
2002 
2003 	trace_clk_set_phase(clk->core, degrees);
2004 
2005 	if (clk->core->ops->set_phase)
2006 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2007 
2008 	trace_clk_set_phase_complete(clk->core, degrees);
2009 
2010 	if (!ret)
2011 		clk->core->phase = degrees;
2012 
2013 	clk_prepare_unlock();
2014 
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(clk_set_phase);
2018 
2019 static int clk_core_get_phase(struct clk_core *core)
2020 {
2021 	int ret;
2022 
2023 	clk_prepare_lock();
2024 	ret = core->phase;
2025 	clk_prepare_unlock();
2026 
2027 	return ret;
2028 }
2029 
2030 /**
2031  * clk_get_phase - return the phase shift of a clock signal
2032  * @clk: clock signal source
2033  *
2034  * Returns the phase shift of a clock node in degrees, otherwise returns
2035  * -EERROR.
2036  */
2037 int clk_get_phase(struct clk *clk)
2038 {
2039 	if (!clk)
2040 		return 0;
2041 
2042 	return clk_core_get_phase(clk->core);
2043 }
2044 EXPORT_SYMBOL_GPL(clk_get_phase);
2045 
2046 /**
2047  * clk_is_match - check if two clk's point to the same hardware clock
2048  * @p: clk compared against q
2049  * @q: clk compared against p
2050  *
2051  * Returns true if the two struct clk pointers both point to the same hardware
2052  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2053  * share the same struct clk_core object.
2054  *
2055  * Returns false otherwise. Note that two NULL clks are treated as matching.
2056  */
2057 bool clk_is_match(const struct clk *p, const struct clk *q)
2058 {
2059 	/* trivial case: identical struct clk's or both NULL */
2060 	if (p == q)
2061 		return true;
2062 
2063 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2064 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2065 		if (p->core == q->core)
2066 			return true;
2067 
2068 	return false;
2069 }
2070 EXPORT_SYMBOL_GPL(clk_is_match);
2071 
2072 /***        debugfs support        ***/
2073 
2074 #ifdef CONFIG_DEBUG_FS
2075 #include <linux/debugfs.h>
2076 
2077 static struct dentry *rootdir;
2078 static int inited = 0;
2079 static DEFINE_MUTEX(clk_debug_lock);
2080 static HLIST_HEAD(clk_debug_list);
2081 
2082 static struct hlist_head *all_lists[] = {
2083 	&clk_root_list,
2084 	&clk_orphan_list,
2085 	NULL,
2086 };
2087 
2088 static struct hlist_head *orphan_list[] = {
2089 	&clk_orphan_list,
2090 	NULL,
2091 };
2092 
2093 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2094 				 int level)
2095 {
2096 	if (!c)
2097 		return;
2098 
2099 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
2100 		   level * 3 + 1, "",
2101 		   30 - level * 3, c->name,
2102 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
2103 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
2104 }
2105 
2106 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2107 				     int level)
2108 {
2109 	struct clk_core *child;
2110 
2111 	if (!c)
2112 		return;
2113 
2114 	clk_summary_show_one(s, c, level);
2115 
2116 	hlist_for_each_entry(child, &c->children, child_node)
2117 		clk_summary_show_subtree(s, child, level + 1);
2118 }
2119 
2120 static int clk_summary_show(struct seq_file *s, void *data)
2121 {
2122 	struct clk_core *c;
2123 	struct hlist_head **lists = (struct hlist_head **)s->private;
2124 
2125 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
2126 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2127 
2128 	clk_prepare_lock();
2129 
2130 	for (; *lists; lists++)
2131 		hlist_for_each_entry(c, *lists, child_node)
2132 			clk_summary_show_subtree(s, c, 0);
2133 
2134 	clk_prepare_unlock();
2135 
2136 	return 0;
2137 }
2138 
2139 
2140 static int clk_summary_open(struct inode *inode, struct file *file)
2141 {
2142 	return single_open(file, clk_summary_show, inode->i_private);
2143 }
2144 
2145 static const struct file_operations clk_summary_fops = {
2146 	.open		= clk_summary_open,
2147 	.read		= seq_read,
2148 	.llseek		= seq_lseek,
2149 	.release	= single_release,
2150 };
2151 
2152 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2153 {
2154 	if (!c)
2155 		return;
2156 
2157 	/* This should be JSON format, i.e. elements separated with a comma */
2158 	seq_printf(s, "\"%s\": { ", c->name);
2159 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2160 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2161 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2162 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2163 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2164 }
2165 
2166 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2167 {
2168 	struct clk_core *child;
2169 
2170 	if (!c)
2171 		return;
2172 
2173 	clk_dump_one(s, c, level);
2174 
2175 	hlist_for_each_entry(child, &c->children, child_node) {
2176 		seq_putc(s, ',');
2177 		clk_dump_subtree(s, child, level + 1);
2178 	}
2179 
2180 	seq_putc(s, '}');
2181 }
2182 
2183 static int clk_dump(struct seq_file *s, void *data)
2184 {
2185 	struct clk_core *c;
2186 	bool first_node = true;
2187 	struct hlist_head **lists = (struct hlist_head **)s->private;
2188 
2189 	seq_putc(s, '{');
2190 	clk_prepare_lock();
2191 
2192 	for (; *lists; lists++) {
2193 		hlist_for_each_entry(c, *lists, child_node) {
2194 			if (!first_node)
2195 				seq_putc(s, ',');
2196 			first_node = false;
2197 			clk_dump_subtree(s, c, 0);
2198 		}
2199 	}
2200 
2201 	clk_prepare_unlock();
2202 
2203 	seq_puts(s, "}\n");
2204 	return 0;
2205 }
2206 
2207 
2208 static int clk_dump_open(struct inode *inode, struct file *file)
2209 {
2210 	return single_open(file, clk_dump, inode->i_private);
2211 }
2212 
2213 static const struct file_operations clk_dump_fops = {
2214 	.open		= clk_dump_open,
2215 	.read		= seq_read,
2216 	.llseek		= seq_lseek,
2217 	.release	= single_release,
2218 };
2219 
2220 static int possible_parents_dump(struct seq_file *s, void *data)
2221 {
2222 	struct clk_core *core = s->private;
2223 	int i;
2224 
2225 	for (i = 0; i < core->num_parents - 1; i++)
2226 		seq_printf(s, "%s ", core->parent_names[i]);
2227 
2228 	seq_printf(s, "%s\n", core->parent_names[i]);
2229 
2230 	return 0;
2231 }
2232 
2233 static int possible_parents_open(struct inode *inode, struct file *file)
2234 {
2235 	return single_open(file, possible_parents_dump, inode->i_private);
2236 }
2237 
2238 static const struct file_operations possible_parents_fops = {
2239 	.open		= possible_parents_open,
2240 	.read		= seq_read,
2241 	.llseek		= seq_lseek,
2242 	.release	= single_release,
2243 };
2244 
2245 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2246 {
2247 	struct dentry *d;
2248 	int ret = -ENOMEM;
2249 
2250 	if (!core || !pdentry) {
2251 		ret = -EINVAL;
2252 		goto out;
2253 	}
2254 
2255 	d = debugfs_create_dir(core->name, pdentry);
2256 	if (!d)
2257 		goto out;
2258 
2259 	core->dentry = d;
2260 
2261 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2262 			(u32 *)&core->rate);
2263 	if (!d)
2264 		goto err_out;
2265 
2266 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2267 			(u32 *)&core->accuracy);
2268 	if (!d)
2269 		goto err_out;
2270 
2271 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2272 			(u32 *)&core->phase);
2273 	if (!d)
2274 		goto err_out;
2275 
2276 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2277 			(u32 *)&core->flags);
2278 	if (!d)
2279 		goto err_out;
2280 
2281 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2282 			(u32 *)&core->prepare_count);
2283 	if (!d)
2284 		goto err_out;
2285 
2286 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2287 			(u32 *)&core->enable_count);
2288 	if (!d)
2289 		goto err_out;
2290 
2291 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2292 			(u32 *)&core->notifier_count);
2293 	if (!d)
2294 		goto err_out;
2295 
2296 	if (core->num_parents > 1) {
2297 		d = debugfs_create_file("clk_possible_parents", S_IRUGO,
2298 				core->dentry, core, &possible_parents_fops);
2299 		if (!d)
2300 			goto err_out;
2301 	}
2302 
2303 	if (core->ops->debug_init) {
2304 		ret = core->ops->debug_init(core->hw, core->dentry);
2305 		if (ret)
2306 			goto err_out;
2307 	}
2308 
2309 	ret = 0;
2310 	goto out;
2311 
2312 err_out:
2313 	debugfs_remove_recursive(core->dentry);
2314 	core->dentry = NULL;
2315 out:
2316 	return ret;
2317 }
2318 
2319 /**
2320  * clk_debug_register - add a clk node to the debugfs clk directory
2321  * @core: the clk being added to the debugfs clk directory
2322  *
2323  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2324  * initialized.  Otherwise it bails out early since the debugfs clk directory
2325  * will be created lazily by clk_debug_init as part of a late_initcall.
2326  */
2327 static int clk_debug_register(struct clk_core *core)
2328 {
2329 	int ret = 0;
2330 
2331 	mutex_lock(&clk_debug_lock);
2332 	hlist_add_head(&core->debug_node, &clk_debug_list);
2333 
2334 	if (!inited)
2335 		goto unlock;
2336 
2337 	ret = clk_debug_create_one(core, rootdir);
2338 unlock:
2339 	mutex_unlock(&clk_debug_lock);
2340 
2341 	return ret;
2342 }
2343 
2344  /**
2345  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2346  * @core: the clk being removed from the debugfs clk directory
2347  *
2348  * Dynamically removes a clk and all its child nodes from the
2349  * debugfs clk directory if clk->dentry points to debugfs created by
2350  * clk_debug_register in __clk_core_init.
2351  */
2352 static void clk_debug_unregister(struct clk_core *core)
2353 {
2354 	mutex_lock(&clk_debug_lock);
2355 	hlist_del_init(&core->debug_node);
2356 	debugfs_remove_recursive(core->dentry);
2357 	core->dentry = NULL;
2358 	mutex_unlock(&clk_debug_lock);
2359 }
2360 
2361 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2362 				void *data, const struct file_operations *fops)
2363 {
2364 	struct dentry *d = NULL;
2365 
2366 	if (hw->core->dentry)
2367 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2368 					fops);
2369 
2370 	return d;
2371 }
2372 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2373 
2374 /**
2375  * clk_debug_init - lazily populate the debugfs clk directory
2376  *
2377  * clks are often initialized very early during boot before memory can be
2378  * dynamically allocated and well before debugfs is setup. This function
2379  * populates the debugfs clk directory once at boot-time when we know that
2380  * debugfs is setup. It should only be called once at boot-time, all other clks
2381  * added dynamically will be done so with clk_debug_register.
2382  */
2383 static int __init clk_debug_init(void)
2384 {
2385 	struct clk_core *core;
2386 	struct dentry *d;
2387 
2388 	rootdir = debugfs_create_dir("clk", NULL);
2389 
2390 	if (!rootdir)
2391 		return -ENOMEM;
2392 
2393 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2394 				&clk_summary_fops);
2395 	if (!d)
2396 		return -ENOMEM;
2397 
2398 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2399 				&clk_dump_fops);
2400 	if (!d)
2401 		return -ENOMEM;
2402 
2403 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2404 				&orphan_list, &clk_summary_fops);
2405 	if (!d)
2406 		return -ENOMEM;
2407 
2408 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2409 				&orphan_list, &clk_dump_fops);
2410 	if (!d)
2411 		return -ENOMEM;
2412 
2413 	mutex_lock(&clk_debug_lock);
2414 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2415 		clk_debug_create_one(core, rootdir);
2416 
2417 	inited = 1;
2418 	mutex_unlock(&clk_debug_lock);
2419 
2420 	return 0;
2421 }
2422 late_initcall(clk_debug_init);
2423 #else
2424 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2425 static inline void clk_debug_reparent(struct clk_core *core,
2426 				      struct clk_core *new_parent)
2427 {
2428 }
2429 static inline void clk_debug_unregister(struct clk_core *core)
2430 {
2431 }
2432 #endif
2433 
2434 /**
2435  * __clk_core_init - initialize the data structures in a struct clk_core
2436  * @core:	clk_core being initialized
2437  *
2438  * Initializes the lists in struct clk_core, queries the hardware for the
2439  * parent and rate and sets them both.
2440  */
2441 static int __clk_core_init(struct clk_core *core)
2442 {
2443 	int i, ret;
2444 	struct clk_core *orphan;
2445 	struct hlist_node *tmp2;
2446 	unsigned long rate;
2447 
2448 	if (!core)
2449 		return -EINVAL;
2450 
2451 	clk_prepare_lock();
2452 
2453 	ret = clk_pm_runtime_get(core);
2454 	if (ret)
2455 		goto unlock;
2456 
2457 	/* check to see if a clock with this name is already registered */
2458 	if (clk_core_lookup(core->name)) {
2459 		pr_debug("%s: clk %s already initialized\n",
2460 				__func__, core->name);
2461 		ret = -EEXIST;
2462 		goto out;
2463 	}
2464 
2465 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2466 	if (core->ops->set_rate &&
2467 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2468 	      core->ops->recalc_rate)) {
2469 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2470 		       __func__, core->name);
2471 		ret = -EINVAL;
2472 		goto out;
2473 	}
2474 
2475 	if (core->ops->set_parent && !core->ops->get_parent) {
2476 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2477 		       __func__, core->name);
2478 		ret = -EINVAL;
2479 		goto out;
2480 	}
2481 
2482 	if (core->num_parents > 1 && !core->ops->get_parent) {
2483 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2484 		       __func__, core->name);
2485 		ret = -EINVAL;
2486 		goto out;
2487 	}
2488 
2489 	if (core->ops->set_rate_and_parent &&
2490 			!(core->ops->set_parent && core->ops->set_rate)) {
2491 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2492 				__func__, core->name);
2493 		ret = -EINVAL;
2494 		goto out;
2495 	}
2496 
2497 	/* throw a WARN if any entries in parent_names are NULL */
2498 	for (i = 0; i < core->num_parents; i++)
2499 		WARN(!core->parent_names[i],
2500 				"%s: invalid NULL in %s's .parent_names\n",
2501 				__func__, core->name);
2502 
2503 	core->parent = __clk_init_parent(core);
2504 
2505 	/*
2506 	 * Populate core->parent if parent has already been clk_core_init'd. If
2507 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2508 	 * list.  If clk doesn't have any parents then place it in the root
2509 	 * clk list.
2510 	 *
2511 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2512 	 * clocks and re-parent any that are children of the clock currently
2513 	 * being clk_init'd.
2514 	 */
2515 	if (core->parent) {
2516 		hlist_add_head(&core->child_node,
2517 				&core->parent->children);
2518 		core->orphan = core->parent->orphan;
2519 	} else if (!core->num_parents) {
2520 		hlist_add_head(&core->child_node, &clk_root_list);
2521 		core->orphan = false;
2522 	} else {
2523 		hlist_add_head(&core->child_node, &clk_orphan_list);
2524 		core->orphan = true;
2525 	}
2526 
2527 	/*
2528 	 * Set clk's accuracy.  The preferred method is to use
2529 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2530 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2531 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2532 	 * clock).
2533 	 */
2534 	if (core->ops->recalc_accuracy)
2535 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2536 					__clk_get_accuracy(core->parent));
2537 	else if (core->parent)
2538 		core->accuracy = core->parent->accuracy;
2539 	else
2540 		core->accuracy = 0;
2541 
2542 	/*
2543 	 * Set clk's phase.
2544 	 * Since a phase is by definition relative to its parent, just
2545 	 * query the current clock phase, or just assume it's in phase.
2546 	 */
2547 	if (core->ops->get_phase)
2548 		core->phase = core->ops->get_phase(core->hw);
2549 	else
2550 		core->phase = 0;
2551 
2552 	/*
2553 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2554 	 * simple clocks and lazy developers the default fallback is to use the
2555 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2556 	 * then rate is set to zero.
2557 	 */
2558 	if (core->ops->recalc_rate)
2559 		rate = core->ops->recalc_rate(core->hw,
2560 				clk_core_get_rate_nolock(core->parent));
2561 	else if (core->parent)
2562 		rate = core->parent->rate;
2563 	else
2564 		rate = 0;
2565 	core->rate = core->req_rate = rate;
2566 
2567 	/*
2568 	 * walk the list of orphan clocks and reparent any that newly finds a
2569 	 * parent.
2570 	 */
2571 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2572 		struct clk_core *parent = __clk_init_parent(orphan);
2573 
2574 		/*
2575 		 * we could call __clk_set_parent, but that would result in a
2576 		 * redundant call to the .set_rate op, if it exists
2577 		 */
2578 		if (parent) {
2579 			__clk_set_parent_before(orphan, parent);
2580 			__clk_set_parent_after(orphan, parent, NULL);
2581 			__clk_recalc_accuracies(orphan);
2582 			__clk_recalc_rates(orphan, 0);
2583 		}
2584 	}
2585 
2586 	/*
2587 	 * optional platform-specific magic
2588 	 *
2589 	 * The .init callback is not used by any of the basic clock types, but
2590 	 * exists for weird hardware that must perform initialization magic.
2591 	 * Please consider other ways of solving initialization problems before
2592 	 * using this callback, as its use is discouraged.
2593 	 */
2594 	if (core->ops->init)
2595 		core->ops->init(core->hw);
2596 
2597 	if (core->flags & CLK_IS_CRITICAL) {
2598 		unsigned long flags;
2599 
2600 		clk_core_prepare(core);
2601 
2602 		flags = clk_enable_lock();
2603 		clk_core_enable(core);
2604 		clk_enable_unlock(flags);
2605 	}
2606 
2607 	kref_init(&core->ref);
2608 out:
2609 	clk_pm_runtime_put(core);
2610 unlock:
2611 	clk_prepare_unlock();
2612 
2613 	if (!ret)
2614 		clk_debug_register(core);
2615 
2616 	return ret;
2617 }
2618 
2619 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2620 			     const char *con_id)
2621 {
2622 	struct clk *clk;
2623 
2624 	/* This is to allow this function to be chained to others */
2625 	if (IS_ERR_OR_NULL(hw))
2626 		return ERR_CAST(hw);
2627 
2628 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2629 	if (!clk)
2630 		return ERR_PTR(-ENOMEM);
2631 
2632 	clk->core = hw->core;
2633 	clk->dev_id = dev_id;
2634 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2635 	clk->max_rate = ULONG_MAX;
2636 
2637 	clk_prepare_lock();
2638 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2639 	clk_prepare_unlock();
2640 
2641 	return clk;
2642 }
2643 
2644 void __clk_free_clk(struct clk *clk)
2645 {
2646 	clk_prepare_lock();
2647 	hlist_del(&clk->clks_node);
2648 	clk_prepare_unlock();
2649 
2650 	kfree_const(clk->con_id);
2651 	kfree(clk);
2652 }
2653 
2654 /**
2655  * clk_register - allocate a new clock, register it and return an opaque cookie
2656  * @dev: device that is registering this clock
2657  * @hw: link to hardware-specific clock data
2658  *
2659  * clk_register is the primary interface for populating the clock tree with new
2660  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2661  * cannot be dereferenced by driver code but may be used in conjunction with the
2662  * rest of the clock API.  In the event of an error clk_register will return an
2663  * error code; drivers must test for an error code after calling clk_register.
2664  */
2665 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2666 {
2667 	int i, ret;
2668 	struct clk_core *core;
2669 
2670 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2671 	if (!core) {
2672 		ret = -ENOMEM;
2673 		goto fail_out;
2674 	}
2675 
2676 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2677 	if (!core->name) {
2678 		ret = -ENOMEM;
2679 		goto fail_name;
2680 	}
2681 	core->ops = hw->init->ops;
2682 	if (dev && pm_runtime_enabled(dev))
2683 		core->dev = dev;
2684 	if (dev && dev->driver)
2685 		core->owner = dev->driver->owner;
2686 	core->hw = hw;
2687 	core->flags = hw->init->flags;
2688 	core->num_parents = hw->init->num_parents;
2689 	core->min_rate = 0;
2690 	core->max_rate = ULONG_MAX;
2691 	hw->core = core;
2692 
2693 	/* allocate local copy in case parent_names is __initdata */
2694 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2695 					GFP_KERNEL);
2696 
2697 	if (!core->parent_names) {
2698 		ret = -ENOMEM;
2699 		goto fail_parent_names;
2700 	}
2701 
2702 
2703 	/* copy each string name in case parent_names is __initdata */
2704 	for (i = 0; i < core->num_parents; i++) {
2705 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2706 						GFP_KERNEL);
2707 		if (!core->parent_names[i]) {
2708 			ret = -ENOMEM;
2709 			goto fail_parent_names_copy;
2710 		}
2711 	}
2712 
2713 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2714 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2715 				GFP_KERNEL);
2716 	if (!core->parents) {
2717 		ret = -ENOMEM;
2718 		goto fail_parents;
2719 	};
2720 
2721 	INIT_HLIST_HEAD(&core->clks);
2722 
2723 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2724 	if (IS_ERR(hw->clk)) {
2725 		ret = PTR_ERR(hw->clk);
2726 		goto fail_parents;
2727 	}
2728 
2729 	ret = __clk_core_init(core);
2730 	if (!ret)
2731 		return hw->clk;
2732 
2733 	__clk_free_clk(hw->clk);
2734 	hw->clk = NULL;
2735 
2736 fail_parents:
2737 	kfree(core->parents);
2738 fail_parent_names_copy:
2739 	while (--i >= 0)
2740 		kfree_const(core->parent_names[i]);
2741 	kfree(core->parent_names);
2742 fail_parent_names:
2743 	kfree_const(core->name);
2744 fail_name:
2745 	kfree(core);
2746 fail_out:
2747 	return ERR_PTR(ret);
2748 }
2749 EXPORT_SYMBOL_GPL(clk_register);
2750 
2751 /**
2752  * clk_hw_register - register a clk_hw and return an error code
2753  * @dev: device that is registering this clock
2754  * @hw: link to hardware-specific clock data
2755  *
2756  * clk_hw_register is the primary interface for populating the clock tree with
2757  * new clock nodes. It returns an integer equal to zero indicating success or
2758  * less than zero indicating failure. Drivers must test for an error code after
2759  * calling clk_hw_register().
2760  */
2761 int clk_hw_register(struct device *dev, struct clk_hw *hw)
2762 {
2763 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
2764 }
2765 EXPORT_SYMBOL_GPL(clk_hw_register);
2766 
2767 /* Free memory allocated for a clock. */
2768 static void __clk_release(struct kref *ref)
2769 {
2770 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2771 	int i = core->num_parents;
2772 
2773 	lockdep_assert_held(&prepare_lock);
2774 
2775 	kfree(core->parents);
2776 	while (--i >= 0)
2777 		kfree_const(core->parent_names[i]);
2778 
2779 	kfree(core->parent_names);
2780 	kfree_const(core->name);
2781 	kfree(core);
2782 }
2783 
2784 /*
2785  * Empty clk_ops for unregistered clocks. These are used temporarily
2786  * after clk_unregister() was called on a clock and until last clock
2787  * consumer calls clk_put() and the struct clk object is freed.
2788  */
2789 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2790 {
2791 	return -ENXIO;
2792 }
2793 
2794 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2795 {
2796 	WARN_ON_ONCE(1);
2797 }
2798 
2799 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2800 					unsigned long parent_rate)
2801 {
2802 	return -ENXIO;
2803 }
2804 
2805 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2806 {
2807 	return -ENXIO;
2808 }
2809 
2810 static const struct clk_ops clk_nodrv_ops = {
2811 	.enable		= clk_nodrv_prepare_enable,
2812 	.disable	= clk_nodrv_disable_unprepare,
2813 	.prepare	= clk_nodrv_prepare_enable,
2814 	.unprepare	= clk_nodrv_disable_unprepare,
2815 	.set_rate	= clk_nodrv_set_rate,
2816 	.set_parent	= clk_nodrv_set_parent,
2817 };
2818 
2819 /**
2820  * clk_unregister - unregister a currently registered clock
2821  * @clk: clock to unregister
2822  */
2823 void clk_unregister(struct clk *clk)
2824 {
2825 	unsigned long flags;
2826 
2827 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2828 		return;
2829 
2830 	clk_debug_unregister(clk->core);
2831 
2832 	clk_prepare_lock();
2833 
2834 	if (clk->core->ops == &clk_nodrv_ops) {
2835 		pr_err("%s: unregistered clock: %s\n", __func__,
2836 		       clk->core->name);
2837 		goto unlock;
2838 	}
2839 	/*
2840 	 * Assign empty clock ops for consumers that might still hold
2841 	 * a reference to this clock.
2842 	 */
2843 	flags = clk_enable_lock();
2844 	clk->core->ops = &clk_nodrv_ops;
2845 	clk_enable_unlock(flags);
2846 
2847 	if (!hlist_empty(&clk->core->children)) {
2848 		struct clk_core *child;
2849 		struct hlist_node *t;
2850 
2851 		/* Reparent all children to the orphan list. */
2852 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2853 					  child_node)
2854 			clk_core_set_parent(child, NULL);
2855 	}
2856 
2857 	hlist_del_init(&clk->core->child_node);
2858 
2859 	if (clk->core->prepare_count)
2860 		pr_warn("%s: unregistering prepared clock: %s\n",
2861 					__func__, clk->core->name);
2862 	kref_put(&clk->core->ref, __clk_release);
2863 unlock:
2864 	clk_prepare_unlock();
2865 }
2866 EXPORT_SYMBOL_GPL(clk_unregister);
2867 
2868 /**
2869  * clk_hw_unregister - unregister a currently registered clk_hw
2870  * @hw: hardware-specific clock data to unregister
2871  */
2872 void clk_hw_unregister(struct clk_hw *hw)
2873 {
2874 	clk_unregister(hw->clk);
2875 }
2876 EXPORT_SYMBOL_GPL(clk_hw_unregister);
2877 
2878 static void devm_clk_release(struct device *dev, void *res)
2879 {
2880 	clk_unregister(*(struct clk **)res);
2881 }
2882 
2883 static void devm_clk_hw_release(struct device *dev, void *res)
2884 {
2885 	clk_hw_unregister(*(struct clk_hw **)res);
2886 }
2887 
2888 /**
2889  * devm_clk_register - resource managed clk_register()
2890  * @dev: device that is registering this clock
2891  * @hw: link to hardware-specific clock data
2892  *
2893  * Managed clk_register(). Clocks returned from this function are
2894  * automatically clk_unregister()ed on driver detach. See clk_register() for
2895  * more information.
2896  */
2897 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2898 {
2899 	struct clk *clk;
2900 	struct clk **clkp;
2901 
2902 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2903 	if (!clkp)
2904 		return ERR_PTR(-ENOMEM);
2905 
2906 	clk = clk_register(dev, hw);
2907 	if (!IS_ERR(clk)) {
2908 		*clkp = clk;
2909 		devres_add(dev, clkp);
2910 	} else {
2911 		devres_free(clkp);
2912 	}
2913 
2914 	return clk;
2915 }
2916 EXPORT_SYMBOL_GPL(devm_clk_register);
2917 
2918 /**
2919  * devm_clk_hw_register - resource managed clk_hw_register()
2920  * @dev: device that is registering this clock
2921  * @hw: link to hardware-specific clock data
2922  *
2923  * Managed clk_hw_register(). Clocks registered by this function are
2924  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
2925  * for more information.
2926  */
2927 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
2928 {
2929 	struct clk_hw **hwp;
2930 	int ret;
2931 
2932 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
2933 	if (!hwp)
2934 		return -ENOMEM;
2935 
2936 	ret = clk_hw_register(dev, hw);
2937 	if (!ret) {
2938 		*hwp = hw;
2939 		devres_add(dev, hwp);
2940 	} else {
2941 		devres_free(hwp);
2942 	}
2943 
2944 	return ret;
2945 }
2946 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
2947 
2948 static int devm_clk_match(struct device *dev, void *res, void *data)
2949 {
2950 	struct clk *c = res;
2951 	if (WARN_ON(!c))
2952 		return 0;
2953 	return c == data;
2954 }
2955 
2956 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
2957 {
2958 	struct clk_hw *hw = res;
2959 
2960 	if (WARN_ON(!hw))
2961 		return 0;
2962 	return hw == data;
2963 }
2964 
2965 /**
2966  * devm_clk_unregister - resource managed clk_unregister()
2967  * @clk: clock to unregister
2968  *
2969  * Deallocate a clock allocated with devm_clk_register(). Normally
2970  * this function will not need to be called and the resource management
2971  * code will ensure that the resource is freed.
2972  */
2973 void devm_clk_unregister(struct device *dev, struct clk *clk)
2974 {
2975 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2976 }
2977 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2978 
2979 /**
2980  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
2981  * @dev: device that is unregistering the hardware-specific clock data
2982  * @hw: link to hardware-specific clock data
2983  *
2984  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
2985  * this function will not need to be called and the resource management
2986  * code will ensure that the resource is freed.
2987  */
2988 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
2989 {
2990 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
2991 				hw));
2992 }
2993 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
2994 
2995 /*
2996  * clkdev helpers
2997  */
2998 int __clk_get(struct clk *clk)
2999 {
3000 	struct clk_core *core = !clk ? NULL : clk->core;
3001 
3002 	if (core) {
3003 		if (!try_module_get(core->owner))
3004 			return 0;
3005 
3006 		kref_get(&core->ref);
3007 	}
3008 	return 1;
3009 }
3010 
3011 void __clk_put(struct clk *clk)
3012 {
3013 	struct module *owner;
3014 
3015 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3016 		return;
3017 
3018 	clk_prepare_lock();
3019 
3020 	hlist_del(&clk->clks_node);
3021 	if (clk->min_rate > clk->core->req_rate ||
3022 	    clk->max_rate < clk->core->req_rate)
3023 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3024 
3025 	owner = clk->core->owner;
3026 	kref_put(&clk->core->ref, __clk_release);
3027 
3028 	clk_prepare_unlock();
3029 
3030 	module_put(owner);
3031 
3032 	kfree(clk);
3033 }
3034 
3035 /***        clk rate change notifiers        ***/
3036 
3037 /**
3038  * clk_notifier_register - add a clk rate change notifier
3039  * @clk: struct clk * to watch
3040  * @nb: struct notifier_block * with callback info
3041  *
3042  * Request notification when clk's rate changes.  This uses an SRCU
3043  * notifier because we want it to block and notifier unregistrations are
3044  * uncommon.  The callbacks associated with the notifier must not
3045  * re-enter into the clk framework by calling any top-level clk APIs;
3046  * this will cause a nested prepare_lock mutex.
3047  *
3048  * In all notification cases (pre, post and abort rate change) the original
3049  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3050  * and the new frequency is passed via struct clk_notifier_data.new_rate.
3051  *
3052  * clk_notifier_register() must be called from non-atomic context.
3053  * Returns -EINVAL if called with null arguments, -ENOMEM upon
3054  * allocation failure; otherwise, passes along the return value of
3055  * srcu_notifier_chain_register().
3056  */
3057 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3058 {
3059 	struct clk_notifier *cn;
3060 	int ret = -ENOMEM;
3061 
3062 	if (!clk || !nb)
3063 		return -EINVAL;
3064 
3065 	clk_prepare_lock();
3066 
3067 	/* search the list of notifiers for this clk */
3068 	list_for_each_entry(cn, &clk_notifier_list, node)
3069 		if (cn->clk == clk)
3070 			break;
3071 
3072 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3073 	if (cn->clk != clk) {
3074 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3075 		if (!cn)
3076 			goto out;
3077 
3078 		cn->clk = clk;
3079 		srcu_init_notifier_head(&cn->notifier_head);
3080 
3081 		list_add(&cn->node, &clk_notifier_list);
3082 	}
3083 
3084 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3085 
3086 	clk->core->notifier_count++;
3087 
3088 out:
3089 	clk_prepare_unlock();
3090 
3091 	return ret;
3092 }
3093 EXPORT_SYMBOL_GPL(clk_notifier_register);
3094 
3095 /**
3096  * clk_notifier_unregister - remove a clk rate change notifier
3097  * @clk: struct clk *
3098  * @nb: struct notifier_block * with callback info
3099  *
3100  * Request no further notification for changes to 'clk' and frees memory
3101  * allocated in clk_notifier_register.
3102  *
3103  * Returns -EINVAL if called with null arguments; otherwise, passes
3104  * along the return value of srcu_notifier_chain_unregister().
3105  */
3106 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3107 {
3108 	struct clk_notifier *cn = NULL;
3109 	int ret = -EINVAL;
3110 
3111 	if (!clk || !nb)
3112 		return -EINVAL;
3113 
3114 	clk_prepare_lock();
3115 
3116 	list_for_each_entry(cn, &clk_notifier_list, node)
3117 		if (cn->clk == clk)
3118 			break;
3119 
3120 	if (cn->clk == clk) {
3121 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3122 
3123 		clk->core->notifier_count--;
3124 
3125 		/* XXX the notifier code should handle this better */
3126 		if (!cn->notifier_head.head) {
3127 			srcu_cleanup_notifier_head(&cn->notifier_head);
3128 			list_del(&cn->node);
3129 			kfree(cn);
3130 		}
3131 
3132 	} else {
3133 		ret = -ENOENT;
3134 	}
3135 
3136 	clk_prepare_unlock();
3137 
3138 	return ret;
3139 }
3140 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3141 
3142 #ifdef CONFIG_OF
3143 /**
3144  * struct of_clk_provider - Clock provider registration structure
3145  * @link: Entry in global list of clock providers
3146  * @node: Pointer to device tree node of clock provider
3147  * @get: Get clock callback.  Returns NULL or a struct clk for the
3148  *       given clock specifier
3149  * @data: context pointer to be passed into @get callback
3150  */
3151 struct of_clk_provider {
3152 	struct list_head link;
3153 
3154 	struct device_node *node;
3155 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3156 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3157 	void *data;
3158 };
3159 
3160 static const struct of_device_id __clk_of_table_sentinel
3161 	__used __section(__clk_of_table_end);
3162 
3163 static LIST_HEAD(of_clk_providers);
3164 static DEFINE_MUTEX(of_clk_mutex);
3165 
3166 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3167 				     void *data)
3168 {
3169 	return data;
3170 }
3171 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3172 
3173 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3174 {
3175 	return data;
3176 }
3177 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3178 
3179 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3180 {
3181 	struct clk_onecell_data *clk_data = data;
3182 	unsigned int idx = clkspec->args[0];
3183 
3184 	if (idx >= clk_data->clk_num) {
3185 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3186 		return ERR_PTR(-EINVAL);
3187 	}
3188 
3189 	return clk_data->clks[idx];
3190 }
3191 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3192 
3193 struct clk_hw *
3194 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3195 {
3196 	struct clk_hw_onecell_data *hw_data = data;
3197 	unsigned int idx = clkspec->args[0];
3198 
3199 	if (idx >= hw_data->num) {
3200 		pr_err("%s: invalid index %u\n", __func__, idx);
3201 		return ERR_PTR(-EINVAL);
3202 	}
3203 
3204 	return hw_data->hws[idx];
3205 }
3206 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3207 
3208 /**
3209  * of_clk_add_provider() - Register a clock provider for a node
3210  * @np: Device node pointer associated with clock provider
3211  * @clk_src_get: callback for decoding clock
3212  * @data: context pointer for @clk_src_get callback.
3213  */
3214 int of_clk_add_provider(struct device_node *np,
3215 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3216 						   void *data),
3217 			void *data)
3218 {
3219 	struct of_clk_provider *cp;
3220 	int ret;
3221 
3222 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3223 	if (!cp)
3224 		return -ENOMEM;
3225 
3226 	cp->node = of_node_get(np);
3227 	cp->data = data;
3228 	cp->get = clk_src_get;
3229 
3230 	mutex_lock(&of_clk_mutex);
3231 	list_add(&cp->link, &of_clk_providers);
3232 	mutex_unlock(&of_clk_mutex);
3233 	pr_debug("Added clock from %pOF\n", np);
3234 
3235 	ret = of_clk_set_defaults(np, true);
3236 	if (ret < 0)
3237 		of_clk_del_provider(np);
3238 
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3242 
3243 /**
3244  * of_clk_add_hw_provider() - Register a clock provider for a node
3245  * @np: Device node pointer associated with clock provider
3246  * @get: callback for decoding clk_hw
3247  * @data: context pointer for @get callback.
3248  */
3249 int of_clk_add_hw_provider(struct device_node *np,
3250 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3251 						 void *data),
3252 			   void *data)
3253 {
3254 	struct of_clk_provider *cp;
3255 	int ret;
3256 
3257 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3258 	if (!cp)
3259 		return -ENOMEM;
3260 
3261 	cp->node = of_node_get(np);
3262 	cp->data = data;
3263 	cp->get_hw = get;
3264 
3265 	mutex_lock(&of_clk_mutex);
3266 	list_add(&cp->link, &of_clk_providers);
3267 	mutex_unlock(&of_clk_mutex);
3268 	pr_debug("Added clk_hw provider from %pOF\n", np);
3269 
3270 	ret = of_clk_set_defaults(np, true);
3271 	if (ret < 0)
3272 		of_clk_del_provider(np);
3273 
3274 	return ret;
3275 }
3276 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3277 
3278 static void devm_of_clk_release_provider(struct device *dev, void *res)
3279 {
3280 	of_clk_del_provider(*(struct device_node **)res);
3281 }
3282 
3283 int devm_of_clk_add_hw_provider(struct device *dev,
3284 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3285 					      void *data),
3286 			void *data)
3287 {
3288 	struct device_node **ptr, *np;
3289 	int ret;
3290 
3291 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3292 			   GFP_KERNEL);
3293 	if (!ptr)
3294 		return -ENOMEM;
3295 
3296 	np = dev->of_node;
3297 	ret = of_clk_add_hw_provider(np, get, data);
3298 	if (!ret) {
3299 		*ptr = np;
3300 		devres_add(dev, ptr);
3301 	} else {
3302 		devres_free(ptr);
3303 	}
3304 
3305 	return ret;
3306 }
3307 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3308 
3309 /**
3310  * of_clk_del_provider() - Remove a previously registered clock provider
3311  * @np: Device node pointer associated with clock provider
3312  */
3313 void of_clk_del_provider(struct device_node *np)
3314 {
3315 	struct of_clk_provider *cp;
3316 
3317 	mutex_lock(&of_clk_mutex);
3318 	list_for_each_entry(cp, &of_clk_providers, link) {
3319 		if (cp->node == np) {
3320 			list_del(&cp->link);
3321 			of_node_put(cp->node);
3322 			kfree(cp);
3323 			break;
3324 		}
3325 	}
3326 	mutex_unlock(&of_clk_mutex);
3327 }
3328 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3329 
3330 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3331 {
3332 	struct device_node **np = res;
3333 
3334 	if (WARN_ON(!np || !*np))
3335 		return 0;
3336 
3337 	return *np == data;
3338 }
3339 
3340 void devm_of_clk_del_provider(struct device *dev)
3341 {
3342 	int ret;
3343 
3344 	ret = devres_release(dev, devm_of_clk_release_provider,
3345 			     devm_clk_provider_match, dev->of_node);
3346 
3347 	WARN_ON(ret);
3348 }
3349 EXPORT_SYMBOL(devm_of_clk_del_provider);
3350 
3351 static struct clk_hw *
3352 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3353 			      struct of_phandle_args *clkspec)
3354 {
3355 	struct clk *clk;
3356 
3357 	if (provider->get_hw)
3358 		return provider->get_hw(clkspec, provider->data);
3359 
3360 	clk = provider->get(clkspec, provider->data);
3361 	if (IS_ERR(clk))
3362 		return ERR_CAST(clk);
3363 	return __clk_get_hw(clk);
3364 }
3365 
3366 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3367 				       const char *dev_id, const char *con_id)
3368 {
3369 	struct of_clk_provider *provider;
3370 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3371 	struct clk_hw *hw;
3372 
3373 	if (!clkspec)
3374 		return ERR_PTR(-EINVAL);
3375 
3376 	/* Check if we have such a provider in our array */
3377 	mutex_lock(&of_clk_mutex);
3378 	list_for_each_entry(provider, &of_clk_providers, link) {
3379 		if (provider->node == clkspec->np) {
3380 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3381 			clk = __clk_create_clk(hw, dev_id, con_id);
3382 		}
3383 
3384 		if (!IS_ERR(clk)) {
3385 			if (!__clk_get(clk)) {
3386 				__clk_free_clk(clk);
3387 				clk = ERR_PTR(-ENOENT);
3388 			}
3389 
3390 			break;
3391 		}
3392 	}
3393 	mutex_unlock(&of_clk_mutex);
3394 
3395 	return clk;
3396 }
3397 
3398 /**
3399  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3400  * @clkspec: pointer to a clock specifier data structure
3401  *
3402  * This function looks up a struct clk from the registered list of clock
3403  * providers, an input is a clock specifier data structure as returned
3404  * from the of_parse_phandle_with_args() function call.
3405  */
3406 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3407 {
3408 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3409 }
3410 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3411 
3412 /**
3413  * of_clk_get_parent_count() - Count the number of clocks a device node has
3414  * @np: device node to count
3415  *
3416  * Returns: The number of clocks that are possible parents of this node
3417  */
3418 unsigned int of_clk_get_parent_count(struct device_node *np)
3419 {
3420 	int count;
3421 
3422 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3423 	if (count < 0)
3424 		return 0;
3425 
3426 	return count;
3427 }
3428 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3429 
3430 const char *of_clk_get_parent_name(struct device_node *np, int index)
3431 {
3432 	struct of_phandle_args clkspec;
3433 	struct property *prop;
3434 	const char *clk_name;
3435 	const __be32 *vp;
3436 	u32 pv;
3437 	int rc;
3438 	int count;
3439 	struct clk *clk;
3440 
3441 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3442 					&clkspec);
3443 	if (rc)
3444 		return NULL;
3445 
3446 	index = clkspec.args_count ? clkspec.args[0] : 0;
3447 	count = 0;
3448 
3449 	/* if there is an indices property, use it to transfer the index
3450 	 * specified into an array offset for the clock-output-names property.
3451 	 */
3452 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3453 		if (index == pv) {
3454 			index = count;
3455 			break;
3456 		}
3457 		count++;
3458 	}
3459 	/* We went off the end of 'clock-indices' without finding it */
3460 	if (prop && !vp)
3461 		return NULL;
3462 
3463 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3464 					  index,
3465 					  &clk_name) < 0) {
3466 		/*
3467 		 * Best effort to get the name if the clock has been
3468 		 * registered with the framework. If the clock isn't
3469 		 * registered, we return the node name as the name of
3470 		 * the clock as long as #clock-cells = 0.
3471 		 */
3472 		clk = of_clk_get_from_provider(&clkspec);
3473 		if (IS_ERR(clk)) {
3474 			if (clkspec.args_count == 0)
3475 				clk_name = clkspec.np->name;
3476 			else
3477 				clk_name = NULL;
3478 		} else {
3479 			clk_name = __clk_get_name(clk);
3480 			clk_put(clk);
3481 		}
3482 	}
3483 
3484 
3485 	of_node_put(clkspec.np);
3486 	return clk_name;
3487 }
3488 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3489 
3490 /**
3491  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3492  * number of parents
3493  * @np: Device node pointer associated with clock provider
3494  * @parents: pointer to char array that hold the parents' names
3495  * @size: size of the @parents array
3496  *
3497  * Return: number of parents for the clock node.
3498  */
3499 int of_clk_parent_fill(struct device_node *np, const char **parents,
3500 		       unsigned int size)
3501 {
3502 	unsigned int i = 0;
3503 
3504 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3505 		i++;
3506 
3507 	return i;
3508 }
3509 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3510 
3511 struct clock_provider {
3512 	of_clk_init_cb_t clk_init_cb;
3513 	struct device_node *np;
3514 	struct list_head node;
3515 };
3516 
3517 /*
3518  * This function looks for a parent clock. If there is one, then it
3519  * checks that the provider for this parent clock was initialized, in
3520  * this case the parent clock will be ready.
3521  */
3522 static int parent_ready(struct device_node *np)
3523 {
3524 	int i = 0;
3525 
3526 	while (true) {
3527 		struct clk *clk = of_clk_get(np, i);
3528 
3529 		/* this parent is ready we can check the next one */
3530 		if (!IS_ERR(clk)) {
3531 			clk_put(clk);
3532 			i++;
3533 			continue;
3534 		}
3535 
3536 		/* at least one parent is not ready, we exit now */
3537 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3538 			return 0;
3539 
3540 		/*
3541 		 * Here we make assumption that the device tree is
3542 		 * written correctly. So an error means that there is
3543 		 * no more parent. As we didn't exit yet, then the
3544 		 * previous parent are ready. If there is no clock
3545 		 * parent, no need to wait for them, then we can
3546 		 * consider their absence as being ready
3547 		 */
3548 		return 1;
3549 	}
3550 }
3551 
3552 /**
3553  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3554  * @np: Device node pointer associated with clock provider
3555  * @index: clock index
3556  * @flags: pointer to clk_core->flags
3557  *
3558  * Detects if the clock-critical property exists and, if so, sets the
3559  * corresponding CLK_IS_CRITICAL flag.
3560  *
3561  * Do not use this function. It exists only for legacy Device Tree
3562  * bindings, such as the one-clock-per-node style that are outdated.
3563  * Those bindings typically put all clock data into .dts and the Linux
3564  * driver has no clock data, thus making it impossible to set this flag
3565  * correctly from the driver. Only those drivers may call
3566  * of_clk_detect_critical from their setup functions.
3567  *
3568  * Return: error code or zero on success
3569  */
3570 int of_clk_detect_critical(struct device_node *np,
3571 					  int index, unsigned long *flags)
3572 {
3573 	struct property *prop;
3574 	const __be32 *cur;
3575 	uint32_t idx;
3576 
3577 	if (!np || !flags)
3578 		return -EINVAL;
3579 
3580 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3581 		if (index == idx)
3582 			*flags |= CLK_IS_CRITICAL;
3583 
3584 	return 0;
3585 }
3586 
3587 /**
3588  * of_clk_init() - Scan and init clock providers from the DT
3589  * @matches: array of compatible values and init functions for providers.
3590  *
3591  * This function scans the device tree for matching clock providers
3592  * and calls their initialization functions. It also does it by trying
3593  * to follow the dependencies.
3594  */
3595 void __init of_clk_init(const struct of_device_id *matches)
3596 {
3597 	const struct of_device_id *match;
3598 	struct device_node *np;
3599 	struct clock_provider *clk_provider, *next;
3600 	bool is_init_done;
3601 	bool force = false;
3602 	LIST_HEAD(clk_provider_list);
3603 
3604 	if (!matches)
3605 		matches = &__clk_of_table;
3606 
3607 	/* First prepare the list of the clocks providers */
3608 	for_each_matching_node_and_match(np, matches, &match) {
3609 		struct clock_provider *parent;
3610 
3611 		if (!of_device_is_available(np))
3612 			continue;
3613 
3614 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3615 		if (!parent) {
3616 			list_for_each_entry_safe(clk_provider, next,
3617 						 &clk_provider_list, node) {
3618 				list_del(&clk_provider->node);
3619 				of_node_put(clk_provider->np);
3620 				kfree(clk_provider);
3621 			}
3622 			of_node_put(np);
3623 			return;
3624 		}
3625 
3626 		parent->clk_init_cb = match->data;
3627 		parent->np = of_node_get(np);
3628 		list_add_tail(&parent->node, &clk_provider_list);
3629 	}
3630 
3631 	while (!list_empty(&clk_provider_list)) {
3632 		is_init_done = false;
3633 		list_for_each_entry_safe(clk_provider, next,
3634 					&clk_provider_list, node) {
3635 			if (force || parent_ready(clk_provider->np)) {
3636 
3637 				/* Don't populate platform devices */
3638 				of_node_set_flag(clk_provider->np,
3639 						 OF_POPULATED);
3640 
3641 				clk_provider->clk_init_cb(clk_provider->np);
3642 				of_clk_set_defaults(clk_provider->np, true);
3643 
3644 				list_del(&clk_provider->node);
3645 				of_node_put(clk_provider->np);
3646 				kfree(clk_provider);
3647 				is_init_done = true;
3648 			}
3649 		}
3650 
3651 		/*
3652 		 * We didn't manage to initialize any of the
3653 		 * remaining providers during the last loop, so now we
3654 		 * initialize all the remaining ones unconditionally
3655 		 * in case the clock parent was not mandatory
3656 		 */
3657 		if (!is_init_done)
3658 			force = true;
3659 	}
3660 }
3661 #endif
3662