1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 return ret < 0 ? ret : 0; 118 } 119 120 static void clk_pm_runtime_put(struct clk_core *core) 121 { 122 if (!core->rpm_enabled) 123 return; 124 125 pm_runtime_put_sync(core->dev); 126 } 127 128 /*** locking ***/ 129 static void clk_prepare_lock(void) 130 { 131 if (!mutex_trylock(&prepare_lock)) { 132 if (prepare_owner == current) { 133 prepare_refcnt++; 134 return; 135 } 136 mutex_lock(&prepare_lock); 137 } 138 WARN_ON_ONCE(prepare_owner != NULL); 139 WARN_ON_ONCE(prepare_refcnt != 0); 140 prepare_owner = current; 141 prepare_refcnt = 1; 142 } 143 144 static void clk_prepare_unlock(void) 145 { 146 WARN_ON_ONCE(prepare_owner != current); 147 WARN_ON_ONCE(prepare_refcnt == 0); 148 149 if (--prepare_refcnt) 150 return; 151 prepare_owner = NULL; 152 mutex_unlock(&prepare_lock); 153 } 154 155 static unsigned long clk_enable_lock(void) 156 __acquires(enable_lock) 157 { 158 unsigned long flags; 159 160 /* 161 * On UP systems, spin_trylock_irqsave() always returns true, even if 162 * we already hold the lock. So, in that case, we rely only on 163 * reference counting. 164 */ 165 if (!IS_ENABLED(CONFIG_SMP) || 166 !spin_trylock_irqsave(&enable_lock, flags)) { 167 if (enable_owner == current) { 168 enable_refcnt++; 169 __acquire(enable_lock); 170 if (!IS_ENABLED(CONFIG_SMP)) 171 local_save_flags(flags); 172 return flags; 173 } 174 spin_lock_irqsave(&enable_lock, flags); 175 } 176 WARN_ON_ONCE(enable_owner != NULL); 177 WARN_ON_ONCE(enable_refcnt != 0); 178 enable_owner = current; 179 enable_refcnt = 1; 180 return flags; 181 } 182 183 static void clk_enable_unlock(unsigned long flags) 184 __releases(enable_lock) 185 { 186 WARN_ON_ONCE(enable_owner != current); 187 WARN_ON_ONCE(enable_refcnt == 0); 188 189 if (--enable_refcnt) { 190 __release(enable_lock); 191 return; 192 } 193 enable_owner = NULL; 194 spin_unlock_irqrestore(&enable_lock, flags); 195 } 196 197 static bool clk_core_rate_is_protected(struct clk_core *core) 198 { 199 return core->protect_count; 200 } 201 202 static bool clk_core_is_prepared(struct clk_core *core) 203 { 204 bool ret = false; 205 206 /* 207 * .is_prepared is optional for clocks that can prepare 208 * fall back to software usage counter if it is missing 209 */ 210 if (!core->ops->is_prepared) 211 return core->prepare_count; 212 213 if (!clk_pm_runtime_get(core)) { 214 ret = core->ops->is_prepared(core->hw); 215 clk_pm_runtime_put(core); 216 } 217 218 return ret; 219 } 220 221 static bool clk_core_is_enabled(struct clk_core *core) 222 { 223 bool ret = false; 224 225 /* 226 * .is_enabled is only mandatory for clocks that gate 227 * fall back to software usage counter if .is_enabled is missing 228 */ 229 if (!core->ops->is_enabled) 230 return core->enable_count; 231 232 /* 233 * Check if clock controller's device is runtime active before 234 * calling .is_enabled callback. If not, assume that clock is 235 * disabled, because we might be called from atomic context, from 236 * which pm_runtime_get() is not allowed. 237 * This function is called mainly from clk_disable_unused_subtree, 238 * which ensures proper runtime pm activation of controller before 239 * taking enable spinlock, but the below check is needed if one tries 240 * to call it from other places. 241 */ 242 if (core->rpm_enabled) { 243 pm_runtime_get_noresume(core->dev); 244 if (!pm_runtime_active(core->dev)) { 245 ret = false; 246 goto done; 247 } 248 } 249 250 ret = core->ops->is_enabled(core->hw); 251 done: 252 if (core->rpm_enabled) 253 pm_runtime_put(core->dev); 254 255 return ret; 256 } 257 258 /*** helper functions ***/ 259 260 const char *__clk_get_name(const struct clk *clk) 261 { 262 return !clk ? NULL : clk->core->name; 263 } 264 EXPORT_SYMBOL_GPL(__clk_get_name); 265 266 const char *clk_hw_get_name(const struct clk_hw *hw) 267 { 268 return hw->core->name; 269 } 270 EXPORT_SYMBOL_GPL(clk_hw_get_name); 271 272 struct clk_hw *__clk_get_hw(struct clk *clk) 273 { 274 return !clk ? NULL : clk->core->hw; 275 } 276 EXPORT_SYMBOL_GPL(__clk_get_hw); 277 278 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 279 { 280 return hw->core->num_parents; 281 } 282 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 283 284 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 285 { 286 return hw->core->parent ? hw->core->parent->hw : NULL; 287 } 288 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 289 290 static struct clk_core *__clk_lookup_subtree(const char *name, 291 struct clk_core *core) 292 { 293 struct clk_core *child; 294 struct clk_core *ret; 295 296 if (!strcmp(core->name, name)) 297 return core; 298 299 hlist_for_each_entry(child, &core->children, child_node) { 300 ret = __clk_lookup_subtree(name, child); 301 if (ret) 302 return ret; 303 } 304 305 return NULL; 306 } 307 308 static struct clk_core *clk_core_lookup(const char *name) 309 { 310 struct clk_core *root_clk; 311 struct clk_core *ret; 312 313 if (!name) 314 return NULL; 315 316 /* search the 'proper' clk tree first */ 317 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 318 ret = __clk_lookup_subtree(name, root_clk); 319 if (ret) 320 return ret; 321 } 322 323 /* if not found, then search the orphan tree */ 324 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 325 ret = __clk_lookup_subtree(name, root_clk); 326 if (ret) 327 return ret; 328 } 329 330 return NULL; 331 } 332 333 #ifdef CONFIG_OF 334 static int of_parse_clkspec(const struct device_node *np, int index, 335 const char *name, struct of_phandle_args *out_args); 336 static struct clk_hw * 337 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 338 #else 339 static inline int of_parse_clkspec(const struct device_node *np, int index, 340 const char *name, 341 struct of_phandle_args *out_args) 342 { 343 return -ENOENT; 344 } 345 static inline struct clk_hw * 346 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 347 { 348 return ERR_PTR(-ENOENT); 349 } 350 #endif 351 352 /** 353 * clk_core_get - Find the clk_core parent of a clk 354 * @core: clk to find parent of 355 * @p_index: parent index to search for 356 * 357 * This is the preferred method for clk providers to find the parent of a 358 * clk when that parent is external to the clk controller. The parent_names 359 * array is indexed and treated as a local name matching a string in the device 360 * node's 'clock-names' property or as the 'con_id' matching the device's 361 * dev_name() in a clk_lookup. This allows clk providers to use their own 362 * namespace instead of looking for a globally unique parent string. 363 * 364 * For example the following DT snippet would allow a clock registered by the 365 * clock-controller@c001 that has a clk_init_data::parent_data array 366 * with 'xtal' in the 'name' member to find the clock provided by the 367 * clock-controller@f00abcd without needing to get the globally unique name of 368 * the xtal clk. 369 * 370 * parent: clock-controller@f00abcd { 371 * reg = <0xf00abcd 0xabcd>; 372 * #clock-cells = <0>; 373 * }; 374 * 375 * clock-controller@c001 { 376 * reg = <0xc001 0xf00d>; 377 * clocks = <&parent>; 378 * clock-names = "xtal"; 379 * #clock-cells = <1>; 380 * }; 381 * 382 * Returns: -ENOENT when the provider can't be found or the clk doesn't 383 * exist in the provider or the name can't be found in the DT node or 384 * in a clkdev lookup. NULL when the provider knows about the clk but it 385 * isn't provided on this system. 386 * A valid clk_core pointer when the clk can be found in the provider. 387 */ 388 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 389 { 390 const char *name = core->parents[p_index].fw_name; 391 int index = core->parents[p_index].index; 392 struct clk_hw *hw = ERR_PTR(-ENOENT); 393 struct device *dev = core->dev; 394 const char *dev_id = dev ? dev_name(dev) : NULL; 395 struct device_node *np = core->of_node; 396 struct of_phandle_args clkspec; 397 398 if (np && (name || index >= 0) && 399 !of_parse_clkspec(np, index, name, &clkspec)) { 400 hw = of_clk_get_hw_from_clkspec(&clkspec); 401 of_node_put(clkspec.np); 402 } else if (name) { 403 /* 404 * If the DT search above couldn't find the provider fallback to 405 * looking up via clkdev based clk_lookups. 406 */ 407 hw = clk_find_hw(dev_id, name); 408 } 409 410 if (IS_ERR(hw)) 411 return ERR_CAST(hw); 412 413 return hw->core; 414 } 415 416 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 417 { 418 struct clk_parent_map *entry = &core->parents[index]; 419 struct clk_core *parent = ERR_PTR(-ENOENT); 420 421 if (entry->hw) { 422 parent = entry->hw->core; 423 /* 424 * We have a direct reference but it isn't registered yet? 425 * Orphan it and let clk_reparent() update the orphan status 426 * when the parent is registered. 427 */ 428 if (!parent) 429 parent = ERR_PTR(-EPROBE_DEFER); 430 } else { 431 parent = clk_core_get(core, index); 432 if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT && entry->name) 433 parent = clk_core_lookup(entry->name); 434 } 435 436 /* Only cache it if it's not an error */ 437 if (!IS_ERR(parent)) 438 entry->core = parent; 439 } 440 441 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 442 u8 index) 443 { 444 if (!core || index >= core->num_parents || !core->parents) 445 return NULL; 446 447 if (!core->parents[index].core) 448 clk_core_fill_parent_index(core, index); 449 450 return core->parents[index].core; 451 } 452 453 struct clk_hw * 454 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 455 { 456 struct clk_core *parent; 457 458 parent = clk_core_get_parent_by_index(hw->core, index); 459 460 return !parent ? NULL : parent->hw; 461 } 462 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 463 464 unsigned int __clk_get_enable_count(struct clk *clk) 465 { 466 return !clk ? 0 : clk->core->enable_count; 467 } 468 469 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 470 { 471 if (!core) 472 return 0; 473 474 if (!core->num_parents || core->parent) 475 return core->rate; 476 477 /* 478 * Clk must have a parent because num_parents > 0 but the parent isn't 479 * known yet. Best to return 0 as the rate of this clk until we can 480 * properly recalc the rate based on the parent's rate. 481 */ 482 return 0; 483 } 484 485 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 486 { 487 return clk_core_get_rate_nolock(hw->core); 488 } 489 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 490 491 static unsigned long __clk_get_accuracy(struct clk_core *core) 492 { 493 if (!core) 494 return 0; 495 496 return core->accuracy; 497 } 498 499 unsigned long __clk_get_flags(struct clk *clk) 500 { 501 return !clk ? 0 : clk->core->flags; 502 } 503 EXPORT_SYMBOL_GPL(__clk_get_flags); 504 505 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 506 { 507 return hw->core->flags; 508 } 509 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 510 511 bool clk_hw_is_prepared(const struct clk_hw *hw) 512 { 513 return clk_core_is_prepared(hw->core); 514 } 515 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 516 517 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 518 { 519 return clk_core_rate_is_protected(hw->core); 520 } 521 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 522 523 bool clk_hw_is_enabled(const struct clk_hw *hw) 524 { 525 return clk_core_is_enabled(hw->core); 526 } 527 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 528 529 bool __clk_is_enabled(struct clk *clk) 530 { 531 if (!clk) 532 return false; 533 534 return clk_core_is_enabled(clk->core); 535 } 536 EXPORT_SYMBOL_GPL(__clk_is_enabled); 537 538 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 539 unsigned long best, unsigned long flags) 540 { 541 if (flags & CLK_MUX_ROUND_CLOSEST) 542 return abs(now - rate) < abs(best - rate); 543 544 return now <= rate && now > best; 545 } 546 547 int clk_mux_determine_rate_flags(struct clk_hw *hw, 548 struct clk_rate_request *req, 549 unsigned long flags) 550 { 551 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 552 int i, num_parents, ret; 553 unsigned long best = 0; 554 struct clk_rate_request parent_req = *req; 555 556 /* if NO_REPARENT flag set, pass through to current parent */ 557 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 558 parent = core->parent; 559 if (core->flags & CLK_SET_RATE_PARENT) { 560 ret = __clk_determine_rate(parent ? parent->hw : NULL, 561 &parent_req); 562 if (ret) 563 return ret; 564 565 best = parent_req.rate; 566 } else if (parent) { 567 best = clk_core_get_rate_nolock(parent); 568 } else { 569 best = clk_core_get_rate_nolock(core); 570 } 571 572 goto out; 573 } 574 575 /* find the parent that can provide the fastest rate <= rate */ 576 num_parents = core->num_parents; 577 for (i = 0; i < num_parents; i++) { 578 parent = clk_core_get_parent_by_index(core, i); 579 if (!parent) 580 continue; 581 582 if (core->flags & CLK_SET_RATE_PARENT) { 583 parent_req = *req; 584 ret = __clk_determine_rate(parent->hw, &parent_req); 585 if (ret) 586 continue; 587 } else { 588 parent_req.rate = clk_core_get_rate_nolock(parent); 589 } 590 591 if (mux_is_better_rate(req->rate, parent_req.rate, 592 best, flags)) { 593 best_parent = parent; 594 best = parent_req.rate; 595 } 596 } 597 598 if (!best_parent) 599 return -EINVAL; 600 601 out: 602 if (best_parent) 603 req->best_parent_hw = best_parent->hw; 604 req->best_parent_rate = best; 605 req->rate = best; 606 607 return 0; 608 } 609 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 610 611 struct clk *__clk_lookup(const char *name) 612 { 613 struct clk_core *core = clk_core_lookup(name); 614 615 return !core ? NULL : core->hw->clk; 616 } 617 618 static void clk_core_get_boundaries(struct clk_core *core, 619 unsigned long *min_rate, 620 unsigned long *max_rate) 621 { 622 struct clk *clk_user; 623 624 lockdep_assert_held(&prepare_lock); 625 626 *min_rate = core->min_rate; 627 *max_rate = core->max_rate; 628 629 hlist_for_each_entry(clk_user, &core->clks, clks_node) 630 *min_rate = max(*min_rate, clk_user->min_rate); 631 632 hlist_for_each_entry(clk_user, &core->clks, clks_node) 633 *max_rate = min(*max_rate, clk_user->max_rate); 634 } 635 636 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 637 unsigned long max_rate) 638 { 639 hw->core->min_rate = min_rate; 640 hw->core->max_rate = max_rate; 641 } 642 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 643 644 /* 645 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 646 * @hw: mux type clk to determine rate on 647 * @req: rate request, also used to return preferred parent and frequencies 648 * 649 * Helper for finding best parent to provide a given frequency. This can be used 650 * directly as a determine_rate callback (e.g. for a mux), or from a more 651 * complex clock that may combine a mux with other operations. 652 * 653 * Returns: 0 on success, -EERROR value on error 654 */ 655 int __clk_mux_determine_rate(struct clk_hw *hw, 656 struct clk_rate_request *req) 657 { 658 return clk_mux_determine_rate_flags(hw, req, 0); 659 } 660 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 661 662 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 663 struct clk_rate_request *req) 664 { 665 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 666 } 667 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 668 669 /*** clk api ***/ 670 671 static void clk_core_rate_unprotect(struct clk_core *core) 672 { 673 lockdep_assert_held(&prepare_lock); 674 675 if (!core) 676 return; 677 678 if (WARN(core->protect_count == 0, 679 "%s already unprotected\n", core->name)) 680 return; 681 682 if (--core->protect_count > 0) 683 return; 684 685 clk_core_rate_unprotect(core->parent); 686 } 687 688 static int clk_core_rate_nuke_protect(struct clk_core *core) 689 { 690 int ret; 691 692 lockdep_assert_held(&prepare_lock); 693 694 if (!core) 695 return -EINVAL; 696 697 if (core->protect_count == 0) 698 return 0; 699 700 ret = core->protect_count; 701 core->protect_count = 1; 702 clk_core_rate_unprotect(core); 703 704 return ret; 705 } 706 707 /** 708 * clk_rate_exclusive_put - release exclusivity over clock rate control 709 * @clk: the clk over which the exclusivity is released 710 * 711 * clk_rate_exclusive_put() completes a critical section during which a clock 712 * consumer cannot tolerate any other consumer making any operation on the 713 * clock which could result in a rate change or rate glitch. Exclusive clocks 714 * cannot have their rate changed, either directly or indirectly due to changes 715 * further up the parent chain of clocks. As a result, clocks up parent chain 716 * also get under exclusive control of the calling consumer. 717 * 718 * If exlusivity is claimed more than once on clock, even by the same consumer, 719 * the rate effectively gets locked as exclusivity can't be preempted. 720 * 721 * Calls to clk_rate_exclusive_put() must be balanced with calls to 722 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 723 * error status. 724 */ 725 void clk_rate_exclusive_put(struct clk *clk) 726 { 727 if (!clk) 728 return; 729 730 clk_prepare_lock(); 731 732 /* 733 * if there is something wrong with this consumer protect count, stop 734 * here before messing with the provider 735 */ 736 if (WARN_ON(clk->exclusive_count <= 0)) 737 goto out; 738 739 clk_core_rate_unprotect(clk->core); 740 clk->exclusive_count--; 741 out: 742 clk_prepare_unlock(); 743 } 744 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 745 746 static void clk_core_rate_protect(struct clk_core *core) 747 { 748 lockdep_assert_held(&prepare_lock); 749 750 if (!core) 751 return; 752 753 if (core->protect_count == 0) 754 clk_core_rate_protect(core->parent); 755 756 core->protect_count++; 757 } 758 759 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 760 { 761 lockdep_assert_held(&prepare_lock); 762 763 if (!core) 764 return; 765 766 if (count == 0) 767 return; 768 769 clk_core_rate_protect(core); 770 core->protect_count = count; 771 } 772 773 /** 774 * clk_rate_exclusive_get - get exclusivity over the clk rate control 775 * @clk: the clk over which the exclusity of rate control is requested 776 * 777 * clk_rate_exlusive_get() begins a critical section during which a clock 778 * consumer cannot tolerate any other consumer making any operation on the 779 * clock which could result in a rate change or rate glitch. Exclusive clocks 780 * cannot have their rate changed, either directly or indirectly due to changes 781 * further up the parent chain of clocks. As a result, clocks up parent chain 782 * also get under exclusive control of the calling consumer. 783 * 784 * If exlusivity is claimed more than once on clock, even by the same consumer, 785 * the rate effectively gets locked as exclusivity can't be preempted. 786 * 787 * Calls to clk_rate_exclusive_get() should be balanced with calls to 788 * clk_rate_exclusive_put(). Calls to this function may sleep. 789 * Returns 0 on success, -EERROR otherwise 790 */ 791 int clk_rate_exclusive_get(struct clk *clk) 792 { 793 if (!clk) 794 return 0; 795 796 clk_prepare_lock(); 797 clk_core_rate_protect(clk->core); 798 clk->exclusive_count++; 799 clk_prepare_unlock(); 800 801 return 0; 802 } 803 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 804 805 static void clk_core_unprepare(struct clk_core *core) 806 { 807 lockdep_assert_held(&prepare_lock); 808 809 if (!core) 810 return; 811 812 if (WARN(core->prepare_count == 0, 813 "%s already unprepared\n", core->name)) 814 return; 815 816 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 817 "Unpreparing critical %s\n", core->name)) 818 return; 819 820 if (core->flags & CLK_SET_RATE_GATE) 821 clk_core_rate_unprotect(core); 822 823 if (--core->prepare_count > 0) 824 return; 825 826 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 827 828 trace_clk_unprepare(core); 829 830 if (core->ops->unprepare) 831 core->ops->unprepare(core->hw); 832 833 clk_pm_runtime_put(core); 834 835 trace_clk_unprepare_complete(core); 836 clk_core_unprepare(core->parent); 837 } 838 839 static void clk_core_unprepare_lock(struct clk_core *core) 840 { 841 clk_prepare_lock(); 842 clk_core_unprepare(core); 843 clk_prepare_unlock(); 844 } 845 846 /** 847 * clk_unprepare - undo preparation of a clock source 848 * @clk: the clk being unprepared 849 * 850 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 851 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 852 * if the operation may sleep. One example is a clk which is accessed over 853 * I2c. In the complex case a clk gate operation may require a fast and a slow 854 * part. It is this reason that clk_unprepare and clk_disable are not mutually 855 * exclusive. In fact clk_disable must be called before clk_unprepare. 856 */ 857 void clk_unprepare(struct clk *clk) 858 { 859 if (IS_ERR_OR_NULL(clk)) 860 return; 861 862 clk_core_unprepare_lock(clk->core); 863 } 864 EXPORT_SYMBOL_GPL(clk_unprepare); 865 866 static int clk_core_prepare(struct clk_core *core) 867 { 868 int ret = 0; 869 870 lockdep_assert_held(&prepare_lock); 871 872 if (!core) 873 return 0; 874 875 if (core->prepare_count == 0) { 876 ret = clk_pm_runtime_get(core); 877 if (ret) 878 return ret; 879 880 ret = clk_core_prepare(core->parent); 881 if (ret) 882 goto runtime_put; 883 884 trace_clk_prepare(core); 885 886 if (core->ops->prepare) 887 ret = core->ops->prepare(core->hw); 888 889 trace_clk_prepare_complete(core); 890 891 if (ret) 892 goto unprepare; 893 } 894 895 core->prepare_count++; 896 897 /* 898 * CLK_SET_RATE_GATE is a special case of clock protection 899 * Instead of a consumer claiming exclusive rate control, it is 900 * actually the provider which prevents any consumer from making any 901 * operation which could result in a rate change or rate glitch while 902 * the clock is prepared. 903 */ 904 if (core->flags & CLK_SET_RATE_GATE) 905 clk_core_rate_protect(core); 906 907 return 0; 908 unprepare: 909 clk_core_unprepare(core->parent); 910 runtime_put: 911 clk_pm_runtime_put(core); 912 return ret; 913 } 914 915 static int clk_core_prepare_lock(struct clk_core *core) 916 { 917 int ret; 918 919 clk_prepare_lock(); 920 ret = clk_core_prepare(core); 921 clk_prepare_unlock(); 922 923 return ret; 924 } 925 926 /** 927 * clk_prepare - prepare a clock source 928 * @clk: the clk being prepared 929 * 930 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 931 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 932 * operation may sleep. One example is a clk which is accessed over I2c. In 933 * the complex case a clk ungate operation may require a fast and a slow part. 934 * It is this reason that clk_prepare and clk_enable are not mutually 935 * exclusive. In fact clk_prepare must be called before clk_enable. 936 * Returns 0 on success, -EERROR otherwise. 937 */ 938 int clk_prepare(struct clk *clk) 939 { 940 if (!clk) 941 return 0; 942 943 return clk_core_prepare_lock(clk->core); 944 } 945 EXPORT_SYMBOL_GPL(clk_prepare); 946 947 static void clk_core_disable(struct clk_core *core) 948 { 949 lockdep_assert_held(&enable_lock); 950 951 if (!core) 952 return; 953 954 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 955 return; 956 957 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 958 "Disabling critical %s\n", core->name)) 959 return; 960 961 if (--core->enable_count > 0) 962 return; 963 964 trace_clk_disable_rcuidle(core); 965 966 if (core->ops->disable) 967 core->ops->disable(core->hw); 968 969 trace_clk_disable_complete_rcuidle(core); 970 971 clk_core_disable(core->parent); 972 } 973 974 static void clk_core_disable_lock(struct clk_core *core) 975 { 976 unsigned long flags; 977 978 flags = clk_enable_lock(); 979 clk_core_disable(core); 980 clk_enable_unlock(flags); 981 } 982 983 /** 984 * clk_disable - gate a clock 985 * @clk: the clk being gated 986 * 987 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 988 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 989 * clk if the operation is fast and will never sleep. One example is a 990 * SoC-internal clk which is controlled via simple register writes. In the 991 * complex case a clk gate operation may require a fast and a slow part. It is 992 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 993 * In fact clk_disable must be called before clk_unprepare. 994 */ 995 void clk_disable(struct clk *clk) 996 { 997 if (IS_ERR_OR_NULL(clk)) 998 return; 999 1000 clk_core_disable_lock(clk->core); 1001 } 1002 EXPORT_SYMBOL_GPL(clk_disable); 1003 1004 static int clk_core_enable(struct clk_core *core) 1005 { 1006 int ret = 0; 1007 1008 lockdep_assert_held(&enable_lock); 1009 1010 if (!core) 1011 return 0; 1012 1013 if (WARN(core->prepare_count == 0, 1014 "Enabling unprepared %s\n", core->name)) 1015 return -ESHUTDOWN; 1016 1017 if (core->enable_count == 0) { 1018 ret = clk_core_enable(core->parent); 1019 1020 if (ret) 1021 return ret; 1022 1023 trace_clk_enable_rcuidle(core); 1024 1025 if (core->ops->enable) 1026 ret = core->ops->enable(core->hw); 1027 1028 trace_clk_enable_complete_rcuidle(core); 1029 1030 if (ret) { 1031 clk_core_disable(core->parent); 1032 return ret; 1033 } 1034 } 1035 1036 core->enable_count++; 1037 return 0; 1038 } 1039 1040 static int clk_core_enable_lock(struct clk_core *core) 1041 { 1042 unsigned long flags; 1043 int ret; 1044 1045 flags = clk_enable_lock(); 1046 ret = clk_core_enable(core); 1047 clk_enable_unlock(flags); 1048 1049 return ret; 1050 } 1051 1052 /** 1053 * clk_gate_restore_context - restore context for poweroff 1054 * @hw: the clk_hw pointer of clock whose state is to be restored 1055 * 1056 * The clock gate restore context function enables or disables 1057 * the gate clocks based on the enable_count. This is done in cases 1058 * where the clock context is lost and based on the enable_count 1059 * the clock either needs to be enabled/disabled. This 1060 * helps restore the state of gate clocks. 1061 */ 1062 void clk_gate_restore_context(struct clk_hw *hw) 1063 { 1064 struct clk_core *core = hw->core; 1065 1066 if (core->enable_count) 1067 core->ops->enable(hw); 1068 else 1069 core->ops->disable(hw); 1070 } 1071 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1072 1073 static int clk_core_save_context(struct clk_core *core) 1074 { 1075 struct clk_core *child; 1076 int ret = 0; 1077 1078 hlist_for_each_entry(child, &core->children, child_node) { 1079 ret = clk_core_save_context(child); 1080 if (ret < 0) 1081 return ret; 1082 } 1083 1084 if (core->ops && core->ops->save_context) 1085 ret = core->ops->save_context(core->hw); 1086 1087 return ret; 1088 } 1089 1090 static void clk_core_restore_context(struct clk_core *core) 1091 { 1092 struct clk_core *child; 1093 1094 if (core->ops && core->ops->restore_context) 1095 core->ops->restore_context(core->hw); 1096 1097 hlist_for_each_entry(child, &core->children, child_node) 1098 clk_core_restore_context(child); 1099 } 1100 1101 /** 1102 * clk_save_context - save clock context for poweroff 1103 * 1104 * Saves the context of the clock register for powerstates in which the 1105 * contents of the registers will be lost. Occurs deep within the suspend 1106 * code. Returns 0 on success. 1107 */ 1108 int clk_save_context(void) 1109 { 1110 struct clk_core *clk; 1111 int ret; 1112 1113 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1114 ret = clk_core_save_context(clk); 1115 if (ret < 0) 1116 return ret; 1117 } 1118 1119 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1120 ret = clk_core_save_context(clk); 1121 if (ret < 0) 1122 return ret; 1123 } 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL_GPL(clk_save_context); 1128 1129 /** 1130 * clk_restore_context - restore clock context after poweroff 1131 * 1132 * Restore the saved clock context upon resume. 1133 * 1134 */ 1135 void clk_restore_context(void) 1136 { 1137 struct clk_core *core; 1138 1139 hlist_for_each_entry(core, &clk_root_list, child_node) 1140 clk_core_restore_context(core); 1141 1142 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1143 clk_core_restore_context(core); 1144 } 1145 EXPORT_SYMBOL_GPL(clk_restore_context); 1146 1147 /** 1148 * clk_enable - ungate a clock 1149 * @clk: the clk being ungated 1150 * 1151 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1152 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1153 * if the operation will never sleep. One example is a SoC-internal clk which 1154 * is controlled via simple register writes. In the complex case a clk ungate 1155 * operation may require a fast and a slow part. It is this reason that 1156 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1157 * must be called before clk_enable. Returns 0 on success, -EERROR 1158 * otherwise. 1159 */ 1160 int clk_enable(struct clk *clk) 1161 { 1162 if (!clk) 1163 return 0; 1164 1165 return clk_core_enable_lock(clk->core); 1166 } 1167 EXPORT_SYMBOL_GPL(clk_enable); 1168 1169 static int clk_core_prepare_enable(struct clk_core *core) 1170 { 1171 int ret; 1172 1173 ret = clk_core_prepare_lock(core); 1174 if (ret) 1175 return ret; 1176 1177 ret = clk_core_enable_lock(core); 1178 if (ret) 1179 clk_core_unprepare_lock(core); 1180 1181 return ret; 1182 } 1183 1184 static void clk_core_disable_unprepare(struct clk_core *core) 1185 { 1186 clk_core_disable_lock(core); 1187 clk_core_unprepare_lock(core); 1188 } 1189 1190 static void clk_unprepare_unused_subtree(struct clk_core *core) 1191 { 1192 struct clk_core *child; 1193 1194 lockdep_assert_held(&prepare_lock); 1195 1196 hlist_for_each_entry(child, &core->children, child_node) 1197 clk_unprepare_unused_subtree(child); 1198 1199 if (core->prepare_count) 1200 return; 1201 1202 if (core->flags & CLK_IGNORE_UNUSED) 1203 return; 1204 1205 if (clk_pm_runtime_get(core)) 1206 return; 1207 1208 if (clk_core_is_prepared(core)) { 1209 trace_clk_unprepare(core); 1210 if (core->ops->unprepare_unused) 1211 core->ops->unprepare_unused(core->hw); 1212 else if (core->ops->unprepare) 1213 core->ops->unprepare(core->hw); 1214 trace_clk_unprepare_complete(core); 1215 } 1216 1217 clk_pm_runtime_put(core); 1218 } 1219 1220 static void clk_disable_unused_subtree(struct clk_core *core) 1221 { 1222 struct clk_core *child; 1223 unsigned long flags; 1224 1225 lockdep_assert_held(&prepare_lock); 1226 1227 hlist_for_each_entry(child, &core->children, child_node) 1228 clk_disable_unused_subtree(child); 1229 1230 if (core->flags & CLK_OPS_PARENT_ENABLE) 1231 clk_core_prepare_enable(core->parent); 1232 1233 if (clk_pm_runtime_get(core)) 1234 goto unprepare_out; 1235 1236 flags = clk_enable_lock(); 1237 1238 if (core->enable_count) 1239 goto unlock_out; 1240 1241 if (core->flags & CLK_IGNORE_UNUSED) 1242 goto unlock_out; 1243 1244 /* 1245 * some gate clocks have special needs during the disable-unused 1246 * sequence. call .disable_unused if available, otherwise fall 1247 * back to .disable 1248 */ 1249 if (clk_core_is_enabled(core)) { 1250 trace_clk_disable(core); 1251 if (core->ops->disable_unused) 1252 core->ops->disable_unused(core->hw); 1253 else if (core->ops->disable) 1254 core->ops->disable(core->hw); 1255 trace_clk_disable_complete(core); 1256 } 1257 1258 unlock_out: 1259 clk_enable_unlock(flags); 1260 clk_pm_runtime_put(core); 1261 unprepare_out: 1262 if (core->flags & CLK_OPS_PARENT_ENABLE) 1263 clk_core_disable_unprepare(core->parent); 1264 } 1265 1266 static bool clk_ignore_unused; 1267 static int __init clk_ignore_unused_setup(char *__unused) 1268 { 1269 clk_ignore_unused = true; 1270 return 1; 1271 } 1272 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1273 1274 static int clk_disable_unused(void) 1275 { 1276 struct clk_core *core; 1277 1278 if (clk_ignore_unused) { 1279 pr_warn("clk: Not disabling unused clocks\n"); 1280 return 0; 1281 } 1282 1283 clk_prepare_lock(); 1284 1285 hlist_for_each_entry(core, &clk_root_list, child_node) 1286 clk_disable_unused_subtree(core); 1287 1288 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1289 clk_disable_unused_subtree(core); 1290 1291 hlist_for_each_entry(core, &clk_root_list, child_node) 1292 clk_unprepare_unused_subtree(core); 1293 1294 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1295 clk_unprepare_unused_subtree(core); 1296 1297 clk_prepare_unlock(); 1298 1299 return 0; 1300 } 1301 late_initcall_sync(clk_disable_unused); 1302 1303 static int clk_core_determine_round_nolock(struct clk_core *core, 1304 struct clk_rate_request *req) 1305 { 1306 long rate; 1307 1308 lockdep_assert_held(&prepare_lock); 1309 1310 if (!core) 1311 return 0; 1312 1313 /* 1314 * At this point, core protection will be disabled if 1315 * - if the provider is not protected at all 1316 * - if the calling consumer is the only one which has exclusivity 1317 * over the provider 1318 */ 1319 if (clk_core_rate_is_protected(core)) { 1320 req->rate = core->rate; 1321 } else if (core->ops->determine_rate) { 1322 return core->ops->determine_rate(core->hw, req); 1323 } else if (core->ops->round_rate) { 1324 rate = core->ops->round_rate(core->hw, req->rate, 1325 &req->best_parent_rate); 1326 if (rate < 0) 1327 return rate; 1328 1329 req->rate = rate; 1330 } else { 1331 return -EINVAL; 1332 } 1333 1334 return 0; 1335 } 1336 1337 static void clk_core_init_rate_req(struct clk_core * const core, 1338 struct clk_rate_request *req) 1339 { 1340 struct clk_core *parent; 1341 1342 if (WARN_ON(!core || !req)) 1343 return; 1344 1345 parent = core->parent; 1346 if (parent) { 1347 req->best_parent_hw = parent->hw; 1348 req->best_parent_rate = parent->rate; 1349 } else { 1350 req->best_parent_hw = NULL; 1351 req->best_parent_rate = 0; 1352 } 1353 } 1354 1355 static bool clk_core_can_round(struct clk_core * const core) 1356 { 1357 return core->ops->determine_rate || core->ops->round_rate; 1358 } 1359 1360 static int clk_core_round_rate_nolock(struct clk_core *core, 1361 struct clk_rate_request *req) 1362 { 1363 lockdep_assert_held(&prepare_lock); 1364 1365 if (!core) { 1366 req->rate = 0; 1367 return 0; 1368 } 1369 1370 clk_core_init_rate_req(core, req); 1371 1372 if (clk_core_can_round(core)) 1373 return clk_core_determine_round_nolock(core, req); 1374 else if (core->flags & CLK_SET_RATE_PARENT) 1375 return clk_core_round_rate_nolock(core->parent, req); 1376 1377 req->rate = core->rate; 1378 return 0; 1379 } 1380 1381 /** 1382 * __clk_determine_rate - get the closest rate actually supported by a clock 1383 * @hw: determine the rate of this clock 1384 * @req: target rate request 1385 * 1386 * Useful for clk_ops such as .set_rate and .determine_rate. 1387 */ 1388 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1389 { 1390 if (!hw) { 1391 req->rate = 0; 1392 return 0; 1393 } 1394 1395 return clk_core_round_rate_nolock(hw->core, req); 1396 } 1397 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1398 1399 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1400 { 1401 int ret; 1402 struct clk_rate_request req; 1403 1404 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1405 req.rate = rate; 1406 1407 ret = clk_core_round_rate_nolock(hw->core, &req); 1408 if (ret) 1409 return 0; 1410 1411 return req.rate; 1412 } 1413 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1414 1415 /** 1416 * clk_round_rate - round the given rate for a clk 1417 * @clk: the clk for which we are rounding a rate 1418 * @rate: the rate which is to be rounded 1419 * 1420 * Takes in a rate as input and rounds it to a rate that the clk can actually 1421 * use which is then returned. If clk doesn't support round_rate operation 1422 * then the parent rate is returned. 1423 */ 1424 long clk_round_rate(struct clk *clk, unsigned long rate) 1425 { 1426 struct clk_rate_request req; 1427 int ret; 1428 1429 if (!clk) 1430 return 0; 1431 1432 clk_prepare_lock(); 1433 1434 if (clk->exclusive_count) 1435 clk_core_rate_unprotect(clk->core); 1436 1437 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1438 req.rate = rate; 1439 1440 ret = clk_core_round_rate_nolock(clk->core, &req); 1441 1442 if (clk->exclusive_count) 1443 clk_core_rate_protect(clk->core); 1444 1445 clk_prepare_unlock(); 1446 1447 if (ret) 1448 return ret; 1449 1450 return req.rate; 1451 } 1452 EXPORT_SYMBOL_GPL(clk_round_rate); 1453 1454 /** 1455 * __clk_notify - call clk notifier chain 1456 * @core: clk that is changing rate 1457 * @msg: clk notifier type (see include/linux/clk.h) 1458 * @old_rate: old clk rate 1459 * @new_rate: new clk rate 1460 * 1461 * Triggers a notifier call chain on the clk rate-change notification 1462 * for 'clk'. Passes a pointer to the struct clk and the previous 1463 * and current rates to the notifier callback. Intended to be called by 1464 * internal clock code only. Returns NOTIFY_DONE from the last driver 1465 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1466 * a driver returns that. 1467 */ 1468 static int __clk_notify(struct clk_core *core, unsigned long msg, 1469 unsigned long old_rate, unsigned long new_rate) 1470 { 1471 struct clk_notifier *cn; 1472 struct clk_notifier_data cnd; 1473 int ret = NOTIFY_DONE; 1474 1475 cnd.old_rate = old_rate; 1476 cnd.new_rate = new_rate; 1477 1478 list_for_each_entry(cn, &clk_notifier_list, node) { 1479 if (cn->clk->core == core) { 1480 cnd.clk = cn->clk; 1481 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1482 &cnd); 1483 if (ret & NOTIFY_STOP_MASK) 1484 return ret; 1485 } 1486 } 1487 1488 return ret; 1489 } 1490 1491 /** 1492 * __clk_recalc_accuracies 1493 * @core: first clk in the subtree 1494 * 1495 * Walks the subtree of clks starting with clk and recalculates accuracies as 1496 * it goes. Note that if a clk does not implement the .recalc_accuracy 1497 * callback then it is assumed that the clock will take on the accuracy of its 1498 * parent. 1499 */ 1500 static void __clk_recalc_accuracies(struct clk_core *core) 1501 { 1502 unsigned long parent_accuracy = 0; 1503 struct clk_core *child; 1504 1505 lockdep_assert_held(&prepare_lock); 1506 1507 if (core->parent) 1508 parent_accuracy = core->parent->accuracy; 1509 1510 if (core->ops->recalc_accuracy) 1511 core->accuracy = core->ops->recalc_accuracy(core->hw, 1512 parent_accuracy); 1513 else 1514 core->accuracy = parent_accuracy; 1515 1516 hlist_for_each_entry(child, &core->children, child_node) 1517 __clk_recalc_accuracies(child); 1518 } 1519 1520 static long clk_core_get_accuracy(struct clk_core *core) 1521 { 1522 unsigned long accuracy; 1523 1524 clk_prepare_lock(); 1525 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1526 __clk_recalc_accuracies(core); 1527 1528 accuracy = __clk_get_accuracy(core); 1529 clk_prepare_unlock(); 1530 1531 return accuracy; 1532 } 1533 1534 /** 1535 * clk_get_accuracy - return the accuracy of clk 1536 * @clk: the clk whose accuracy is being returned 1537 * 1538 * Simply returns the cached accuracy of the clk, unless 1539 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1540 * issued. 1541 * If clk is NULL then returns 0. 1542 */ 1543 long clk_get_accuracy(struct clk *clk) 1544 { 1545 if (!clk) 1546 return 0; 1547 1548 return clk_core_get_accuracy(clk->core); 1549 } 1550 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1551 1552 static unsigned long clk_recalc(struct clk_core *core, 1553 unsigned long parent_rate) 1554 { 1555 unsigned long rate = parent_rate; 1556 1557 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1558 rate = core->ops->recalc_rate(core->hw, parent_rate); 1559 clk_pm_runtime_put(core); 1560 } 1561 return rate; 1562 } 1563 1564 /** 1565 * __clk_recalc_rates 1566 * @core: first clk in the subtree 1567 * @msg: notification type (see include/linux/clk.h) 1568 * 1569 * Walks the subtree of clks starting with clk and recalculates rates as it 1570 * goes. Note that if a clk does not implement the .recalc_rate callback then 1571 * it is assumed that the clock will take on the rate of its parent. 1572 * 1573 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1574 * if necessary. 1575 */ 1576 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1577 { 1578 unsigned long old_rate; 1579 unsigned long parent_rate = 0; 1580 struct clk_core *child; 1581 1582 lockdep_assert_held(&prepare_lock); 1583 1584 old_rate = core->rate; 1585 1586 if (core->parent) 1587 parent_rate = core->parent->rate; 1588 1589 core->rate = clk_recalc(core, parent_rate); 1590 1591 /* 1592 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1593 * & ABORT_RATE_CHANGE notifiers 1594 */ 1595 if (core->notifier_count && msg) 1596 __clk_notify(core, msg, old_rate, core->rate); 1597 1598 hlist_for_each_entry(child, &core->children, child_node) 1599 __clk_recalc_rates(child, msg); 1600 } 1601 1602 static unsigned long clk_core_get_rate(struct clk_core *core) 1603 { 1604 unsigned long rate; 1605 1606 clk_prepare_lock(); 1607 1608 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1609 __clk_recalc_rates(core, 0); 1610 1611 rate = clk_core_get_rate_nolock(core); 1612 clk_prepare_unlock(); 1613 1614 return rate; 1615 } 1616 1617 /** 1618 * clk_get_rate - return the rate of clk 1619 * @clk: the clk whose rate is being returned 1620 * 1621 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1622 * is set, which means a recalc_rate will be issued. 1623 * If clk is NULL then returns 0. 1624 */ 1625 unsigned long clk_get_rate(struct clk *clk) 1626 { 1627 if (!clk) 1628 return 0; 1629 1630 return clk_core_get_rate(clk->core); 1631 } 1632 EXPORT_SYMBOL_GPL(clk_get_rate); 1633 1634 static int clk_fetch_parent_index(struct clk_core *core, 1635 struct clk_core *parent) 1636 { 1637 int i; 1638 1639 if (!parent) 1640 return -EINVAL; 1641 1642 for (i = 0; i < core->num_parents; i++) { 1643 /* Found it first try! */ 1644 if (core->parents[i].core == parent) 1645 return i; 1646 1647 /* Something else is here, so keep looking */ 1648 if (core->parents[i].core) 1649 continue; 1650 1651 /* Maybe core hasn't been cached but the hw is all we know? */ 1652 if (core->parents[i].hw) { 1653 if (core->parents[i].hw == parent->hw) 1654 break; 1655 1656 /* Didn't match, but we're expecting a clk_hw */ 1657 continue; 1658 } 1659 1660 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1661 if (parent == clk_core_get(core, i)) 1662 break; 1663 1664 /* Fallback to comparing globally unique names */ 1665 if (core->parents[i].name && 1666 !strcmp(parent->name, core->parents[i].name)) 1667 break; 1668 } 1669 1670 if (i == core->num_parents) 1671 return -EINVAL; 1672 1673 core->parents[i].core = parent; 1674 return i; 1675 } 1676 1677 /* 1678 * Update the orphan status of @core and all its children. 1679 */ 1680 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1681 { 1682 struct clk_core *child; 1683 1684 core->orphan = is_orphan; 1685 1686 hlist_for_each_entry(child, &core->children, child_node) 1687 clk_core_update_orphan_status(child, is_orphan); 1688 } 1689 1690 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1691 { 1692 bool was_orphan = core->orphan; 1693 1694 hlist_del(&core->child_node); 1695 1696 if (new_parent) { 1697 bool becomes_orphan = new_parent->orphan; 1698 1699 /* avoid duplicate POST_RATE_CHANGE notifications */ 1700 if (new_parent->new_child == core) 1701 new_parent->new_child = NULL; 1702 1703 hlist_add_head(&core->child_node, &new_parent->children); 1704 1705 if (was_orphan != becomes_orphan) 1706 clk_core_update_orphan_status(core, becomes_orphan); 1707 } else { 1708 hlist_add_head(&core->child_node, &clk_orphan_list); 1709 if (!was_orphan) 1710 clk_core_update_orphan_status(core, true); 1711 } 1712 1713 core->parent = new_parent; 1714 } 1715 1716 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1717 struct clk_core *parent) 1718 { 1719 unsigned long flags; 1720 struct clk_core *old_parent = core->parent; 1721 1722 /* 1723 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1724 * 1725 * 2. Migrate prepare state between parents and prevent race with 1726 * clk_enable(). 1727 * 1728 * If the clock is not prepared, then a race with 1729 * clk_enable/disable() is impossible since we already have the 1730 * prepare lock (future calls to clk_enable() need to be preceded by 1731 * a clk_prepare()). 1732 * 1733 * If the clock is prepared, migrate the prepared state to the new 1734 * parent and also protect against a race with clk_enable() by 1735 * forcing the clock and the new parent on. This ensures that all 1736 * future calls to clk_enable() are practically NOPs with respect to 1737 * hardware and software states. 1738 * 1739 * See also: Comment for clk_set_parent() below. 1740 */ 1741 1742 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1743 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1744 clk_core_prepare_enable(old_parent); 1745 clk_core_prepare_enable(parent); 1746 } 1747 1748 /* migrate prepare count if > 0 */ 1749 if (core->prepare_count) { 1750 clk_core_prepare_enable(parent); 1751 clk_core_enable_lock(core); 1752 } 1753 1754 /* update the clk tree topology */ 1755 flags = clk_enable_lock(); 1756 clk_reparent(core, parent); 1757 clk_enable_unlock(flags); 1758 1759 return old_parent; 1760 } 1761 1762 static void __clk_set_parent_after(struct clk_core *core, 1763 struct clk_core *parent, 1764 struct clk_core *old_parent) 1765 { 1766 /* 1767 * Finish the migration of prepare state and undo the changes done 1768 * for preventing a race with clk_enable(). 1769 */ 1770 if (core->prepare_count) { 1771 clk_core_disable_lock(core); 1772 clk_core_disable_unprepare(old_parent); 1773 } 1774 1775 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1776 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1777 clk_core_disable_unprepare(parent); 1778 clk_core_disable_unprepare(old_parent); 1779 } 1780 } 1781 1782 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1783 u8 p_index) 1784 { 1785 unsigned long flags; 1786 int ret = 0; 1787 struct clk_core *old_parent; 1788 1789 old_parent = __clk_set_parent_before(core, parent); 1790 1791 trace_clk_set_parent(core, parent); 1792 1793 /* change clock input source */ 1794 if (parent && core->ops->set_parent) 1795 ret = core->ops->set_parent(core->hw, p_index); 1796 1797 trace_clk_set_parent_complete(core, parent); 1798 1799 if (ret) { 1800 flags = clk_enable_lock(); 1801 clk_reparent(core, old_parent); 1802 clk_enable_unlock(flags); 1803 __clk_set_parent_after(core, old_parent, parent); 1804 1805 return ret; 1806 } 1807 1808 __clk_set_parent_after(core, parent, old_parent); 1809 1810 return 0; 1811 } 1812 1813 /** 1814 * __clk_speculate_rates 1815 * @core: first clk in the subtree 1816 * @parent_rate: the "future" rate of clk's parent 1817 * 1818 * Walks the subtree of clks starting with clk, speculating rates as it 1819 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1820 * 1821 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1822 * pre-rate change notifications and returns early if no clks in the 1823 * subtree have subscribed to the notifications. Note that if a clk does not 1824 * implement the .recalc_rate callback then it is assumed that the clock will 1825 * take on the rate of its parent. 1826 */ 1827 static int __clk_speculate_rates(struct clk_core *core, 1828 unsigned long parent_rate) 1829 { 1830 struct clk_core *child; 1831 unsigned long new_rate; 1832 int ret = NOTIFY_DONE; 1833 1834 lockdep_assert_held(&prepare_lock); 1835 1836 new_rate = clk_recalc(core, parent_rate); 1837 1838 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1839 if (core->notifier_count) 1840 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1841 1842 if (ret & NOTIFY_STOP_MASK) { 1843 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1844 __func__, core->name, ret); 1845 goto out; 1846 } 1847 1848 hlist_for_each_entry(child, &core->children, child_node) { 1849 ret = __clk_speculate_rates(child, new_rate); 1850 if (ret & NOTIFY_STOP_MASK) 1851 break; 1852 } 1853 1854 out: 1855 return ret; 1856 } 1857 1858 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1859 struct clk_core *new_parent, u8 p_index) 1860 { 1861 struct clk_core *child; 1862 1863 core->new_rate = new_rate; 1864 core->new_parent = new_parent; 1865 core->new_parent_index = p_index; 1866 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1867 core->new_child = NULL; 1868 if (new_parent && new_parent != core->parent) 1869 new_parent->new_child = core; 1870 1871 hlist_for_each_entry(child, &core->children, child_node) { 1872 child->new_rate = clk_recalc(child, new_rate); 1873 clk_calc_subtree(child, child->new_rate, NULL, 0); 1874 } 1875 } 1876 1877 /* 1878 * calculate the new rates returning the topmost clock that has to be 1879 * changed. 1880 */ 1881 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1882 unsigned long rate) 1883 { 1884 struct clk_core *top = core; 1885 struct clk_core *old_parent, *parent; 1886 unsigned long best_parent_rate = 0; 1887 unsigned long new_rate; 1888 unsigned long min_rate; 1889 unsigned long max_rate; 1890 int p_index = 0; 1891 long ret; 1892 1893 /* sanity */ 1894 if (IS_ERR_OR_NULL(core)) 1895 return NULL; 1896 1897 /* save parent rate, if it exists */ 1898 parent = old_parent = core->parent; 1899 if (parent) 1900 best_parent_rate = parent->rate; 1901 1902 clk_core_get_boundaries(core, &min_rate, &max_rate); 1903 1904 /* find the closest rate and parent clk/rate */ 1905 if (clk_core_can_round(core)) { 1906 struct clk_rate_request req; 1907 1908 req.rate = rate; 1909 req.min_rate = min_rate; 1910 req.max_rate = max_rate; 1911 1912 clk_core_init_rate_req(core, &req); 1913 1914 ret = clk_core_determine_round_nolock(core, &req); 1915 if (ret < 0) 1916 return NULL; 1917 1918 best_parent_rate = req.best_parent_rate; 1919 new_rate = req.rate; 1920 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1921 1922 if (new_rate < min_rate || new_rate > max_rate) 1923 return NULL; 1924 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1925 /* pass-through clock without adjustable parent */ 1926 core->new_rate = core->rate; 1927 return NULL; 1928 } else { 1929 /* pass-through clock with adjustable parent */ 1930 top = clk_calc_new_rates(parent, rate); 1931 new_rate = parent->new_rate; 1932 goto out; 1933 } 1934 1935 /* some clocks must be gated to change parent */ 1936 if (parent != old_parent && 1937 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1938 pr_debug("%s: %s not gated but wants to reparent\n", 1939 __func__, core->name); 1940 return NULL; 1941 } 1942 1943 /* try finding the new parent index */ 1944 if (parent && core->num_parents > 1) { 1945 p_index = clk_fetch_parent_index(core, parent); 1946 if (p_index < 0) { 1947 pr_debug("%s: clk %s can not be parent of clk %s\n", 1948 __func__, parent->name, core->name); 1949 return NULL; 1950 } 1951 } 1952 1953 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1954 best_parent_rate != parent->rate) 1955 top = clk_calc_new_rates(parent, best_parent_rate); 1956 1957 out: 1958 clk_calc_subtree(core, new_rate, parent, p_index); 1959 1960 return top; 1961 } 1962 1963 /* 1964 * Notify about rate changes in a subtree. Always walk down the whole tree 1965 * so that in case of an error we can walk down the whole tree again and 1966 * abort the change. 1967 */ 1968 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1969 unsigned long event) 1970 { 1971 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1972 int ret = NOTIFY_DONE; 1973 1974 if (core->rate == core->new_rate) 1975 return NULL; 1976 1977 if (core->notifier_count) { 1978 ret = __clk_notify(core, event, core->rate, core->new_rate); 1979 if (ret & NOTIFY_STOP_MASK) 1980 fail_clk = core; 1981 } 1982 1983 hlist_for_each_entry(child, &core->children, child_node) { 1984 /* Skip children who will be reparented to another clock */ 1985 if (child->new_parent && child->new_parent != core) 1986 continue; 1987 tmp_clk = clk_propagate_rate_change(child, event); 1988 if (tmp_clk) 1989 fail_clk = tmp_clk; 1990 } 1991 1992 /* handle the new child who might not be in core->children yet */ 1993 if (core->new_child) { 1994 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1995 if (tmp_clk) 1996 fail_clk = tmp_clk; 1997 } 1998 1999 return fail_clk; 2000 } 2001 2002 /* 2003 * walk down a subtree and set the new rates notifying the rate 2004 * change on the way 2005 */ 2006 static void clk_change_rate(struct clk_core *core) 2007 { 2008 struct clk_core *child; 2009 struct hlist_node *tmp; 2010 unsigned long old_rate; 2011 unsigned long best_parent_rate = 0; 2012 bool skip_set_rate = false; 2013 struct clk_core *old_parent; 2014 struct clk_core *parent = NULL; 2015 2016 old_rate = core->rate; 2017 2018 if (core->new_parent) { 2019 parent = core->new_parent; 2020 best_parent_rate = core->new_parent->rate; 2021 } else if (core->parent) { 2022 parent = core->parent; 2023 best_parent_rate = core->parent->rate; 2024 } 2025 2026 if (clk_pm_runtime_get(core)) 2027 return; 2028 2029 if (core->flags & CLK_SET_RATE_UNGATE) { 2030 unsigned long flags; 2031 2032 clk_core_prepare(core); 2033 flags = clk_enable_lock(); 2034 clk_core_enable(core); 2035 clk_enable_unlock(flags); 2036 } 2037 2038 if (core->new_parent && core->new_parent != core->parent) { 2039 old_parent = __clk_set_parent_before(core, core->new_parent); 2040 trace_clk_set_parent(core, core->new_parent); 2041 2042 if (core->ops->set_rate_and_parent) { 2043 skip_set_rate = true; 2044 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2045 best_parent_rate, 2046 core->new_parent_index); 2047 } else if (core->ops->set_parent) { 2048 core->ops->set_parent(core->hw, core->new_parent_index); 2049 } 2050 2051 trace_clk_set_parent_complete(core, core->new_parent); 2052 __clk_set_parent_after(core, core->new_parent, old_parent); 2053 } 2054 2055 if (core->flags & CLK_OPS_PARENT_ENABLE) 2056 clk_core_prepare_enable(parent); 2057 2058 trace_clk_set_rate(core, core->new_rate); 2059 2060 if (!skip_set_rate && core->ops->set_rate) 2061 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2062 2063 trace_clk_set_rate_complete(core, core->new_rate); 2064 2065 core->rate = clk_recalc(core, best_parent_rate); 2066 2067 if (core->flags & CLK_SET_RATE_UNGATE) { 2068 unsigned long flags; 2069 2070 flags = clk_enable_lock(); 2071 clk_core_disable(core); 2072 clk_enable_unlock(flags); 2073 clk_core_unprepare(core); 2074 } 2075 2076 if (core->flags & CLK_OPS_PARENT_ENABLE) 2077 clk_core_disable_unprepare(parent); 2078 2079 if (core->notifier_count && old_rate != core->rate) 2080 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2081 2082 if (core->flags & CLK_RECALC_NEW_RATES) 2083 (void)clk_calc_new_rates(core, core->new_rate); 2084 2085 /* 2086 * Use safe iteration, as change_rate can actually swap parents 2087 * for certain clock types. 2088 */ 2089 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2090 /* Skip children who will be reparented to another clock */ 2091 if (child->new_parent && child->new_parent != core) 2092 continue; 2093 clk_change_rate(child); 2094 } 2095 2096 /* handle the new child who might not be in core->children yet */ 2097 if (core->new_child) 2098 clk_change_rate(core->new_child); 2099 2100 clk_pm_runtime_put(core); 2101 } 2102 2103 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2104 unsigned long req_rate) 2105 { 2106 int ret, cnt; 2107 struct clk_rate_request req; 2108 2109 lockdep_assert_held(&prepare_lock); 2110 2111 if (!core) 2112 return 0; 2113 2114 /* simulate what the rate would be if it could be freely set */ 2115 cnt = clk_core_rate_nuke_protect(core); 2116 if (cnt < 0) 2117 return cnt; 2118 2119 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2120 req.rate = req_rate; 2121 2122 ret = clk_core_round_rate_nolock(core, &req); 2123 2124 /* restore the protection */ 2125 clk_core_rate_restore_protect(core, cnt); 2126 2127 return ret ? 0 : req.rate; 2128 } 2129 2130 static int clk_core_set_rate_nolock(struct clk_core *core, 2131 unsigned long req_rate) 2132 { 2133 struct clk_core *top, *fail_clk; 2134 unsigned long rate; 2135 int ret = 0; 2136 2137 if (!core) 2138 return 0; 2139 2140 rate = clk_core_req_round_rate_nolock(core, req_rate); 2141 2142 /* bail early if nothing to do */ 2143 if (rate == clk_core_get_rate_nolock(core)) 2144 return 0; 2145 2146 /* fail on a direct rate set of a protected provider */ 2147 if (clk_core_rate_is_protected(core)) 2148 return -EBUSY; 2149 2150 /* calculate new rates and get the topmost changed clock */ 2151 top = clk_calc_new_rates(core, req_rate); 2152 if (!top) 2153 return -EINVAL; 2154 2155 ret = clk_pm_runtime_get(core); 2156 if (ret) 2157 return ret; 2158 2159 /* notify that we are about to change rates */ 2160 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2161 if (fail_clk) { 2162 pr_debug("%s: failed to set %s rate\n", __func__, 2163 fail_clk->name); 2164 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2165 ret = -EBUSY; 2166 goto err; 2167 } 2168 2169 /* change the rates */ 2170 clk_change_rate(top); 2171 2172 core->req_rate = req_rate; 2173 err: 2174 clk_pm_runtime_put(core); 2175 2176 return ret; 2177 } 2178 2179 /** 2180 * clk_set_rate - specify a new rate for clk 2181 * @clk: the clk whose rate is being changed 2182 * @rate: the new rate for clk 2183 * 2184 * In the simplest case clk_set_rate will only adjust the rate of clk. 2185 * 2186 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2187 * propagate up to clk's parent; whether or not this happens depends on the 2188 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2189 * after calling .round_rate then upstream parent propagation is ignored. If 2190 * *parent_rate comes back with a new rate for clk's parent then we propagate 2191 * up to clk's parent and set its rate. Upward propagation will continue 2192 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2193 * .round_rate stops requesting changes to clk's parent_rate. 2194 * 2195 * Rate changes are accomplished via tree traversal that also recalculates the 2196 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2197 * 2198 * Returns 0 on success, -EERROR otherwise. 2199 */ 2200 int clk_set_rate(struct clk *clk, unsigned long rate) 2201 { 2202 int ret; 2203 2204 if (!clk) 2205 return 0; 2206 2207 /* prevent racing with updates to the clock topology */ 2208 clk_prepare_lock(); 2209 2210 if (clk->exclusive_count) 2211 clk_core_rate_unprotect(clk->core); 2212 2213 ret = clk_core_set_rate_nolock(clk->core, rate); 2214 2215 if (clk->exclusive_count) 2216 clk_core_rate_protect(clk->core); 2217 2218 clk_prepare_unlock(); 2219 2220 return ret; 2221 } 2222 EXPORT_SYMBOL_GPL(clk_set_rate); 2223 2224 /** 2225 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2226 * @clk: the clk whose rate is being changed 2227 * @rate: the new rate for clk 2228 * 2229 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2230 * within a critical section 2231 * 2232 * This can be used initially to ensure that at least 1 consumer is 2233 * satisfied when several consumers are competing for exclusivity over the 2234 * same clock provider. 2235 * 2236 * The exclusivity is not applied if setting the rate failed. 2237 * 2238 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2239 * clk_rate_exclusive_put(). 2240 * 2241 * Returns 0 on success, -EERROR otherwise. 2242 */ 2243 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2244 { 2245 int ret; 2246 2247 if (!clk) 2248 return 0; 2249 2250 /* prevent racing with updates to the clock topology */ 2251 clk_prepare_lock(); 2252 2253 /* 2254 * The temporary protection removal is not here, on purpose 2255 * This function is meant to be used instead of clk_rate_protect, 2256 * so before the consumer code path protect the clock provider 2257 */ 2258 2259 ret = clk_core_set_rate_nolock(clk->core, rate); 2260 if (!ret) { 2261 clk_core_rate_protect(clk->core); 2262 clk->exclusive_count++; 2263 } 2264 2265 clk_prepare_unlock(); 2266 2267 return ret; 2268 } 2269 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2270 2271 /** 2272 * clk_set_rate_range - set a rate range for a clock source 2273 * @clk: clock source 2274 * @min: desired minimum clock rate in Hz, inclusive 2275 * @max: desired maximum clock rate in Hz, inclusive 2276 * 2277 * Returns success (0) or negative errno. 2278 */ 2279 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2280 { 2281 int ret = 0; 2282 unsigned long old_min, old_max, rate; 2283 2284 if (!clk) 2285 return 0; 2286 2287 if (min > max) { 2288 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2289 __func__, clk->core->name, clk->dev_id, clk->con_id, 2290 min, max); 2291 return -EINVAL; 2292 } 2293 2294 clk_prepare_lock(); 2295 2296 if (clk->exclusive_count) 2297 clk_core_rate_unprotect(clk->core); 2298 2299 /* Save the current values in case we need to rollback the change */ 2300 old_min = clk->min_rate; 2301 old_max = clk->max_rate; 2302 clk->min_rate = min; 2303 clk->max_rate = max; 2304 2305 rate = clk_core_get_rate_nolock(clk->core); 2306 if (rate < min || rate > max) { 2307 /* 2308 * FIXME: 2309 * We are in bit of trouble here, current rate is outside the 2310 * the requested range. We are going try to request appropriate 2311 * range boundary but there is a catch. It may fail for the 2312 * usual reason (clock broken, clock protected, etc) but also 2313 * because: 2314 * - round_rate() was not favorable and fell on the wrong 2315 * side of the boundary 2316 * - the determine_rate() callback does not really check for 2317 * this corner case when determining the rate 2318 */ 2319 2320 if (rate < min) 2321 rate = min; 2322 else 2323 rate = max; 2324 2325 ret = clk_core_set_rate_nolock(clk->core, rate); 2326 if (ret) { 2327 /* rollback the changes */ 2328 clk->min_rate = old_min; 2329 clk->max_rate = old_max; 2330 } 2331 } 2332 2333 if (clk->exclusive_count) 2334 clk_core_rate_protect(clk->core); 2335 2336 clk_prepare_unlock(); 2337 2338 return ret; 2339 } 2340 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2341 2342 /** 2343 * clk_set_min_rate - set a minimum clock rate for a clock source 2344 * @clk: clock source 2345 * @rate: desired minimum clock rate in Hz, inclusive 2346 * 2347 * Returns success (0) or negative errno. 2348 */ 2349 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2350 { 2351 if (!clk) 2352 return 0; 2353 2354 return clk_set_rate_range(clk, rate, clk->max_rate); 2355 } 2356 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2357 2358 /** 2359 * clk_set_max_rate - set a maximum clock rate for a clock source 2360 * @clk: clock source 2361 * @rate: desired maximum clock rate in Hz, inclusive 2362 * 2363 * Returns success (0) or negative errno. 2364 */ 2365 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2366 { 2367 if (!clk) 2368 return 0; 2369 2370 return clk_set_rate_range(clk, clk->min_rate, rate); 2371 } 2372 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2373 2374 /** 2375 * clk_get_parent - return the parent of a clk 2376 * @clk: the clk whose parent gets returned 2377 * 2378 * Simply returns clk->parent. Returns NULL if clk is NULL. 2379 */ 2380 struct clk *clk_get_parent(struct clk *clk) 2381 { 2382 struct clk *parent; 2383 2384 if (!clk) 2385 return NULL; 2386 2387 clk_prepare_lock(); 2388 /* TODO: Create a per-user clk and change callers to call clk_put */ 2389 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2390 clk_prepare_unlock(); 2391 2392 return parent; 2393 } 2394 EXPORT_SYMBOL_GPL(clk_get_parent); 2395 2396 static struct clk_core *__clk_init_parent(struct clk_core *core) 2397 { 2398 u8 index = 0; 2399 2400 if (core->num_parents > 1 && core->ops->get_parent) 2401 index = core->ops->get_parent(core->hw); 2402 2403 return clk_core_get_parent_by_index(core, index); 2404 } 2405 2406 static void clk_core_reparent(struct clk_core *core, 2407 struct clk_core *new_parent) 2408 { 2409 clk_reparent(core, new_parent); 2410 __clk_recalc_accuracies(core); 2411 __clk_recalc_rates(core, POST_RATE_CHANGE); 2412 } 2413 2414 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2415 { 2416 if (!hw) 2417 return; 2418 2419 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2420 } 2421 2422 /** 2423 * clk_has_parent - check if a clock is a possible parent for another 2424 * @clk: clock source 2425 * @parent: parent clock source 2426 * 2427 * This function can be used in drivers that need to check that a clock can be 2428 * the parent of another without actually changing the parent. 2429 * 2430 * Returns true if @parent is a possible parent for @clk, false otherwise. 2431 */ 2432 bool clk_has_parent(struct clk *clk, struct clk *parent) 2433 { 2434 struct clk_core *core, *parent_core; 2435 int i; 2436 2437 /* NULL clocks should be nops, so return success if either is NULL. */ 2438 if (!clk || !parent) 2439 return true; 2440 2441 core = clk->core; 2442 parent_core = parent->core; 2443 2444 /* Optimize for the case where the parent is already the parent. */ 2445 if (core->parent == parent_core) 2446 return true; 2447 2448 for (i = 0; i < core->num_parents; i++) 2449 if (!strcmp(core->parents[i].name, parent_core->name)) 2450 return true; 2451 2452 return false; 2453 } 2454 EXPORT_SYMBOL_GPL(clk_has_parent); 2455 2456 static int clk_core_set_parent_nolock(struct clk_core *core, 2457 struct clk_core *parent) 2458 { 2459 int ret = 0; 2460 int p_index = 0; 2461 unsigned long p_rate = 0; 2462 2463 lockdep_assert_held(&prepare_lock); 2464 2465 if (!core) 2466 return 0; 2467 2468 if (core->parent == parent) 2469 return 0; 2470 2471 /* verify ops for multi-parent clks */ 2472 if (core->num_parents > 1 && !core->ops->set_parent) 2473 return -EPERM; 2474 2475 /* check that we are allowed to re-parent if the clock is in use */ 2476 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2477 return -EBUSY; 2478 2479 if (clk_core_rate_is_protected(core)) 2480 return -EBUSY; 2481 2482 /* try finding the new parent index */ 2483 if (parent) { 2484 p_index = clk_fetch_parent_index(core, parent); 2485 if (p_index < 0) { 2486 pr_debug("%s: clk %s can not be parent of clk %s\n", 2487 __func__, parent->name, core->name); 2488 return p_index; 2489 } 2490 p_rate = parent->rate; 2491 } 2492 2493 ret = clk_pm_runtime_get(core); 2494 if (ret) 2495 return ret; 2496 2497 /* propagate PRE_RATE_CHANGE notifications */ 2498 ret = __clk_speculate_rates(core, p_rate); 2499 2500 /* abort if a driver objects */ 2501 if (ret & NOTIFY_STOP_MASK) 2502 goto runtime_put; 2503 2504 /* do the re-parent */ 2505 ret = __clk_set_parent(core, parent, p_index); 2506 2507 /* propagate rate an accuracy recalculation accordingly */ 2508 if (ret) { 2509 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2510 } else { 2511 __clk_recalc_rates(core, POST_RATE_CHANGE); 2512 __clk_recalc_accuracies(core); 2513 } 2514 2515 runtime_put: 2516 clk_pm_runtime_put(core); 2517 2518 return ret; 2519 } 2520 2521 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2522 { 2523 return clk_core_set_parent_nolock(hw->core, parent->core); 2524 } 2525 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2526 2527 /** 2528 * clk_set_parent - switch the parent of a mux clk 2529 * @clk: the mux clk whose input we are switching 2530 * @parent: the new input to clk 2531 * 2532 * Re-parent clk to use parent as its new input source. If clk is in 2533 * prepared state, the clk will get enabled for the duration of this call. If 2534 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2535 * that, the reparenting is glitchy in hardware, etc), use the 2536 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2537 * 2538 * After successfully changing clk's parent clk_set_parent will update the 2539 * clk topology, sysfs topology and propagate rate recalculation via 2540 * __clk_recalc_rates. 2541 * 2542 * Returns 0 on success, -EERROR otherwise. 2543 */ 2544 int clk_set_parent(struct clk *clk, struct clk *parent) 2545 { 2546 int ret; 2547 2548 if (!clk) 2549 return 0; 2550 2551 clk_prepare_lock(); 2552 2553 if (clk->exclusive_count) 2554 clk_core_rate_unprotect(clk->core); 2555 2556 ret = clk_core_set_parent_nolock(clk->core, 2557 parent ? parent->core : NULL); 2558 2559 if (clk->exclusive_count) 2560 clk_core_rate_protect(clk->core); 2561 2562 clk_prepare_unlock(); 2563 2564 return ret; 2565 } 2566 EXPORT_SYMBOL_GPL(clk_set_parent); 2567 2568 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2569 { 2570 int ret = -EINVAL; 2571 2572 lockdep_assert_held(&prepare_lock); 2573 2574 if (!core) 2575 return 0; 2576 2577 if (clk_core_rate_is_protected(core)) 2578 return -EBUSY; 2579 2580 trace_clk_set_phase(core, degrees); 2581 2582 if (core->ops->set_phase) { 2583 ret = core->ops->set_phase(core->hw, degrees); 2584 if (!ret) 2585 core->phase = degrees; 2586 } 2587 2588 trace_clk_set_phase_complete(core, degrees); 2589 2590 return ret; 2591 } 2592 2593 /** 2594 * clk_set_phase - adjust the phase shift of a clock signal 2595 * @clk: clock signal source 2596 * @degrees: number of degrees the signal is shifted 2597 * 2598 * Shifts the phase of a clock signal by the specified 2599 * degrees. Returns 0 on success, -EERROR otherwise. 2600 * 2601 * This function makes no distinction about the input or reference 2602 * signal that we adjust the clock signal phase against. For example 2603 * phase locked-loop clock signal generators we may shift phase with 2604 * respect to feedback clock signal input, but for other cases the 2605 * clock phase may be shifted with respect to some other, unspecified 2606 * signal. 2607 * 2608 * Additionally the concept of phase shift does not propagate through 2609 * the clock tree hierarchy, which sets it apart from clock rates and 2610 * clock accuracy. A parent clock phase attribute does not have an 2611 * impact on the phase attribute of a child clock. 2612 */ 2613 int clk_set_phase(struct clk *clk, int degrees) 2614 { 2615 int ret; 2616 2617 if (!clk) 2618 return 0; 2619 2620 /* sanity check degrees */ 2621 degrees %= 360; 2622 if (degrees < 0) 2623 degrees += 360; 2624 2625 clk_prepare_lock(); 2626 2627 if (clk->exclusive_count) 2628 clk_core_rate_unprotect(clk->core); 2629 2630 ret = clk_core_set_phase_nolock(clk->core, degrees); 2631 2632 if (clk->exclusive_count) 2633 clk_core_rate_protect(clk->core); 2634 2635 clk_prepare_unlock(); 2636 2637 return ret; 2638 } 2639 EXPORT_SYMBOL_GPL(clk_set_phase); 2640 2641 static int clk_core_get_phase(struct clk_core *core) 2642 { 2643 int ret; 2644 2645 clk_prepare_lock(); 2646 /* Always try to update cached phase if possible */ 2647 if (core->ops->get_phase) 2648 core->phase = core->ops->get_phase(core->hw); 2649 ret = core->phase; 2650 clk_prepare_unlock(); 2651 2652 return ret; 2653 } 2654 2655 /** 2656 * clk_get_phase - return the phase shift of a clock signal 2657 * @clk: clock signal source 2658 * 2659 * Returns the phase shift of a clock node in degrees, otherwise returns 2660 * -EERROR. 2661 */ 2662 int clk_get_phase(struct clk *clk) 2663 { 2664 if (!clk) 2665 return 0; 2666 2667 return clk_core_get_phase(clk->core); 2668 } 2669 EXPORT_SYMBOL_GPL(clk_get_phase); 2670 2671 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2672 { 2673 /* Assume a default value of 50% */ 2674 core->duty.num = 1; 2675 core->duty.den = 2; 2676 } 2677 2678 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2679 2680 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2681 { 2682 struct clk_duty *duty = &core->duty; 2683 int ret = 0; 2684 2685 if (!core->ops->get_duty_cycle) 2686 return clk_core_update_duty_cycle_parent_nolock(core); 2687 2688 ret = core->ops->get_duty_cycle(core->hw, duty); 2689 if (ret) 2690 goto reset; 2691 2692 /* Don't trust the clock provider too much */ 2693 if (duty->den == 0 || duty->num > duty->den) { 2694 ret = -EINVAL; 2695 goto reset; 2696 } 2697 2698 return 0; 2699 2700 reset: 2701 clk_core_reset_duty_cycle_nolock(core); 2702 return ret; 2703 } 2704 2705 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2706 { 2707 int ret = 0; 2708 2709 if (core->parent && 2710 core->flags & CLK_DUTY_CYCLE_PARENT) { 2711 ret = clk_core_update_duty_cycle_nolock(core->parent); 2712 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2713 } else { 2714 clk_core_reset_duty_cycle_nolock(core); 2715 } 2716 2717 return ret; 2718 } 2719 2720 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2721 struct clk_duty *duty); 2722 2723 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2724 struct clk_duty *duty) 2725 { 2726 int ret; 2727 2728 lockdep_assert_held(&prepare_lock); 2729 2730 if (clk_core_rate_is_protected(core)) 2731 return -EBUSY; 2732 2733 trace_clk_set_duty_cycle(core, duty); 2734 2735 if (!core->ops->set_duty_cycle) 2736 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2737 2738 ret = core->ops->set_duty_cycle(core->hw, duty); 2739 if (!ret) 2740 memcpy(&core->duty, duty, sizeof(*duty)); 2741 2742 trace_clk_set_duty_cycle_complete(core, duty); 2743 2744 return ret; 2745 } 2746 2747 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2748 struct clk_duty *duty) 2749 { 2750 int ret = 0; 2751 2752 if (core->parent && 2753 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2754 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2755 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2756 } 2757 2758 return ret; 2759 } 2760 2761 /** 2762 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2763 * @clk: clock signal source 2764 * @num: numerator of the duty cycle ratio to be applied 2765 * @den: denominator of the duty cycle ratio to be applied 2766 * 2767 * Apply the duty cycle ratio if the ratio is valid and the clock can 2768 * perform this operation 2769 * 2770 * Returns (0) on success, a negative errno otherwise. 2771 */ 2772 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2773 { 2774 int ret; 2775 struct clk_duty duty; 2776 2777 if (!clk) 2778 return 0; 2779 2780 /* sanity check the ratio */ 2781 if (den == 0 || num > den) 2782 return -EINVAL; 2783 2784 duty.num = num; 2785 duty.den = den; 2786 2787 clk_prepare_lock(); 2788 2789 if (clk->exclusive_count) 2790 clk_core_rate_unprotect(clk->core); 2791 2792 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2793 2794 if (clk->exclusive_count) 2795 clk_core_rate_protect(clk->core); 2796 2797 clk_prepare_unlock(); 2798 2799 return ret; 2800 } 2801 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2802 2803 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2804 unsigned int scale) 2805 { 2806 struct clk_duty *duty = &core->duty; 2807 int ret; 2808 2809 clk_prepare_lock(); 2810 2811 ret = clk_core_update_duty_cycle_nolock(core); 2812 if (!ret) 2813 ret = mult_frac(scale, duty->num, duty->den); 2814 2815 clk_prepare_unlock(); 2816 2817 return ret; 2818 } 2819 2820 /** 2821 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2822 * @clk: clock signal source 2823 * @scale: scaling factor to be applied to represent the ratio as an integer 2824 * 2825 * Returns the duty cycle ratio of a clock node multiplied by the provided 2826 * scaling factor, or negative errno on error. 2827 */ 2828 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2829 { 2830 if (!clk) 2831 return 0; 2832 2833 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2834 } 2835 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2836 2837 /** 2838 * clk_is_match - check if two clk's point to the same hardware clock 2839 * @p: clk compared against q 2840 * @q: clk compared against p 2841 * 2842 * Returns true if the two struct clk pointers both point to the same hardware 2843 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2844 * share the same struct clk_core object. 2845 * 2846 * Returns false otherwise. Note that two NULL clks are treated as matching. 2847 */ 2848 bool clk_is_match(const struct clk *p, const struct clk *q) 2849 { 2850 /* trivial case: identical struct clk's or both NULL */ 2851 if (p == q) 2852 return true; 2853 2854 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2855 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2856 if (p->core == q->core) 2857 return true; 2858 2859 return false; 2860 } 2861 EXPORT_SYMBOL_GPL(clk_is_match); 2862 2863 /*** debugfs support ***/ 2864 2865 #ifdef CONFIG_DEBUG_FS 2866 #include <linux/debugfs.h> 2867 2868 static struct dentry *rootdir; 2869 static int inited = 0; 2870 static DEFINE_MUTEX(clk_debug_lock); 2871 static HLIST_HEAD(clk_debug_list); 2872 2873 static struct hlist_head *orphan_list[] = { 2874 &clk_orphan_list, 2875 NULL, 2876 }; 2877 2878 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2879 int level) 2880 { 2881 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n", 2882 level * 3 + 1, "", 2883 30 - level * 3, c->name, 2884 c->enable_count, c->prepare_count, c->protect_count, 2885 clk_core_get_rate(c), clk_core_get_accuracy(c), 2886 clk_core_get_phase(c), 2887 clk_core_get_scaled_duty_cycle(c, 100000)); 2888 } 2889 2890 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2891 int level) 2892 { 2893 struct clk_core *child; 2894 2895 clk_summary_show_one(s, c, level); 2896 2897 hlist_for_each_entry(child, &c->children, child_node) 2898 clk_summary_show_subtree(s, child, level + 1); 2899 } 2900 2901 static int clk_summary_show(struct seq_file *s, void *data) 2902 { 2903 struct clk_core *c; 2904 struct hlist_head **lists = (struct hlist_head **)s->private; 2905 2906 seq_puts(s, " enable prepare protect duty\n"); 2907 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2908 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2909 2910 clk_prepare_lock(); 2911 2912 for (; *lists; lists++) 2913 hlist_for_each_entry(c, *lists, child_node) 2914 clk_summary_show_subtree(s, c, 0); 2915 2916 clk_prepare_unlock(); 2917 2918 return 0; 2919 } 2920 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2921 2922 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2923 { 2924 unsigned long min_rate, max_rate; 2925 2926 clk_core_get_boundaries(c, &min_rate, &max_rate); 2927 2928 /* This should be JSON format, i.e. elements separated with a comma */ 2929 seq_printf(s, "\"%s\": { ", c->name); 2930 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2931 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2932 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2933 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2934 seq_printf(s, "\"min_rate\": %lu,", min_rate); 2935 seq_printf(s, "\"max_rate\": %lu,", max_rate); 2936 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2937 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c)); 2938 seq_printf(s, "\"duty_cycle\": %u", 2939 clk_core_get_scaled_duty_cycle(c, 100000)); 2940 } 2941 2942 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2943 { 2944 struct clk_core *child; 2945 2946 clk_dump_one(s, c, level); 2947 2948 hlist_for_each_entry(child, &c->children, child_node) { 2949 seq_putc(s, ','); 2950 clk_dump_subtree(s, child, level + 1); 2951 } 2952 2953 seq_putc(s, '}'); 2954 } 2955 2956 static int clk_dump_show(struct seq_file *s, void *data) 2957 { 2958 struct clk_core *c; 2959 bool first_node = true; 2960 struct hlist_head **lists = (struct hlist_head **)s->private; 2961 2962 seq_putc(s, '{'); 2963 clk_prepare_lock(); 2964 2965 for (; *lists; lists++) { 2966 hlist_for_each_entry(c, *lists, child_node) { 2967 if (!first_node) 2968 seq_putc(s, ','); 2969 first_node = false; 2970 clk_dump_subtree(s, c, 0); 2971 } 2972 } 2973 2974 clk_prepare_unlock(); 2975 2976 seq_puts(s, "}\n"); 2977 return 0; 2978 } 2979 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2980 2981 static const struct { 2982 unsigned long flag; 2983 const char *name; 2984 } clk_flags[] = { 2985 #define ENTRY(f) { f, #f } 2986 ENTRY(CLK_SET_RATE_GATE), 2987 ENTRY(CLK_SET_PARENT_GATE), 2988 ENTRY(CLK_SET_RATE_PARENT), 2989 ENTRY(CLK_IGNORE_UNUSED), 2990 ENTRY(CLK_GET_RATE_NOCACHE), 2991 ENTRY(CLK_SET_RATE_NO_REPARENT), 2992 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2993 ENTRY(CLK_RECALC_NEW_RATES), 2994 ENTRY(CLK_SET_RATE_UNGATE), 2995 ENTRY(CLK_IS_CRITICAL), 2996 ENTRY(CLK_OPS_PARENT_ENABLE), 2997 ENTRY(CLK_DUTY_CYCLE_PARENT), 2998 #undef ENTRY 2999 }; 3000 3001 static int clk_flags_show(struct seq_file *s, void *data) 3002 { 3003 struct clk_core *core = s->private; 3004 unsigned long flags = core->flags; 3005 unsigned int i; 3006 3007 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3008 if (flags & clk_flags[i].flag) { 3009 seq_printf(s, "%s\n", clk_flags[i].name); 3010 flags &= ~clk_flags[i].flag; 3011 } 3012 } 3013 if (flags) { 3014 /* Unknown flags */ 3015 seq_printf(s, "0x%lx\n", flags); 3016 } 3017 3018 return 0; 3019 } 3020 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3021 3022 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3023 unsigned int i, char terminator) 3024 { 3025 struct clk_core *parent; 3026 3027 /* 3028 * Go through the following options to fetch a parent's name. 3029 * 3030 * 1. Fetch the registered parent clock and use its name 3031 * 2. Use the global (fallback) name if specified 3032 * 3. Use the local fw_name if provided 3033 * 4. Fetch parent clock's clock-output-name if DT index was set 3034 * 3035 * This may still fail in some cases, such as when the parent is 3036 * specified directly via a struct clk_hw pointer, but it isn't 3037 * registered (yet). 3038 */ 3039 parent = clk_core_get_parent_by_index(core, i); 3040 if (parent) 3041 seq_puts(s, parent->name); 3042 else if (core->parents[i].name) 3043 seq_puts(s, core->parents[i].name); 3044 else if (core->parents[i].fw_name) 3045 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3046 else if (core->parents[i].index >= 0) 3047 seq_puts(s, 3048 of_clk_get_parent_name(core->of_node, 3049 core->parents[i].index)); 3050 else 3051 seq_puts(s, "(missing)"); 3052 3053 seq_putc(s, terminator); 3054 } 3055 3056 static int possible_parents_show(struct seq_file *s, void *data) 3057 { 3058 struct clk_core *core = s->private; 3059 int i; 3060 3061 for (i = 0; i < core->num_parents - 1; i++) 3062 possible_parent_show(s, core, i, ' '); 3063 3064 possible_parent_show(s, core, i, '\n'); 3065 3066 return 0; 3067 } 3068 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3069 3070 static int current_parent_show(struct seq_file *s, void *data) 3071 { 3072 struct clk_core *core = s->private; 3073 3074 if (core->parent) 3075 seq_printf(s, "%s\n", core->parent->name); 3076 3077 return 0; 3078 } 3079 DEFINE_SHOW_ATTRIBUTE(current_parent); 3080 3081 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3082 { 3083 struct clk_core *core = s->private; 3084 struct clk_duty *duty = &core->duty; 3085 3086 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3087 3088 return 0; 3089 } 3090 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3091 3092 static int clk_min_rate_show(struct seq_file *s, void *data) 3093 { 3094 struct clk_core *core = s->private; 3095 unsigned long min_rate, max_rate; 3096 3097 clk_prepare_lock(); 3098 clk_core_get_boundaries(core, &min_rate, &max_rate); 3099 clk_prepare_unlock(); 3100 seq_printf(s, "%lu\n", min_rate); 3101 3102 return 0; 3103 } 3104 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3105 3106 static int clk_max_rate_show(struct seq_file *s, void *data) 3107 { 3108 struct clk_core *core = s->private; 3109 unsigned long min_rate, max_rate; 3110 3111 clk_prepare_lock(); 3112 clk_core_get_boundaries(core, &min_rate, &max_rate); 3113 clk_prepare_unlock(); 3114 seq_printf(s, "%lu\n", max_rate); 3115 3116 return 0; 3117 } 3118 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3119 3120 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3121 { 3122 struct dentry *root; 3123 3124 if (!core || !pdentry) 3125 return; 3126 3127 root = debugfs_create_dir(core->name, pdentry); 3128 core->dentry = root; 3129 3130 debugfs_create_ulong("clk_rate", 0444, root, &core->rate); 3131 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3132 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3133 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3134 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3135 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3136 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3137 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3138 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3139 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3140 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3141 &clk_duty_cycle_fops); 3142 3143 if (core->num_parents > 0) 3144 debugfs_create_file("clk_parent", 0444, root, core, 3145 ¤t_parent_fops); 3146 3147 if (core->num_parents > 1) 3148 debugfs_create_file("clk_possible_parents", 0444, root, core, 3149 &possible_parents_fops); 3150 3151 if (core->ops->debug_init) 3152 core->ops->debug_init(core->hw, core->dentry); 3153 } 3154 3155 /** 3156 * clk_debug_register - add a clk node to the debugfs clk directory 3157 * @core: the clk being added to the debugfs clk directory 3158 * 3159 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3160 * initialized. Otherwise it bails out early since the debugfs clk directory 3161 * will be created lazily by clk_debug_init as part of a late_initcall. 3162 */ 3163 static void clk_debug_register(struct clk_core *core) 3164 { 3165 mutex_lock(&clk_debug_lock); 3166 hlist_add_head(&core->debug_node, &clk_debug_list); 3167 if (inited) 3168 clk_debug_create_one(core, rootdir); 3169 mutex_unlock(&clk_debug_lock); 3170 } 3171 3172 /** 3173 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3174 * @core: the clk being removed from the debugfs clk directory 3175 * 3176 * Dynamically removes a clk and all its child nodes from the 3177 * debugfs clk directory if clk->dentry points to debugfs created by 3178 * clk_debug_register in __clk_core_init. 3179 */ 3180 static void clk_debug_unregister(struct clk_core *core) 3181 { 3182 mutex_lock(&clk_debug_lock); 3183 hlist_del_init(&core->debug_node); 3184 debugfs_remove_recursive(core->dentry); 3185 core->dentry = NULL; 3186 mutex_unlock(&clk_debug_lock); 3187 } 3188 3189 /** 3190 * clk_debug_init - lazily populate the debugfs clk directory 3191 * 3192 * clks are often initialized very early during boot before memory can be 3193 * dynamically allocated and well before debugfs is setup. This function 3194 * populates the debugfs clk directory once at boot-time when we know that 3195 * debugfs is setup. It should only be called once at boot-time, all other clks 3196 * added dynamically will be done so with clk_debug_register. 3197 */ 3198 static int __init clk_debug_init(void) 3199 { 3200 struct clk_core *core; 3201 3202 rootdir = debugfs_create_dir("clk", NULL); 3203 3204 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3205 &clk_summary_fops); 3206 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3207 &clk_dump_fops); 3208 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3209 &clk_summary_fops); 3210 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3211 &clk_dump_fops); 3212 3213 mutex_lock(&clk_debug_lock); 3214 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3215 clk_debug_create_one(core, rootdir); 3216 3217 inited = 1; 3218 mutex_unlock(&clk_debug_lock); 3219 3220 return 0; 3221 } 3222 late_initcall(clk_debug_init); 3223 #else 3224 static inline void clk_debug_register(struct clk_core *core) { } 3225 static inline void clk_debug_reparent(struct clk_core *core, 3226 struct clk_core *new_parent) 3227 { 3228 } 3229 static inline void clk_debug_unregister(struct clk_core *core) 3230 { 3231 } 3232 #endif 3233 3234 /** 3235 * __clk_core_init - initialize the data structures in a struct clk_core 3236 * @core: clk_core being initialized 3237 * 3238 * Initializes the lists in struct clk_core, queries the hardware for the 3239 * parent and rate and sets them both. 3240 */ 3241 static int __clk_core_init(struct clk_core *core) 3242 { 3243 int ret; 3244 struct clk_core *orphan; 3245 struct hlist_node *tmp2; 3246 unsigned long rate; 3247 3248 if (!core) 3249 return -EINVAL; 3250 3251 clk_prepare_lock(); 3252 3253 ret = clk_pm_runtime_get(core); 3254 if (ret) 3255 goto unlock; 3256 3257 /* check to see if a clock with this name is already registered */ 3258 if (clk_core_lookup(core->name)) { 3259 pr_debug("%s: clk %s already initialized\n", 3260 __func__, core->name); 3261 ret = -EEXIST; 3262 goto out; 3263 } 3264 3265 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3266 if (core->ops->set_rate && 3267 !((core->ops->round_rate || core->ops->determine_rate) && 3268 core->ops->recalc_rate)) { 3269 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3270 __func__, core->name); 3271 ret = -EINVAL; 3272 goto out; 3273 } 3274 3275 if (core->ops->set_parent && !core->ops->get_parent) { 3276 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3277 __func__, core->name); 3278 ret = -EINVAL; 3279 goto out; 3280 } 3281 3282 if (core->num_parents > 1 && !core->ops->get_parent) { 3283 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3284 __func__, core->name); 3285 ret = -EINVAL; 3286 goto out; 3287 } 3288 3289 if (core->ops->set_rate_and_parent && 3290 !(core->ops->set_parent && core->ops->set_rate)) { 3291 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3292 __func__, core->name); 3293 ret = -EINVAL; 3294 goto out; 3295 } 3296 3297 core->parent = __clk_init_parent(core); 3298 3299 /* 3300 * Populate core->parent if parent has already been clk_core_init'd. If 3301 * parent has not yet been clk_core_init'd then place clk in the orphan 3302 * list. If clk doesn't have any parents then place it in the root 3303 * clk list. 3304 * 3305 * Every time a new clk is clk_init'd then we walk the list of orphan 3306 * clocks and re-parent any that are children of the clock currently 3307 * being clk_init'd. 3308 */ 3309 if (core->parent) { 3310 hlist_add_head(&core->child_node, 3311 &core->parent->children); 3312 core->orphan = core->parent->orphan; 3313 } else if (!core->num_parents) { 3314 hlist_add_head(&core->child_node, &clk_root_list); 3315 core->orphan = false; 3316 } else { 3317 hlist_add_head(&core->child_node, &clk_orphan_list); 3318 core->orphan = true; 3319 } 3320 3321 /* 3322 * optional platform-specific magic 3323 * 3324 * The .init callback is not used by any of the basic clock types, but 3325 * exists for weird hardware that must perform initialization magic. 3326 * Please consider other ways of solving initialization problems before 3327 * using this callback, as its use is discouraged. 3328 */ 3329 if (core->ops->init) 3330 core->ops->init(core->hw); 3331 3332 /* 3333 * Set clk's accuracy. The preferred method is to use 3334 * .recalc_accuracy. For simple clocks and lazy developers the default 3335 * fallback is to use the parent's accuracy. If a clock doesn't have a 3336 * parent (or is orphaned) then accuracy is set to zero (perfect 3337 * clock). 3338 */ 3339 if (core->ops->recalc_accuracy) 3340 core->accuracy = core->ops->recalc_accuracy(core->hw, 3341 __clk_get_accuracy(core->parent)); 3342 else if (core->parent) 3343 core->accuracy = core->parent->accuracy; 3344 else 3345 core->accuracy = 0; 3346 3347 /* 3348 * Set clk's phase. 3349 * Since a phase is by definition relative to its parent, just 3350 * query the current clock phase, or just assume it's in phase. 3351 */ 3352 if (core->ops->get_phase) 3353 core->phase = core->ops->get_phase(core->hw); 3354 else 3355 core->phase = 0; 3356 3357 /* 3358 * Set clk's duty cycle. 3359 */ 3360 clk_core_update_duty_cycle_nolock(core); 3361 3362 /* 3363 * Set clk's rate. The preferred method is to use .recalc_rate. For 3364 * simple clocks and lazy developers the default fallback is to use the 3365 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3366 * then rate is set to zero. 3367 */ 3368 if (core->ops->recalc_rate) 3369 rate = core->ops->recalc_rate(core->hw, 3370 clk_core_get_rate_nolock(core->parent)); 3371 else if (core->parent) 3372 rate = core->parent->rate; 3373 else 3374 rate = 0; 3375 core->rate = core->req_rate = rate; 3376 3377 /* 3378 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3379 * don't get accidentally disabled when walking the orphan tree and 3380 * reparenting clocks 3381 */ 3382 if (core->flags & CLK_IS_CRITICAL) { 3383 unsigned long flags; 3384 3385 clk_core_prepare(core); 3386 3387 flags = clk_enable_lock(); 3388 clk_core_enable(core); 3389 clk_enable_unlock(flags); 3390 } 3391 3392 /* 3393 * walk the list of orphan clocks and reparent any that newly finds a 3394 * parent. 3395 */ 3396 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3397 struct clk_core *parent = __clk_init_parent(orphan); 3398 3399 /* 3400 * We need to use __clk_set_parent_before() and _after() to 3401 * to properly migrate any prepare/enable count of the orphan 3402 * clock. This is important for CLK_IS_CRITICAL clocks, which 3403 * are enabled during init but might not have a parent yet. 3404 */ 3405 if (parent) { 3406 /* update the clk tree topology */ 3407 __clk_set_parent_before(orphan, parent); 3408 __clk_set_parent_after(orphan, parent, NULL); 3409 __clk_recalc_accuracies(orphan); 3410 __clk_recalc_rates(orphan, 0); 3411 } 3412 } 3413 3414 kref_init(&core->ref); 3415 out: 3416 clk_pm_runtime_put(core); 3417 unlock: 3418 clk_prepare_unlock(); 3419 3420 if (!ret) 3421 clk_debug_register(core); 3422 3423 return ret; 3424 } 3425 3426 /** 3427 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3428 * @core: clk to add consumer to 3429 * @clk: consumer to link to a clk 3430 */ 3431 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3432 { 3433 clk_prepare_lock(); 3434 hlist_add_head(&clk->clks_node, &core->clks); 3435 clk_prepare_unlock(); 3436 } 3437 3438 /** 3439 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3440 * @clk: consumer to unlink 3441 */ 3442 static void clk_core_unlink_consumer(struct clk *clk) 3443 { 3444 lockdep_assert_held(&prepare_lock); 3445 hlist_del(&clk->clks_node); 3446 } 3447 3448 /** 3449 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3450 * @core: clk to allocate a consumer for 3451 * @dev_id: string describing device name 3452 * @con_id: connection ID string on device 3453 * 3454 * Returns: clk consumer left unlinked from the consumer list 3455 */ 3456 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3457 const char *con_id) 3458 { 3459 struct clk *clk; 3460 3461 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3462 if (!clk) 3463 return ERR_PTR(-ENOMEM); 3464 3465 clk->core = core; 3466 clk->dev_id = dev_id; 3467 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3468 clk->max_rate = ULONG_MAX; 3469 3470 return clk; 3471 } 3472 3473 /** 3474 * free_clk - Free a clk consumer 3475 * @clk: clk consumer to free 3476 * 3477 * Note, this assumes the clk has been unlinked from the clk_core consumer 3478 * list. 3479 */ 3480 static void free_clk(struct clk *clk) 3481 { 3482 kfree_const(clk->con_id); 3483 kfree(clk); 3484 } 3485 3486 /** 3487 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3488 * a clk_hw 3489 * @dev: clk consumer device 3490 * @hw: clk_hw associated with the clk being consumed 3491 * @dev_id: string describing device name 3492 * @con_id: connection ID string on device 3493 * 3494 * This is the main function used to create a clk pointer for use by clk 3495 * consumers. It connects a consumer to the clk_core and clk_hw structures 3496 * used by the framework and clk provider respectively. 3497 */ 3498 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3499 const char *dev_id, const char *con_id) 3500 { 3501 struct clk *clk; 3502 struct clk_core *core; 3503 3504 /* This is to allow this function to be chained to others */ 3505 if (IS_ERR_OR_NULL(hw)) 3506 return ERR_CAST(hw); 3507 3508 core = hw->core; 3509 clk = alloc_clk(core, dev_id, con_id); 3510 if (IS_ERR(clk)) 3511 return clk; 3512 clk->dev = dev; 3513 3514 if (!try_module_get(core->owner)) { 3515 free_clk(clk); 3516 return ERR_PTR(-ENOENT); 3517 } 3518 3519 kref_get(&core->ref); 3520 clk_core_link_consumer(core, clk); 3521 3522 return clk; 3523 } 3524 3525 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3526 { 3527 const char *dst; 3528 3529 if (!src) { 3530 if (must_exist) 3531 return -EINVAL; 3532 return 0; 3533 } 3534 3535 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3536 if (!dst) 3537 return -ENOMEM; 3538 3539 return 0; 3540 } 3541 3542 static int clk_core_populate_parent_map(struct clk_core *core, 3543 const struct clk_init_data *init) 3544 { 3545 u8 num_parents = init->num_parents; 3546 const char * const *parent_names = init->parent_names; 3547 const struct clk_hw **parent_hws = init->parent_hws; 3548 const struct clk_parent_data *parent_data = init->parent_data; 3549 int i, ret = 0; 3550 struct clk_parent_map *parents, *parent; 3551 3552 if (!num_parents) 3553 return 0; 3554 3555 /* 3556 * Avoid unnecessary string look-ups of clk_core's possible parents by 3557 * having a cache of names/clk_hw pointers to clk_core pointers. 3558 */ 3559 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3560 core->parents = parents; 3561 if (!parents) 3562 return -ENOMEM; 3563 3564 /* Copy everything over because it might be __initdata */ 3565 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3566 parent->index = -1; 3567 if (parent_names) { 3568 /* throw a WARN if any entries are NULL */ 3569 WARN(!parent_names[i], 3570 "%s: invalid NULL in %s's .parent_names\n", 3571 __func__, core->name); 3572 ret = clk_cpy_name(&parent->name, parent_names[i], 3573 true); 3574 } else if (parent_data) { 3575 parent->hw = parent_data[i].hw; 3576 parent->index = parent_data[i].index; 3577 ret = clk_cpy_name(&parent->fw_name, 3578 parent_data[i].fw_name, false); 3579 if (!ret) 3580 ret = clk_cpy_name(&parent->name, 3581 parent_data[i].name, 3582 false); 3583 } else if (parent_hws) { 3584 parent->hw = parent_hws[i]; 3585 } else { 3586 ret = -EINVAL; 3587 WARN(1, "Must specify parents if num_parents > 0\n"); 3588 } 3589 3590 if (ret) { 3591 do { 3592 kfree_const(parents[i].name); 3593 kfree_const(parents[i].fw_name); 3594 } while (--i >= 0); 3595 kfree(parents); 3596 3597 return ret; 3598 } 3599 } 3600 3601 return 0; 3602 } 3603 3604 static void clk_core_free_parent_map(struct clk_core *core) 3605 { 3606 int i = core->num_parents; 3607 3608 if (!core->num_parents) 3609 return; 3610 3611 while (--i >= 0) { 3612 kfree_const(core->parents[i].name); 3613 kfree_const(core->parents[i].fw_name); 3614 } 3615 3616 kfree(core->parents); 3617 } 3618 3619 static struct clk * 3620 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3621 { 3622 int ret; 3623 struct clk_core *core; 3624 const struct clk_init_data *init = hw->init; 3625 3626 /* 3627 * The init data is not supposed to be used outside of registration path. 3628 * Set it to NULL so that provider drivers can't use it either and so that 3629 * we catch use of hw->init early on in the core. 3630 */ 3631 hw->init = NULL; 3632 3633 core = kzalloc(sizeof(*core), GFP_KERNEL); 3634 if (!core) { 3635 ret = -ENOMEM; 3636 goto fail_out; 3637 } 3638 3639 core->name = kstrdup_const(init->name, GFP_KERNEL); 3640 if (!core->name) { 3641 ret = -ENOMEM; 3642 goto fail_name; 3643 } 3644 3645 if (WARN_ON(!init->ops)) { 3646 ret = -EINVAL; 3647 goto fail_ops; 3648 } 3649 core->ops = init->ops; 3650 3651 if (dev && pm_runtime_enabled(dev)) 3652 core->rpm_enabled = true; 3653 core->dev = dev; 3654 core->of_node = np; 3655 if (dev && dev->driver) 3656 core->owner = dev->driver->owner; 3657 core->hw = hw; 3658 core->flags = init->flags; 3659 core->num_parents = init->num_parents; 3660 core->min_rate = 0; 3661 core->max_rate = ULONG_MAX; 3662 hw->core = core; 3663 3664 ret = clk_core_populate_parent_map(core, init); 3665 if (ret) 3666 goto fail_parents; 3667 3668 INIT_HLIST_HEAD(&core->clks); 3669 3670 /* 3671 * Don't call clk_hw_create_clk() here because that would pin the 3672 * provider module to itself and prevent it from ever being removed. 3673 */ 3674 hw->clk = alloc_clk(core, NULL, NULL); 3675 if (IS_ERR(hw->clk)) { 3676 ret = PTR_ERR(hw->clk); 3677 goto fail_create_clk; 3678 } 3679 3680 clk_core_link_consumer(hw->core, hw->clk); 3681 3682 ret = __clk_core_init(core); 3683 if (!ret) 3684 return hw->clk; 3685 3686 clk_prepare_lock(); 3687 clk_core_unlink_consumer(hw->clk); 3688 clk_prepare_unlock(); 3689 3690 free_clk(hw->clk); 3691 hw->clk = NULL; 3692 3693 fail_create_clk: 3694 clk_core_free_parent_map(core); 3695 fail_parents: 3696 fail_ops: 3697 kfree_const(core->name); 3698 fail_name: 3699 kfree(core); 3700 fail_out: 3701 return ERR_PTR(ret); 3702 } 3703 3704 /** 3705 * clk_register - allocate a new clock, register it and return an opaque cookie 3706 * @dev: device that is registering this clock 3707 * @hw: link to hardware-specific clock data 3708 * 3709 * clk_register is the *deprecated* interface for populating the clock tree with 3710 * new clock nodes. Use clk_hw_register() instead. 3711 * 3712 * Returns: a pointer to the newly allocated struct clk which 3713 * cannot be dereferenced by driver code but may be used in conjunction with the 3714 * rest of the clock API. In the event of an error clk_register will return an 3715 * error code; drivers must test for an error code after calling clk_register. 3716 */ 3717 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3718 { 3719 return __clk_register(dev, dev_of_node(dev), hw); 3720 } 3721 EXPORT_SYMBOL_GPL(clk_register); 3722 3723 /** 3724 * clk_hw_register - register a clk_hw and return an error code 3725 * @dev: device that is registering this clock 3726 * @hw: link to hardware-specific clock data 3727 * 3728 * clk_hw_register is the primary interface for populating the clock tree with 3729 * new clock nodes. It returns an integer equal to zero indicating success or 3730 * less than zero indicating failure. Drivers must test for an error code after 3731 * calling clk_hw_register(). 3732 */ 3733 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3734 { 3735 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw)); 3736 } 3737 EXPORT_SYMBOL_GPL(clk_hw_register); 3738 3739 /* 3740 * of_clk_hw_register - register a clk_hw and return an error code 3741 * @node: device_node of device that is registering this clock 3742 * @hw: link to hardware-specific clock data 3743 * 3744 * of_clk_hw_register() is the primary interface for populating the clock tree 3745 * with new clock nodes when a struct device is not available, but a struct 3746 * device_node is. It returns an integer equal to zero indicating success or 3747 * less than zero indicating failure. Drivers must test for an error code after 3748 * calling of_clk_hw_register(). 3749 */ 3750 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3751 { 3752 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3753 } 3754 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3755 3756 /* Free memory allocated for a clock. */ 3757 static void __clk_release(struct kref *ref) 3758 { 3759 struct clk_core *core = container_of(ref, struct clk_core, ref); 3760 3761 lockdep_assert_held(&prepare_lock); 3762 3763 clk_core_free_parent_map(core); 3764 kfree_const(core->name); 3765 kfree(core); 3766 } 3767 3768 /* 3769 * Empty clk_ops for unregistered clocks. These are used temporarily 3770 * after clk_unregister() was called on a clock and until last clock 3771 * consumer calls clk_put() and the struct clk object is freed. 3772 */ 3773 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3774 { 3775 return -ENXIO; 3776 } 3777 3778 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3779 { 3780 WARN_ON_ONCE(1); 3781 } 3782 3783 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3784 unsigned long parent_rate) 3785 { 3786 return -ENXIO; 3787 } 3788 3789 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3790 { 3791 return -ENXIO; 3792 } 3793 3794 static const struct clk_ops clk_nodrv_ops = { 3795 .enable = clk_nodrv_prepare_enable, 3796 .disable = clk_nodrv_disable_unprepare, 3797 .prepare = clk_nodrv_prepare_enable, 3798 .unprepare = clk_nodrv_disable_unprepare, 3799 .set_rate = clk_nodrv_set_rate, 3800 .set_parent = clk_nodrv_set_parent, 3801 }; 3802 3803 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 3804 struct clk_core *target) 3805 { 3806 int i; 3807 struct clk_core *child; 3808 3809 for (i = 0; i < root->num_parents; i++) 3810 if (root->parents[i].core == target) 3811 root->parents[i].core = NULL; 3812 3813 hlist_for_each_entry(child, &root->children, child_node) 3814 clk_core_evict_parent_cache_subtree(child, target); 3815 } 3816 3817 /* Remove this clk from all parent caches */ 3818 static void clk_core_evict_parent_cache(struct clk_core *core) 3819 { 3820 struct hlist_head **lists; 3821 struct clk_core *root; 3822 3823 lockdep_assert_held(&prepare_lock); 3824 3825 for (lists = all_lists; *lists; lists++) 3826 hlist_for_each_entry(root, *lists, child_node) 3827 clk_core_evict_parent_cache_subtree(root, core); 3828 3829 } 3830 3831 /** 3832 * clk_unregister - unregister a currently registered clock 3833 * @clk: clock to unregister 3834 */ 3835 void clk_unregister(struct clk *clk) 3836 { 3837 unsigned long flags; 3838 3839 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3840 return; 3841 3842 clk_debug_unregister(clk->core); 3843 3844 clk_prepare_lock(); 3845 3846 if (clk->core->ops == &clk_nodrv_ops) { 3847 pr_err("%s: unregistered clock: %s\n", __func__, 3848 clk->core->name); 3849 goto unlock; 3850 } 3851 /* 3852 * Assign empty clock ops for consumers that might still hold 3853 * a reference to this clock. 3854 */ 3855 flags = clk_enable_lock(); 3856 clk->core->ops = &clk_nodrv_ops; 3857 clk_enable_unlock(flags); 3858 3859 if (!hlist_empty(&clk->core->children)) { 3860 struct clk_core *child; 3861 struct hlist_node *t; 3862 3863 /* Reparent all children to the orphan list. */ 3864 hlist_for_each_entry_safe(child, t, &clk->core->children, 3865 child_node) 3866 clk_core_set_parent_nolock(child, NULL); 3867 } 3868 3869 clk_core_evict_parent_cache(clk->core); 3870 3871 hlist_del_init(&clk->core->child_node); 3872 3873 if (clk->core->prepare_count) 3874 pr_warn("%s: unregistering prepared clock: %s\n", 3875 __func__, clk->core->name); 3876 3877 if (clk->core->protect_count) 3878 pr_warn("%s: unregistering protected clock: %s\n", 3879 __func__, clk->core->name); 3880 3881 kref_put(&clk->core->ref, __clk_release); 3882 unlock: 3883 clk_prepare_unlock(); 3884 } 3885 EXPORT_SYMBOL_GPL(clk_unregister); 3886 3887 /** 3888 * clk_hw_unregister - unregister a currently registered clk_hw 3889 * @hw: hardware-specific clock data to unregister 3890 */ 3891 void clk_hw_unregister(struct clk_hw *hw) 3892 { 3893 clk_unregister(hw->clk); 3894 } 3895 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3896 3897 static void devm_clk_release(struct device *dev, void *res) 3898 { 3899 clk_unregister(*(struct clk **)res); 3900 } 3901 3902 static void devm_clk_hw_release(struct device *dev, void *res) 3903 { 3904 clk_hw_unregister(*(struct clk_hw **)res); 3905 } 3906 3907 /** 3908 * devm_clk_register - resource managed clk_register() 3909 * @dev: device that is registering this clock 3910 * @hw: link to hardware-specific clock data 3911 * 3912 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 3913 * 3914 * Clocks returned from this function are automatically clk_unregister()ed on 3915 * driver detach. See clk_register() for more information. 3916 */ 3917 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3918 { 3919 struct clk *clk; 3920 struct clk **clkp; 3921 3922 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3923 if (!clkp) 3924 return ERR_PTR(-ENOMEM); 3925 3926 clk = clk_register(dev, hw); 3927 if (!IS_ERR(clk)) { 3928 *clkp = clk; 3929 devres_add(dev, clkp); 3930 } else { 3931 devres_free(clkp); 3932 } 3933 3934 return clk; 3935 } 3936 EXPORT_SYMBOL_GPL(devm_clk_register); 3937 3938 /** 3939 * devm_clk_hw_register - resource managed clk_hw_register() 3940 * @dev: device that is registering this clock 3941 * @hw: link to hardware-specific clock data 3942 * 3943 * Managed clk_hw_register(). Clocks registered by this function are 3944 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3945 * for more information. 3946 */ 3947 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3948 { 3949 struct clk_hw **hwp; 3950 int ret; 3951 3952 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3953 if (!hwp) 3954 return -ENOMEM; 3955 3956 ret = clk_hw_register(dev, hw); 3957 if (!ret) { 3958 *hwp = hw; 3959 devres_add(dev, hwp); 3960 } else { 3961 devres_free(hwp); 3962 } 3963 3964 return ret; 3965 } 3966 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3967 3968 static int devm_clk_match(struct device *dev, void *res, void *data) 3969 { 3970 struct clk *c = res; 3971 if (WARN_ON(!c)) 3972 return 0; 3973 return c == data; 3974 } 3975 3976 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3977 { 3978 struct clk_hw *hw = res; 3979 3980 if (WARN_ON(!hw)) 3981 return 0; 3982 return hw == data; 3983 } 3984 3985 /** 3986 * devm_clk_unregister - resource managed clk_unregister() 3987 * @clk: clock to unregister 3988 * 3989 * Deallocate a clock allocated with devm_clk_register(). Normally 3990 * this function will not need to be called and the resource management 3991 * code will ensure that the resource is freed. 3992 */ 3993 void devm_clk_unregister(struct device *dev, struct clk *clk) 3994 { 3995 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3996 } 3997 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3998 3999 /** 4000 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4001 * @dev: device that is unregistering the hardware-specific clock data 4002 * @hw: link to hardware-specific clock data 4003 * 4004 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4005 * this function will not need to be called and the resource management 4006 * code will ensure that the resource is freed. 4007 */ 4008 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4009 { 4010 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 4011 hw)); 4012 } 4013 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4014 4015 /* 4016 * clkdev helpers 4017 */ 4018 4019 void __clk_put(struct clk *clk) 4020 { 4021 struct module *owner; 4022 4023 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4024 return; 4025 4026 clk_prepare_lock(); 4027 4028 /* 4029 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4030 * given user should be balanced with calls to clk_rate_exclusive_put() 4031 * and by that same consumer 4032 */ 4033 if (WARN_ON(clk->exclusive_count)) { 4034 /* We voiced our concern, let's sanitize the situation */ 4035 clk->core->protect_count -= (clk->exclusive_count - 1); 4036 clk_core_rate_unprotect(clk->core); 4037 clk->exclusive_count = 0; 4038 } 4039 4040 hlist_del(&clk->clks_node); 4041 if (clk->min_rate > clk->core->req_rate || 4042 clk->max_rate < clk->core->req_rate) 4043 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4044 4045 owner = clk->core->owner; 4046 kref_put(&clk->core->ref, __clk_release); 4047 4048 clk_prepare_unlock(); 4049 4050 module_put(owner); 4051 4052 free_clk(clk); 4053 } 4054 4055 /*** clk rate change notifiers ***/ 4056 4057 /** 4058 * clk_notifier_register - add a clk rate change notifier 4059 * @clk: struct clk * to watch 4060 * @nb: struct notifier_block * with callback info 4061 * 4062 * Request notification when clk's rate changes. This uses an SRCU 4063 * notifier because we want it to block and notifier unregistrations are 4064 * uncommon. The callbacks associated with the notifier must not 4065 * re-enter into the clk framework by calling any top-level clk APIs; 4066 * this will cause a nested prepare_lock mutex. 4067 * 4068 * In all notification cases (pre, post and abort rate change) the original 4069 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4070 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4071 * 4072 * clk_notifier_register() must be called from non-atomic context. 4073 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4074 * allocation failure; otherwise, passes along the return value of 4075 * srcu_notifier_chain_register(). 4076 */ 4077 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4078 { 4079 struct clk_notifier *cn; 4080 int ret = -ENOMEM; 4081 4082 if (!clk || !nb) 4083 return -EINVAL; 4084 4085 clk_prepare_lock(); 4086 4087 /* search the list of notifiers for this clk */ 4088 list_for_each_entry(cn, &clk_notifier_list, node) 4089 if (cn->clk == clk) 4090 break; 4091 4092 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4093 if (cn->clk != clk) { 4094 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4095 if (!cn) 4096 goto out; 4097 4098 cn->clk = clk; 4099 srcu_init_notifier_head(&cn->notifier_head); 4100 4101 list_add(&cn->node, &clk_notifier_list); 4102 } 4103 4104 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4105 4106 clk->core->notifier_count++; 4107 4108 out: 4109 clk_prepare_unlock(); 4110 4111 return ret; 4112 } 4113 EXPORT_SYMBOL_GPL(clk_notifier_register); 4114 4115 /** 4116 * clk_notifier_unregister - remove a clk rate change notifier 4117 * @clk: struct clk * 4118 * @nb: struct notifier_block * with callback info 4119 * 4120 * Request no further notification for changes to 'clk' and frees memory 4121 * allocated in clk_notifier_register. 4122 * 4123 * Returns -EINVAL if called with null arguments; otherwise, passes 4124 * along the return value of srcu_notifier_chain_unregister(). 4125 */ 4126 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4127 { 4128 struct clk_notifier *cn = NULL; 4129 int ret = -EINVAL; 4130 4131 if (!clk || !nb) 4132 return -EINVAL; 4133 4134 clk_prepare_lock(); 4135 4136 list_for_each_entry(cn, &clk_notifier_list, node) 4137 if (cn->clk == clk) 4138 break; 4139 4140 if (cn->clk == clk) { 4141 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4142 4143 clk->core->notifier_count--; 4144 4145 /* XXX the notifier code should handle this better */ 4146 if (!cn->notifier_head.head) { 4147 srcu_cleanup_notifier_head(&cn->notifier_head); 4148 list_del(&cn->node); 4149 kfree(cn); 4150 } 4151 4152 } else { 4153 ret = -ENOENT; 4154 } 4155 4156 clk_prepare_unlock(); 4157 4158 return ret; 4159 } 4160 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4161 4162 #ifdef CONFIG_OF 4163 /** 4164 * struct of_clk_provider - Clock provider registration structure 4165 * @link: Entry in global list of clock providers 4166 * @node: Pointer to device tree node of clock provider 4167 * @get: Get clock callback. Returns NULL or a struct clk for the 4168 * given clock specifier 4169 * @data: context pointer to be passed into @get callback 4170 */ 4171 struct of_clk_provider { 4172 struct list_head link; 4173 4174 struct device_node *node; 4175 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4176 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4177 void *data; 4178 }; 4179 4180 extern struct of_device_id __clk_of_table; 4181 static const struct of_device_id __clk_of_table_sentinel 4182 __used __section(__clk_of_table_end); 4183 4184 static LIST_HEAD(of_clk_providers); 4185 static DEFINE_MUTEX(of_clk_mutex); 4186 4187 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4188 void *data) 4189 { 4190 return data; 4191 } 4192 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4193 4194 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4195 { 4196 return data; 4197 } 4198 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4199 4200 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4201 { 4202 struct clk_onecell_data *clk_data = data; 4203 unsigned int idx = clkspec->args[0]; 4204 4205 if (idx >= clk_data->clk_num) { 4206 pr_err("%s: invalid clock index %u\n", __func__, idx); 4207 return ERR_PTR(-EINVAL); 4208 } 4209 4210 return clk_data->clks[idx]; 4211 } 4212 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4213 4214 struct clk_hw * 4215 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4216 { 4217 struct clk_hw_onecell_data *hw_data = data; 4218 unsigned int idx = clkspec->args[0]; 4219 4220 if (idx >= hw_data->num) { 4221 pr_err("%s: invalid index %u\n", __func__, idx); 4222 return ERR_PTR(-EINVAL); 4223 } 4224 4225 return hw_data->hws[idx]; 4226 } 4227 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4228 4229 /** 4230 * of_clk_add_provider() - Register a clock provider for a node 4231 * @np: Device node pointer associated with clock provider 4232 * @clk_src_get: callback for decoding clock 4233 * @data: context pointer for @clk_src_get callback. 4234 * 4235 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4236 */ 4237 int of_clk_add_provider(struct device_node *np, 4238 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4239 void *data), 4240 void *data) 4241 { 4242 struct of_clk_provider *cp; 4243 int ret; 4244 4245 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4246 if (!cp) 4247 return -ENOMEM; 4248 4249 cp->node = of_node_get(np); 4250 cp->data = data; 4251 cp->get = clk_src_get; 4252 4253 mutex_lock(&of_clk_mutex); 4254 list_add(&cp->link, &of_clk_providers); 4255 mutex_unlock(&of_clk_mutex); 4256 pr_debug("Added clock from %pOF\n", np); 4257 4258 ret = of_clk_set_defaults(np, true); 4259 if (ret < 0) 4260 of_clk_del_provider(np); 4261 4262 return ret; 4263 } 4264 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4265 4266 /** 4267 * of_clk_add_hw_provider() - Register a clock provider for a node 4268 * @np: Device node pointer associated with clock provider 4269 * @get: callback for decoding clk_hw 4270 * @data: context pointer for @get callback. 4271 */ 4272 int of_clk_add_hw_provider(struct device_node *np, 4273 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4274 void *data), 4275 void *data) 4276 { 4277 struct of_clk_provider *cp; 4278 int ret; 4279 4280 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4281 if (!cp) 4282 return -ENOMEM; 4283 4284 cp->node = of_node_get(np); 4285 cp->data = data; 4286 cp->get_hw = get; 4287 4288 mutex_lock(&of_clk_mutex); 4289 list_add(&cp->link, &of_clk_providers); 4290 mutex_unlock(&of_clk_mutex); 4291 pr_debug("Added clk_hw provider from %pOF\n", np); 4292 4293 ret = of_clk_set_defaults(np, true); 4294 if (ret < 0) 4295 of_clk_del_provider(np); 4296 4297 return ret; 4298 } 4299 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4300 4301 static void devm_of_clk_release_provider(struct device *dev, void *res) 4302 { 4303 of_clk_del_provider(*(struct device_node **)res); 4304 } 4305 4306 /* 4307 * We allow a child device to use its parent device as the clock provider node 4308 * for cases like MFD sub-devices where the child device driver wants to use 4309 * devm_*() APIs but not list the device in DT as a sub-node. 4310 */ 4311 static struct device_node *get_clk_provider_node(struct device *dev) 4312 { 4313 struct device_node *np, *parent_np; 4314 4315 np = dev->of_node; 4316 parent_np = dev->parent ? dev->parent->of_node : NULL; 4317 4318 if (!of_find_property(np, "#clock-cells", NULL)) 4319 if (of_find_property(parent_np, "#clock-cells", NULL)) 4320 np = parent_np; 4321 4322 return np; 4323 } 4324 4325 /** 4326 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4327 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4328 * @get: callback for decoding clk_hw 4329 * @data: context pointer for @get callback 4330 * 4331 * Registers clock provider for given device's node. If the device has no DT 4332 * node or if the device node lacks of clock provider information (#clock-cells) 4333 * then the parent device's node is scanned for this information. If parent node 4334 * has the #clock-cells then it is used in registration. Provider is 4335 * automatically released at device exit. 4336 * 4337 * Return: 0 on success or an errno on failure. 4338 */ 4339 int devm_of_clk_add_hw_provider(struct device *dev, 4340 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4341 void *data), 4342 void *data) 4343 { 4344 struct device_node **ptr, *np; 4345 int ret; 4346 4347 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4348 GFP_KERNEL); 4349 if (!ptr) 4350 return -ENOMEM; 4351 4352 np = get_clk_provider_node(dev); 4353 ret = of_clk_add_hw_provider(np, get, data); 4354 if (!ret) { 4355 *ptr = np; 4356 devres_add(dev, ptr); 4357 } else { 4358 devres_free(ptr); 4359 } 4360 4361 return ret; 4362 } 4363 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4364 4365 /** 4366 * of_clk_del_provider() - Remove a previously registered clock provider 4367 * @np: Device node pointer associated with clock provider 4368 */ 4369 void of_clk_del_provider(struct device_node *np) 4370 { 4371 struct of_clk_provider *cp; 4372 4373 mutex_lock(&of_clk_mutex); 4374 list_for_each_entry(cp, &of_clk_providers, link) { 4375 if (cp->node == np) { 4376 list_del(&cp->link); 4377 of_node_put(cp->node); 4378 kfree(cp); 4379 break; 4380 } 4381 } 4382 mutex_unlock(&of_clk_mutex); 4383 } 4384 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4385 4386 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4387 { 4388 struct device_node **np = res; 4389 4390 if (WARN_ON(!np || !*np)) 4391 return 0; 4392 4393 return *np == data; 4394 } 4395 4396 /** 4397 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4398 * @dev: Device to whose lifetime the clock provider was bound 4399 */ 4400 void devm_of_clk_del_provider(struct device *dev) 4401 { 4402 int ret; 4403 struct device_node *np = get_clk_provider_node(dev); 4404 4405 ret = devres_release(dev, devm_of_clk_release_provider, 4406 devm_clk_provider_match, np); 4407 4408 WARN_ON(ret); 4409 } 4410 EXPORT_SYMBOL(devm_of_clk_del_provider); 4411 4412 /** 4413 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4414 * @np: device node to parse clock specifier from 4415 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4416 * @name: clock name to find and parse. If name is NULL, the index is used 4417 * @out_args: Result of parsing the clock specifier 4418 * 4419 * Parses a device node's "clocks" and "clock-names" properties to find the 4420 * phandle and cells for the index or name that is desired. The resulting clock 4421 * specifier is placed into @out_args, or an errno is returned when there's a 4422 * parsing error. The @index argument is ignored if @name is non-NULL. 4423 * 4424 * Example: 4425 * 4426 * phandle1: clock-controller@1 { 4427 * #clock-cells = <2>; 4428 * } 4429 * 4430 * phandle2: clock-controller@2 { 4431 * #clock-cells = <1>; 4432 * } 4433 * 4434 * clock-consumer@3 { 4435 * clocks = <&phandle1 1 2 &phandle2 3>; 4436 * clock-names = "name1", "name2"; 4437 * } 4438 * 4439 * To get a device_node for `clock-controller@2' node you may call this 4440 * function a few different ways: 4441 * 4442 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4443 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4444 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4445 * 4446 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4447 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4448 * the "clock-names" property of @np. 4449 */ 4450 static int of_parse_clkspec(const struct device_node *np, int index, 4451 const char *name, struct of_phandle_args *out_args) 4452 { 4453 int ret = -ENOENT; 4454 4455 /* Walk up the tree of devices looking for a clock property that matches */ 4456 while (np) { 4457 /* 4458 * For named clocks, first look up the name in the 4459 * "clock-names" property. If it cannot be found, then index 4460 * will be an error code and of_parse_phandle_with_args() will 4461 * return -EINVAL. 4462 */ 4463 if (name) 4464 index = of_property_match_string(np, "clock-names", name); 4465 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4466 index, out_args); 4467 if (!ret) 4468 break; 4469 if (name && index >= 0) 4470 break; 4471 4472 /* 4473 * No matching clock found on this node. If the parent node 4474 * has a "clock-ranges" property, then we can try one of its 4475 * clocks. 4476 */ 4477 np = np->parent; 4478 if (np && !of_get_property(np, "clock-ranges", NULL)) 4479 break; 4480 index = 0; 4481 } 4482 4483 return ret; 4484 } 4485 4486 static struct clk_hw * 4487 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4488 struct of_phandle_args *clkspec) 4489 { 4490 struct clk *clk; 4491 4492 if (provider->get_hw) 4493 return provider->get_hw(clkspec, provider->data); 4494 4495 clk = provider->get(clkspec, provider->data); 4496 if (IS_ERR(clk)) 4497 return ERR_CAST(clk); 4498 return __clk_get_hw(clk); 4499 } 4500 4501 static struct clk_hw * 4502 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4503 { 4504 struct of_clk_provider *provider; 4505 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4506 4507 if (!clkspec) 4508 return ERR_PTR(-EINVAL); 4509 4510 mutex_lock(&of_clk_mutex); 4511 list_for_each_entry(provider, &of_clk_providers, link) { 4512 if (provider->node == clkspec->np) { 4513 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4514 if (!IS_ERR(hw)) 4515 break; 4516 } 4517 } 4518 mutex_unlock(&of_clk_mutex); 4519 4520 return hw; 4521 } 4522 4523 /** 4524 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4525 * @clkspec: pointer to a clock specifier data structure 4526 * 4527 * This function looks up a struct clk from the registered list of clock 4528 * providers, an input is a clock specifier data structure as returned 4529 * from the of_parse_phandle_with_args() function call. 4530 */ 4531 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4532 { 4533 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4534 4535 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4536 } 4537 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4538 4539 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4540 const char *con_id) 4541 { 4542 int ret; 4543 struct clk_hw *hw; 4544 struct of_phandle_args clkspec; 4545 4546 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4547 if (ret) 4548 return ERR_PTR(ret); 4549 4550 hw = of_clk_get_hw_from_clkspec(&clkspec); 4551 of_node_put(clkspec.np); 4552 4553 return hw; 4554 } 4555 4556 static struct clk *__of_clk_get(struct device_node *np, 4557 int index, const char *dev_id, 4558 const char *con_id) 4559 { 4560 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4561 4562 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4563 } 4564 4565 struct clk *of_clk_get(struct device_node *np, int index) 4566 { 4567 return __of_clk_get(np, index, np->full_name, NULL); 4568 } 4569 EXPORT_SYMBOL(of_clk_get); 4570 4571 /** 4572 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4573 * @np: pointer to clock consumer node 4574 * @name: name of consumer's clock input, or NULL for the first clock reference 4575 * 4576 * This function parses the clocks and clock-names properties, 4577 * and uses them to look up the struct clk from the registered list of clock 4578 * providers. 4579 */ 4580 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4581 { 4582 if (!np) 4583 return ERR_PTR(-ENOENT); 4584 4585 return __of_clk_get(np, 0, np->full_name, name); 4586 } 4587 EXPORT_SYMBOL(of_clk_get_by_name); 4588 4589 /** 4590 * of_clk_get_parent_count() - Count the number of clocks a device node has 4591 * @np: device node to count 4592 * 4593 * Returns: The number of clocks that are possible parents of this node 4594 */ 4595 unsigned int of_clk_get_parent_count(struct device_node *np) 4596 { 4597 int count; 4598 4599 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4600 if (count < 0) 4601 return 0; 4602 4603 return count; 4604 } 4605 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4606 4607 const char *of_clk_get_parent_name(struct device_node *np, int index) 4608 { 4609 struct of_phandle_args clkspec; 4610 struct property *prop; 4611 const char *clk_name; 4612 const __be32 *vp; 4613 u32 pv; 4614 int rc; 4615 int count; 4616 struct clk *clk; 4617 4618 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4619 &clkspec); 4620 if (rc) 4621 return NULL; 4622 4623 index = clkspec.args_count ? clkspec.args[0] : 0; 4624 count = 0; 4625 4626 /* if there is an indices property, use it to transfer the index 4627 * specified into an array offset for the clock-output-names property. 4628 */ 4629 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4630 if (index == pv) { 4631 index = count; 4632 break; 4633 } 4634 count++; 4635 } 4636 /* We went off the end of 'clock-indices' without finding it */ 4637 if (prop && !vp) 4638 return NULL; 4639 4640 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4641 index, 4642 &clk_name) < 0) { 4643 /* 4644 * Best effort to get the name if the clock has been 4645 * registered with the framework. If the clock isn't 4646 * registered, we return the node name as the name of 4647 * the clock as long as #clock-cells = 0. 4648 */ 4649 clk = of_clk_get_from_provider(&clkspec); 4650 if (IS_ERR(clk)) { 4651 if (clkspec.args_count == 0) 4652 clk_name = clkspec.np->name; 4653 else 4654 clk_name = NULL; 4655 } else { 4656 clk_name = __clk_get_name(clk); 4657 clk_put(clk); 4658 } 4659 } 4660 4661 4662 of_node_put(clkspec.np); 4663 return clk_name; 4664 } 4665 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4666 4667 /** 4668 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4669 * number of parents 4670 * @np: Device node pointer associated with clock provider 4671 * @parents: pointer to char array that hold the parents' names 4672 * @size: size of the @parents array 4673 * 4674 * Return: number of parents for the clock node. 4675 */ 4676 int of_clk_parent_fill(struct device_node *np, const char **parents, 4677 unsigned int size) 4678 { 4679 unsigned int i = 0; 4680 4681 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4682 i++; 4683 4684 return i; 4685 } 4686 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4687 4688 struct clock_provider { 4689 void (*clk_init_cb)(struct device_node *); 4690 struct device_node *np; 4691 struct list_head node; 4692 }; 4693 4694 /* 4695 * This function looks for a parent clock. If there is one, then it 4696 * checks that the provider for this parent clock was initialized, in 4697 * this case the parent clock will be ready. 4698 */ 4699 static int parent_ready(struct device_node *np) 4700 { 4701 int i = 0; 4702 4703 while (true) { 4704 struct clk *clk = of_clk_get(np, i); 4705 4706 /* this parent is ready we can check the next one */ 4707 if (!IS_ERR(clk)) { 4708 clk_put(clk); 4709 i++; 4710 continue; 4711 } 4712 4713 /* at least one parent is not ready, we exit now */ 4714 if (PTR_ERR(clk) == -EPROBE_DEFER) 4715 return 0; 4716 4717 /* 4718 * Here we make assumption that the device tree is 4719 * written correctly. So an error means that there is 4720 * no more parent. As we didn't exit yet, then the 4721 * previous parent are ready. If there is no clock 4722 * parent, no need to wait for them, then we can 4723 * consider their absence as being ready 4724 */ 4725 return 1; 4726 } 4727 } 4728 4729 /** 4730 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4731 * @np: Device node pointer associated with clock provider 4732 * @index: clock index 4733 * @flags: pointer to top-level framework flags 4734 * 4735 * Detects if the clock-critical property exists and, if so, sets the 4736 * corresponding CLK_IS_CRITICAL flag. 4737 * 4738 * Do not use this function. It exists only for legacy Device Tree 4739 * bindings, such as the one-clock-per-node style that are outdated. 4740 * Those bindings typically put all clock data into .dts and the Linux 4741 * driver has no clock data, thus making it impossible to set this flag 4742 * correctly from the driver. Only those drivers may call 4743 * of_clk_detect_critical from their setup functions. 4744 * 4745 * Return: error code or zero on success 4746 */ 4747 int of_clk_detect_critical(struct device_node *np, 4748 int index, unsigned long *flags) 4749 { 4750 struct property *prop; 4751 const __be32 *cur; 4752 uint32_t idx; 4753 4754 if (!np || !flags) 4755 return -EINVAL; 4756 4757 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4758 if (index == idx) 4759 *flags |= CLK_IS_CRITICAL; 4760 4761 return 0; 4762 } 4763 4764 /** 4765 * of_clk_init() - Scan and init clock providers from the DT 4766 * @matches: array of compatible values and init functions for providers. 4767 * 4768 * This function scans the device tree for matching clock providers 4769 * and calls their initialization functions. It also does it by trying 4770 * to follow the dependencies. 4771 */ 4772 void __init of_clk_init(const struct of_device_id *matches) 4773 { 4774 const struct of_device_id *match; 4775 struct device_node *np; 4776 struct clock_provider *clk_provider, *next; 4777 bool is_init_done; 4778 bool force = false; 4779 LIST_HEAD(clk_provider_list); 4780 4781 if (!matches) 4782 matches = &__clk_of_table; 4783 4784 /* First prepare the list of the clocks providers */ 4785 for_each_matching_node_and_match(np, matches, &match) { 4786 struct clock_provider *parent; 4787 4788 if (!of_device_is_available(np)) 4789 continue; 4790 4791 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4792 if (!parent) { 4793 list_for_each_entry_safe(clk_provider, next, 4794 &clk_provider_list, node) { 4795 list_del(&clk_provider->node); 4796 of_node_put(clk_provider->np); 4797 kfree(clk_provider); 4798 } 4799 of_node_put(np); 4800 return; 4801 } 4802 4803 parent->clk_init_cb = match->data; 4804 parent->np = of_node_get(np); 4805 list_add_tail(&parent->node, &clk_provider_list); 4806 } 4807 4808 while (!list_empty(&clk_provider_list)) { 4809 is_init_done = false; 4810 list_for_each_entry_safe(clk_provider, next, 4811 &clk_provider_list, node) { 4812 if (force || parent_ready(clk_provider->np)) { 4813 4814 /* Don't populate platform devices */ 4815 of_node_set_flag(clk_provider->np, 4816 OF_POPULATED); 4817 4818 clk_provider->clk_init_cb(clk_provider->np); 4819 of_clk_set_defaults(clk_provider->np, true); 4820 4821 list_del(&clk_provider->node); 4822 of_node_put(clk_provider->np); 4823 kfree(clk_provider); 4824 is_init_done = true; 4825 } 4826 } 4827 4828 /* 4829 * We didn't manage to initialize any of the 4830 * remaining providers during the last loop, so now we 4831 * initialize all the remaining ones unconditionally 4832 * in case the clock parent was not mandatory 4833 */ 4834 if (!is_init_done) 4835 force = true; 4836 } 4837 } 4838 #endif 4839