xref: /openbmc/linux/drivers/clk/clk.c (revision 0982fd6b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	if (!core->rpm_enabled)
112 		return 0;
113 
114 	return pm_runtime_resume_and_get(core->dev);
115 }
116 
117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 	if (!core->rpm_enabled)
120 		return;
121 
122 	pm_runtime_put_sync(core->dev);
123 }
124 
125 /***           locking             ***/
126 static void clk_prepare_lock(void)
127 {
128 	if (!mutex_trylock(&prepare_lock)) {
129 		if (prepare_owner == current) {
130 			prepare_refcnt++;
131 			return;
132 		}
133 		mutex_lock(&prepare_lock);
134 	}
135 	WARN_ON_ONCE(prepare_owner != NULL);
136 	WARN_ON_ONCE(prepare_refcnt != 0);
137 	prepare_owner = current;
138 	prepare_refcnt = 1;
139 }
140 
141 static void clk_prepare_unlock(void)
142 {
143 	WARN_ON_ONCE(prepare_owner != current);
144 	WARN_ON_ONCE(prepare_refcnt == 0);
145 
146 	if (--prepare_refcnt)
147 		return;
148 	prepare_owner = NULL;
149 	mutex_unlock(&prepare_lock);
150 }
151 
152 static unsigned long clk_enable_lock(void)
153 	__acquires(enable_lock)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 	 * we already hold the lock. So, in that case, we rely only on
160 	 * reference counting.
161 	 */
162 	if (!IS_ENABLED(CONFIG_SMP) ||
163 	    !spin_trylock_irqsave(&enable_lock, flags)) {
164 		if (enable_owner == current) {
165 			enable_refcnt++;
166 			__acquire(enable_lock);
167 			if (!IS_ENABLED(CONFIG_SMP))
168 				local_save_flags(flags);
169 			return flags;
170 		}
171 		spin_lock_irqsave(&enable_lock, flags);
172 	}
173 	WARN_ON_ONCE(enable_owner != NULL);
174 	WARN_ON_ONCE(enable_refcnt != 0);
175 	enable_owner = current;
176 	enable_refcnt = 1;
177 	return flags;
178 }
179 
180 static void clk_enable_unlock(unsigned long flags)
181 	__releases(enable_lock)
182 {
183 	WARN_ON_ONCE(enable_owner != current);
184 	WARN_ON_ONCE(enable_refcnt == 0);
185 
186 	if (--enable_refcnt) {
187 		__release(enable_lock);
188 		return;
189 	}
190 	enable_owner = NULL;
191 	spin_unlock_irqrestore(&enable_lock, flags);
192 }
193 
194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 	return core->protect_count;
197 }
198 
199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 	bool ret = false;
202 
203 	/*
204 	 * .is_prepared is optional for clocks that can prepare
205 	 * fall back to software usage counter if it is missing
206 	 */
207 	if (!core->ops->is_prepared)
208 		return core->prepare_count;
209 
210 	if (!clk_pm_runtime_get(core)) {
211 		ret = core->ops->is_prepared(core->hw);
212 		clk_pm_runtime_put(core);
213 	}
214 
215 	return ret;
216 }
217 
218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 	bool ret = false;
221 
222 	/*
223 	 * .is_enabled is only mandatory for clocks that gate
224 	 * fall back to software usage counter if .is_enabled is missing
225 	 */
226 	if (!core->ops->is_enabled)
227 		return core->enable_count;
228 
229 	/*
230 	 * Check if clock controller's device is runtime active before
231 	 * calling .is_enabled callback. If not, assume that clock is
232 	 * disabled, because we might be called from atomic context, from
233 	 * which pm_runtime_get() is not allowed.
234 	 * This function is called mainly from clk_disable_unused_subtree,
235 	 * which ensures proper runtime pm activation of controller before
236 	 * taking enable spinlock, but the below check is needed if one tries
237 	 * to call it from other places.
238 	 */
239 	if (core->rpm_enabled) {
240 		pm_runtime_get_noresume(core->dev);
241 		if (!pm_runtime_active(core->dev)) {
242 			ret = false;
243 			goto done;
244 		}
245 	}
246 
247 	/*
248 	 * This could be called with the enable lock held, or from atomic
249 	 * context. If the parent isn't enabled already, we can't do
250 	 * anything here. We can also assume this clock isn't enabled.
251 	 */
252 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
253 		if (!clk_core_is_enabled(core->parent)) {
254 			ret = false;
255 			goto done;
256 		}
257 
258 	ret = core->ops->is_enabled(core->hw);
259 done:
260 	if (core->rpm_enabled)
261 		pm_runtime_put(core->dev);
262 
263 	return ret;
264 }
265 
266 /***    helper functions   ***/
267 
268 const char *__clk_get_name(const struct clk *clk)
269 {
270 	return !clk ? NULL : clk->core->name;
271 }
272 EXPORT_SYMBOL_GPL(__clk_get_name);
273 
274 const char *clk_hw_get_name(const struct clk_hw *hw)
275 {
276 	return hw->core->name;
277 }
278 EXPORT_SYMBOL_GPL(clk_hw_get_name);
279 
280 struct clk_hw *__clk_get_hw(struct clk *clk)
281 {
282 	return !clk ? NULL : clk->core->hw;
283 }
284 EXPORT_SYMBOL_GPL(__clk_get_hw);
285 
286 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
287 {
288 	return hw->core->num_parents;
289 }
290 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
291 
292 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
293 {
294 	return hw->core->parent ? hw->core->parent->hw : NULL;
295 }
296 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
297 
298 static struct clk_core *__clk_lookup_subtree(const char *name,
299 					     struct clk_core *core)
300 {
301 	struct clk_core *child;
302 	struct clk_core *ret;
303 
304 	if (!strcmp(core->name, name))
305 		return core;
306 
307 	hlist_for_each_entry(child, &core->children, child_node) {
308 		ret = __clk_lookup_subtree(name, child);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	return NULL;
314 }
315 
316 static struct clk_core *clk_core_lookup(const char *name)
317 {
318 	struct clk_core *root_clk;
319 	struct clk_core *ret;
320 
321 	if (!name)
322 		return NULL;
323 
324 	/* search the 'proper' clk tree first */
325 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
326 		ret = __clk_lookup_subtree(name, root_clk);
327 		if (ret)
328 			return ret;
329 	}
330 
331 	/* if not found, then search the orphan tree */
332 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	return NULL;
339 }
340 
341 #ifdef CONFIG_OF
342 static int of_parse_clkspec(const struct device_node *np, int index,
343 			    const char *name, struct of_phandle_args *out_args);
344 static struct clk_hw *
345 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
346 #else
347 static inline int of_parse_clkspec(const struct device_node *np, int index,
348 				   const char *name,
349 				   struct of_phandle_args *out_args)
350 {
351 	return -ENOENT;
352 }
353 static inline struct clk_hw *
354 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
355 {
356 	return ERR_PTR(-ENOENT);
357 }
358 #endif
359 
360 /**
361  * clk_core_get - Find the clk_core parent of a clk
362  * @core: clk to find parent of
363  * @p_index: parent index to search for
364  *
365  * This is the preferred method for clk providers to find the parent of a
366  * clk when that parent is external to the clk controller. The parent_names
367  * array is indexed and treated as a local name matching a string in the device
368  * node's 'clock-names' property or as the 'con_id' matching the device's
369  * dev_name() in a clk_lookup. This allows clk providers to use their own
370  * namespace instead of looking for a globally unique parent string.
371  *
372  * For example the following DT snippet would allow a clock registered by the
373  * clock-controller@c001 that has a clk_init_data::parent_data array
374  * with 'xtal' in the 'name' member to find the clock provided by the
375  * clock-controller@f00abcd without needing to get the globally unique name of
376  * the xtal clk.
377  *
378  *      parent: clock-controller@f00abcd {
379  *              reg = <0xf00abcd 0xabcd>;
380  *              #clock-cells = <0>;
381  *      };
382  *
383  *      clock-controller@c001 {
384  *              reg = <0xc001 0xf00d>;
385  *              clocks = <&parent>;
386  *              clock-names = "xtal";
387  *              #clock-cells = <1>;
388  *      };
389  *
390  * Returns: -ENOENT when the provider can't be found or the clk doesn't
391  * exist in the provider or the name can't be found in the DT node or
392  * in a clkdev lookup. NULL when the provider knows about the clk but it
393  * isn't provided on this system.
394  * A valid clk_core pointer when the clk can be found in the provider.
395  */
396 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
397 {
398 	const char *name = core->parents[p_index].fw_name;
399 	int index = core->parents[p_index].index;
400 	struct clk_hw *hw = ERR_PTR(-ENOENT);
401 	struct device *dev = core->dev;
402 	const char *dev_id = dev ? dev_name(dev) : NULL;
403 	struct device_node *np = core->of_node;
404 	struct of_phandle_args clkspec;
405 
406 	if (np && (name || index >= 0) &&
407 	    !of_parse_clkspec(np, index, name, &clkspec)) {
408 		hw = of_clk_get_hw_from_clkspec(&clkspec);
409 		of_node_put(clkspec.np);
410 	} else if (name) {
411 		/*
412 		 * If the DT search above couldn't find the provider fallback to
413 		 * looking up via clkdev based clk_lookups.
414 		 */
415 		hw = clk_find_hw(dev_id, name);
416 	}
417 
418 	if (IS_ERR(hw))
419 		return ERR_CAST(hw);
420 
421 	if (!hw)
422 		return NULL;
423 
424 	return hw->core;
425 }
426 
427 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
428 {
429 	struct clk_parent_map *entry = &core->parents[index];
430 	struct clk_core *parent;
431 
432 	if (entry->hw) {
433 		parent = entry->hw->core;
434 	} else {
435 		parent = clk_core_get(core, index);
436 		if (PTR_ERR(parent) == -ENOENT && entry->name)
437 			parent = clk_core_lookup(entry->name);
438 	}
439 
440 	/*
441 	 * We have a direct reference but it isn't registered yet?
442 	 * Orphan it and let clk_reparent() update the orphan status
443 	 * when the parent is registered.
444 	 */
445 	if (!parent)
446 		parent = ERR_PTR(-EPROBE_DEFER);
447 
448 	/* Only cache it if it's not an error */
449 	if (!IS_ERR(parent))
450 		entry->core = parent;
451 }
452 
453 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
454 							 u8 index)
455 {
456 	if (!core || index >= core->num_parents || !core->parents)
457 		return NULL;
458 
459 	if (!core->parents[index].core)
460 		clk_core_fill_parent_index(core, index);
461 
462 	return core->parents[index].core;
463 }
464 
465 struct clk_hw *
466 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
467 {
468 	struct clk_core *parent;
469 
470 	parent = clk_core_get_parent_by_index(hw->core, index);
471 
472 	return !parent ? NULL : parent->hw;
473 }
474 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
475 
476 unsigned int __clk_get_enable_count(struct clk *clk)
477 {
478 	return !clk ? 0 : clk->core->enable_count;
479 }
480 
481 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
482 {
483 	if (!core)
484 		return 0;
485 
486 	if (!core->num_parents || core->parent)
487 		return core->rate;
488 
489 	/*
490 	 * Clk must have a parent because num_parents > 0 but the parent isn't
491 	 * known yet. Best to return 0 as the rate of this clk until we can
492 	 * properly recalc the rate based on the parent's rate.
493 	 */
494 	return 0;
495 }
496 
497 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
498 {
499 	return clk_core_get_rate_nolock(hw->core);
500 }
501 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
502 
503 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
504 {
505 	if (!core)
506 		return 0;
507 
508 	return core->accuracy;
509 }
510 
511 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
512 {
513 	return hw->core->flags;
514 }
515 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
516 
517 bool clk_hw_is_prepared(const struct clk_hw *hw)
518 {
519 	return clk_core_is_prepared(hw->core);
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
522 
523 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
524 {
525 	return clk_core_rate_is_protected(hw->core);
526 }
527 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
528 
529 bool clk_hw_is_enabled(const struct clk_hw *hw)
530 {
531 	return clk_core_is_enabled(hw->core);
532 }
533 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
534 
535 bool __clk_is_enabled(struct clk *clk)
536 {
537 	if (!clk)
538 		return false;
539 
540 	return clk_core_is_enabled(clk->core);
541 }
542 EXPORT_SYMBOL_GPL(__clk_is_enabled);
543 
544 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
545 			   unsigned long best, unsigned long flags)
546 {
547 	if (flags & CLK_MUX_ROUND_CLOSEST)
548 		return abs(now - rate) < abs(best - rate);
549 
550 	return now <= rate && now > best;
551 }
552 
553 static void clk_core_init_rate_req(struct clk_core * const core,
554 				   struct clk_rate_request *req,
555 				   unsigned long rate);
556 
557 static int clk_core_round_rate_nolock(struct clk_core *core,
558 				      struct clk_rate_request *req);
559 
560 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
561 {
562 	struct clk_core *tmp;
563 	unsigned int i;
564 
565 	/* Optimize for the case where the parent is already the parent. */
566 	if (core->parent == parent)
567 		return true;
568 
569 	for (i = 0; i < core->num_parents; i++) {
570 		tmp = clk_core_get_parent_by_index(core, i);
571 		if (!tmp)
572 			continue;
573 
574 		if (tmp == parent)
575 			return true;
576 	}
577 
578 	return false;
579 }
580 
581 static void
582 clk_core_forward_rate_req(struct clk_core *core,
583 			  const struct clk_rate_request *old_req,
584 			  struct clk_core *parent,
585 			  struct clk_rate_request *req,
586 			  unsigned long parent_rate)
587 {
588 	if (WARN_ON(!clk_core_has_parent(core, parent)))
589 		return;
590 
591 	clk_core_init_rate_req(parent, req, parent_rate);
592 
593 	if (req->min_rate < old_req->min_rate)
594 		req->min_rate = old_req->min_rate;
595 
596 	if (req->max_rate > old_req->max_rate)
597 		req->max_rate = old_req->max_rate;
598 }
599 
600 static int
601 clk_core_determine_rate_no_reparent(struct clk_hw *hw,
602 				    struct clk_rate_request *req)
603 {
604 	struct clk_core *core = hw->core;
605 	struct clk_core *parent = core->parent;
606 	unsigned long best;
607 	int ret;
608 
609 	if (core->flags & CLK_SET_RATE_PARENT) {
610 		struct clk_rate_request parent_req;
611 
612 		if (!parent) {
613 			req->rate = 0;
614 			return 0;
615 		}
616 
617 		clk_core_forward_rate_req(core, req, parent, &parent_req,
618 					  req->rate);
619 
620 		trace_clk_rate_request_start(&parent_req);
621 
622 		ret = clk_core_round_rate_nolock(parent, &parent_req);
623 		if (ret)
624 			return ret;
625 
626 		trace_clk_rate_request_done(&parent_req);
627 
628 		best = parent_req.rate;
629 	} else if (parent) {
630 		best = clk_core_get_rate_nolock(parent);
631 	} else {
632 		best = clk_core_get_rate_nolock(core);
633 	}
634 
635 	req->best_parent_rate = best;
636 	req->rate = best;
637 
638 	return 0;
639 }
640 
641 int clk_mux_determine_rate_flags(struct clk_hw *hw,
642 				 struct clk_rate_request *req,
643 				 unsigned long flags)
644 {
645 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
646 	int i, num_parents, ret;
647 	unsigned long best = 0;
648 
649 	/* if NO_REPARENT flag set, pass through to current parent */
650 	if (core->flags & CLK_SET_RATE_NO_REPARENT)
651 		return clk_core_determine_rate_no_reparent(hw, req);
652 
653 	/* find the parent that can provide the fastest rate <= rate */
654 	num_parents = core->num_parents;
655 	for (i = 0; i < num_parents; i++) {
656 		unsigned long parent_rate;
657 
658 		parent = clk_core_get_parent_by_index(core, i);
659 		if (!parent)
660 			continue;
661 
662 		if (core->flags & CLK_SET_RATE_PARENT) {
663 			struct clk_rate_request parent_req;
664 
665 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
666 
667 			trace_clk_rate_request_start(&parent_req);
668 
669 			ret = clk_core_round_rate_nolock(parent, &parent_req);
670 			if (ret)
671 				continue;
672 
673 			trace_clk_rate_request_done(&parent_req);
674 
675 			parent_rate = parent_req.rate;
676 		} else {
677 			parent_rate = clk_core_get_rate_nolock(parent);
678 		}
679 
680 		if (mux_is_better_rate(req->rate, parent_rate,
681 				       best, flags)) {
682 			best_parent = parent;
683 			best = parent_rate;
684 		}
685 	}
686 
687 	if (!best_parent)
688 		return -EINVAL;
689 
690 	req->best_parent_hw = best_parent->hw;
691 	req->best_parent_rate = best;
692 	req->rate = best;
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
697 
698 struct clk *__clk_lookup(const char *name)
699 {
700 	struct clk_core *core = clk_core_lookup(name);
701 
702 	return !core ? NULL : core->hw->clk;
703 }
704 
705 static void clk_core_get_boundaries(struct clk_core *core,
706 				    unsigned long *min_rate,
707 				    unsigned long *max_rate)
708 {
709 	struct clk *clk_user;
710 
711 	lockdep_assert_held(&prepare_lock);
712 
713 	*min_rate = core->min_rate;
714 	*max_rate = core->max_rate;
715 
716 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
717 		*min_rate = max(*min_rate, clk_user->min_rate);
718 
719 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
720 		*max_rate = min(*max_rate, clk_user->max_rate);
721 }
722 
723 /*
724  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
725  * @hw: the hw clk we want to get the range from
726  * @min_rate: pointer to the variable that will hold the minimum
727  * @max_rate: pointer to the variable that will hold the maximum
728  *
729  * Fills the @min_rate and @max_rate variables with the minimum and
730  * maximum that clock can reach.
731  */
732 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
733 			   unsigned long *max_rate)
734 {
735 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
736 }
737 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
738 
739 static bool clk_core_check_boundaries(struct clk_core *core,
740 				      unsigned long min_rate,
741 				      unsigned long max_rate)
742 {
743 	struct clk *user;
744 
745 	lockdep_assert_held(&prepare_lock);
746 
747 	if (min_rate > core->max_rate || max_rate < core->min_rate)
748 		return false;
749 
750 	hlist_for_each_entry(user, &core->clks, clks_node)
751 		if (min_rate > user->max_rate || max_rate < user->min_rate)
752 			return false;
753 
754 	return true;
755 }
756 
757 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
758 			   unsigned long max_rate)
759 {
760 	hw->core->min_rate = min_rate;
761 	hw->core->max_rate = max_rate;
762 }
763 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
764 
765 /*
766  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
767  * @hw: mux type clk to determine rate on
768  * @req: rate request, also used to return preferred parent and frequencies
769  *
770  * Helper for finding best parent to provide a given frequency. This can be used
771  * directly as a determine_rate callback (e.g. for a mux), or from a more
772  * complex clock that may combine a mux with other operations.
773  *
774  * Returns: 0 on success, -EERROR value on error
775  */
776 int __clk_mux_determine_rate(struct clk_hw *hw,
777 			     struct clk_rate_request *req)
778 {
779 	return clk_mux_determine_rate_flags(hw, req, 0);
780 }
781 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
782 
783 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
784 				     struct clk_rate_request *req)
785 {
786 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
787 }
788 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
789 
790 /*
791  * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
792  * @hw: mux type clk to determine rate on
793  * @req: rate request, also used to return preferred frequency
794  *
795  * Helper for finding best parent rate to provide a given frequency.
796  * This can be used directly as a determine_rate callback (e.g. for a
797  * mux), or from a more complex clock that may combine a mux with other
798  * operations.
799  *
800  * Returns: 0 on success, -EERROR value on error
801  */
802 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
803 				      struct clk_rate_request *req)
804 {
805 	return clk_core_determine_rate_no_reparent(hw, req);
806 }
807 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
808 
809 /***        clk api        ***/
810 
811 static void clk_core_rate_unprotect(struct clk_core *core)
812 {
813 	lockdep_assert_held(&prepare_lock);
814 
815 	if (!core)
816 		return;
817 
818 	if (WARN(core->protect_count == 0,
819 	    "%s already unprotected\n", core->name))
820 		return;
821 
822 	if (--core->protect_count > 0)
823 		return;
824 
825 	clk_core_rate_unprotect(core->parent);
826 }
827 
828 static int clk_core_rate_nuke_protect(struct clk_core *core)
829 {
830 	int ret;
831 
832 	lockdep_assert_held(&prepare_lock);
833 
834 	if (!core)
835 		return -EINVAL;
836 
837 	if (core->protect_count == 0)
838 		return 0;
839 
840 	ret = core->protect_count;
841 	core->protect_count = 1;
842 	clk_core_rate_unprotect(core);
843 
844 	return ret;
845 }
846 
847 /**
848  * clk_rate_exclusive_put - release exclusivity over clock rate control
849  * @clk: the clk over which the exclusivity is released
850  *
851  * clk_rate_exclusive_put() completes a critical section during which a clock
852  * consumer cannot tolerate any other consumer making any operation on the
853  * clock which could result in a rate change or rate glitch. Exclusive clocks
854  * cannot have their rate changed, either directly or indirectly due to changes
855  * further up the parent chain of clocks. As a result, clocks up parent chain
856  * also get under exclusive control of the calling consumer.
857  *
858  * If exlusivity is claimed more than once on clock, even by the same consumer,
859  * the rate effectively gets locked as exclusivity can't be preempted.
860  *
861  * Calls to clk_rate_exclusive_put() must be balanced with calls to
862  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
863  * error status.
864  */
865 void clk_rate_exclusive_put(struct clk *clk)
866 {
867 	if (!clk)
868 		return;
869 
870 	clk_prepare_lock();
871 
872 	/*
873 	 * if there is something wrong with this consumer protect count, stop
874 	 * here before messing with the provider
875 	 */
876 	if (WARN_ON(clk->exclusive_count <= 0))
877 		goto out;
878 
879 	clk_core_rate_unprotect(clk->core);
880 	clk->exclusive_count--;
881 out:
882 	clk_prepare_unlock();
883 }
884 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
885 
886 static void clk_core_rate_protect(struct clk_core *core)
887 {
888 	lockdep_assert_held(&prepare_lock);
889 
890 	if (!core)
891 		return;
892 
893 	if (core->protect_count == 0)
894 		clk_core_rate_protect(core->parent);
895 
896 	core->protect_count++;
897 }
898 
899 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
900 {
901 	lockdep_assert_held(&prepare_lock);
902 
903 	if (!core)
904 		return;
905 
906 	if (count == 0)
907 		return;
908 
909 	clk_core_rate_protect(core);
910 	core->protect_count = count;
911 }
912 
913 /**
914  * clk_rate_exclusive_get - get exclusivity over the clk rate control
915  * @clk: the clk over which the exclusity of rate control is requested
916  *
917  * clk_rate_exclusive_get() begins a critical section during which a clock
918  * consumer cannot tolerate any other consumer making any operation on the
919  * clock which could result in a rate change or rate glitch. Exclusive clocks
920  * cannot have their rate changed, either directly or indirectly due to changes
921  * further up the parent chain of clocks. As a result, clocks up parent chain
922  * also get under exclusive control of the calling consumer.
923  *
924  * If exlusivity is claimed more than once on clock, even by the same consumer,
925  * the rate effectively gets locked as exclusivity can't be preempted.
926  *
927  * Calls to clk_rate_exclusive_get() should be balanced with calls to
928  * clk_rate_exclusive_put(). Calls to this function may sleep.
929  * Returns 0 on success, -EERROR otherwise
930  */
931 int clk_rate_exclusive_get(struct clk *clk)
932 {
933 	if (!clk)
934 		return 0;
935 
936 	clk_prepare_lock();
937 	clk_core_rate_protect(clk->core);
938 	clk->exclusive_count++;
939 	clk_prepare_unlock();
940 
941 	return 0;
942 }
943 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
944 
945 static void clk_core_unprepare(struct clk_core *core)
946 {
947 	lockdep_assert_held(&prepare_lock);
948 
949 	if (!core)
950 		return;
951 
952 	if (WARN(core->prepare_count == 0,
953 	    "%s already unprepared\n", core->name))
954 		return;
955 
956 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
957 	    "Unpreparing critical %s\n", core->name))
958 		return;
959 
960 	if (core->flags & CLK_SET_RATE_GATE)
961 		clk_core_rate_unprotect(core);
962 
963 	if (--core->prepare_count > 0)
964 		return;
965 
966 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
967 
968 	trace_clk_unprepare(core);
969 
970 	if (core->ops->unprepare)
971 		core->ops->unprepare(core->hw);
972 
973 	trace_clk_unprepare_complete(core);
974 	clk_core_unprepare(core->parent);
975 	clk_pm_runtime_put(core);
976 }
977 
978 static void clk_core_unprepare_lock(struct clk_core *core)
979 {
980 	clk_prepare_lock();
981 	clk_core_unprepare(core);
982 	clk_prepare_unlock();
983 }
984 
985 /**
986  * clk_unprepare - undo preparation of a clock source
987  * @clk: the clk being unprepared
988  *
989  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
990  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
991  * if the operation may sleep.  One example is a clk which is accessed over
992  * I2c.  In the complex case a clk gate operation may require a fast and a slow
993  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
994  * exclusive.  In fact clk_disable must be called before clk_unprepare.
995  */
996 void clk_unprepare(struct clk *clk)
997 {
998 	if (IS_ERR_OR_NULL(clk))
999 		return;
1000 
1001 	clk_core_unprepare_lock(clk->core);
1002 }
1003 EXPORT_SYMBOL_GPL(clk_unprepare);
1004 
1005 static int clk_core_prepare(struct clk_core *core)
1006 {
1007 	int ret = 0;
1008 
1009 	lockdep_assert_held(&prepare_lock);
1010 
1011 	if (!core)
1012 		return 0;
1013 
1014 	if (core->prepare_count == 0) {
1015 		ret = clk_pm_runtime_get(core);
1016 		if (ret)
1017 			return ret;
1018 
1019 		ret = clk_core_prepare(core->parent);
1020 		if (ret)
1021 			goto runtime_put;
1022 
1023 		trace_clk_prepare(core);
1024 
1025 		if (core->ops->prepare)
1026 			ret = core->ops->prepare(core->hw);
1027 
1028 		trace_clk_prepare_complete(core);
1029 
1030 		if (ret)
1031 			goto unprepare;
1032 	}
1033 
1034 	core->prepare_count++;
1035 
1036 	/*
1037 	 * CLK_SET_RATE_GATE is a special case of clock protection
1038 	 * Instead of a consumer claiming exclusive rate control, it is
1039 	 * actually the provider which prevents any consumer from making any
1040 	 * operation which could result in a rate change or rate glitch while
1041 	 * the clock is prepared.
1042 	 */
1043 	if (core->flags & CLK_SET_RATE_GATE)
1044 		clk_core_rate_protect(core);
1045 
1046 	return 0;
1047 unprepare:
1048 	clk_core_unprepare(core->parent);
1049 runtime_put:
1050 	clk_pm_runtime_put(core);
1051 	return ret;
1052 }
1053 
1054 static int clk_core_prepare_lock(struct clk_core *core)
1055 {
1056 	int ret;
1057 
1058 	clk_prepare_lock();
1059 	ret = clk_core_prepare(core);
1060 	clk_prepare_unlock();
1061 
1062 	return ret;
1063 }
1064 
1065 /**
1066  * clk_prepare - prepare a clock source
1067  * @clk: the clk being prepared
1068  *
1069  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1070  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1071  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1072  * the complex case a clk ungate operation may require a fast and a slow part.
1073  * It is this reason that clk_prepare and clk_enable are not mutually
1074  * exclusive.  In fact clk_prepare must be called before clk_enable.
1075  * Returns 0 on success, -EERROR otherwise.
1076  */
1077 int clk_prepare(struct clk *clk)
1078 {
1079 	if (!clk)
1080 		return 0;
1081 
1082 	return clk_core_prepare_lock(clk->core);
1083 }
1084 EXPORT_SYMBOL_GPL(clk_prepare);
1085 
1086 static void clk_core_disable(struct clk_core *core)
1087 {
1088 	lockdep_assert_held(&enable_lock);
1089 
1090 	if (!core)
1091 		return;
1092 
1093 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1094 		return;
1095 
1096 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1097 	    "Disabling critical %s\n", core->name))
1098 		return;
1099 
1100 	if (--core->enable_count > 0)
1101 		return;
1102 
1103 	trace_clk_disable(core);
1104 
1105 	if (core->ops->disable)
1106 		core->ops->disable(core->hw);
1107 
1108 	trace_clk_disable_complete(core);
1109 
1110 	clk_core_disable(core->parent);
1111 }
1112 
1113 static void clk_core_disable_lock(struct clk_core *core)
1114 {
1115 	unsigned long flags;
1116 
1117 	flags = clk_enable_lock();
1118 	clk_core_disable(core);
1119 	clk_enable_unlock(flags);
1120 }
1121 
1122 /**
1123  * clk_disable - gate a clock
1124  * @clk: the clk being gated
1125  *
1126  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1127  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1128  * clk if the operation is fast and will never sleep.  One example is a
1129  * SoC-internal clk which is controlled via simple register writes.  In the
1130  * complex case a clk gate operation may require a fast and a slow part.  It is
1131  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1132  * In fact clk_disable must be called before clk_unprepare.
1133  */
1134 void clk_disable(struct clk *clk)
1135 {
1136 	if (IS_ERR_OR_NULL(clk))
1137 		return;
1138 
1139 	clk_core_disable_lock(clk->core);
1140 }
1141 EXPORT_SYMBOL_GPL(clk_disable);
1142 
1143 static int clk_core_enable(struct clk_core *core)
1144 {
1145 	int ret = 0;
1146 
1147 	lockdep_assert_held(&enable_lock);
1148 
1149 	if (!core)
1150 		return 0;
1151 
1152 	if (WARN(core->prepare_count == 0,
1153 	    "Enabling unprepared %s\n", core->name))
1154 		return -ESHUTDOWN;
1155 
1156 	if (core->enable_count == 0) {
1157 		ret = clk_core_enable(core->parent);
1158 
1159 		if (ret)
1160 			return ret;
1161 
1162 		trace_clk_enable(core);
1163 
1164 		if (core->ops->enable)
1165 			ret = core->ops->enable(core->hw);
1166 
1167 		trace_clk_enable_complete(core);
1168 
1169 		if (ret) {
1170 			clk_core_disable(core->parent);
1171 			return ret;
1172 		}
1173 	}
1174 
1175 	core->enable_count++;
1176 	return 0;
1177 }
1178 
1179 static int clk_core_enable_lock(struct clk_core *core)
1180 {
1181 	unsigned long flags;
1182 	int ret;
1183 
1184 	flags = clk_enable_lock();
1185 	ret = clk_core_enable(core);
1186 	clk_enable_unlock(flags);
1187 
1188 	return ret;
1189 }
1190 
1191 /**
1192  * clk_gate_restore_context - restore context for poweroff
1193  * @hw: the clk_hw pointer of clock whose state is to be restored
1194  *
1195  * The clock gate restore context function enables or disables
1196  * the gate clocks based on the enable_count. This is done in cases
1197  * where the clock context is lost and based on the enable_count
1198  * the clock either needs to be enabled/disabled. This
1199  * helps restore the state of gate clocks.
1200  */
1201 void clk_gate_restore_context(struct clk_hw *hw)
1202 {
1203 	struct clk_core *core = hw->core;
1204 
1205 	if (core->enable_count)
1206 		core->ops->enable(hw);
1207 	else
1208 		core->ops->disable(hw);
1209 }
1210 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1211 
1212 static int clk_core_save_context(struct clk_core *core)
1213 {
1214 	struct clk_core *child;
1215 	int ret = 0;
1216 
1217 	hlist_for_each_entry(child, &core->children, child_node) {
1218 		ret = clk_core_save_context(child);
1219 		if (ret < 0)
1220 			return ret;
1221 	}
1222 
1223 	if (core->ops && core->ops->save_context)
1224 		ret = core->ops->save_context(core->hw);
1225 
1226 	return ret;
1227 }
1228 
1229 static void clk_core_restore_context(struct clk_core *core)
1230 {
1231 	struct clk_core *child;
1232 
1233 	if (core->ops && core->ops->restore_context)
1234 		core->ops->restore_context(core->hw);
1235 
1236 	hlist_for_each_entry(child, &core->children, child_node)
1237 		clk_core_restore_context(child);
1238 }
1239 
1240 /**
1241  * clk_save_context - save clock context for poweroff
1242  *
1243  * Saves the context of the clock register for powerstates in which the
1244  * contents of the registers will be lost. Occurs deep within the suspend
1245  * code.  Returns 0 on success.
1246  */
1247 int clk_save_context(void)
1248 {
1249 	struct clk_core *clk;
1250 	int ret;
1251 
1252 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1253 		ret = clk_core_save_context(clk);
1254 		if (ret < 0)
1255 			return ret;
1256 	}
1257 
1258 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1259 		ret = clk_core_save_context(clk);
1260 		if (ret < 0)
1261 			return ret;
1262 	}
1263 
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(clk_save_context);
1267 
1268 /**
1269  * clk_restore_context - restore clock context after poweroff
1270  *
1271  * Restore the saved clock context upon resume.
1272  *
1273  */
1274 void clk_restore_context(void)
1275 {
1276 	struct clk_core *core;
1277 
1278 	hlist_for_each_entry(core, &clk_root_list, child_node)
1279 		clk_core_restore_context(core);
1280 
1281 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1282 		clk_core_restore_context(core);
1283 }
1284 EXPORT_SYMBOL_GPL(clk_restore_context);
1285 
1286 /**
1287  * clk_enable - ungate a clock
1288  * @clk: the clk being ungated
1289  *
1290  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1291  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1292  * if the operation will never sleep.  One example is a SoC-internal clk which
1293  * is controlled via simple register writes.  In the complex case a clk ungate
1294  * operation may require a fast and a slow part.  It is this reason that
1295  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1296  * must be called before clk_enable.  Returns 0 on success, -EERROR
1297  * otherwise.
1298  */
1299 int clk_enable(struct clk *clk)
1300 {
1301 	if (!clk)
1302 		return 0;
1303 
1304 	return clk_core_enable_lock(clk->core);
1305 }
1306 EXPORT_SYMBOL_GPL(clk_enable);
1307 
1308 /**
1309  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1310  * @clk: clock source
1311  *
1312  * Returns true if clk_prepare() implicitly enables the clock, effectively
1313  * making clk_enable()/clk_disable() no-ops, false otherwise.
1314  *
1315  * This is of interest mainly to power management code where actually
1316  * disabling the clock also requires unpreparing it to have any material
1317  * effect.
1318  *
1319  * Regardless of the value returned here, the caller must always invoke
1320  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1321  * to be right.
1322  */
1323 bool clk_is_enabled_when_prepared(struct clk *clk)
1324 {
1325 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1326 }
1327 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1328 
1329 static int clk_core_prepare_enable(struct clk_core *core)
1330 {
1331 	int ret;
1332 
1333 	ret = clk_core_prepare_lock(core);
1334 	if (ret)
1335 		return ret;
1336 
1337 	ret = clk_core_enable_lock(core);
1338 	if (ret)
1339 		clk_core_unprepare_lock(core);
1340 
1341 	return ret;
1342 }
1343 
1344 static void clk_core_disable_unprepare(struct clk_core *core)
1345 {
1346 	clk_core_disable_lock(core);
1347 	clk_core_unprepare_lock(core);
1348 }
1349 
1350 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1351 {
1352 	struct clk_core *child;
1353 
1354 	lockdep_assert_held(&prepare_lock);
1355 
1356 	hlist_for_each_entry(child, &core->children, child_node)
1357 		clk_unprepare_unused_subtree(child);
1358 
1359 	if (core->prepare_count)
1360 		return;
1361 
1362 	if (core->flags & CLK_IGNORE_UNUSED)
1363 		return;
1364 
1365 	if (clk_pm_runtime_get(core))
1366 		return;
1367 
1368 	if (clk_core_is_prepared(core)) {
1369 		trace_clk_unprepare(core);
1370 		if (core->ops->unprepare_unused)
1371 			core->ops->unprepare_unused(core->hw);
1372 		else if (core->ops->unprepare)
1373 			core->ops->unprepare(core->hw);
1374 		trace_clk_unprepare_complete(core);
1375 	}
1376 
1377 	clk_pm_runtime_put(core);
1378 }
1379 
1380 static void __init clk_disable_unused_subtree(struct clk_core *core)
1381 {
1382 	struct clk_core *child;
1383 	unsigned long flags;
1384 
1385 	lockdep_assert_held(&prepare_lock);
1386 
1387 	hlist_for_each_entry(child, &core->children, child_node)
1388 		clk_disable_unused_subtree(child);
1389 
1390 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1391 		clk_core_prepare_enable(core->parent);
1392 
1393 	if (clk_pm_runtime_get(core))
1394 		goto unprepare_out;
1395 
1396 	flags = clk_enable_lock();
1397 
1398 	if (core->enable_count)
1399 		goto unlock_out;
1400 
1401 	if (core->flags & CLK_IGNORE_UNUSED)
1402 		goto unlock_out;
1403 
1404 	/*
1405 	 * some gate clocks have special needs during the disable-unused
1406 	 * sequence.  call .disable_unused if available, otherwise fall
1407 	 * back to .disable
1408 	 */
1409 	if (clk_core_is_enabled(core)) {
1410 		trace_clk_disable(core);
1411 		if (core->ops->disable_unused)
1412 			core->ops->disable_unused(core->hw);
1413 		else if (core->ops->disable)
1414 			core->ops->disable(core->hw);
1415 		trace_clk_disable_complete(core);
1416 	}
1417 
1418 unlock_out:
1419 	clk_enable_unlock(flags);
1420 	clk_pm_runtime_put(core);
1421 unprepare_out:
1422 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1423 		clk_core_disable_unprepare(core->parent);
1424 }
1425 
1426 static bool clk_ignore_unused __initdata;
1427 static int __init clk_ignore_unused_setup(char *__unused)
1428 {
1429 	clk_ignore_unused = true;
1430 	return 1;
1431 }
1432 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1433 
1434 static int __init clk_disable_unused(void)
1435 {
1436 	struct clk_core *core;
1437 
1438 	if (clk_ignore_unused) {
1439 		pr_warn("clk: Not disabling unused clocks\n");
1440 		return 0;
1441 	}
1442 
1443 	pr_info("clk: Disabling unused clocks\n");
1444 
1445 	clk_prepare_lock();
1446 
1447 	hlist_for_each_entry(core, &clk_root_list, child_node)
1448 		clk_disable_unused_subtree(core);
1449 
1450 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1451 		clk_disable_unused_subtree(core);
1452 
1453 	hlist_for_each_entry(core, &clk_root_list, child_node)
1454 		clk_unprepare_unused_subtree(core);
1455 
1456 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1457 		clk_unprepare_unused_subtree(core);
1458 
1459 	clk_prepare_unlock();
1460 
1461 	return 0;
1462 }
1463 late_initcall_sync(clk_disable_unused);
1464 
1465 static int clk_core_determine_round_nolock(struct clk_core *core,
1466 					   struct clk_rate_request *req)
1467 {
1468 	long rate;
1469 
1470 	lockdep_assert_held(&prepare_lock);
1471 
1472 	if (!core)
1473 		return 0;
1474 
1475 	/*
1476 	 * Some clock providers hand-craft their clk_rate_requests and
1477 	 * might not fill min_rate and max_rate.
1478 	 *
1479 	 * If it's the case, clamping the rate is equivalent to setting
1480 	 * the rate to 0 which is bad. Skip the clamping but complain so
1481 	 * that it gets fixed, hopefully.
1482 	 */
1483 	if (!req->min_rate && !req->max_rate)
1484 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1485 			__func__, core->name);
1486 	else
1487 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1488 
1489 	/*
1490 	 * At this point, core protection will be disabled
1491 	 * - if the provider is not protected at all
1492 	 * - if the calling consumer is the only one which has exclusivity
1493 	 *   over the provider
1494 	 */
1495 	if (clk_core_rate_is_protected(core)) {
1496 		req->rate = core->rate;
1497 	} else if (core->ops->determine_rate) {
1498 		return core->ops->determine_rate(core->hw, req);
1499 	} else if (core->ops->round_rate) {
1500 		rate = core->ops->round_rate(core->hw, req->rate,
1501 					     &req->best_parent_rate);
1502 		if (rate < 0)
1503 			return rate;
1504 
1505 		req->rate = rate;
1506 	} else {
1507 		return -EINVAL;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 static void clk_core_init_rate_req(struct clk_core * const core,
1514 				   struct clk_rate_request *req,
1515 				   unsigned long rate)
1516 {
1517 	struct clk_core *parent;
1518 
1519 	if (WARN_ON(!req))
1520 		return;
1521 
1522 	memset(req, 0, sizeof(*req));
1523 	req->max_rate = ULONG_MAX;
1524 
1525 	if (!core)
1526 		return;
1527 
1528 	req->core = core;
1529 	req->rate = rate;
1530 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1531 
1532 	parent = core->parent;
1533 	if (parent) {
1534 		req->best_parent_hw = parent->hw;
1535 		req->best_parent_rate = parent->rate;
1536 	} else {
1537 		req->best_parent_hw = NULL;
1538 		req->best_parent_rate = 0;
1539 	}
1540 }
1541 
1542 /**
1543  * clk_hw_init_rate_request - Initializes a clk_rate_request
1544  * @hw: the clk for which we want to submit a rate request
1545  * @req: the clk_rate_request structure we want to initialise
1546  * @rate: the rate which is to be requested
1547  *
1548  * Initializes a clk_rate_request structure to submit to
1549  * __clk_determine_rate() or similar functions.
1550  */
1551 void clk_hw_init_rate_request(const struct clk_hw *hw,
1552 			      struct clk_rate_request *req,
1553 			      unsigned long rate)
1554 {
1555 	if (WARN_ON(!hw || !req))
1556 		return;
1557 
1558 	clk_core_init_rate_req(hw->core, req, rate);
1559 }
1560 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1561 
1562 /**
1563  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1564  * @hw: the original clock that got the rate request
1565  * @old_req: the original clk_rate_request structure we want to forward
1566  * @parent: the clk we want to forward @old_req to
1567  * @req: the clk_rate_request structure we want to initialise
1568  * @parent_rate: The rate which is to be requested to @parent
1569  *
1570  * Initializes a clk_rate_request structure to submit to a clock parent
1571  * in __clk_determine_rate() or similar functions.
1572  */
1573 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1574 				 const struct clk_rate_request *old_req,
1575 				 const struct clk_hw *parent,
1576 				 struct clk_rate_request *req,
1577 				 unsigned long parent_rate)
1578 {
1579 	if (WARN_ON(!hw || !old_req || !parent || !req))
1580 		return;
1581 
1582 	clk_core_forward_rate_req(hw->core, old_req,
1583 				  parent->core, req,
1584 				  parent_rate);
1585 }
1586 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1587 
1588 static bool clk_core_can_round(struct clk_core * const core)
1589 {
1590 	return core->ops->determine_rate || core->ops->round_rate;
1591 }
1592 
1593 static int clk_core_round_rate_nolock(struct clk_core *core,
1594 				      struct clk_rate_request *req)
1595 {
1596 	int ret;
1597 
1598 	lockdep_assert_held(&prepare_lock);
1599 
1600 	if (!core) {
1601 		req->rate = 0;
1602 		return 0;
1603 	}
1604 
1605 	if (clk_core_can_round(core))
1606 		return clk_core_determine_round_nolock(core, req);
1607 
1608 	if (core->flags & CLK_SET_RATE_PARENT) {
1609 		struct clk_rate_request parent_req;
1610 
1611 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1612 
1613 		trace_clk_rate_request_start(&parent_req);
1614 
1615 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1616 		if (ret)
1617 			return ret;
1618 
1619 		trace_clk_rate_request_done(&parent_req);
1620 
1621 		req->best_parent_rate = parent_req.rate;
1622 		req->rate = parent_req.rate;
1623 
1624 		return 0;
1625 	}
1626 
1627 	req->rate = core->rate;
1628 	return 0;
1629 }
1630 
1631 /**
1632  * __clk_determine_rate - get the closest rate actually supported by a clock
1633  * @hw: determine the rate of this clock
1634  * @req: target rate request
1635  *
1636  * Useful for clk_ops such as .set_rate and .determine_rate.
1637  */
1638 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1639 {
1640 	if (!hw) {
1641 		req->rate = 0;
1642 		return 0;
1643 	}
1644 
1645 	return clk_core_round_rate_nolock(hw->core, req);
1646 }
1647 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1648 
1649 /**
1650  * clk_hw_round_rate() - round the given rate for a hw clk
1651  * @hw: the hw clk for which we are rounding a rate
1652  * @rate: the rate which is to be rounded
1653  *
1654  * Takes in a rate as input and rounds it to a rate that the clk can actually
1655  * use.
1656  *
1657  * Context: prepare_lock must be held.
1658  *          For clk providers to call from within clk_ops such as .round_rate,
1659  *          .determine_rate.
1660  *
1661  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1662  *         else returns the parent rate.
1663  */
1664 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1665 {
1666 	int ret;
1667 	struct clk_rate_request req;
1668 
1669 	clk_core_init_rate_req(hw->core, &req, rate);
1670 
1671 	trace_clk_rate_request_start(&req);
1672 
1673 	ret = clk_core_round_rate_nolock(hw->core, &req);
1674 	if (ret)
1675 		return 0;
1676 
1677 	trace_clk_rate_request_done(&req);
1678 
1679 	return req.rate;
1680 }
1681 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1682 
1683 /**
1684  * clk_round_rate - round the given rate for a clk
1685  * @clk: the clk for which we are rounding a rate
1686  * @rate: the rate which is to be rounded
1687  *
1688  * Takes in a rate as input and rounds it to a rate that the clk can actually
1689  * use which is then returned.  If clk doesn't support round_rate operation
1690  * then the parent rate is returned.
1691  */
1692 long clk_round_rate(struct clk *clk, unsigned long rate)
1693 {
1694 	struct clk_rate_request req;
1695 	int ret;
1696 
1697 	if (!clk)
1698 		return 0;
1699 
1700 	clk_prepare_lock();
1701 
1702 	if (clk->exclusive_count)
1703 		clk_core_rate_unprotect(clk->core);
1704 
1705 	clk_core_init_rate_req(clk->core, &req, rate);
1706 
1707 	trace_clk_rate_request_start(&req);
1708 
1709 	ret = clk_core_round_rate_nolock(clk->core, &req);
1710 
1711 	trace_clk_rate_request_done(&req);
1712 
1713 	if (clk->exclusive_count)
1714 		clk_core_rate_protect(clk->core);
1715 
1716 	clk_prepare_unlock();
1717 
1718 	if (ret)
1719 		return ret;
1720 
1721 	return req.rate;
1722 }
1723 EXPORT_SYMBOL_GPL(clk_round_rate);
1724 
1725 /**
1726  * __clk_notify - call clk notifier chain
1727  * @core: clk that is changing rate
1728  * @msg: clk notifier type (see include/linux/clk.h)
1729  * @old_rate: old clk rate
1730  * @new_rate: new clk rate
1731  *
1732  * Triggers a notifier call chain on the clk rate-change notification
1733  * for 'clk'.  Passes a pointer to the struct clk and the previous
1734  * and current rates to the notifier callback.  Intended to be called by
1735  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1736  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1737  * a driver returns that.
1738  */
1739 static int __clk_notify(struct clk_core *core, unsigned long msg,
1740 		unsigned long old_rate, unsigned long new_rate)
1741 {
1742 	struct clk_notifier *cn;
1743 	struct clk_notifier_data cnd;
1744 	int ret = NOTIFY_DONE;
1745 
1746 	cnd.old_rate = old_rate;
1747 	cnd.new_rate = new_rate;
1748 
1749 	list_for_each_entry(cn, &clk_notifier_list, node) {
1750 		if (cn->clk->core == core) {
1751 			cnd.clk = cn->clk;
1752 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1753 					&cnd);
1754 			if (ret & NOTIFY_STOP_MASK)
1755 				return ret;
1756 		}
1757 	}
1758 
1759 	return ret;
1760 }
1761 
1762 /**
1763  * __clk_recalc_accuracies
1764  * @core: first clk in the subtree
1765  *
1766  * Walks the subtree of clks starting with clk and recalculates accuracies as
1767  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1768  * callback then it is assumed that the clock will take on the accuracy of its
1769  * parent.
1770  */
1771 static void __clk_recalc_accuracies(struct clk_core *core)
1772 {
1773 	unsigned long parent_accuracy = 0;
1774 	struct clk_core *child;
1775 
1776 	lockdep_assert_held(&prepare_lock);
1777 
1778 	if (core->parent)
1779 		parent_accuracy = core->parent->accuracy;
1780 
1781 	if (core->ops->recalc_accuracy)
1782 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1783 							  parent_accuracy);
1784 	else
1785 		core->accuracy = parent_accuracy;
1786 
1787 	hlist_for_each_entry(child, &core->children, child_node)
1788 		__clk_recalc_accuracies(child);
1789 }
1790 
1791 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1792 {
1793 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1794 		__clk_recalc_accuracies(core);
1795 
1796 	return clk_core_get_accuracy_no_lock(core);
1797 }
1798 
1799 /**
1800  * clk_get_accuracy - return the accuracy of clk
1801  * @clk: the clk whose accuracy is being returned
1802  *
1803  * Simply returns the cached accuracy of the clk, unless
1804  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1805  * issued.
1806  * If clk is NULL then returns 0.
1807  */
1808 long clk_get_accuracy(struct clk *clk)
1809 {
1810 	long accuracy;
1811 
1812 	if (!clk)
1813 		return 0;
1814 
1815 	clk_prepare_lock();
1816 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1817 	clk_prepare_unlock();
1818 
1819 	return accuracy;
1820 }
1821 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1822 
1823 static unsigned long clk_recalc(struct clk_core *core,
1824 				unsigned long parent_rate)
1825 {
1826 	unsigned long rate = parent_rate;
1827 
1828 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1829 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1830 		clk_pm_runtime_put(core);
1831 	}
1832 	return rate;
1833 }
1834 
1835 /**
1836  * __clk_recalc_rates
1837  * @core: first clk in the subtree
1838  * @update_req: Whether req_rate should be updated with the new rate
1839  * @msg: notification type (see include/linux/clk.h)
1840  *
1841  * Walks the subtree of clks starting with clk and recalculates rates as it
1842  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1843  * it is assumed that the clock will take on the rate of its parent.
1844  *
1845  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1846  * if necessary.
1847  */
1848 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1849 			       unsigned long msg)
1850 {
1851 	unsigned long old_rate;
1852 	unsigned long parent_rate = 0;
1853 	struct clk_core *child;
1854 
1855 	lockdep_assert_held(&prepare_lock);
1856 
1857 	old_rate = core->rate;
1858 
1859 	if (core->parent)
1860 		parent_rate = core->parent->rate;
1861 
1862 	core->rate = clk_recalc(core, parent_rate);
1863 	if (update_req)
1864 		core->req_rate = core->rate;
1865 
1866 	/*
1867 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1868 	 * & ABORT_RATE_CHANGE notifiers
1869 	 */
1870 	if (core->notifier_count && msg)
1871 		__clk_notify(core, msg, old_rate, core->rate);
1872 
1873 	hlist_for_each_entry(child, &core->children, child_node)
1874 		__clk_recalc_rates(child, update_req, msg);
1875 }
1876 
1877 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1878 {
1879 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1880 		__clk_recalc_rates(core, false, 0);
1881 
1882 	return clk_core_get_rate_nolock(core);
1883 }
1884 
1885 /**
1886  * clk_get_rate - return the rate of clk
1887  * @clk: the clk whose rate is being returned
1888  *
1889  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1890  * is set, which means a recalc_rate will be issued. Can be called regardless of
1891  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1892  * 0.
1893  */
1894 unsigned long clk_get_rate(struct clk *clk)
1895 {
1896 	unsigned long rate;
1897 
1898 	if (!clk)
1899 		return 0;
1900 
1901 	clk_prepare_lock();
1902 	rate = clk_core_get_rate_recalc(clk->core);
1903 	clk_prepare_unlock();
1904 
1905 	return rate;
1906 }
1907 EXPORT_SYMBOL_GPL(clk_get_rate);
1908 
1909 static int clk_fetch_parent_index(struct clk_core *core,
1910 				  struct clk_core *parent)
1911 {
1912 	int i;
1913 
1914 	if (!parent)
1915 		return -EINVAL;
1916 
1917 	for (i = 0; i < core->num_parents; i++) {
1918 		/* Found it first try! */
1919 		if (core->parents[i].core == parent)
1920 			return i;
1921 
1922 		/* Something else is here, so keep looking */
1923 		if (core->parents[i].core)
1924 			continue;
1925 
1926 		/* Maybe core hasn't been cached but the hw is all we know? */
1927 		if (core->parents[i].hw) {
1928 			if (core->parents[i].hw == parent->hw)
1929 				break;
1930 
1931 			/* Didn't match, but we're expecting a clk_hw */
1932 			continue;
1933 		}
1934 
1935 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1936 		if (parent == clk_core_get(core, i))
1937 			break;
1938 
1939 		/* Fallback to comparing globally unique names */
1940 		if (core->parents[i].name &&
1941 		    !strcmp(parent->name, core->parents[i].name))
1942 			break;
1943 	}
1944 
1945 	if (i == core->num_parents)
1946 		return -EINVAL;
1947 
1948 	core->parents[i].core = parent;
1949 	return i;
1950 }
1951 
1952 /**
1953  * clk_hw_get_parent_index - return the index of the parent clock
1954  * @hw: clk_hw associated with the clk being consumed
1955  *
1956  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1957  * clock does not have a current parent.
1958  */
1959 int clk_hw_get_parent_index(struct clk_hw *hw)
1960 {
1961 	struct clk_hw *parent = clk_hw_get_parent(hw);
1962 
1963 	if (WARN_ON(parent == NULL))
1964 		return -EINVAL;
1965 
1966 	return clk_fetch_parent_index(hw->core, parent->core);
1967 }
1968 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1969 
1970 /*
1971  * Update the orphan status of @core and all its children.
1972  */
1973 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1974 {
1975 	struct clk_core *child;
1976 
1977 	core->orphan = is_orphan;
1978 
1979 	hlist_for_each_entry(child, &core->children, child_node)
1980 		clk_core_update_orphan_status(child, is_orphan);
1981 }
1982 
1983 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1984 {
1985 	bool was_orphan = core->orphan;
1986 
1987 	hlist_del(&core->child_node);
1988 
1989 	if (new_parent) {
1990 		bool becomes_orphan = new_parent->orphan;
1991 
1992 		/* avoid duplicate POST_RATE_CHANGE notifications */
1993 		if (new_parent->new_child == core)
1994 			new_parent->new_child = NULL;
1995 
1996 		hlist_add_head(&core->child_node, &new_parent->children);
1997 
1998 		if (was_orphan != becomes_orphan)
1999 			clk_core_update_orphan_status(core, becomes_orphan);
2000 	} else {
2001 		hlist_add_head(&core->child_node, &clk_orphan_list);
2002 		if (!was_orphan)
2003 			clk_core_update_orphan_status(core, true);
2004 	}
2005 
2006 	core->parent = new_parent;
2007 }
2008 
2009 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2010 					   struct clk_core *parent)
2011 {
2012 	unsigned long flags;
2013 	struct clk_core *old_parent = core->parent;
2014 
2015 	/*
2016 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2017 	 *
2018 	 * 2. Migrate prepare state between parents and prevent race with
2019 	 * clk_enable().
2020 	 *
2021 	 * If the clock is not prepared, then a race with
2022 	 * clk_enable/disable() is impossible since we already have the
2023 	 * prepare lock (future calls to clk_enable() need to be preceded by
2024 	 * a clk_prepare()).
2025 	 *
2026 	 * If the clock is prepared, migrate the prepared state to the new
2027 	 * parent and also protect against a race with clk_enable() by
2028 	 * forcing the clock and the new parent on.  This ensures that all
2029 	 * future calls to clk_enable() are practically NOPs with respect to
2030 	 * hardware and software states.
2031 	 *
2032 	 * See also: Comment for clk_set_parent() below.
2033 	 */
2034 
2035 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2036 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2037 		clk_core_prepare_enable(old_parent);
2038 		clk_core_prepare_enable(parent);
2039 	}
2040 
2041 	/* migrate prepare count if > 0 */
2042 	if (core->prepare_count) {
2043 		clk_core_prepare_enable(parent);
2044 		clk_core_enable_lock(core);
2045 	}
2046 
2047 	/* update the clk tree topology */
2048 	flags = clk_enable_lock();
2049 	clk_reparent(core, parent);
2050 	clk_enable_unlock(flags);
2051 
2052 	return old_parent;
2053 }
2054 
2055 static void __clk_set_parent_after(struct clk_core *core,
2056 				   struct clk_core *parent,
2057 				   struct clk_core *old_parent)
2058 {
2059 	/*
2060 	 * Finish the migration of prepare state and undo the changes done
2061 	 * for preventing a race with clk_enable().
2062 	 */
2063 	if (core->prepare_count) {
2064 		clk_core_disable_lock(core);
2065 		clk_core_disable_unprepare(old_parent);
2066 	}
2067 
2068 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2069 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2070 		clk_core_disable_unprepare(parent);
2071 		clk_core_disable_unprepare(old_parent);
2072 	}
2073 }
2074 
2075 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2076 			    u8 p_index)
2077 {
2078 	unsigned long flags;
2079 	int ret = 0;
2080 	struct clk_core *old_parent;
2081 
2082 	old_parent = __clk_set_parent_before(core, parent);
2083 
2084 	trace_clk_set_parent(core, parent);
2085 
2086 	/* change clock input source */
2087 	if (parent && core->ops->set_parent)
2088 		ret = core->ops->set_parent(core->hw, p_index);
2089 
2090 	trace_clk_set_parent_complete(core, parent);
2091 
2092 	if (ret) {
2093 		flags = clk_enable_lock();
2094 		clk_reparent(core, old_parent);
2095 		clk_enable_unlock(flags);
2096 
2097 		__clk_set_parent_after(core, old_parent, parent);
2098 
2099 		return ret;
2100 	}
2101 
2102 	__clk_set_parent_after(core, parent, old_parent);
2103 
2104 	return 0;
2105 }
2106 
2107 /**
2108  * __clk_speculate_rates
2109  * @core: first clk in the subtree
2110  * @parent_rate: the "future" rate of clk's parent
2111  *
2112  * Walks the subtree of clks starting with clk, speculating rates as it
2113  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2114  *
2115  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2116  * pre-rate change notifications and returns early if no clks in the
2117  * subtree have subscribed to the notifications.  Note that if a clk does not
2118  * implement the .recalc_rate callback then it is assumed that the clock will
2119  * take on the rate of its parent.
2120  */
2121 static int __clk_speculate_rates(struct clk_core *core,
2122 				 unsigned long parent_rate)
2123 {
2124 	struct clk_core *child;
2125 	unsigned long new_rate;
2126 	int ret = NOTIFY_DONE;
2127 
2128 	lockdep_assert_held(&prepare_lock);
2129 
2130 	new_rate = clk_recalc(core, parent_rate);
2131 
2132 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2133 	if (core->notifier_count)
2134 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2135 
2136 	if (ret & NOTIFY_STOP_MASK) {
2137 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2138 				__func__, core->name, ret);
2139 		goto out;
2140 	}
2141 
2142 	hlist_for_each_entry(child, &core->children, child_node) {
2143 		ret = __clk_speculate_rates(child, new_rate);
2144 		if (ret & NOTIFY_STOP_MASK)
2145 			break;
2146 	}
2147 
2148 out:
2149 	return ret;
2150 }
2151 
2152 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2153 			     struct clk_core *new_parent, u8 p_index)
2154 {
2155 	struct clk_core *child;
2156 
2157 	core->new_rate = new_rate;
2158 	core->new_parent = new_parent;
2159 	core->new_parent_index = p_index;
2160 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2161 	core->new_child = NULL;
2162 	if (new_parent && new_parent != core->parent)
2163 		new_parent->new_child = core;
2164 
2165 	hlist_for_each_entry(child, &core->children, child_node) {
2166 		child->new_rate = clk_recalc(child, new_rate);
2167 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2168 	}
2169 }
2170 
2171 /*
2172  * calculate the new rates returning the topmost clock that has to be
2173  * changed.
2174  */
2175 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2176 					   unsigned long rate)
2177 {
2178 	struct clk_core *top = core;
2179 	struct clk_core *old_parent, *parent;
2180 	unsigned long best_parent_rate = 0;
2181 	unsigned long new_rate;
2182 	unsigned long min_rate;
2183 	unsigned long max_rate;
2184 	int p_index = 0;
2185 	long ret;
2186 
2187 	/* sanity */
2188 	if (IS_ERR_OR_NULL(core))
2189 		return NULL;
2190 
2191 	/* save parent rate, if it exists */
2192 	parent = old_parent = core->parent;
2193 	if (parent)
2194 		best_parent_rate = parent->rate;
2195 
2196 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2197 
2198 	/* find the closest rate and parent clk/rate */
2199 	if (clk_core_can_round(core)) {
2200 		struct clk_rate_request req;
2201 
2202 		clk_core_init_rate_req(core, &req, rate);
2203 
2204 		trace_clk_rate_request_start(&req);
2205 
2206 		ret = clk_core_determine_round_nolock(core, &req);
2207 		if (ret < 0)
2208 			return NULL;
2209 
2210 		trace_clk_rate_request_done(&req);
2211 
2212 		best_parent_rate = req.best_parent_rate;
2213 		new_rate = req.rate;
2214 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2215 
2216 		if (new_rate < min_rate || new_rate > max_rate)
2217 			return NULL;
2218 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2219 		/* pass-through clock without adjustable parent */
2220 		core->new_rate = core->rate;
2221 		return NULL;
2222 	} else {
2223 		/* pass-through clock with adjustable parent */
2224 		top = clk_calc_new_rates(parent, rate);
2225 		new_rate = parent->new_rate;
2226 		goto out;
2227 	}
2228 
2229 	/* some clocks must be gated to change parent */
2230 	if (parent != old_parent &&
2231 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2232 		pr_debug("%s: %s not gated but wants to reparent\n",
2233 			 __func__, core->name);
2234 		return NULL;
2235 	}
2236 
2237 	/* try finding the new parent index */
2238 	if (parent && core->num_parents > 1) {
2239 		p_index = clk_fetch_parent_index(core, parent);
2240 		if (p_index < 0) {
2241 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2242 				 __func__, parent->name, core->name);
2243 			return NULL;
2244 		}
2245 	}
2246 
2247 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2248 	    best_parent_rate != parent->rate)
2249 		top = clk_calc_new_rates(parent, best_parent_rate);
2250 
2251 out:
2252 	clk_calc_subtree(core, new_rate, parent, p_index);
2253 
2254 	return top;
2255 }
2256 
2257 /*
2258  * Notify about rate changes in a subtree. Always walk down the whole tree
2259  * so that in case of an error we can walk down the whole tree again and
2260  * abort the change.
2261  */
2262 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2263 						  unsigned long event)
2264 {
2265 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2266 	int ret = NOTIFY_DONE;
2267 
2268 	if (core->rate == core->new_rate)
2269 		return NULL;
2270 
2271 	if (core->notifier_count) {
2272 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2273 		if (ret & NOTIFY_STOP_MASK)
2274 			fail_clk = core;
2275 	}
2276 
2277 	hlist_for_each_entry(child, &core->children, child_node) {
2278 		/* Skip children who will be reparented to another clock */
2279 		if (child->new_parent && child->new_parent != core)
2280 			continue;
2281 		tmp_clk = clk_propagate_rate_change(child, event);
2282 		if (tmp_clk)
2283 			fail_clk = tmp_clk;
2284 	}
2285 
2286 	/* handle the new child who might not be in core->children yet */
2287 	if (core->new_child) {
2288 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2289 		if (tmp_clk)
2290 			fail_clk = tmp_clk;
2291 	}
2292 
2293 	return fail_clk;
2294 }
2295 
2296 /*
2297  * walk down a subtree and set the new rates notifying the rate
2298  * change on the way
2299  */
2300 static void clk_change_rate(struct clk_core *core)
2301 {
2302 	struct clk_core *child;
2303 	struct hlist_node *tmp;
2304 	unsigned long old_rate;
2305 	unsigned long best_parent_rate = 0;
2306 	bool skip_set_rate = false;
2307 	struct clk_core *old_parent;
2308 	struct clk_core *parent = NULL;
2309 
2310 	old_rate = core->rate;
2311 
2312 	if (core->new_parent) {
2313 		parent = core->new_parent;
2314 		best_parent_rate = core->new_parent->rate;
2315 	} else if (core->parent) {
2316 		parent = core->parent;
2317 		best_parent_rate = core->parent->rate;
2318 	}
2319 
2320 	if (clk_pm_runtime_get(core))
2321 		return;
2322 
2323 	if (core->flags & CLK_SET_RATE_UNGATE) {
2324 		clk_core_prepare(core);
2325 		clk_core_enable_lock(core);
2326 	}
2327 
2328 	if (core->new_parent && core->new_parent != core->parent) {
2329 		old_parent = __clk_set_parent_before(core, core->new_parent);
2330 		trace_clk_set_parent(core, core->new_parent);
2331 
2332 		if (core->ops->set_rate_and_parent) {
2333 			skip_set_rate = true;
2334 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2335 					best_parent_rate,
2336 					core->new_parent_index);
2337 		} else if (core->ops->set_parent) {
2338 			core->ops->set_parent(core->hw, core->new_parent_index);
2339 		}
2340 
2341 		trace_clk_set_parent_complete(core, core->new_parent);
2342 		__clk_set_parent_after(core, core->new_parent, old_parent);
2343 	}
2344 
2345 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2346 		clk_core_prepare_enable(parent);
2347 
2348 	trace_clk_set_rate(core, core->new_rate);
2349 
2350 	if (!skip_set_rate && core->ops->set_rate)
2351 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2352 
2353 	trace_clk_set_rate_complete(core, core->new_rate);
2354 
2355 	core->rate = clk_recalc(core, best_parent_rate);
2356 
2357 	if (core->flags & CLK_SET_RATE_UNGATE) {
2358 		clk_core_disable_lock(core);
2359 		clk_core_unprepare(core);
2360 	}
2361 
2362 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2363 		clk_core_disable_unprepare(parent);
2364 
2365 	if (core->notifier_count && old_rate != core->rate)
2366 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2367 
2368 	if (core->flags & CLK_RECALC_NEW_RATES)
2369 		(void)clk_calc_new_rates(core, core->new_rate);
2370 
2371 	/*
2372 	 * Use safe iteration, as change_rate can actually swap parents
2373 	 * for certain clock types.
2374 	 */
2375 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2376 		/* Skip children who will be reparented to another clock */
2377 		if (child->new_parent && child->new_parent != core)
2378 			continue;
2379 		clk_change_rate(child);
2380 	}
2381 
2382 	/* handle the new child who might not be in core->children yet */
2383 	if (core->new_child)
2384 		clk_change_rate(core->new_child);
2385 
2386 	clk_pm_runtime_put(core);
2387 }
2388 
2389 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2390 						     unsigned long req_rate)
2391 {
2392 	int ret, cnt;
2393 	struct clk_rate_request req;
2394 
2395 	lockdep_assert_held(&prepare_lock);
2396 
2397 	if (!core)
2398 		return 0;
2399 
2400 	/* simulate what the rate would be if it could be freely set */
2401 	cnt = clk_core_rate_nuke_protect(core);
2402 	if (cnt < 0)
2403 		return cnt;
2404 
2405 	clk_core_init_rate_req(core, &req, req_rate);
2406 
2407 	trace_clk_rate_request_start(&req);
2408 
2409 	ret = clk_core_round_rate_nolock(core, &req);
2410 
2411 	trace_clk_rate_request_done(&req);
2412 
2413 	/* restore the protection */
2414 	clk_core_rate_restore_protect(core, cnt);
2415 
2416 	return ret ? 0 : req.rate;
2417 }
2418 
2419 static int clk_core_set_rate_nolock(struct clk_core *core,
2420 				    unsigned long req_rate)
2421 {
2422 	struct clk_core *top, *fail_clk;
2423 	unsigned long rate;
2424 	int ret;
2425 
2426 	if (!core)
2427 		return 0;
2428 
2429 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2430 
2431 	/* bail early if nothing to do */
2432 	if (rate == clk_core_get_rate_nolock(core))
2433 		return 0;
2434 
2435 	/* fail on a direct rate set of a protected provider */
2436 	if (clk_core_rate_is_protected(core))
2437 		return -EBUSY;
2438 
2439 	/* calculate new rates and get the topmost changed clock */
2440 	top = clk_calc_new_rates(core, req_rate);
2441 	if (!top)
2442 		return -EINVAL;
2443 
2444 	ret = clk_pm_runtime_get(core);
2445 	if (ret)
2446 		return ret;
2447 
2448 	/* notify that we are about to change rates */
2449 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2450 	if (fail_clk) {
2451 		pr_debug("%s: failed to set %s rate\n", __func__,
2452 				fail_clk->name);
2453 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2454 		ret = -EBUSY;
2455 		goto err;
2456 	}
2457 
2458 	/* change the rates */
2459 	clk_change_rate(top);
2460 
2461 	core->req_rate = req_rate;
2462 err:
2463 	clk_pm_runtime_put(core);
2464 
2465 	return ret;
2466 }
2467 
2468 /**
2469  * clk_set_rate - specify a new rate for clk
2470  * @clk: the clk whose rate is being changed
2471  * @rate: the new rate for clk
2472  *
2473  * In the simplest case clk_set_rate will only adjust the rate of clk.
2474  *
2475  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2476  * propagate up to clk's parent; whether or not this happens depends on the
2477  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2478  * after calling .round_rate then upstream parent propagation is ignored.  If
2479  * *parent_rate comes back with a new rate for clk's parent then we propagate
2480  * up to clk's parent and set its rate.  Upward propagation will continue
2481  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2482  * .round_rate stops requesting changes to clk's parent_rate.
2483  *
2484  * Rate changes are accomplished via tree traversal that also recalculates the
2485  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2486  *
2487  * Returns 0 on success, -EERROR otherwise.
2488  */
2489 int clk_set_rate(struct clk *clk, unsigned long rate)
2490 {
2491 	int ret;
2492 
2493 	if (!clk)
2494 		return 0;
2495 
2496 	/* prevent racing with updates to the clock topology */
2497 	clk_prepare_lock();
2498 
2499 	if (clk->exclusive_count)
2500 		clk_core_rate_unprotect(clk->core);
2501 
2502 	ret = clk_core_set_rate_nolock(clk->core, rate);
2503 
2504 	if (clk->exclusive_count)
2505 		clk_core_rate_protect(clk->core);
2506 
2507 	clk_prepare_unlock();
2508 
2509 	return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(clk_set_rate);
2512 
2513 /**
2514  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2515  * @clk: the clk whose rate is being changed
2516  * @rate: the new rate for clk
2517  *
2518  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2519  * within a critical section
2520  *
2521  * This can be used initially to ensure that at least 1 consumer is
2522  * satisfied when several consumers are competing for exclusivity over the
2523  * same clock provider.
2524  *
2525  * The exclusivity is not applied if setting the rate failed.
2526  *
2527  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2528  * clk_rate_exclusive_put().
2529  *
2530  * Returns 0 on success, -EERROR otherwise.
2531  */
2532 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2533 {
2534 	int ret;
2535 
2536 	if (!clk)
2537 		return 0;
2538 
2539 	/* prevent racing with updates to the clock topology */
2540 	clk_prepare_lock();
2541 
2542 	/*
2543 	 * The temporary protection removal is not here, on purpose
2544 	 * This function is meant to be used instead of clk_rate_protect,
2545 	 * so before the consumer code path protect the clock provider
2546 	 */
2547 
2548 	ret = clk_core_set_rate_nolock(clk->core, rate);
2549 	if (!ret) {
2550 		clk_core_rate_protect(clk->core);
2551 		clk->exclusive_count++;
2552 	}
2553 
2554 	clk_prepare_unlock();
2555 
2556 	return ret;
2557 }
2558 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2559 
2560 static int clk_set_rate_range_nolock(struct clk *clk,
2561 				     unsigned long min,
2562 				     unsigned long max)
2563 {
2564 	int ret = 0;
2565 	unsigned long old_min, old_max, rate;
2566 
2567 	lockdep_assert_held(&prepare_lock);
2568 
2569 	if (!clk)
2570 		return 0;
2571 
2572 	trace_clk_set_rate_range(clk->core, min, max);
2573 
2574 	if (min > max) {
2575 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2576 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2577 		       min, max);
2578 		return -EINVAL;
2579 	}
2580 
2581 	if (clk->exclusive_count)
2582 		clk_core_rate_unprotect(clk->core);
2583 
2584 	/* Save the current values in case we need to rollback the change */
2585 	old_min = clk->min_rate;
2586 	old_max = clk->max_rate;
2587 	clk->min_rate = min;
2588 	clk->max_rate = max;
2589 
2590 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2591 		ret = -EINVAL;
2592 		goto out;
2593 	}
2594 
2595 	rate = clk->core->req_rate;
2596 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2597 		rate = clk_core_get_rate_recalc(clk->core);
2598 
2599 	/*
2600 	 * Since the boundaries have been changed, let's give the
2601 	 * opportunity to the provider to adjust the clock rate based on
2602 	 * the new boundaries.
2603 	 *
2604 	 * We also need to handle the case where the clock is currently
2605 	 * outside of the boundaries. Clamping the last requested rate
2606 	 * to the current minimum and maximum will also handle this.
2607 	 *
2608 	 * FIXME:
2609 	 * There is a catch. It may fail for the usual reason (clock
2610 	 * broken, clock protected, etc) but also because:
2611 	 * - round_rate() was not favorable and fell on the wrong
2612 	 *   side of the boundary
2613 	 * - the determine_rate() callback does not really check for
2614 	 *   this corner case when determining the rate
2615 	 */
2616 	rate = clamp(rate, min, max);
2617 	ret = clk_core_set_rate_nolock(clk->core, rate);
2618 	if (ret) {
2619 		/* rollback the changes */
2620 		clk->min_rate = old_min;
2621 		clk->max_rate = old_max;
2622 	}
2623 
2624 out:
2625 	if (clk->exclusive_count)
2626 		clk_core_rate_protect(clk->core);
2627 
2628 	return ret;
2629 }
2630 
2631 /**
2632  * clk_set_rate_range - set a rate range for a clock source
2633  * @clk: clock source
2634  * @min: desired minimum clock rate in Hz, inclusive
2635  * @max: desired maximum clock rate in Hz, inclusive
2636  *
2637  * Return: 0 for success or negative errno on failure.
2638  */
2639 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2640 {
2641 	int ret;
2642 
2643 	if (!clk)
2644 		return 0;
2645 
2646 	clk_prepare_lock();
2647 
2648 	ret = clk_set_rate_range_nolock(clk, min, max);
2649 
2650 	clk_prepare_unlock();
2651 
2652 	return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2655 
2656 /**
2657  * clk_set_min_rate - set a minimum clock rate for a clock source
2658  * @clk: clock source
2659  * @rate: desired minimum clock rate in Hz, inclusive
2660  *
2661  * Returns success (0) or negative errno.
2662  */
2663 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2664 {
2665 	if (!clk)
2666 		return 0;
2667 
2668 	trace_clk_set_min_rate(clk->core, rate);
2669 
2670 	return clk_set_rate_range(clk, rate, clk->max_rate);
2671 }
2672 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2673 
2674 /**
2675  * clk_set_max_rate - set a maximum clock rate for a clock source
2676  * @clk: clock source
2677  * @rate: desired maximum clock rate in Hz, inclusive
2678  *
2679  * Returns success (0) or negative errno.
2680  */
2681 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2682 {
2683 	if (!clk)
2684 		return 0;
2685 
2686 	trace_clk_set_max_rate(clk->core, rate);
2687 
2688 	return clk_set_rate_range(clk, clk->min_rate, rate);
2689 }
2690 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2691 
2692 /**
2693  * clk_get_parent - return the parent of a clk
2694  * @clk: the clk whose parent gets returned
2695  *
2696  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2697  */
2698 struct clk *clk_get_parent(struct clk *clk)
2699 {
2700 	struct clk *parent;
2701 
2702 	if (!clk)
2703 		return NULL;
2704 
2705 	clk_prepare_lock();
2706 	/* TODO: Create a per-user clk and change callers to call clk_put */
2707 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2708 	clk_prepare_unlock();
2709 
2710 	return parent;
2711 }
2712 EXPORT_SYMBOL_GPL(clk_get_parent);
2713 
2714 static struct clk_core *__clk_init_parent(struct clk_core *core)
2715 {
2716 	u8 index = 0;
2717 
2718 	if (core->num_parents > 1 && core->ops->get_parent)
2719 		index = core->ops->get_parent(core->hw);
2720 
2721 	return clk_core_get_parent_by_index(core, index);
2722 }
2723 
2724 static void clk_core_reparent(struct clk_core *core,
2725 				  struct clk_core *new_parent)
2726 {
2727 	clk_reparent(core, new_parent);
2728 	__clk_recalc_accuracies(core);
2729 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2730 }
2731 
2732 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2733 {
2734 	if (!hw)
2735 		return;
2736 
2737 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2738 }
2739 
2740 /**
2741  * clk_has_parent - check if a clock is a possible parent for another
2742  * @clk: clock source
2743  * @parent: parent clock source
2744  *
2745  * This function can be used in drivers that need to check that a clock can be
2746  * the parent of another without actually changing the parent.
2747  *
2748  * Returns true if @parent is a possible parent for @clk, false otherwise.
2749  */
2750 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2751 {
2752 	/* NULL clocks should be nops, so return success if either is NULL. */
2753 	if (!clk || !parent)
2754 		return true;
2755 
2756 	return clk_core_has_parent(clk->core, parent->core);
2757 }
2758 EXPORT_SYMBOL_GPL(clk_has_parent);
2759 
2760 static int clk_core_set_parent_nolock(struct clk_core *core,
2761 				      struct clk_core *parent)
2762 {
2763 	int ret = 0;
2764 	int p_index = 0;
2765 	unsigned long p_rate = 0;
2766 
2767 	lockdep_assert_held(&prepare_lock);
2768 
2769 	if (!core)
2770 		return 0;
2771 
2772 	if (core->parent == parent)
2773 		return 0;
2774 
2775 	/* verify ops for multi-parent clks */
2776 	if (core->num_parents > 1 && !core->ops->set_parent)
2777 		return -EPERM;
2778 
2779 	/* check that we are allowed to re-parent if the clock is in use */
2780 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2781 		return -EBUSY;
2782 
2783 	if (clk_core_rate_is_protected(core))
2784 		return -EBUSY;
2785 
2786 	/* try finding the new parent index */
2787 	if (parent) {
2788 		p_index = clk_fetch_parent_index(core, parent);
2789 		if (p_index < 0) {
2790 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2791 					__func__, parent->name, core->name);
2792 			return p_index;
2793 		}
2794 		p_rate = parent->rate;
2795 	}
2796 
2797 	ret = clk_pm_runtime_get(core);
2798 	if (ret)
2799 		return ret;
2800 
2801 	/* propagate PRE_RATE_CHANGE notifications */
2802 	ret = __clk_speculate_rates(core, p_rate);
2803 
2804 	/* abort if a driver objects */
2805 	if (ret & NOTIFY_STOP_MASK)
2806 		goto runtime_put;
2807 
2808 	/* do the re-parent */
2809 	ret = __clk_set_parent(core, parent, p_index);
2810 
2811 	/* propagate rate an accuracy recalculation accordingly */
2812 	if (ret) {
2813 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2814 	} else {
2815 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2816 		__clk_recalc_accuracies(core);
2817 	}
2818 
2819 runtime_put:
2820 	clk_pm_runtime_put(core);
2821 
2822 	return ret;
2823 }
2824 
2825 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2826 {
2827 	return clk_core_set_parent_nolock(hw->core, parent->core);
2828 }
2829 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2830 
2831 /**
2832  * clk_set_parent - switch the parent of a mux clk
2833  * @clk: the mux clk whose input we are switching
2834  * @parent: the new input to clk
2835  *
2836  * Re-parent clk to use parent as its new input source.  If clk is in
2837  * prepared state, the clk will get enabled for the duration of this call. If
2838  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2839  * that, the reparenting is glitchy in hardware, etc), use the
2840  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2841  *
2842  * After successfully changing clk's parent clk_set_parent will update the
2843  * clk topology, sysfs topology and propagate rate recalculation via
2844  * __clk_recalc_rates.
2845  *
2846  * Returns 0 on success, -EERROR otherwise.
2847  */
2848 int clk_set_parent(struct clk *clk, struct clk *parent)
2849 {
2850 	int ret;
2851 
2852 	if (!clk)
2853 		return 0;
2854 
2855 	clk_prepare_lock();
2856 
2857 	if (clk->exclusive_count)
2858 		clk_core_rate_unprotect(clk->core);
2859 
2860 	ret = clk_core_set_parent_nolock(clk->core,
2861 					 parent ? parent->core : NULL);
2862 
2863 	if (clk->exclusive_count)
2864 		clk_core_rate_protect(clk->core);
2865 
2866 	clk_prepare_unlock();
2867 
2868 	return ret;
2869 }
2870 EXPORT_SYMBOL_GPL(clk_set_parent);
2871 
2872 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2873 {
2874 	int ret = -EINVAL;
2875 
2876 	lockdep_assert_held(&prepare_lock);
2877 
2878 	if (!core)
2879 		return 0;
2880 
2881 	if (clk_core_rate_is_protected(core))
2882 		return -EBUSY;
2883 
2884 	trace_clk_set_phase(core, degrees);
2885 
2886 	if (core->ops->set_phase) {
2887 		ret = core->ops->set_phase(core->hw, degrees);
2888 		if (!ret)
2889 			core->phase = degrees;
2890 	}
2891 
2892 	trace_clk_set_phase_complete(core, degrees);
2893 
2894 	return ret;
2895 }
2896 
2897 /**
2898  * clk_set_phase - adjust the phase shift of a clock signal
2899  * @clk: clock signal source
2900  * @degrees: number of degrees the signal is shifted
2901  *
2902  * Shifts the phase of a clock signal by the specified
2903  * degrees. Returns 0 on success, -EERROR otherwise.
2904  *
2905  * This function makes no distinction about the input or reference
2906  * signal that we adjust the clock signal phase against. For example
2907  * phase locked-loop clock signal generators we may shift phase with
2908  * respect to feedback clock signal input, but for other cases the
2909  * clock phase may be shifted with respect to some other, unspecified
2910  * signal.
2911  *
2912  * Additionally the concept of phase shift does not propagate through
2913  * the clock tree hierarchy, which sets it apart from clock rates and
2914  * clock accuracy. A parent clock phase attribute does not have an
2915  * impact on the phase attribute of a child clock.
2916  */
2917 int clk_set_phase(struct clk *clk, int degrees)
2918 {
2919 	int ret;
2920 
2921 	if (!clk)
2922 		return 0;
2923 
2924 	/* sanity check degrees */
2925 	degrees %= 360;
2926 	if (degrees < 0)
2927 		degrees += 360;
2928 
2929 	clk_prepare_lock();
2930 
2931 	if (clk->exclusive_count)
2932 		clk_core_rate_unprotect(clk->core);
2933 
2934 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2935 
2936 	if (clk->exclusive_count)
2937 		clk_core_rate_protect(clk->core);
2938 
2939 	clk_prepare_unlock();
2940 
2941 	return ret;
2942 }
2943 EXPORT_SYMBOL_GPL(clk_set_phase);
2944 
2945 static int clk_core_get_phase(struct clk_core *core)
2946 {
2947 	int ret;
2948 
2949 	lockdep_assert_held(&prepare_lock);
2950 	if (!core->ops->get_phase)
2951 		return 0;
2952 
2953 	/* Always try to update cached phase if possible */
2954 	ret = core->ops->get_phase(core->hw);
2955 	if (ret >= 0)
2956 		core->phase = ret;
2957 
2958 	return ret;
2959 }
2960 
2961 /**
2962  * clk_get_phase - return the phase shift of a clock signal
2963  * @clk: clock signal source
2964  *
2965  * Returns the phase shift of a clock node in degrees, otherwise returns
2966  * -EERROR.
2967  */
2968 int clk_get_phase(struct clk *clk)
2969 {
2970 	int ret;
2971 
2972 	if (!clk)
2973 		return 0;
2974 
2975 	clk_prepare_lock();
2976 	ret = clk_core_get_phase(clk->core);
2977 	clk_prepare_unlock();
2978 
2979 	return ret;
2980 }
2981 EXPORT_SYMBOL_GPL(clk_get_phase);
2982 
2983 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2984 {
2985 	/* Assume a default value of 50% */
2986 	core->duty.num = 1;
2987 	core->duty.den = 2;
2988 }
2989 
2990 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2991 
2992 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2993 {
2994 	struct clk_duty *duty = &core->duty;
2995 	int ret = 0;
2996 
2997 	if (!core->ops->get_duty_cycle)
2998 		return clk_core_update_duty_cycle_parent_nolock(core);
2999 
3000 	ret = core->ops->get_duty_cycle(core->hw, duty);
3001 	if (ret)
3002 		goto reset;
3003 
3004 	/* Don't trust the clock provider too much */
3005 	if (duty->den == 0 || duty->num > duty->den) {
3006 		ret = -EINVAL;
3007 		goto reset;
3008 	}
3009 
3010 	return 0;
3011 
3012 reset:
3013 	clk_core_reset_duty_cycle_nolock(core);
3014 	return ret;
3015 }
3016 
3017 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3018 {
3019 	int ret = 0;
3020 
3021 	if (core->parent &&
3022 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3023 		ret = clk_core_update_duty_cycle_nolock(core->parent);
3024 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3025 	} else {
3026 		clk_core_reset_duty_cycle_nolock(core);
3027 	}
3028 
3029 	return ret;
3030 }
3031 
3032 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3033 						 struct clk_duty *duty);
3034 
3035 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3036 					  struct clk_duty *duty)
3037 {
3038 	int ret;
3039 
3040 	lockdep_assert_held(&prepare_lock);
3041 
3042 	if (clk_core_rate_is_protected(core))
3043 		return -EBUSY;
3044 
3045 	trace_clk_set_duty_cycle(core, duty);
3046 
3047 	if (!core->ops->set_duty_cycle)
3048 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3049 
3050 	ret = core->ops->set_duty_cycle(core->hw, duty);
3051 	if (!ret)
3052 		memcpy(&core->duty, duty, sizeof(*duty));
3053 
3054 	trace_clk_set_duty_cycle_complete(core, duty);
3055 
3056 	return ret;
3057 }
3058 
3059 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3060 						 struct clk_duty *duty)
3061 {
3062 	int ret = 0;
3063 
3064 	if (core->parent &&
3065 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3066 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3067 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3068 	}
3069 
3070 	return ret;
3071 }
3072 
3073 /**
3074  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3075  * @clk: clock signal source
3076  * @num: numerator of the duty cycle ratio to be applied
3077  * @den: denominator of the duty cycle ratio to be applied
3078  *
3079  * Apply the duty cycle ratio if the ratio is valid and the clock can
3080  * perform this operation
3081  *
3082  * Returns (0) on success, a negative errno otherwise.
3083  */
3084 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3085 {
3086 	int ret;
3087 	struct clk_duty duty;
3088 
3089 	if (!clk)
3090 		return 0;
3091 
3092 	/* sanity check the ratio */
3093 	if (den == 0 || num > den)
3094 		return -EINVAL;
3095 
3096 	duty.num = num;
3097 	duty.den = den;
3098 
3099 	clk_prepare_lock();
3100 
3101 	if (clk->exclusive_count)
3102 		clk_core_rate_unprotect(clk->core);
3103 
3104 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3105 
3106 	if (clk->exclusive_count)
3107 		clk_core_rate_protect(clk->core);
3108 
3109 	clk_prepare_unlock();
3110 
3111 	return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3114 
3115 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3116 					  unsigned int scale)
3117 {
3118 	struct clk_duty *duty = &core->duty;
3119 	int ret;
3120 
3121 	clk_prepare_lock();
3122 
3123 	ret = clk_core_update_duty_cycle_nolock(core);
3124 	if (!ret)
3125 		ret = mult_frac(scale, duty->num, duty->den);
3126 
3127 	clk_prepare_unlock();
3128 
3129 	return ret;
3130 }
3131 
3132 /**
3133  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3134  * @clk: clock signal source
3135  * @scale: scaling factor to be applied to represent the ratio as an integer
3136  *
3137  * Returns the duty cycle ratio of a clock node multiplied by the provided
3138  * scaling factor, or negative errno on error.
3139  */
3140 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3141 {
3142 	if (!clk)
3143 		return 0;
3144 
3145 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3146 }
3147 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3148 
3149 /**
3150  * clk_is_match - check if two clk's point to the same hardware clock
3151  * @p: clk compared against q
3152  * @q: clk compared against p
3153  *
3154  * Returns true if the two struct clk pointers both point to the same hardware
3155  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3156  * share the same struct clk_core object.
3157  *
3158  * Returns false otherwise. Note that two NULL clks are treated as matching.
3159  */
3160 bool clk_is_match(const struct clk *p, const struct clk *q)
3161 {
3162 	/* trivial case: identical struct clk's or both NULL */
3163 	if (p == q)
3164 		return true;
3165 
3166 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3167 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3168 		if (p->core == q->core)
3169 			return true;
3170 
3171 	return false;
3172 }
3173 EXPORT_SYMBOL_GPL(clk_is_match);
3174 
3175 /***        debugfs support        ***/
3176 
3177 #ifdef CONFIG_DEBUG_FS
3178 #include <linux/debugfs.h>
3179 
3180 static struct dentry *rootdir;
3181 static int inited = 0;
3182 static DEFINE_MUTEX(clk_debug_lock);
3183 static HLIST_HEAD(clk_debug_list);
3184 
3185 static struct hlist_head *orphan_list[] = {
3186 	&clk_orphan_list,
3187 	NULL,
3188 };
3189 
3190 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3191 				 int level)
3192 {
3193 	int phase;
3194 
3195 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3196 		   level * 3 + 1, "",
3197 		   30 - level * 3, c->name,
3198 		   c->enable_count, c->prepare_count, c->protect_count,
3199 		   clk_core_get_rate_recalc(c),
3200 		   clk_core_get_accuracy_recalc(c));
3201 
3202 	phase = clk_core_get_phase(c);
3203 	if (phase >= 0)
3204 		seq_printf(s, "%5d", phase);
3205 	else
3206 		seq_puts(s, "-----");
3207 
3208 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3209 
3210 	if (c->ops->is_enabled)
3211 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3212 	else if (!c->ops->enable)
3213 		seq_printf(s, " %9c\n", 'Y');
3214 	else
3215 		seq_printf(s, " %9c\n", '?');
3216 }
3217 
3218 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3219 				     int level)
3220 {
3221 	struct clk_core *child;
3222 
3223 	clk_pm_runtime_get(c);
3224 	clk_summary_show_one(s, c, level);
3225 	clk_pm_runtime_put(c);
3226 
3227 	hlist_for_each_entry(child, &c->children, child_node)
3228 		clk_summary_show_subtree(s, child, level + 1);
3229 }
3230 
3231 static int clk_summary_show(struct seq_file *s, void *data)
3232 {
3233 	struct clk_core *c;
3234 	struct hlist_head **lists = s->private;
3235 
3236 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
3237 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3238 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3239 
3240 	clk_prepare_lock();
3241 
3242 	for (; *lists; lists++)
3243 		hlist_for_each_entry(c, *lists, child_node)
3244 			clk_summary_show_subtree(s, c, 0);
3245 
3246 	clk_prepare_unlock();
3247 
3248 	return 0;
3249 }
3250 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3251 
3252 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3253 {
3254 	int phase;
3255 	unsigned long min_rate, max_rate;
3256 
3257 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3258 
3259 	/* This should be JSON format, i.e. elements separated with a comma */
3260 	seq_printf(s, "\"%s\": { ", c->name);
3261 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3262 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3263 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3264 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3265 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3266 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3267 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3268 	phase = clk_core_get_phase(c);
3269 	if (phase >= 0)
3270 		seq_printf(s, "\"phase\": %d,", phase);
3271 	seq_printf(s, "\"duty_cycle\": %u",
3272 		   clk_core_get_scaled_duty_cycle(c, 100000));
3273 }
3274 
3275 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3276 {
3277 	struct clk_core *child;
3278 
3279 	clk_dump_one(s, c, level);
3280 
3281 	hlist_for_each_entry(child, &c->children, child_node) {
3282 		seq_putc(s, ',');
3283 		clk_dump_subtree(s, child, level + 1);
3284 	}
3285 
3286 	seq_putc(s, '}');
3287 }
3288 
3289 static int clk_dump_show(struct seq_file *s, void *data)
3290 {
3291 	struct clk_core *c;
3292 	bool first_node = true;
3293 	struct hlist_head **lists = s->private;
3294 
3295 	seq_putc(s, '{');
3296 	clk_prepare_lock();
3297 
3298 	for (; *lists; lists++) {
3299 		hlist_for_each_entry(c, *lists, child_node) {
3300 			if (!first_node)
3301 				seq_putc(s, ',');
3302 			first_node = false;
3303 			clk_dump_subtree(s, c, 0);
3304 		}
3305 	}
3306 
3307 	clk_prepare_unlock();
3308 
3309 	seq_puts(s, "}\n");
3310 	return 0;
3311 }
3312 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3313 
3314 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3315 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3316 /*
3317  * This can be dangerous, therefore don't provide any real compile time
3318  * configuration option for this feature.
3319  * People who want to use this will need to modify the source code directly.
3320  */
3321 static int clk_rate_set(void *data, u64 val)
3322 {
3323 	struct clk_core *core = data;
3324 	int ret;
3325 
3326 	clk_prepare_lock();
3327 	ret = clk_core_set_rate_nolock(core, val);
3328 	clk_prepare_unlock();
3329 
3330 	return ret;
3331 }
3332 
3333 #define clk_rate_mode	0644
3334 
3335 static int clk_prepare_enable_set(void *data, u64 val)
3336 {
3337 	struct clk_core *core = data;
3338 	int ret = 0;
3339 
3340 	if (val)
3341 		ret = clk_prepare_enable(core->hw->clk);
3342 	else
3343 		clk_disable_unprepare(core->hw->clk);
3344 
3345 	return ret;
3346 }
3347 
3348 static int clk_prepare_enable_get(void *data, u64 *val)
3349 {
3350 	struct clk_core *core = data;
3351 
3352 	*val = core->enable_count && core->prepare_count;
3353 	return 0;
3354 }
3355 
3356 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3357 			 clk_prepare_enable_set, "%llu\n");
3358 
3359 #else
3360 #define clk_rate_set	NULL
3361 #define clk_rate_mode	0444
3362 #endif
3363 
3364 static int clk_rate_get(void *data, u64 *val)
3365 {
3366 	struct clk_core *core = data;
3367 
3368 	clk_prepare_lock();
3369 	*val = clk_core_get_rate_recalc(core);
3370 	clk_prepare_unlock();
3371 
3372 	return 0;
3373 }
3374 
3375 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3376 
3377 static const struct {
3378 	unsigned long flag;
3379 	const char *name;
3380 } clk_flags[] = {
3381 #define ENTRY(f) { f, #f }
3382 	ENTRY(CLK_SET_RATE_GATE),
3383 	ENTRY(CLK_SET_PARENT_GATE),
3384 	ENTRY(CLK_SET_RATE_PARENT),
3385 	ENTRY(CLK_IGNORE_UNUSED),
3386 	ENTRY(CLK_GET_RATE_NOCACHE),
3387 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3388 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3389 	ENTRY(CLK_RECALC_NEW_RATES),
3390 	ENTRY(CLK_SET_RATE_UNGATE),
3391 	ENTRY(CLK_IS_CRITICAL),
3392 	ENTRY(CLK_OPS_PARENT_ENABLE),
3393 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3394 #undef ENTRY
3395 };
3396 
3397 static int clk_flags_show(struct seq_file *s, void *data)
3398 {
3399 	struct clk_core *core = s->private;
3400 	unsigned long flags = core->flags;
3401 	unsigned int i;
3402 
3403 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3404 		if (flags & clk_flags[i].flag) {
3405 			seq_printf(s, "%s\n", clk_flags[i].name);
3406 			flags &= ~clk_flags[i].flag;
3407 		}
3408 	}
3409 	if (flags) {
3410 		/* Unknown flags */
3411 		seq_printf(s, "0x%lx\n", flags);
3412 	}
3413 
3414 	return 0;
3415 }
3416 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3417 
3418 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3419 				 unsigned int i, char terminator)
3420 {
3421 	struct clk_core *parent;
3422 	const char *name = NULL;
3423 
3424 	/*
3425 	 * Go through the following options to fetch a parent's name.
3426 	 *
3427 	 * 1. Fetch the registered parent clock and use its name
3428 	 * 2. Use the global (fallback) name if specified
3429 	 * 3. Use the local fw_name if provided
3430 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3431 	 *
3432 	 * This may still fail in some cases, such as when the parent is
3433 	 * specified directly via a struct clk_hw pointer, but it isn't
3434 	 * registered (yet).
3435 	 */
3436 	parent = clk_core_get_parent_by_index(core, i);
3437 	if (parent) {
3438 		seq_puts(s, parent->name);
3439 	} else if (core->parents[i].name) {
3440 		seq_puts(s, core->parents[i].name);
3441 	} else if (core->parents[i].fw_name) {
3442 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3443 	} else {
3444 		if (core->parents[i].index >= 0)
3445 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3446 		if (!name)
3447 			name = "(missing)";
3448 
3449 		seq_puts(s, name);
3450 	}
3451 
3452 	seq_putc(s, terminator);
3453 }
3454 
3455 static int possible_parents_show(struct seq_file *s, void *data)
3456 {
3457 	struct clk_core *core = s->private;
3458 	int i;
3459 
3460 	for (i = 0; i < core->num_parents - 1; i++)
3461 		possible_parent_show(s, core, i, ' ');
3462 
3463 	possible_parent_show(s, core, i, '\n');
3464 
3465 	return 0;
3466 }
3467 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3468 
3469 static int current_parent_show(struct seq_file *s, void *data)
3470 {
3471 	struct clk_core *core = s->private;
3472 
3473 	if (core->parent)
3474 		seq_printf(s, "%s\n", core->parent->name);
3475 
3476 	return 0;
3477 }
3478 DEFINE_SHOW_ATTRIBUTE(current_parent);
3479 
3480 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3481 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3482 				    size_t count, loff_t *ppos)
3483 {
3484 	struct seq_file *s = file->private_data;
3485 	struct clk_core *core = s->private;
3486 	struct clk_core *parent;
3487 	u8 idx;
3488 	int err;
3489 
3490 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3491 	if (err < 0)
3492 		return err;
3493 
3494 	parent = clk_core_get_parent_by_index(core, idx);
3495 	if (!parent)
3496 		return -ENOENT;
3497 
3498 	clk_prepare_lock();
3499 	err = clk_core_set_parent_nolock(core, parent);
3500 	clk_prepare_unlock();
3501 	if (err)
3502 		return err;
3503 
3504 	return count;
3505 }
3506 
3507 static const struct file_operations current_parent_rw_fops = {
3508 	.open		= current_parent_open,
3509 	.write		= current_parent_write,
3510 	.read		= seq_read,
3511 	.llseek		= seq_lseek,
3512 	.release	= single_release,
3513 };
3514 #endif
3515 
3516 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3517 {
3518 	struct clk_core *core = s->private;
3519 	struct clk_duty *duty = &core->duty;
3520 
3521 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3522 
3523 	return 0;
3524 }
3525 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3526 
3527 static int clk_min_rate_show(struct seq_file *s, void *data)
3528 {
3529 	struct clk_core *core = s->private;
3530 	unsigned long min_rate, max_rate;
3531 
3532 	clk_prepare_lock();
3533 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3534 	clk_prepare_unlock();
3535 	seq_printf(s, "%lu\n", min_rate);
3536 
3537 	return 0;
3538 }
3539 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3540 
3541 static int clk_max_rate_show(struct seq_file *s, void *data)
3542 {
3543 	struct clk_core *core = s->private;
3544 	unsigned long min_rate, max_rate;
3545 
3546 	clk_prepare_lock();
3547 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3548 	clk_prepare_unlock();
3549 	seq_printf(s, "%lu\n", max_rate);
3550 
3551 	return 0;
3552 }
3553 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3554 
3555 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3556 {
3557 	struct dentry *root;
3558 
3559 	if (!core || !pdentry)
3560 		return;
3561 
3562 	root = debugfs_create_dir(core->name, pdentry);
3563 	core->dentry = root;
3564 
3565 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3566 			    &clk_rate_fops);
3567 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3568 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3569 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3570 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3571 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3572 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3573 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3574 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3575 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3576 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3577 			    &clk_duty_cycle_fops);
3578 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3579 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3580 			    &clk_prepare_enable_fops);
3581 
3582 	if (core->num_parents > 1)
3583 		debugfs_create_file("clk_parent", 0644, root, core,
3584 				    &current_parent_rw_fops);
3585 	else
3586 #endif
3587 	if (core->num_parents > 0)
3588 		debugfs_create_file("clk_parent", 0444, root, core,
3589 				    &current_parent_fops);
3590 
3591 	if (core->num_parents > 1)
3592 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3593 				    &possible_parents_fops);
3594 
3595 	if (core->ops->debug_init)
3596 		core->ops->debug_init(core->hw, core->dentry);
3597 }
3598 
3599 /**
3600  * clk_debug_register - add a clk node to the debugfs clk directory
3601  * @core: the clk being added to the debugfs clk directory
3602  *
3603  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3604  * initialized.  Otherwise it bails out early since the debugfs clk directory
3605  * will be created lazily by clk_debug_init as part of a late_initcall.
3606  */
3607 static void clk_debug_register(struct clk_core *core)
3608 {
3609 	mutex_lock(&clk_debug_lock);
3610 	hlist_add_head(&core->debug_node, &clk_debug_list);
3611 	if (inited)
3612 		clk_debug_create_one(core, rootdir);
3613 	mutex_unlock(&clk_debug_lock);
3614 }
3615 
3616  /**
3617  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3618  * @core: the clk being removed from the debugfs clk directory
3619  *
3620  * Dynamically removes a clk and all its child nodes from the
3621  * debugfs clk directory if clk->dentry points to debugfs created by
3622  * clk_debug_register in __clk_core_init.
3623  */
3624 static void clk_debug_unregister(struct clk_core *core)
3625 {
3626 	mutex_lock(&clk_debug_lock);
3627 	hlist_del_init(&core->debug_node);
3628 	debugfs_remove_recursive(core->dentry);
3629 	core->dentry = NULL;
3630 	mutex_unlock(&clk_debug_lock);
3631 }
3632 
3633 /**
3634  * clk_debug_init - lazily populate the debugfs clk directory
3635  *
3636  * clks are often initialized very early during boot before memory can be
3637  * dynamically allocated and well before debugfs is setup. This function
3638  * populates the debugfs clk directory once at boot-time when we know that
3639  * debugfs is setup. It should only be called once at boot-time, all other clks
3640  * added dynamically will be done so with clk_debug_register.
3641  */
3642 static int __init clk_debug_init(void)
3643 {
3644 	struct clk_core *core;
3645 
3646 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3647 	pr_warn("\n");
3648 	pr_warn("********************************************************************\n");
3649 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3650 	pr_warn("**                                                                **\n");
3651 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3652 	pr_warn("**                                                                **\n");
3653 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3654 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3655 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3656 	pr_warn("**                                                                **\n");
3657 	pr_warn("** If you see this message and you are not debugging the          **\n");
3658 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3659 	pr_warn("**                                                                **\n");
3660 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3661 	pr_warn("********************************************************************\n");
3662 #endif
3663 
3664 	rootdir = debugfs_create_dir("clk", NULL);
3665 
3666 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3667 			    &clk_summary_fops);
3668 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3669 			    &clk_dump_fops);
3670 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3671 			    &clk_summary_fops);
3672 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3673 			    &clk_dump_fops);
3674 
3675 	mutex_lock(&clk_debug_lock);
3676 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3677 		clk_debug_create_one(core, rootdir);
3678 
3679 	inited = 1;
3680 	mutex_unlock(&clk_debug_lock);
3681 
3682 	return 0;
3683 }
3684 late_initcall(clk_debug_init);
3685 #else
3686 static inline void clk_debug_register(struct clk_core *core) { }
3687 static inline void clk_debug_unregister(struct clk_core *core)
3688 {
3689 }
3690 #endif
3691 
3692 static void clk_core_reparent_orphans_nolock(void)
3693 {
3694 	struct clk_core *orphan;
3695 	struct hlist_node *tmp2;
3696 
3697 	/*
3698 	 * walk the list of orphan clocks and reparent any that newly finds a
3699 	 * parent.
3700 	 */
3701 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3702 		struct clk_core *parent = __clk_init_parent(orphan);
3703 
3704 		/*
3705 		 * We need to use __clk_set_parent_before() and _after() to
3706 		 * properly migrate any prepare/enable count of the orphan
3707 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3708 		 * are enabled during init but might not have a parent yet.
3709 		 */
3710 		if (parent) {
3711 			/* update the clk tree topology */
3712 			__clk_set_parent_before(orphan, parent);
3713 			__clk_set_parent_after(orphan, parent, NULL);
3714 			__clk_recalc_accuracies(orphan);
3715 			__clk_recalc_rates(orphan, true, 0);
3716 
3717 			/*
3718 			 * __clk_init_parent() will set the initial req_rate to
3719 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3720 			 * is an orphan when it's registered.
3721 			 *
3722 			 * 'req_rate' is used by clk_set_rate_range() and
3723 			 * clk_put() to trigger a clk_set_rate() call whenever
3724 			 * the boundaries are modified. Let's make sure
3725 			 * 'req_rate' is set to something non-zero so that
3726 			 * clk_set_rate_range() doesn't drop the frequency.
3727 			 */
3728 			orphan->req_rate = orphan->rate;
3729 		}
3730 	}
3731 }
3732 
3733 /**
3734  * __clk_core_init - initialize the data structures in a struct clk_core
3735  * @core:	clk_core being initialized
3736  *
3737  * Initializes the lists in struct clk_core, queries the hardware for the
3738  * parent and rate and sets them both.
3739  */
3740 static int __clk_core_init(struct clk_core *core)
3741 {
3742 	int ret;
3743 	struct clk_core *parent;
3744 	unsigned long rate;
3745 	int phase;
3746 
3747 	clk_prepare_lock();
3748 
3749 	/*
3750 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3751 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3752 	 * being NULL as the clk not being registered yet. This is crucial so
3753 	 * that clks aren't parented until their parent is fully registered.
3754 	 */
3755 	core->hw->core = core;
3756 
3757 	ret = clk_pm_runtime_get(core);
3758 	if (ret)
3759 		goto unlock;
3760 
3761 	/* check to see if a clock with this name is already registered */
3762 	if (clk_core_lookup(core->name)) {
3763 		pr_debug("%s: clk %s already initialized\n",
3764 				__func__, core->name);
3765 		ret = -EEXIST;
3766 		goto out;
3767 	}
3768 
3769 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3770 	if (core->ops->set_rate &&
3771 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3772 	      core->ops->recalc_rate)) {
3773 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3774 		       __func__, core->name);
3775 		ret = -EINVAL;
3776 		goto out;
3777 	}
3778 
3779 	if (core->ops->set_parent && !core->ops->get_parent) {
3780 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3781 		       __func__, core->name);
3782 		ret = -EINVAL;
3783 		goto out;
3784 	}
3785 
3786 	if (core->ops->set_parent && !core->ops->determine_rate) {
3787 		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3788 			__func__, core->name);
3789 		ret = -EINVAL;
3790 		goto out;
3791 	}
3792 
3793 	if (core->num_parents > 1 && !core->ops->get_parent) {
3794 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3795 		       __func__, core->name);
3796 		ret = -EINVAL;
3797 		goto out;
3798 	}
3799 
3800 	if (core->ops->set_rate_and_parent &&
3801 			!(core->ops->set_parent && core->ops->set_rate)) {
3802 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3803 				__func__, core->name);
3804 		ret = -EINVAL;
3805 		goto out;
3806 	}
3807 
3808 	/*
3809 	 * optional platform-specific magic
3810 	 *
3811 	 * The .init callback is not used by any of the basic clock types, but
3812 	 * exists for weird hardware that must perform initialization magic for
3813 	 * CCF to get an accurate view of clock for any other callbacks. It may
3814 	 * also be used needs to perform dynamic allocations. Such allocation
3815 	 * must be freed in the terminate() callback.
3816 	 * This callback shall not be used to initialize the parameters state,
3817 	 * such as rate, parent, etc ...
3818 	 *
3819 	 * If it exist, this callback should called before any other callback of
3820 	 * the clock
3821 	 */
3822 	if (core->ops->init) {
3823 		ret = core->ops->init(core->hw);
3824 		if (ret)
3825 			goto out;
3826 	}
3827 
3828 	parent = core->parent = __clk_init_parent(core);
3829 
3830 	/*
3831 	 * Populate core->parent if parent has already been clk_core_init'd. If
3832 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3833 	 * list.  If clk doesn't have any parents then place it in the root
3834 	 * clk list.
3835 	 *
3836 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3837 	 * clocks and re-parent any that are children of the clock currently
3838 	 * being clk_init'd.
3839 	 */
3840 	if (parent) {
3841 		hlist_add_head(&core->child_node, &parent->children);
3842 		core->orphan = parent->orphan;
3843 	} else if (!core->num_parents) {
3844 		hlist_add_head(&core->child_node, &clk_root_list);
3845 		core->orphan = false;
3846 	} else {
3847 		hlist_add_head(&core->child_node, &clk_orphan_list);
3848 		core->orphan = true;
3849 	}
3850 
3851 	/*
3852 	 * Set clk's accuracy.  The preferred method is to use
3853 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3854 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3855 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3856 	 * clock).
3857 	 */
3858 	if (core->ops->recalc_accuracy)
3859 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3860 					clk_core_get_accuracy_no_lock(parent));
3861 	else if (parent)
3862 		core->accuracy = parent->accuracy;
3863 	else
3864 		core->accuracy = 0;
3865 
3866 	/*
3867 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3868 	 * Since a phase is by definition relative to its parent, just
3869 	 * query the current clock phase, or just assume it's in phase.
3870 	 */
3871 	phase = clk_core_get_phase(core);
3872 	if (phase < 0) {
3873 		ret = phase;
3874 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3875 			core->name);
3876 		goto out;
3877 	}
3878 
3879 	/*
3880 	 * Set clk's duty cycle.
3881 	 */
3882 	clk_core_update_duty_cycle_nolock(core);
3883 
3884 	/*
3885 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3886 	 * simple clocks and lazy developers the default fallback is to use the
3887 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3888 	 * then rate is set to zero.
3889 	 */
3890 	if (core->ops->recalc_rate)
3891 		rate = core->ops->recalc_rate(core->hw,
3892 				clk_core_get_rate_nolock(parent));
3893 	else if (parent)
3894 		rate = parent->rate;
3895 	else
3896 		rate = 0;
3897 	core->rate = core->req_rate = rate;
3898 
3899 	/*
3900 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3901 	 * don't get accidentally disabled when walking the orphan tree and
3902 	 * reparenting clocks
3903 	 */
3904 	if (core->flags & CLK_IS_CRITICAL) {
3905 		ret = clk_core_prepare(core);
3906 		if (ret) {
3907 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3908 			       __func__, core->name);
3909 			goto out;
3910 		}
3911 
3912 		ret = clk_core_enable_lock(core);
3913 		if (ret) {
3914 			pr_warn("%s: critical clk '%s' failed to enable\n",
3915 			       __func__, core->name);
3916 			clk_core_unprepare(core);
3917 			goto out;
3918 		}
3919 	}
3920 
3921 	clk_core_reparent_orphans_nolock();
3922 
3923 	kref_init(&core->ref);
3924 out:
3925 	clk_pm_runtime_put(core);
3926 unlock:
3927 	if (ret) {
3928 		hlist_del_init(&core->child_node);
3929 		core->hw->core = NULL;
3930 	}
3931 
3932 	clk_prepare_unlock();
3933 
3934 	if (!ret)
3935 		clk_debug_register(core);
3936 
3937 	return ret;
3938 }
3939 
3940 /**
3941  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3942  * @core: clk to add consumer to
3943  * @clk: consumer to link to a clk
3944  */
3945 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3946 {
3947 	clk_prepare_lock();
3948 	hlist_add_head(&clk->clks_node, &core->clks);
3949 	clk_prepare_unlock();
3950 }
3951 
3952 /**
3953  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3954  * @clk: consumer to unlink
3955  */
3956 static void clk_core_unlink_consumer(struct clk *clk)
3957 {
3958 	lockdep_assert_held(&prepare_lock);
3959 	hlist_del(&clk->clks_node);
3960 }
3961 
3962 /**
3963  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3964  * @core: clk to allocate a consumer for
3965  * @dev_id: string describing device name
3966  * @con_id: connection ID string on device
3967  *
3968  * Returns: clk consumer left unlinked from the consumer list
3969  */
3970 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3971 			     const char *con_id)
3972 {
3973 	struct clk *clk;
3974 
3975 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3976 	if (!clk)
3977 		return ERR_PTR(-ENOMEM);
3978 
3979 	clk->core = core;
3980 	clk->dev_id = dev_id;
3981 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3982 	clk->max_rate = ULONG_MAX;
3983 
3984 	return clk;
3985 }
3986 
3987 /**
3988  * free_clk - Free a clk consumer
3989  * @clk: clk consumer to free
3990  *
3991  * Note, this assumes the clk has been unlinked from the clk_core consumer
3992  * list.
3993  */
3994 static void free_clk(struct clk *clk)
3995 {
3996 	kfree_const(clk->con_id);
3997 	kfree(clk);
3998 }
3999 
4000 /**
4001  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4002  * a clk_hw
4003  * @dev: clk consumer device
4004  * @hw: clk_hw associated with the clk being consumed
4005  * @dev_id: string describing device name
4006  * @con_id: connection ID string on device
4007  *
4008  * This is the main function used to create a clk pointer for use by clk
4009  * consumers. It connects a consumer to the clk_core and clk_hw structures
4010  * used by the framework and clk provider respectively.
4011  */
4012 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4013 			      const char *dev_id, const char *con_id)
4014 {
4015 	struct clk *clk;
4016 	struct clk_core *core;
4017 
4018 	/* This is to allow this function to be chained to others */
4019 	if (IS_ERR_OR_NULL(hw))
4020 		return ERR_CAST(hw);
4021 
4022 	core = hw->core;
4023 	clk = alloc_clk(core, dev_id, con_id);
4024 	if (IS_ERR(clk))
4025 		return clk;
4026 	clk->dev = dev;
4027 
4028 	if (!try_module_get(core->owner)) {
4029 		free_clk(clk);
4030 		return ERR_PTR(-ENOENT);
4031 	}
4032 
4033 	kref_get(&core->ref);
4034 	clk_core_link_consumer(core, clk);
4035 
4036 	return clk;
4037 }
4038 
4039 /**
4040  * clk_hw_get_clk - get clk consumer given an clk_hw
4041  * @hw: clk_hw associated with the clk being consumed
4042  * @con_id: connection ID string on device
4043  *
4044  * Returns: new clk consumer
4045  * This is the function to be used by providers which need
4046  * to get a consumer clk and act on the clock element
4047  * Calls to this function must be balanced with calls clk_put()
4048  */
4049 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4050 {
4051 	struct device *dev = hw->core->dev;
4052 	const char *name = dev ? dev_name(dev) : NULL;
4053 
4054 	return clk_hw_create_clk(dev, hw, name, con_id);
4055 }
4056 EXPORT_SYMBOL(clk_hw_get_clk);
4057 
4058 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4059 {
4060 	const char *dst;
4061 
4062 	if (!src) {
4063 		if (must_exist)
4064 			return -EINVAL;
4065 		return 0;
4066 	}
4067 
4068 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4069 	if (!dst)
4070 		return -ENOMEM;
4071 
4072 	return 0;
4073 }
4074 
4075 static int clk_core_populate_parent_map(struct clk_core *core,
4076 					const struct clk_init_data *init)
4077 {
4078 	u8 num_parents = init->num_parents;
4079 	const char * const *parent_names = init->parent_names;
4080 	const struct clk_hw **parent_hws = init->parent_hws;
4081 	const struct clk_parent_data *parent_data = init->parent_data;
4082 	int i, ret = 0;
4083 	struct clk_parent_map *parents, *parent;
4084 
4085 	if (!num_parents)
4086 		return 0;
4087 
4088 	/*
4089 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4090 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4091 	 */
4092 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4093 	core->parents = parents;
4094 	if (!parents)
4095 		return -ENOMEM;
4096 
4097 	/* Copy everything over because it might be __initdata */
4098 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4099 		parent->index = -1;
4100 		if (parent_names) {
4101 			/* throw a WARN if any entries are NULL */
4102 			WARN(!parent_names[i],
4103 				"%s: invalid NULL in %s's .parent_names\n",
4104 				__func__, core->name);
4105 			ret = clk_cpy_name(&parent->name, parent_names[i],
4106 					   true);
4107 		} else if (parent_data) {
4108 			parent->hw = parent_data[i].hw;
4109 			parent->index = parent_data[i].index;
4110 			ret = clk_cpy_name(&parent->fw_name,
4111 					   parent_data[i].fw_name, false);
4112 			if (!ret)
4113 				ret = clk_cpy_name(&parent->name,
4114 						   parent_data[i].name,
4115 						   false);
4116 		} else if (parent_hws) {
4117 			parent->hw = parent_hws[i];
4118 		} else {
4119 			ret = -EINVAL;
4120 			WARN(1, "Must specify parents if num_parents > 0\n");
4121 		}
4122 
4123 		if (ret) {
4124 			do {
4125 				kfree_const(parents[i].name);
4126 				kfree_const(parents[i].fw_name);
4127 			} while (--i >= 0);
4128 			kfree(parents);
4129 
4130 			return ret;
4131 		}
4132 	}
4133 
4134 	return 0;
4135 }
4136 
4137 static void clk_core_free_parent_map(struct clk_core *core)
4138 {
4139 	int i = core->num_parents;
4140 
4141 	if (!core->num_parents)
4142 		return;
4143 
4144 	while (--i >= 0) {
4145 		kfree_const(core->parents[i].name);
4146 		kfree_const(core->parents[i].fw_name);
4147 	}
4148 
4149 	kfree(core->parents);
4150 }
4151 
4152 static struct clk *
4153 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4154 {
4155 	int ret;
4156 	struct clk_core *core;
4157 	const struct clk_init_data *init = hw->init;
4158 
4159 	/*
4160 	 * The init data is not supposed to be used outside of registration path.
4161 	 * Set it to NULL so that provider drivers can't use it either and so that
4162 	 * we catch use of hw->init early on in the core.
4163 	 */
4164 	hw->init = NULL;
4165 
4166 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4167 	if (!core) {
4168 		ret = -ENOMEM;
4169 		goto fail_out;
4170 	}
4171 
4172 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4173 	if (!core->name) {
4174 		ret = -ENOMEM;
4175 		goto fail_name;
4176 	}
4177 
4178 	if (WARN_ON(!init->ops)) {
4179 		ret = -EINVAL;
4180 		goto fail_ops;
4181 	}
4182 	core->ops = init->ops;
4183 
4184 	if (dev && pm_runtime_enabled(dev))
4185 		core->rpm_enabled = true;
4186 	core->dev = dev;
4187 	core->of_node = np;
4188 	if (dev && dev->driver)
4189 		core->owner = dev->driver->owner;
4190 	core->hw = hw;
4191 	core->flags = init->flags;
4192 	core->num_parents = init->num_parents;
4193 	core->min_rate = 0;
4194 	core->max_rate = ULONG_MAX;
4195 
4196 	ret = clk_core_populate_parent_map(core, init);
4197 	if (ret)
4198 		goto fail_parents;
4199 
4200 	INIT_HLIST_HEAD(&core->clks);
4201 
4202 	/*
4203 	 * Don't call clk_hw_create_clk() here because that would pin the
4204 	 * provider module to itself and prevent it from ever being removed.
4205 	 */
4206 	hw->clk = alloc_clk(core, NULL, NULL);
4207 	if (IS_ERR(hw->clk)) {
4208 		ret = PTR_ERR(hw->clk);
4209 		goto fail_create_clk;
4210 	}
4211 
4212 	clk_core_link_consumer(core, hw->clk);
4213 
4214 	ret = __clk_core_init(core);
4215 	if (!ret)
4216 		return hw->clk;
4217 
4218 	clk_prepare_lock();
4219 	clk_core_unlink_consumer(hw->clk);
4220 	clk_prepare_unlock();
4221 
4222 	free_clk(hw->clk);
4223 	hw->clk = NULL;
4224 
4225 fail_create_clk:
4226 	clk_core_free_parent_map(core);
4227 fail_parents:
4228 fail_ops:
4229 	kfree_const(core->name);
4230 fail_name:
4231 	kfree(core);
4232 fail_out:
4233 	return ERR_PTR(ret);
4234 }
4235 
4236 /**
4237  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4238  * @dev: Device to get device node of
4239  *
4240  * Return: device node pointer of @dev, or the device node pointer of
4241  * @dev->parent if dev doesn't have a device node, or NULL if neither
4242  * @dev or @dev->parent have a device node.
4243  */
4244 static struct device_node *dev_or_parent_of_node(struct device *dev)
4245 {
4246 	struct device_node *np;
4247 
4248 	if (!dev)
4249 		return NULL;
4250 
4251 	np = dev_of_node(dev);
4252 	if (!np)
4253 		np = dev_of_node(dev->parent);
4254 
4255 	return np;
4256 }
4257 
4258 /**
4259  * clk_register - allocate a new clock, register it and return an opaque cookie
4260  * @dev: device that is registering this clock
4261  * @hw: link to hardware-specific clock data
4262  *
4263  * clk_register is the *deprecated* interface for populating the clock tree with
4264  * new clock nodes. Use clk_hw_register() instead.
4265  *
4266  * Returns: a pointer to the newly allocated struct clk which
4267  * cannot be dereferenced by driver code but may be used in conjunction with the
4268  * rest of the clock API.  In the event of an error clk_register will return an
4269  * error code; drivers must test for an error code after calling clk_register.
4270  */
4271 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4272 {
4273 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4274 }
4275 EXPORT_SYMBOL_GPL(clk_register);
4276 
4277 /**
4278  * clk_hw_register - register a clk_hw and return an error code
4279  * @dev: device that is registering this clock
4280  * @hw: link to hardware-specific clock data
4281  *
4282  * clk_hw_register is the primary interface for populating the clock tree with
4283  * new clock nodes. It returns an integer equal to zero indicating success or
4284  * less than zero indicating failure. Drivers must test for an error code after
4285  * calling clk_hw_register().
4286  */
4287 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4288 {
4289 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4290 			       hw));
4291 }
4292 EXPORT_SYMBOL_GPL(clk_hw_register);
4293 
4294 /*
4295  * of_clk_hw_register - register a clk_hw and return an error code
4296  * @node: device_node of device that is registering this clock
4297  * @hw: link to hardware-specific clock data
4298  *
4299  * of_clk_hw_register() is the primary interface for populating the clock tree
4300  * with new clock nodes when a struct device is not available, but a struct
4301  * device_node is. It returns an integer equal to zero indicating success or
4302  * less than zero indicating failure. Drivers must test for an error code after
4303  * calling of_clk_hw_register().
4304  */
4305 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4306 {
4307 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4308 }
4309 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4310 
4311 /* Free memory allocated for a clock. */
4312 static void __clk_release(struct kref *ref)
4313 {
4314 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4315 
4316 	lockdep_assert_held(&prepare_lock);
4317 
4318 	clk_core_free_parent_map(core);
4319 	kfree_const(core->name);
4320 	kfree(core);
4321 }
4322 
4323 /*
4324  * Empty clk_ops for unregistered clocks. These are used temporarily
4325  * after clk_unregister() was called on a clock and until last clock
4326  * consumer calls clk_put() and the struct clk object is freed.
4327  */
4328 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4329 {
4330 	return -ENXIO;
4331 }
4332 
4333 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4334 {
4335 	WARN_ON_ONCE(1);
4336 }
4337 
4338 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4339 					unsigned long parent_rate)
4340 {
4341 	return -ENXIO;
4342 }
4343 
4344 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4345 {
4346 	return -ENXIO;
4347 }
4348 
4349 static int clk_nodrv_determine_rate(struct clk_hw *hw,
4350 				    struct clk_rate_request *req)
4351 {
4352 	return -ENXIO;
4353 }
4354 
4355 static const struct clk_ops clk_nodrv_ops = {
4356 	.enable		= clk_nodrv_prepare_enable,
4357 	.disable	= clk_nodrv_disable_unprepare,
4358 	.prepare	= clk_nodrv_prepare_enable,
4359 	.unprepare	= clk_nodrv_disable_unprepare,
4360 	.determine_rate	= clk_nodrv_determine_rate,
4361 	.set_rate	= clk_nodrv_set_rate,
4362 	.set_parent	= clk_nodrv_set_parent,
4363 };
4364 
4365 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4366 						const struct clk_core *target)
4367 {
4368 	int i;
4369 	struct clk_core *child;
4370 
4371 	for (i = 0; i < root->num_parents; i++)
4372 		if (root->parents[i].core == target)
4373 			root->parents[i].core = NULL;
4374 
4375 	hlist_for_each_entry(child, &root->children, child_node)
4376 		clk_core_evict_parent_cache_subtree(child, target);
4377 }
4378 
4379 /* Remove this clk from all parent caches */
4380 static void clk_core_evict_parent_cache(struct clk_core *core)
4381 {
4382 	const struct hlist_head **lists;
4383 	struct clk_core *root;
4384 
4385 	lockdep_assert_held(&prepare_lock);
4386 
4387 	for (lists = all_lists; *lists; lists++)
4388 		hlist_for_each_entry(root, *lists, child_node)
4389 			clk_core_evict_parent_cache_subtree(root, core);
4390 
4391 }
4392 
4393 /**
4394  * clk_unregister - unregister a currently registered clock
4395  * @clk: clock to unregister
4396  */
4397 void clk_unregister(struct clk *clk)
4398 {
4399 	unsigned long flags;
4400 	const struct clk_ops *ops;
4401 
4402 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4403 		return;
4404 
4405 	clk_debug_unregister(clk->core);
4406 
4407 	clk_prepare_lock();
4408 
4409 	ops = clk->core->ops;
4410 	if (ops == &clk_nodrv_ops) {
4411 		pr_err("%s: unregistered clock: %s\n", __func__,
4412 		       clk->core->name);
4413 		goto unlock;
4414 	}
4415 	/*
4416 	 * Assign empty clock ops for consumers that might still hold
4417 	 * a reference to this clock.
4418 	 */
4419 	flags = clk_enable_lock();
4420 	clk->core->ops = &clk_nodrv_ops;
4421 	clk_enable_unlock(flags);
4422 
4423 	if (ops->terminate)
4424 		ops->terminate(clk->core->hw);
4425 
4426 	if (!hlist_empty(&clk->core->children)) {
4427 		struct clk_core *child;
4428 		struct hlist_node *t;
4429 
4430 		/* Reparent all children to the orphan list. */
4431 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4432 					  child_node)
4433 			clk_core_set_parent_nolock(child, NULL);
4434 	}
4435 
4436 	clk_core_evict_parent_cache(clk->core);
4437 
4438 	hlist_del_init(&clk->core->child_node);
4439 
4440 	if (clk->core->prepare_count)
4441 		pr_warn("%s: unregistering prepared clock: %s\n",
4442 					__func__, clk->core->name);
4443 
4444 	if (clk->core->protect_count)
4445 		pr_warn("%s: unregistering protected clock: %s\n",
4446 					__func__, clk->core->name);
4447 
4448 	kref_put(&clk->core->ref, __clk_release);
4449 	free_clk(clk);
4450 unlock:
4451 	clk_prepare_unlock();
4452 }
4453 EXPORT_SYMBOL_GPL(clk_unregister);
4454 
4455 /**
4456  * clk_hw_unregister - unregister a currently registered clk_hw
4457  * @hw: hardware-specific clock data to unregister
4458  */
4459 void clk_hw_unregister(struct clk_hw *hw)
4460 {
4461 	clk_unregister(hw->clk);
4462 }
4463 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4464 
4465 static void devm_clk_unregister_cb(struct device *dev, void *res)
4466 {
4467 	clk_unregister(*(struct clk **)res);
4468 }
4469 
4470 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4471 {
4472 	clk_hw_unregister(*(struct clk_hw **)res);
4473 }
4474 
4475 /**
4476  * devm_clk_register - resource managed clk_register()
4477  * @dev: device that is registering this clock
4478  * @hw: link to hardware-specific clock data
4479  *
4480  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4481  *
4482  * Clocks returned from this function are automatically clk_unregister()ed on
4483  * driver detach. See clk_register() for more information.
4484  */
4485 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4486 {
4487 	struct clk *clk;
4488 	struct clk **clkp;
4489 
4490 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4491 	if (!clkp)
4492 		return ERR_PTR(-ENOMEM);
4493 
4494 	clk = clk_register(dev, hw);
4495 	if (!IS_ERR(clk)) {
4496 		*clkp = clk;
4497 		devres_add(dev, clkp);
4498 	} else {
4499 		devres_free(clkp);
4500 	}
4501 
4502 	return clk;
4503 }
4504 EXPORT_SYMBOL_GPL(devm_clk_register);
4505 
4506 /**
4507  * devm_clk_hw_register - resource managed clk_hw_register()
4508  * @dev: device that is registering this clock
4509  * @hw: link to hardware-specific clock data
4510  *
4511  * Managed clk_hw_register(). Clocks registered by this function are
4512  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4513  * for more information.
4514  */
4515 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4516 {
4517 	struct clk_hw **hwp;
4518 	int ret;
4519 
4520 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4521 	if (!hwp)
4522 		return -ENOMEM;
4523 
4524 	ret = clk_hw_register(dev, hw);
4525 	if (!ret) {
4526 		*hwp = hw;
4527 		devres_add(dev, hwp);
4528 	} else {
4529 		devres_free(hwp);
4530 	}
4531 
4532 	return ret;
4533 }
4534 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4535 
4536 static void devm_clk_release(struct device *dev, void *res)
4537 {
4538 	clk_put(*(struct clk **)res);
4539 }
4540 
4541 /**
4542  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4543  * @dev: device that is registering this clock
4544  * @hw: clk_hw associated with the clk being consumed
4545  * @con_id: connection ID string on device
4546  *
4547  * Managed clk_hw_get_clk(). Clocks got with this function are
4548  * automatically clk_put() on driver detach. See clk_put()
4549  * for more information.
4550  */
4551 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4552 				const char *con_id)
4553 {
4554 	struct clk *clk;
4555 	struct clk **clkp;
4556 
4557 	/* This should not happen because it would mean we have drivers
4558 	 * passing around clk_hw pointers instead of having the caller use
4559 	 * proper clk_get() style APIs
4560 	 */
4561 	WARN_ON_ONCE(dev != hw->core->dev);
4562 
4563 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4564 	if (!clkp)
4565 		return ERR_PTR(-ENOMEM);
4566 
4567 	clk = clk_hw_get_clk(hw, con_id);
4568 	if (!IS_ERR(clk)) {
4569 		*clkp = clk;
4570 		devres_add(dev, clkp);
4571 	} else {
4572 		devres_free(clkp);
4573 	}
4574 
4575 	return clk;
4576 }
4577 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4578 
4579 /*
4580  * clkdev helpers
4581  */
4582 
4583 void __clk_put(struct clk *clk)
4584 {
4585 	struct module *owner;
4586 
4587 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4588 		return;
4589 
4590 	clk_prepare_lock();
4591 
4592 	/*
4593 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4594 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4595 	 * and by that same consumer
4596 	 */
4597 	if (WARN_ON(clk->exclusive_count)) {
4598 		/* We voiced our concern, let's sanitize the situation */
4599 		clk->core->protect_count -= (clk->exclusive_count - 1);
4600 		clk_core_rate_unprotect(clk->core);
4601 		clk->exclusive_count = 0;
4602 	}
4603 
4604 	hlist_del(&clk->clks_node);
4605 
4606 	/* If we had any boundaries on that clock, let's drop them. */
4607 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4608 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4609 
4610 	owner = clk->core->owner;
4611 	kref_put(&clk->core->ref, __clk_release);
4612 
4613 	clk_prepare_unlock();
4614 
4615 	module_put(owner);
4616 
4617 	free_clk(clk);
4618 }
4619 
4620 /***        clk rate change notifiers        ***/
4621 
4622 /**
4623  * clk_notifier_register - add a clk rate change notifier
4624  * @clk: struct clk * to watch
4625  * @nb: struct notifier_block * with callback info
4626  *
4627  * Request notification when clk's rate changes.  This uses an SRCU
4628  * notifier because we want it to block and notifier unregistrations are
4629  * uncommon.  The callbacks associated with the notifier must not
4630  * re-enter into the clk framework by calling any top-level clk APIs;
4631  * this will cause a nested prepare_lock mutex.
4632  *
4633  * In all notification cases (pre, post and abort rate change) the original
4634  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4635  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4636  *
4637  * clk_notifier_register() must be called from non-atomic context.
4638  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4639  * allocation failure; otherwise, passes along the return value of
4640  * srcu_notifier_chain_register().
4641  */
4642 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4643 {
4644 	struct clk_notifier *cn;
4645 	int ret = -ENOMEM;
4646 
4647 	if (!clk || !nb)
4648 		return -EINVAL;
4649 
4650 	clk_prepare_lock();
4651 
4652 	/* search the list of notifiers for this clk */
4653 	list_for_each_entry(cn, &clk_notifier_list, node)
4654 		if (cn->clk == clk)
4655 			goto found;
4656 
4657 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4658 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4659 	if (!cn)
4660 		goto out;
4661 
4662 	cn->clk = clk;
4663 	srcu_init_notifier_head(&cn->notifier_head);
4664 
4665 	list_add(&cn->node, &clk_notifier_list);
4666 
4667 found:
4668 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4669 
4670 	clk->core->notifier_count++;
4671 
4672 out:
4673 	clk_prepare_unlock();
4674 
4675 	return ret;
4676 }
4677 EXPORT_SYMBOL_GPL(clk_notifier_register);
4678 
4679 /**
4680  * clk_notifier_unregister - remove a clk rate change notifier
4681  * @clk: struct clk *
4682  * @nb: struct notifier_block * with callback info
4683  *
4684  * Request no further notification for changes to 'clk' and frees memory
4685  * allocated in clk_notifier_register.
4686  *
4687  * Returns -EINVAL if called with null arguments; otherwise, passes
4688  * along the return value of srcu_notifier_chain_unregister().
4689  */
4690 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4691 {
4692 	struct clk_notifier *cn;
4693 	int ret = -ENOENT;
4694 
4695 	if (!clk || !nb)
4696 		return -EINVAL;
4697 
4698 	clk_prepare_lock();
4699 
4700 	list_for_each_entry(cn, &clk_notifier_list, node) {
4701 		if (cn->clk == clk) {
4702 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4703 
4704 			clk->core->notifier_count--;
4705 
4706 			/* XXX the notifier code should handle this better */
4707 			if (!cn->notifier_head.head) {
4708 				srcu_cleanup_notifier_head(&cn->notifier_head);
4709 				list_del(&cn->node);
4710 				kfree(cn);
4711 			}
4712 			break;
4713 		}
4714 	}
4715 
4716 	clk_prepare_unlock();
4717 
4718 	return ret;
4719 }
4720 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4721 
4722 struct clk_notifier_devres {
4723 	struct clk *clk;
4724 	struct notifier_block *nb;
4725 };
4726 
4727 static void devm_clk_notifier_release(struct device *dev, void *res)
4728 {
4729 	struct clk_notifier_devres *devres = res;
4730 
4731 	clk_notifier_unregister(devres->clk, devres->nb);
4732 }
4733 
4734 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4735 			       struct notifier_block *nb)
4736 {
4737 	struct clk_notifier_devres *devres;
4738 	int ret;
4739 
4740 	devres = devres_alloc(devm_clk_notifier_release,
4741 			      sizeof(*devres), GFP_KERNEL);
4742 
4743 	if (!devres)
4744 		return -ENOMEM;
4745 
4746 	ret = clk_notifier_register(clk, nb);
4747 	if (!ret) {
4748 		devres->clk = clk;
4749 		devres->nb = nb;
4750 		devres_add(dev, devres);
4751 	} else {
4752 		devres_free(devres);
4753 	}
4754 
4755 	return ret;
4756 }
4757 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4758 
4759 #ifdef CONFIG_OF
4760 static void clk_core_reparent_orphans(void)
4761 {
4762 	clk_prepare_lock();
4763 	clk_core_reparent_orphans_nolock();
4764 	clk_prepare_unlock();
4765 }
4766 
4767 /**
4768  * struct of_clk_provider - Clock provider registration structure
4769  * @link: Entry in global list of clock providers
4770  * @node: Pointer to device tree node of clock provider
4771  * @get: Get clock callback.  Returns NULL or a struct clk for the
4772  *       given clock specifier
4773  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4774  *       struct clk_hw for the given clock specifier
4775  * @data: context pointer to be passed into @get callback
4776  */
4777 struct of_clk_provider {
4778 	struct list_head link;
4779 
4780 	struct device_node *node;
4781 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4782 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4783 	void *data;
4784 };
4785 
4786 extern struct of_device_id __clk_of_table;
4787 static const struct of_device_id __clk_of_table_sentinel
4788 	__used __section("__clk_of_table_end");
4789 
4790 static LIST_HEAD(of_clk_providers);
4791 static DEFINE_MUTEX(of_clk_mutex);
4792 
4793 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4794 				     void *data)
4795 {
4796 	return data;
4797 }
4798 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4799 
4800 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4801 {
4802 	return data;
4803 }
4804 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4805 
4806 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4807 {
4808 	struct clk_onecell_data *clk_data = data;
4809 	unsigned int idx = clkspec->args[0];
4810 
4811 	if (idx >= clk_data->clk_num) {
4812 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4813 		return ERR_PTR(-EINVAL);
4814 	}
4815 
4816 	return clk_data->clks[idx];
4817 }
4818 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4819 
4820 struct clk_hw *
4821 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4822 {
4823 	struct clk_hw_onecell_data *hw_data = data;
4824 	unsigned int idx = clkspec->args[0];
4825 
4826 	if (idx >= hw_data->num) {
4827 		pr_err("%s: invalid index %u\n", __func__, idx);
4828 		return ERR_PTR(-EINVAL);
4829 	}
4830 
4831 	return hw_data->hws[idx];
4832 }
4833 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4834 
4835 /**
4836  * of_clk_add_provider() - Register a clock provider for a node
4837  * @np: Device node pointer associated with clock provider
4838  * @clk_src_get: callback for decoding clock
4839  * @data: context pointer for @clk_src_get callback.
4840  *
4841  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4842  */
4843 int of_clk_add_provider(struct device_node *np,
4844 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4845 						   void *data),
4846 			void *data)
4847 {
4848 	struct of_clk_provider *cp;
4849 	int ret;
4850 
4851 	if (!np)
4852 		return 0;
4853 
4854 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4855 	if (!cp)
4856 		return -ENOMEM;
4857 
4858 	cp->node = of_node_get(np);
4859 	cp->data = data;
4860 	cp->get = clk_src_get;
4861 
4862 	mutex_lock(&of_clk_mutex);
4863 	list_add(&cp->link, &of_clk_providers);
4864 	mutex_unlock(&of_clk_mutex);
4865 	pr_debug("Added clock from %pOF\n", np);
4866 
4867 	clk_core_reparent_orphans();
4868 
4869 	ret = of_clk_set_defaults(np, true);
4870 	if (ret < 0)
4871 		of_clk_del_provider(np);
4872 
4873 	fwnode_dev_initialized(&np->fwnode, true);
4874 
4875 	return ret;
4876 }
4877 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4878 
4879 /**
4880  * of_clk_add_hw_provider() - Register a clock provider for a node
4881  * @np: Device node pointer associated with clock provider
4882  * @get: callback for decoding clk_hw
4883  * @data: context pointer for @get callback.
4884  */
4885 int of_clk_add_hw_provider(struct device_node *np,
4886 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4887 						 void *data),
4888 			   void *data)
4889 {
4890 	struct of_clk_provider *cp;
4891 	int ret;
4892 
4893 	if (!np)
4894 		return 0;
4895 
4896 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4897 	if (!cp)
4898 		return -ENOMEM;
4899 
4900 	cp->node = of_node_get(np);
4901 	cp->data = data;
4902 	cp->get_hw = get;
4903 
4904 	mutex_lock(&of_clk_mutex);
4905 	list_add(&cp->link, &of_clk_providers);
4906 	mutex_unlock(&of_clk_mutex);
4907 	pr_debug("Added clk_hw provider from %pOF\n", np);
4908 
4909 	clk_core_reparent_orphans();
4910 
4911 	ret = of_clk_set_defaults(np, true);
4912 	if (ret < 0)
4913 		of_clk_del_provider(np);
4914 
4915 	fwnode_dev_initialized(&np->fwnode, true);
4916 
4917 	return ret;
4918 }
4919 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4920 
4921 static void devm_of_clk_release_provider(struct device *dev, void *res)
4922 {
4923 	of_clk_del_provider(*(struct device_node **)res);
4924 }
4925 
4926 /*
4927  * We allow a child device to use its parent device as the clock provider node
4928  * for cases like MFD sub-devices where the child device driver wants to use
4929  * devm_*() APIs but not list the device in DT as a sub-node.
4930  */
4931 static struct device_node *get_clk_provider_node(struct device *dev)
4932 {
4933 	struct device_node *np, *parent_np;
4934 
4935 	np = dev->of_node;
4936 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4937 
4938 	if (!of_property_present(np, "#clock-cells"))
4939 		if (of_property_present(parent_np, "#clock-cells"))
4940 			np = parent_np;
4941 
4942 	return np;
4943 }
4944 
4945 /**
4946  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4947  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4948  * @get: callback for decoding clk_hw
4949  * @data: context pointer for @get callback
4950  *
4951  * Registers clock provider for given device's node. If the device has no DT
4952  * node or if the device node lacks of clock provider information (#clock-cells)
4953  * then the parent device's node is scanned for this information. If parent node
4954  * has the #clock-cells then it is used in registration. Provider is
4955  * automatically released at device exit.
4956  *
4957  * Return: 0 on success or an errno on failure.
4958  */
4959 int devm_of_clk_add_hw_provider(struct device *dev,
4960 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4961 					      void *data),
4962 			void *data)
4963 {
4964 	struct device_node **ptr, *np;
4965 	int ret;
4966 
4967 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4968 			   GFP_KERNEL);
4969 	if (!ptr)
4970 		return -ENOMEM;
4971 
4972 	np = get_clk_provider_node(dev);
4973 	ret = of_clk_add_hw_provider(np, get, data);
4974 	if (!ret) {
4975 		*ptr = np;
4976 		devres_add(dev, ptr);
4977 	} else {
4978 		devres_free(ptr);
4979 	}
4980 
4981 	return ret;
4982 }
4983 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4984 
4985 /**
4986  * of_clk_del_provider() - Remove a previously registered clock provider
4987  * @np: Device node pointer associated with clock provider
4988  */
4989 void of_clk_del_provider(struct device_node *np)
4990 {
4991 	struct of_clk_provider *cp;
4992 
4993 	if (!np)
4994 		return;
4995 
4996 	mutex_lock(&of_clk_mutex);
4997 	list_for_each_entry(cp, &of_clk_providers, link) {
4998 		if (cp->node == np) {
4999 			list_del(&cp->link);
5000 			fwnode_dev_initialized(&np->fwnode, false);
5001 			of_node_put(cp->node);
5002 			kfree(cp);
5003 			break;
5004 		}
5005 	}
5006 	mutex_unlock(&of_clk_mutex);
5007 }
5008 EXPORT_SYMBOL_GPL(of_clk_del_provider);
5009 
5010 /**
5011  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5012  * @np: device node to parse clock specifier from
5013  * @index: index of phandle to parse clock out of. If index < 0, @name is used
5014  * @name: clock name to find and parse. If name is NULL, the index is used
5015  * @out_args: Result of parsing the clock specifier
5016  *
5017  * Parses a device node's "clocks" and "clock-names" properties to find the
5018  * phandle and cells for the index or name that is desired. The resulting clock
5019  * specifier is placed into @out_args, or an errno is returned when there's a
5020  * parsing error. The @index argument is ignored if @name is non-NULL.
5021  *
5022  * Example:
5023  *
5024  * phandle1: clock-controller@1 {
5025  *	#clock-cells = <2>;
5026  * }
5027  *
5028  * phandle2: clock-controller@2 {
5029  *	#clock-cells = <1>;
5030  * }
5031  *
5032  * clock-consumer@3 {
5033  *	clocks = <&phandle1 1 2 &phandle2 3>;
5034  *	clock-names = "name1", "name2";
5035  * }
5036  *
5037  * To get a device_node for `clock-controller@2' node you may call this
5038  * function a few different ways:
5039  *
5040  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5041  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5042  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5043  *
5044  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5045  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5046  * the "clock-names" property of @np.
5047  */
5048 static int of_parse_clkspec(const struct device_node *np, int index,
5049 			    const char *name, struct of_phandle_args *out_args)
5050 {
5051 	int ret = -ENOENT;
5052 
5053 	/* Walk up the tree of devices looking for a clock property that matches */
5054 	while (np) {
5055 		/*
5056 		 * For named clocks, first look up the name in the
5057 		 * "clock-names" property.  If it cannot be found, then index
5058 		 * will be an error code and of_parse_phandle_with_args() will
5059 		 * return -EINVAL.
5060 		 */
5061 		if (name)
5062 			index = of_property_match_string(np, "clock-names", name);
5063 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5064 						 index, out_args);
5065 		if (!ret)
5066 			break;
5067 		if (name && index >= 0)
5068 			break;
5069 
5070 		/*
5071 		 * No matching clock found on this node.  If the parent node
5072 		 * has a "clock-ranges" property, then we can try one of its
5073 		 * clocks.
5074 		 */
5075 		np = np->parent;
5076 		if (np && !of_get_property(np, "clock-ranges", NULL))
5077 			break;
5078 		index = 0;
5079 	}
5080 
5081 	return ret;
5082 }
5083 
5084 static struct clk_hw *
5085 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5086 			      struct of_phandle_args *clkspec)
5087 {
5088 	struct clk *clk;
5089 
5090 	if (provider->get_hw)
5091 		return provider->get_hw(clkspec, provider->data);
5092 
5093 	clk = provider->get(clkspec, provider->data);
5094 	if (IS_ERR(clk))
5095 		return ERR_CAST(clk);
5096 	return __clk_get_hw(clk);
5097 }
5098 
5099 static struct clk_hw *
5100 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5101 {
5102 	struct of_clk_provider *provider;
5103 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5104 
5105 	if (!clkspec)
5106 		return ERR_PTR(-EINVAL);
5107 
5108 	mutex_lock(&of_clk_mutex);
5109 	list_for_each_entry(provider, &of_clk_providers, link) {
5110 		if (provider->node == clkspec->np) {
5111 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5112 			if (!IS_ERR(hw))
5113 				break;
5114 		}
5115 	}
5116 	mutex_unlock(&of_clk_mutex);
5117 
5118 	return hw;
5119 }
5120 
5121 /**
5122  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5123  * @clkspec: pointer to a clock specifier data structure
5124  *
5125  * This function looks up a struct clk from the registered list of clock
5126  * providers, an input is a clock specifier data structure as returned
5127  * from the of_parse_phandle_with_args() function call.
5128  */
5129 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5130 {
5131 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5132 
5133 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5134 }
5135 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5136 
5137 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5138 			     const char *con_id)
5139 {
5140 	int ret;
5141 	struct clk_hw *hw;
5142 	struct of_phandle_args clkspec;
5143 
5144 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5145 	if (ret)
5146 		return ERR_PTR(ret);
5147 
5148 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5149 	of_node_put(clkspec.np);
5150 
5151 	return hw;
5152 }
5153 
5154 static struct clk *__of_clk_get(struct device_node *np,
5155 				int index, const char *dev_id,
5156 				const char *con_id)
5157 {
5158 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5159 
5160 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5161 }
5162 
5163 struct clk *of_clk_get(struct device_node *np, int index)
5164 {
5165 	return __of_clk_get(np, index, np->full_name, NULL);
5166 }
5167 EXPORT_SYMBOL(of_clk_get);
5168 
5169 /**
5170  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5171  * @np: pointer to clock consumer node
5172  * @name: name of consumer's clock input, or NULL for the first clock reference
5173  *
5174  * This function parses the clocks and clock-names properties,
5175  * and uses them to look up the struct clk from the registered list of clock
5176  * providers.
5177  */
5178 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5179 {
5180 	if (!np)
5181 		return ERR_PTR(-ENOENT);
5182 
5183 	return __of_clk_get(np, 0, np->full_name, name);
5184 }
5185 EXPORT_SYMBOL(of_clk_get_by_name);
5186 
5187 /**
5188  * of_clk_get_parent_count() - Count the number of clocks a device node has
5189  * @np: device node to count
5190  *
5191  * Returns: The number of clocks that are possible parents of this node
5192  */
5193 unsigned int of_clk_get_parent_count(const struct device_node *np)
5194 {
5195 	int count;
5196 
5197 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5198 	if (count < 0)
5199 		return 0;
5200 
5201 	return count;
5202 }
5203 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5204 
5205 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5206 {
5207 	struct of_phandle_args clkspec;
5208 	struct property *prop;
5209 	const char *clk_name;
5210 	const __be32 *vp;
5211 	u32 pv;
5212 	int rc;
5213 	int count;
5214 	struct clk *clk;
5215 
5216 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5217 					&clkspec);
5218 	if (rc)
5219 		return NULL;
5220 
5221 	index = clkspec.args_count ? clkspec.args[0] : 0;
5222 	count = 0;
5223 
5224 	/* if there is an indices property, use it to transfer the index
5225 	 * specified into an array offset for the clock-output-names property.
5226 	 */
5227 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5228 		if (index == pv) {
5229 			index = count;
5230 			break;
5231 		}
5232 		count++;
5233 	}
5234 	/* We went off the end of 'clock-indices' without finding it */
5235 	if (prop && !vp)
5236 		return NULL;
5237 
5238 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5239 					  index,
5240 					  &clk_name) < 0) {
5241 		/*
5242 		 * Best effort to get the name if the clock has been
5243 		 * registered with the framework. If the clock isn't
5244 		 * registered, we return the node name as the name of
5245 		 * the clock as long as #clock-cells = 0.
5246 		 */
5247 		clk = of_clk_get_from_provider(&clkspec);
5248 		if (IS_ERR(clk)) {
5249 			if (clkspec.args_count == 0)
5250 				clk_name = clkspec.np->name;
5251 			else
5252 				clk_name = NULL;
5253 		} else {
5254 			clk_name = __clk_get_name(clk);
5255 			clk_put(clk);
5256 		}
5257 	}
5258 
5259 
5260 	of_node_put(clkspec.np);
5261 	return clk_name;
5262 }
5263 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5264 
5265 /**
5266  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5267  * number of parents
5268  * @np: Device node pointer associated with clock provider
5269  * @parents: pointer to char array that hold the parents' names
5270  * @size: size of the @parents array
5271  *
5272  * Return: number of parents for the clock node.
5273  */
5274 int of_clk_parent_fill(struct device_node *np, const char **parents,
5275 		       unsigned int size)
5276 {
5277 	unsigned int i = 0;
5278 
5279 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5280 		i++;
5281 
5282 	return i;
5283 }
5284 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5285 
5286 struct clock_provider {
5287 	void (*clk_init_cb)(struct device_node *);
5288 	struct device_node *np;
5289 	struct list_head node;
5290 };
5291 
5292 /*
5293  * This function looks for a parent clock. If there is one, then it
5294  * checks that the provider for this parent clock was initialized, in
5295  * this case the parent clock will be ready.
5296  */
5297 static int parent_ready(struct device_node *np)
5298 {
5299 	int i = 0;
5300 
5301 	while (true) {
5302 		struct clk *clk = of_clk_get(np, i);
5303 
5304 		/* this parent is ready we can check the next one */
5305 		if (!IS_ERR(clk)) {
5306 			clk_put(clk);
5307 			i++;
5308 			continue;
5309 		}
5310 
5311 		/* at least one parent is not ready, we exit now */
5312 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5313 			return 0;
5314 
5315 		/*
5316 		 * Here we make assumption that the device tree is
5317 		 * written correctly. So an error means that there is
5318 		 * no more parent. As we didn't exit yet, then the
5319 		 * previous parent are ready. If there is no clock
5320 		 * parent, no need to wait for them, then we can
5321 		 * consider their absence as being ready
5322 		 */
5323 		return 1;
5324 	}
5325 }
5326 
5327 /**
5328  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5329  * @np: Device node pointer associated with clock provider
5330  * @index: clock index
5331  * @flags: pointer to top-level framework flags
5332  *
5333  * Detects if the clock-critical property exists and, if so, sets the
5334  * corresponding CLK_IS_CRITICAL flag.
5335  *
5336  * Do not use this function. It exists only for legacy Device Tree
5337  * bindings, such as the one-clock-per-node style that are outdated.
5338  * Those bindings typically put all clock data into .dts and the Linux
5339  * driver has no clock data, thus making it impossible to set this flag
5340  * correctly from the driver. Only those drivers may call
5341  * of_clk_detect_critical from their setup functions.
5342  *
5343  * Return: error code or zero on success
5344  */
5345 int of_clk_detect_critical(struct device_node *np, int index,
5346 			   unsigned long *flags)
5347 {
5348 	struct property *prop;
5349 	const __be32 *cur;
5350 	uint32_t idx;
5351 
5352 	if (!np || !flags)
5353 		return -EINVAL;
5354 
5355 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5356 		if (index == idx)
5357 			*flags |= CLK_IS_CRITICAL;
5358 
5359 	return 0;
5360 }
5361 
5362 /**
5363  * of_clk_init() - Scan and init clock providers from the DT
5364  * @matches: array of compatible values and init functions for providers.
5365  *
5366  * This function scans the device tree for matching clock providers
5367  * and calls their initialization functions. It also does it by trying
5368  * to follow the dependencies.
5369  */
5370 void __init of_clk_init(const struct of_device_id *matches)
5371 {
5372 	const struct of_device_id *match;
5373 	struct device_node *np;
5374 	struct clock_provider *clk_provider, *next;
5375 	bool is_init_done;
5376 	bool force = false;
5377 	LIST_HEAD(clk_provider_list);
5378 
5379 	if (!matches)
5380 		matches = &__clk_of_table;
5381 
5382 	/* First prepare the list of the clocks providers */
5383 	for_each_matching_node_and_match(np, matches, &match) {
5384 		struct clock_provider *parent;
5385 
5386 		if (!of_device_is_available(np))
5387 			continue;
5388 
5389 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5390 		if (!parent) {
5391 			list_for_each_entry_safe(clk_provider, next,
5392 						 &clk_provider_list, node) {
5393 				list_del(&clk_provider->node);
5394 				of_node_put(clk_provider->np);
5395 				kfree(clk_provider);
5396 			}
5397 			of_node_put(np);
5398 			return;
5399 		}
5400 
5401 		parent->clk_init_cb = match->data;
5402 		parent->np = of_node_get(np);
5403 		list_add_tail(&parent->node, &clk_provider_list);
5404 	}
5405 
5406 	while (!list_empty(&clk_provider_list)) {
5407 		is_init_done = false;
5408 		list_for_each_entry_safe(clk_provider, next,
5409 					&clk_provider_list, node) {
5410 			if (force || parent_ready(clk_provider->np)) {
5411 
5412 				/* Don't populate platform devices */
5413 				of_node_set_flag(clk_provider->np,
5414 						 OF_POPULATED);
5415 
5416 				clk_provider->clk_init_cb(clk_provider->np);
5417 				of_clk_set_defaults(clk_provider->np, true);
5418 
5419 				list_del(&clk_provider->node);
5420 				of_node_put(clk_provider->np);
5421 				kfree(clk_provider);
5422 				is_init_done = true;
5423 			}
5424 		}
5425 
5426 		/*
5427 		 * We didn't manage to initialize any of the
5428 		 * remaining providers during the last loop, so now we
5429 		 * initialize all the remaining ones unconditionally
5430 		 * in case the clock parent was not mandatory
5431 		 */
5432 		if (!is_init_done)
5433 			force = true;
5434 	}
5435 }
5436 #endif
5437