1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk-provider.h> 13 #include <linux/clk/clk-conf.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/spinlock.h> 17 #include <linux/err.h> 18 #include <linux/list.h> 19 #include <linux/slab.h> 20 #include <linux/of.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/sched.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static long clk_core_get_accuracy(struct clk_core *clk); 41 static unsigned long clk_core_get_rate(struct clk_core *clk); 42 static int clk_core_get_phase(struct clk_core *clk); 43 static bool clk_core_is_prepared(struct clk_core *clk); 44 static bool clk_core_is_enabled(struct clk_core *clk); 45 static struct clk_core *clk_core_lookup(const char *name); 46 47 /*** private data structures ***/ 48 49 struct clk_core { 50 const char *name; 51 const struct clk_ops *ops; 52 struct clk_hw *hw; 53 struct module *owner; 54 struct clk_core *parent; 55 const char **parent_names; 56 struct clk_core **parents; 57 u8 num_parents; 58 u8 new_parent_index; 59 unsigned long rate; 60 unsigned long req_rate; 61 unsigned long new_rate; 62 struct clk_core *new_parent; 63 struct clk_core *new_child; 64 unsigned long flags; 65 unsigned int enable_count; 66 unsigned int prepare_count; 67 unsigned long accuracy; 68 int phase; 69 struct hlist_head children; 70 struct hlist_node child_node; 71 struct hlist_node debug_node; 72 struct hlist_head clks; 73 unsigned int notifier_count; 74 #ifdef CONFIG_DEBUG_FS 75 struct dentry *dentry; 76 #endif 77 struct kref ref; 78 }; 79 80 struct clk { 81 struct clk_core *core; 82 const char *dev_id; 83 const char *con_id; 84 unsigned long min_rate; 85 unsigned long max_rate; 86 struct hlist_node child_node; 87 }; 88 89 /*** locking ***/ 90 static void clk_prepare_lock(void) 91 { 92 if (!mutex_trylock(&prepare_lock)) { 93 if (prepare_owner == current) { 94 prepare_refcnt++; 95 return; 96 } 97 mutex_lock(&prepare_lock); 98 } 99 WARN_ON_ONCE(prepare_owner != NULL); 100 WARN_ON_ONCE(prepare_refcnt != 0); 101 prepare_owner = current; 102 prepare_refcnt = 1; 103 } 104 105 static void clk_prepare_unlock(void) 106 { 107 WARN_ON_ONCE(prepare_owner != current); 108 WARN_ON_ONCE(prepare_refcnt == 0); 109 110 if (--prepare_refcnt) 111 return; 112 prepare_owner = NULL; 113 mutex_unlock(&prepare_lock); 114 } 115 116 static unsigned long clk_enable_lock(void) 117 { 118 unsigned long flags; 119 120 if (!spin_trylock_irqsave(&enable_lock, flags)) { 121 if (enable_owner == current) { 122 enable_refcnt++; 123 return flags; 124 } 125 spin_lock_irqsave(&enable_lock, flags); 126 } 127 WARN_ON_ONCE(enable_owner != NULL); 128 WARN_ON_ONCE(enable_refcnt != 0); 129 enable_owner = current; 130 enable_refcnt = 1; 131 return flags; 132 } 133 134 static void clk_enable_unlock(unsigned long flags) 135 { 136 WARN_ON_ONCE(enable_owner != current); 137 WARN_ON_ONCE(enable_refcnt == 0); 138 139 if (--enable_refcnt) 140 return; 141 enable_owner = NULL; 142 spin_unlock_irqrestore(&enable_lock, flags); 143 } 144 145 /*** debugfs support ***/ 146 147 #ifdef CONFIG_DEBUG_FS 148 #include <linux/debugfs.h> 149 150 static struct dentry *rootdir; 151 static int inited = 0; 152 static DEFINE_MUTEX(clk_debug_lock); 153 static HLIST_HEAD(clk_debug_list); 154 155 static struct hlist_head *all_lists[] = { 156 &clk_root_list, 157 &clk_orphan_list, 158 NULL, 159 }; 160 161 static struct hlist_head *orphan_list[] = { 162 &clk_orphan_list, 163 NULL, 164 }; 165 166 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 167 int level) 168 { 169 if (!c) 170 return; 171 172 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n", 173 level * 3 + 1, "", 174 30 - level * 3, c->name, 175 c->enable_count, c->prepare_count, clk_core_get_rate(c), 176 clk_core_get_accuracy(c), clk_core_get_phase(c)); 177 } 178 179 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 180 int level) 181 { 182 struct clk_core *child; 183 184 if (!c) 185 return; 186 187 clk_summary_show_one(s, c, level); 188 189 hlist_for_each_entry(child, &c->children, child_node) 190 clk_summary_show_subtree(s, child, level + 1); 191 } 192 193 static int clk_summary_show(struct seq_file *s, void *data) 194 { 195 struct clk_core *c; 196 struct hlist_head **lists = (struct hlist_head **)s->private; 197 198 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n"); 199 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 200 201 clk_prepare_lock(); 202 203 for (; *lists; lists++) 204 hlist_for_each_entry(c, *lists, child_node) 205 clk_summary_show_subtree(s, c, 0); 206 207 clk_prepare_unlock(); 208 209 return 0; 210 } 211 212 213 static int clk_summary_open(struct inode *inode, struct file *file) 214 { 215 return single_open(file, clk_summary_show, inode->i_private); 216 } 217 218 static const struct file_operations clk_summary_fops = { 219 .open = clk_summary_open, 220 .read = seq_read, 221 .llseek = seq_lseek, 222 .release = single_release, 223 }; 224 225 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 226 { 227 if (!c) 228 return; 229 230 seq_printf(s, "\"%s\": { ", c->name); 231 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 232 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 233 seq_printf(s, "\"rate\": %lu", clk_core_get_rate(c)); 234 seq_printf(s, "\"accuracy\": %lu", clk_core_get_accuracy(c)); 235 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 236 } 237 238 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 239 { 240 struct clk_core *child; 241 242 if (!c) 243 return; 244 245 clk_dump_one(s, c, level); 246 247 hlist_for_each_entry(child, &c->children, child_node) { 248 seq_printf(s, ","); 249 clk_dump_subtree(s, child, level + 1); 250 } 251 252 seq_printf(s, "}"); 253 } 254 255 static int clk_dump(struct seq_file *s, void *data) 256 { 257 struct clk_core *c; 258 bool first_node = true; 259 struct hlist_head **lists = (struct hlist_head **)s->private; 260 261 seq_printf(s, "{"); 262 263 clk_prepare_lock(); 264 265 for (; *lists; lists++) { 266 hlist_for_each_entry(c, *lists, child_node) { 267 if (!first_node) 268 seq_puts(s, ","); 269 first_node = false; 270 clk_dump_subtree(s, c, 0); 271 } 272 } 273 274 clk_prepare_unlock(); 275 276 seq_printf(s, "}"); 277 return 0; 278 } 279 280 281 static int clk_dump_open(struct inode *inode, struct file *file) 282 { 283 return single_open(file, clk_dump, inode->i_private); 284 } 285 286 static const struct file_operations clk_dump_fops = { 287 .open = clk_dump_open, 288 .read = seq_read, 289 .llseek = seq_lseek, 290 .release = single_release, 291 }; 292 293 static int clk_debug_create_one(struct clk_core *clk, struct dentry *pdentry) 294 { 295 struct dentry *d; 296 int ret = -ENOMEM; 297 298 if (!clk || !pdentry) { 299 ret = -EINVAL; 300 goto out; 301 } 302 303 d = debugfs_create_dir(clk->name, pdentry); 304 if (!d) 305 goto out; 306 307 clk->dentry = d; 308 309 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry, 310 (u32 *)&clk->rate); 311 if (!d) 312 goto err_out; 313 314 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry, 315 (u32 *)&clk->accuracy); 316 if (!d) 317 goto err_out; 318 319 d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry, 320 (u32 *)&clk->phase); 321 if (!d) 322 goto err_out; 323 324 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry, 325 (u32 *)&clk->flags); 326 if (!d) 327 goto err_out; 328 329 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry, 330 (u32 *)&clk->prepare_count); 331 if (!d) 332 goto err_out; 333 334 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry, 335 (u32 *)&clk->enable_count); 336 if (!d) 337 goto err_out; 338 339 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry, 340 (u32 *)&clk->notifier_count); 341 if (!d) 342 goto err_out; 343 344 if (clk->ops->debug_init) { 345 ret = clk->ops->debug_init(clk->hw, clk->dentry); 346 if (ret) 347 goto err_out; 348 } 349 350 ret = 0; 351 goto out; 352 353 err_out: 354 debugfs_remove_recursive(clk->dentry); 355 clk->dentry = NULL; 356 out: 357 return ret; 358 } 359 360 /** 361 * clk_debug_register - add a clk node to the debugfs clk tree 362 * @clk: the clk being added to the debugfs clk tree 363 * 364 * Dynamically adds a clk to the debugfs clk tree if debugfs has been 365 * initialized. Otherwise it bails out early since the debugfs clk tree 366 * will be created lazily by clk_debug_init as part of a late_initcall. 367 */ 368 static int clk_debug_register(struct clk_core *clk) 369 { 370 int ret = 0; 371 372 mutex_lock(&clk_debug_lock); 373 hlist_add_head(&clk->debug_node, &clk_debug_list); 374 375 if (!inited) 376 goto unlock; 377 378 ret = clk_debug_create_one(clk, rootdir); 379 unlock: 380 mutex_unlock(&clk_debug_lock); 381 382 return ret; 383 } 384 385 /** 386 * clk_debug_unregister - remove a clk node from the debugfs clk tree 387 * @clk: the clk being removed from the debugfs clk tree 388 * 389 * Dynamically removes a clk and all it's children clk nodes from the 390 * debugfs clk tree if clk->dentry points to debugfs created by 391 * clk_debug_register in __clk_init. 392 */ 393 static void clk_debug_unregister(struct clk_core *clk) 394 { 395 mutex_lock(&clk_debug_lock); 396 hlist_del_init(&clk->debug_node); 397 debugfs_remove_recursive(clk->dentry); 398 clk->dentry = NULL; 399 mutex_unlock(&clk_debug_lock); 400 } 401 402 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 403 void *data, const struct file_operations *fops) 404 { 405 struct dentry *d = NULL; 406 407 if (hw->core->dentry) 408 d = debugfs_create_file(name, mode, hw->core->dentry, data, 409 fops); 410 411 return d; 412 } 413 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 414 415 /** 416 * clk_debug_init - lazily create the debugfs clk tree visualization 417 * 418 * clks are often initialized very early during boot before memory can 419 * be dynamically allocated and well before debugfs is setup. 420 * clk_debug_init walks the clk tree hierarchy while holding 421 * prepare_lock and creates the topology as part of a late_initcall, 422 * thus insuring that clks initialized very early will still be 423 * represented in the debugfs clk tree. This function should only be 424 * called once at boot-time, and all other clks added dynamically will 425 * be done so with clk_debug_register. 426 */ 427 static int __init clk_debug_init(void) 428 { 429 struct clk_core *clk; 430 struct dentry *d; 431 432 rootdir = debugfs_create_dir("clk", NULL); 433 434 if (!rootdir) 435 return -ENOMEM; 436 437 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists, 438 &clk_summary_fops); 439 if (!d) 440 return -ENOMEM; 441 442 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists, 443 &clk_dump_fops); 444 if (!d) 445 return -ENOMEM; 446 447 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir, 448 &orphan_list, &clk_summary_fops); 449 if (!d) 450 return -ENOMEM; 451 452 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir, 453 &orphan_list, &clk_dump_fops); 454 if (!d) 455 return -ENOMEM; 456 457 mutex_lock(&clk_debug_lock); 458 hlist_for_each_entry(clk, &clk_debug_list, debug_node) 459 clk_debug_create_one(clk, rootdir); 460 461 inited = 1; 462 mutex_unlock(&clk_debug_lock); 463 464 return 0; 465 } 466 late_initcall(clk_debug_init); 467 #else 468 static inline int clk_debug_register(struct clk_core *clk) { return 0; } 469 static inline void clk_debug_reparent(struct clk_core *clk, 470 struct clk_core *new_parent) 471 { 472 } 473 static inline void clk_debug_unregister(struct clk_core *clk) 474 { 475 } 476 #endif 477 478 /* caller must hold prepare_lock */ 479 static void clk_unprepare_unused_subtree(struct clk_core *clk) 480 { 481 struct clk_core *child; 482 483 hlist_for_each_entry(child, &clk->children, child_node) 484 clk_unprepare_unused_subtree(child); 485 486 if (clk->prepare_count) 487 return; 488 489 if (clk->flags & CLK_IGNORE_UNUSED) 490 return; 491 492 if (clk_core_is_prepared(clk)) { 493 if (clk->ops->unprepare_unused) 494 clk->ops->unprepare_unused(clk->hw); 495 else if (clk->ops->unprepare) 496 clk->ops->unprepare(clk->hw); 497 } 498 } 499 500 /* caller must hold prepare_lock */ 501 static void clk_disable_unused_subtree(struct clk_core *clk) 502 { 503 struct clk_core *child; 504 unsigned long flags; 505 506 hlist_for_each_entry(child, &clk->children, child_node) 507 clk_disable_unused_subtree(child); 508 509 flags = clk_enable_lock(); 510 511 if (clk->enable_count) 512 goto unlock_out; 513 514 if (clk->flags & CLK_IGNORE_UNUSED) 515 goto unlock_out; 516 517 /* 518 * some gate clocks have special needs during the disable-unused 519 * sequence. call .disable_unused if available, otherwise fall 520 * back to .disable 521 */ 522 if (clk_core_is_enabled(clk)) { 523 if (clk->ops->disable_unused) 524 clk->ops->disable_unused(clk->hw); 525 else if (clk->ops->disable) 526 clk->ops->disable(clk->hw); 527 } 528 529 unlock_out: 530 clk_enable_unlock(flags); 531 } 532 533 static bool clk_ignore_unused; 534 static int __init clk_ignore_unused_setup(char *__unused) 535 { 536 clk_ignore_unused = true; 537 return 1; 538 } 539 __setup("clk_ignore_unused", clk_ignore_unused_setup); 540 541 static int clk_disable_unused(void) 542 { 543 struct clk_core *clk; 544 545 if (clk_ignore_unused) { 546 pr_warn("clk: Not disabling unused clocks\n"); 547 return 0; 548 } 549 550 clk_prepare_lock(); 551 552 hlist_for_each_entry(clk, &clk_root_list, child_node) 553 clk_disable_unused_subtree(clk); 554 555 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 556 clk_disable_unused_subtree(clk); 557 558 hlist_for_each_entry(clk, &clk_root_list, child_node) 559 clk_unprepare_unused_subtree(clk); 560 561 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 562 clk_unprepare_unused_subtree(clk); 563 564 clk_prepare_unlock(); 565 566 return 0; 567 } 568 late_initcall_sync(clk_disable_unused); 569 570 /*** helper functions ***/ 571 572 const char *__clk_get_name(struct clk *clk) 573 { 574 return !clk ? NULL : clk->core->name; 575 } 576 EXPORT_SYMBOL_GPL(__clk_get_name); 577 578 struct clk_hw *__clk_get_hw(struct clk *clk) 579 { 580 return !clk ? NULL : clk->core->hw; 581 } 582 EXPORT_SYMBOL_GPL(__clk_get_hw); 583 584 u8 __clk_get_num_parents(struct clk *clk) 585 { 586 return !clk ? 0 : clk->core->num_parents; 587 } 588 EXPORT_SYMBOL_GPL(__clk_get_num_parents); 589 590 struct clk *__clk_get_parent(struct clk *clk) 591 { 592 if (!clk) 593 return NULL; 594 595 /* TODO: Create a per-user clk and change callers to call clk_put */ 596 return !clk->core->parent ? NULL : clk->core->parent->hw->clk; 597 } 598 EXPORT_SYMBOL_GPL(__clk_get_parent); 599 600 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *clk, 601 u8 index) 602 { 603 if (!clk || index >= clk->num_parents) 604 return NULL; 605 else if (!clk->parents) 606 return clk_core_lookup(clk->parent_names[index]); 607 else if (!clk->parents[index]) 608 return clk->parents[index] = 609 clk_core_lookup(clk->parent_names[index]); 610 else 611 return clk->parents[index]; 612 } 613 614 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index) 615 { 616 struct clk_core *parent; 617 618 if (!clk) 619 return NULL; 620 621 parent = clk_core_get_parent_by_index(clk->core, index); 622 623 return !parent ? NULL : parent->hw->clk; 624 } 625 EXPORT_SYMBOL_GPL(clk_get_parent_by_index); 626 627 unsigned int __clk_get_enable_count(struct clk *clk) 628 { 629 return !clk ? 0 : clk->core->enable_count; 630 } 631 632 static unsigned long clk_core_get_rate_nolock(struct clk_core *clk) 633 { 634 unsigned long ret; 635 636 if (!clk) { 637 ret = 0; 638 goto out; 639 } 640 641 ret = clk->rate; 642 643 if (clk->flags & CLK_IS_ROOT) 644 goto out; 645 646 if (!clk->parent) 647 ret = 0; 648 649 out: 650 return ret; 651 } 652 653 unsigned long __clk_get_rate(struct clk *clk) 654 { 655 if (!clk) 656 return 0; 657 658 return clk_core_get_rate_nolock(clk->core); 659 } 660 EXPORT_SYMBOL_GPL(__clk_get_rate); 661 662 static unsigned long __clk_get_accuracy(struct clk_core *clk) 663 { 664 if (!clk) 665 return 0; 666 667 return clk->accuracy; 668 } 669 670 unsigned long __clk_get_flags(struct clk *clk) 671 { 672 return !clk ? 0 : clk->core->flags; 673 } 674 EXPORT_SYMBOL_GPL(__clk_get_flags); 675 676 static bool clk_core_is_prepared(struct clk_core *clk) 677 { 678 int ret; 679 680 if (!clk) 681 return false; 682 683 /* 684 * .is_prepared is optional for clocks that can prepare 685 * fall back to software usage counter if it is missing 686 */ 687 if (!clk->ops->is_prepared) { 688 ret = clk->prepare_count ? 1 : 0; 689 goto out; 690 } 691 692 ret = clk->ops->is_prepared(clk->hw); 693 out: 694 return !!ret; 695 } 696 697 bool __clk_is_prepared(struct clk *clk) 698 { 699 if (!clk) 700 return false; 701 702 return clk_core_is_prepared(clk->core); 703 } 704 705 static bool clk_core_is_enabled(struct clk_core *clk) 706 { 707 int ret; 708 709 if (!clk) 710 return false; 711 712 /* 713 * .is_enabled is only mandatory for clocks that gate 714 * fall back to software usage counter if .is_enabled is missing 715 */ 716 if (!clk->ops->is_enabled) { 717 ret = clk->enable_count ? 1 : 0; 718 goto out; 719 } 720 721 ret = clk->ops->is_enabled(clk->hw); 722 out: 723 return !!ret; 724 } 725 726 bool __clk_is_enabled(struct clk *clk) 727 { 728 if (!clk) 729 return false; 730 731 return clk_core_is_enabled(clk->core); 732 } 733 EXPORT_SYMBOL_GPL(__clk_is_enabled); 734 735 static struct clk_core *__clk_lookup_subtree(const char *name, 736 struct clk_core *clk) 737 { 738 struct clk_core *child; 739 struct clk_core *ret; 740 741 if (!strcmp(clk->name, name)) 742 return clk; 743 744 hlist_for_each_entry(child, &clk->children, child_node) { 745 ret = __clk_lookup_subtree(name, child); 746 if (ret) 747 return ret; 748 } 749 750 return NULL; 751 } 752 753 static struct clk_core *clk_core_lookup(const char *name) 754 { 755 struct clk_core *root_clk; 756 struct clk_core *ret; 757 758 if (!name) 759 return NULL; 760 761 /* search the 'proper' clk tree first */ 762 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 763 ret = __clk_lookup_subtree(name, root_clk); 764 if (ret) 765 return ret; 766 } 767 768 /* if not found, then search the orphan tree */ 769 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 770 ret = __clk_lookup_subtree(name, root_clk); 771 if (ret) 772 return ret; 773 } 774 775 return NULL; 776 } 777 778 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 779 unsigned long best, unsigned long flags) 780 { 781 if (flags & CLK_MUX_ROUND_CLOSEST) 782 return abs(now - rate) < abs(best - rate); 783 784 return now <= rate && now > best; 785 } 786 787 static long 788 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate, 789 unsigned long min_rate, 790 unsigned long max_rate, 791 unsigned long *best_parent_rate, 792 struct clk_hw **best_parent_p, 793 unsigned long flags) 794 { 795 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 796 int i, num_parents; 797 unsigned long parent_rate, best = 0; 798 799 /* if NO_REPARENT flag set, pass through to current parent */ 800 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 801 parent = core->parent; 802 if (core->flags & CLK_SET_RATE_PARENT) 803 best = __clk_determine_rate(parent ? parent->hw : NULL, 804 rate, min_rate, max_rate); 805 else if (parent) 806 best = clk_core_get_rate_nolock(parent); 807 else 808 best = clk_core_get_rate_nolock(core); 809 goto out; 810 } 811 812 /* find the parent that can provide the fastest rate <= rate */ 813 num_parents = core->num_parents; 814 for (i = 0; i < num_parents; i++) { 815 parent = clk_core_get_parent_by_index(core, i); 816 if (!parent) 817 continue; 818 if (core->flags & CLK_SET_RATE_PARENT) 819 parent_rate = __clk_determine_rate(parent->hw, rate, 820 min_rate, 821 max_rate); 822 else 823 parent_rate = clk_core_get_rate_nolock(parent); 824 if (mux_is_better_rate(rate, parent_rate, best, flags)) { 825 best_parent = parent; 826 best = parent_rate; 827 } 828 } 829 830 out: 831 if (best_parent) 832 *best_parent_p = best_parent->hw; 833 *best_parent_rate = best; 834 835 return best; 836 } 837 838 struct clk *__clk_lookup(const char *name) 839 { 840 struct clk_core *core = clk_core_lookup(name); 841 842 return !core ? NULL : core->hw->clk; 843 } 844 845 static void clk_core_get_boundaries(struct clk_core *clk, 846 unsigned long *min_rate, 847 unsigned long *max_rate) 848 { 849 struct clk *clk_user; 850 851 *min_rate = 0; 852 *max_rate = ULONG_MAX; 853 854 hlist_for_each_entry(clk_user, &clk->clks, child_node) 855 *min_rate = max(*min_rate, clk_user->min_rate); 856 857 hlist_for_each_entry(clk_user, &clk->clks, child_node) 858 *max_rate = min(*max_rate, clk_user->max_rate); 859 } 860 861 /* 862 * Helper for finding best parent to provide a given frequency. This can be used 863 * directly as a determine_rate callback (e.g. for a mux), or from a more 864 * complex clock that may combine a mux with other operations. 865 */ 866 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate, 867 unsigned long min_rate, 868 unsigned long max_rate, 869 unsigned long *best_parent_rate, 870 struct clk_hw **best_parent_p) 871 { 872 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate, 873 best_parent_rate, 874 best_parent_p, 0); 875 } 876 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 877 878 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate, 879 unsigned long min_rate, 880 unsigned long max_rate, 881 unsigned long *best_parent_rate, 882 struct clk_hw **best_parent_p) 883 { 884 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate, 885 best_parent_rate, 886 best_parent_p, 887 CLK_MUX_ROUND_CLOSEST); 888 } 889 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 890 891 /*** clk api ***/ 892 893 static void clk_core_unprepare(struct clk_core *clk) 894 { 895 if (!clk) 896 return; 897 898 if (WARN_ON(clk->prepare_count == 0)) 899 return; 900 901 if (--clk->prepare_count > 0) 902 return; 903 904 WARN_ON(clk->enable_count > 0); 905 906 if (clk->ops->unprepare) 907 clk->ops->unprepare(clk->hw); 908 909 clk_core_unprepare(clk->parent); 910 } 911 912 /** 913 * clk_unprepare - undo preparation of a clock source 914 * @clk: the clk being unprepared 915 * 916 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 917 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 918 * if the operation may sleep. One example is a clk which is accessed over 919 * I2c. In the complex case a clk gate operation may require a fast and a slow 920 * part. It is this reason that clk_unprepare and clk_disable are not mutually 921 * exclusive. In fact clk_disable must be called before clk_unprepare. 922 */ 923 void clk_unprepare(struct clk *clk) 924 { 925 if (IS_ERR_OR_NULL(clk)) 926 return; 927 928 clk_prepare_lock(); 929 clk_core_unprepare(clk->core); 930 clk_prepare_unlock(); 931 } 932 EXPORT_SYMBOL_GPL(clk_unprepare); 933 934 static int clk_core_prepare(struct clk_core *clk) 935 { 936 int ret = 0; 937 938 if (!clk) 939 return 0; 940 941 if (clk->prepare_count == 0) { 942 ret = clk_core_prepare(clk->parent); 943 if (ret) 944 return ret; 945 946 if (clk->ops->prepare) { 947 ret = clk->ops->prepare(clk->hw); 948 if (ret) { 949 clk_core_unprepare(clk->parent); 950 return ret; 951 } 952 } 953 } 954 955 clk->prepare_count++; 956 957 return 0; 958 } 959 960 /** 961 * clk_prepare - prepare a clock source 962 * @clk: the clk being prepared 963 * 964 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 965 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 966 * operation may sleep. One example is a clk which is accessed over I2c. In 967 * the complex case a clk ungate operation may require a fast and a slow part. 968 * It is this reason that clk_prepare and clk_enable are not mutually 969 * exclusive. In fact clk_prepare must be called before clk_enable. 970 * Returns 0 on success, -EERROR otherwise. 971 */ 972 int clk_prepare(struct clk *clk) 973 { 974 int ret; 975 976 if (!clk) 977 return 0; 978 979 clk_prepare_lock(); 980 ret = clk_core_prepare(clk->core); 981 clk_prepare_unlock(); 982 983 return ret; 984 } 985 EXPORT_SYMBOL_GPL(clk_prepare); 986 987 static void clk_core_disable(struct clk_core *clk) 988 { 989 if (!clk) 990 return; 991 992 if (WARN_ON(clk->enable_count == 0)) 993 return; 994 995 if (--clk->enable_count > 0) 996 return; 997 998 if (clk->ops->disable) 999 clk->ops->disable(clk->hw); 1000 1001 clk_core_disable(clk->parent); 1002 } 1003 1004 static void __clk_disable(struct clk *clk) 1005 { 1006 if (!clk) 1007 return; 1008 1009 clk_core_disable(clk->core); 1010 } 1011 1012 /** 1013 * clk_disable - gate a clock 1014 * @clk: the clk being gated 1015 * 1016 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1017 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1018 * clk if the operation is fast and will never sleep. One example is a 1019 * SoC-internal clk which is controlled via simple register writes. In the 1020 * complex case a clk gate operation may require a fast and a slow part. It is 1021 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1022 * In fact clk_disable must be called before clk_unprepare. 1023 */ 1024 void clk_disable(struct clk *clk) 1025 { 1026 unsigned long flags; 1027 1028 if (IS_ERR_OR_NULL(clk)) 1029 return; 1030 1031 flags = clk_enable_lock(); 1032 __clk_disable(clk); 1033 clk_enable_unlock(flags); 1034 } 1035 EXPORT_SYMBOL_GPL(clk_disable); 1036 1037 static int clk_core_enable(struct clk_core *clk) 1038 { 1039 int ret = 0; 1040 1041 if (!clk) 1042 return 0; 1043 1044 if (WARN_ON(clk->prepare_count == 0)) 1045 return -ESHUTDOWN; 1046 1047 if (clk->enable_count == 0) { 1048 ret = clk_core_enable(clk->parent); 1049 1050 if (ret) 1051 return ret; 1052 1053 if (clk->ops->enable) { 1054 ret = clk->ops->enable(clk->hw); 1055 if (ret) { 1056 clk_core_disable(clk->parent); 1057 return ret; 1058 } 1059 } 1060 } 1061 1062 clk->enable_count++; 1063 return 0; 1064 } 1065 1066 static int __clk_enable(struct clk *clk) 1067 { 1068 if (!clk) 1069 return 0; 1070 1071 return clk_core_enable(clk->core); 1072 } 1073 1074 /** 1075 * clk_enable - ungate a clock 1076 * @clk: the clk being ungated 1077 * 1078 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1079 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1080 * if the operation will never sleep. One example is a SoC-internal clk which 1081 * is controlled via simple register writes. In the complex case a clk ungate 1082 * operation may require a fast and a slow part. It is this reason that 1083 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1084 * must be called before clk_enable. Returns 0 on success, -EERROR 1085 * otherwise. 1086 */ 1087 int clk_enable(struct clk *clk) 1088 { 1089 unsigned long flags; 1090 int ret; 1091 1092 flags = clk_enable_lock(); 1093 ret = __clk_enable(clk); 1094 clk_enable_unlock(flags); 1095 1096 return ret; 1097 } 1098 EXPORT_SYMBOL_GPL(clk_enable); 1099 1100 static unsigned long clk_core_round_rate_nolock(struct clk_core *clk, 1101 unsigned long rate, 1102 unsigned long min_rate, 1103 unsigned long max_rate) 1104 { 1105 unsigned long parent_rate = 0; 1106 struct clk_core *parent; 1107 struct clk_hw *parent_hw; 1108 1109 if (!clk) 1110 return 0; 1111 1112 parent = clk->parent; 1113 if (parent) 1114 parent_rate = parent->rate; 1115 1116 if (clk->ops->determine_rate) { 1117 parent_hw = parent ? parent->hw : NULL; 1118 return clk->ops->determine_rate(clk->hw, rate, 1119 min_rate, max_rate, 1120 &parent_rate, &parent_hw); 1121 } else if (clk->ops->round_rate) 1122 return clk->ops->round_rate(clk->hw, rate, &parent_rate); 1123 else if (clk->flags & CLK_SET_RATE_PARENT) 1124 return clk_core_round_rate_nolock(clk->parent, rate, min_rate, 1125 max_rate); 1126 else 1127 return clk->rate; 1128 } 1129 1130 /** 1131 * __clk_determine_rate - get the closest rate actually supported by a clock 1132 * @hw: determine the rate of this clock 1133 * @rate: target rate 1134 * @min_rate: returned rate must be greater than this rate 1135 * @max_rate: returned rate must be less than this rate 1136 * 1137 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate and 1138 * .determine_rate. 1139 */ 1140 unsigned long __clk_determine_rate(struct clk_hw *hw, 1141 unsigned long rate, 1142 unsigned long min_rate, 1143 unsigned long max_rate) 1144 { 1145 if (!hw) 1146 return 0; 1147 1148 return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate); 1149 } 1150 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1151 1152 /** 1153 * __clk_round_rate - round the given rate for a clk 1154 * @clk: round the rate of this clock 1155 * @rate: the rate which is to be rounded 1156 * 1157 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate 1158 */ 1159 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate) 1160 { 1161 unsigned long min_rate; 1162 unsigned long max_rate; 1163 1164 if (!clk) 1165 return 0; 1166 1167 clk_core_get_boundaries(clk->core, &min_rate, &max_rate); 1168 1169 return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate); 1170 } 1171 EXPORT_SYMBOL_GPL(__clk_round_rate); 1172 1173 /** 1174 * clk_round_rate - round the given rate for a clk 1175 * @clk: the clk for which we are rounding a rate 1176 * @rate: the rate which is to be rounded 1177 * 1178 * Takes in a rate as input and rounds it to a rate that the clk can actually 1179 * use which is then returned. If clk doesn't support round_rate operation 1180 * then the parent rate is returned. 1181 */ 1182 long clk_round_rate(struct clk *clk, unsigned long rate) 1183 { 1184 unsigned long ret; 1185 1186 if (!clk) 1187 return 0; 1188 1189 clk_prepare_lock(); 1190 ret = __clk_round_rate(clk, rate); 1191 clk_prepare_unlock(); 1192 1193 return ret; 1194 } 1195 EXPORT_SYMBOL_GPL(clk_round_rate); 1196 1197 /** 1198 * __clk_notify - call clk notifier chain 1199 * @clk: struct clk * that is changing rate 1200 * @msg: clk notifier type (see include/linux/clk.h) 1201 * @old_rate: old clk rate 1202 * @new_rate: new clk rate 1203 * 1204 * Triggers a notifier call chain on the clk rate-change notification 1205 * for 'clk'. Passes a pointer to the struct clk and the previous 1206 * and current rates to the notifier callback. Intended to be called by 1207 * internal clock code only. Returns NOTIFY_DONE from the last driver 1208 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1209 * a driver returns that. 1210 */ 1211 static int __clk_notify(struct clk_core *clk, unsigned long msg, 1212 unsigned long old_rate, unsigned long new_rate) 1213 { 1214 struct clk_notifier *cn; 1215 struct clk_notifier_data cnd; 1216 int ret = NOTIFY_DONE; 1217 1218 cnd.old_rate = old_rate; 1219 cnd.new_rate = new_rate; 1220 1221 list_for_each_entry(cn, &clk_notifier_list, node) { 1222 if (cn->clk->core == clk) { 1223 cnd.clk = cn->clk; 1224 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1225 &cnd); 1226 } 1227 } 1228 1229 return ret; 1230 } 1231 1232 /** 1233 * __clk_recalc_accuracies 1234 * @clk: first clk in the subtree 1235 * 1236 * Walks the subtree of clks starting with clk and recalculates accuracies as 1237 * it goes. Note that if a clk does not implement the .recalc_accuracy 1238 * callback then it is assumed that the clock will take on the accuracy of it's 1239 * parent. 1240 * 1241 * Caller must hold prepare_lock. 1242 */ 1243 static void __clk_recalc_accuracies(struct clk_core *clk) 1244 { 1245 unsigned long parent_accuracy = 0; 1246 struct clk_core *child; 1247 1248 if (clk->parent) 1249 parent_accuracy = clk->parent->accuracy; 1250 1251 if (clk->ops->recalc_accuracy) 1252 clk->accuracy = clk->ops->recalc_accuracy(clk->hw, 1253 parent_accuracy); 1254 else 1255 clk->accuracy = parent_accuracy; 1256 1257 hlist_for_each_entry(child, &clk->children, child_node) 1258 __clk_recalc_accuracies(child); 1259 } 1260 1261 static long clk_core_get_accuracy(struct clk_core *clk) 1262 { 1263 unsigned long accuracy; 1264 1265 clk_prepare_lock(); 1266 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE)) 1267 __clk_recalc_accuracies(clk); 1268 1269 accuracy = __clk_get_accuracy(clk); 1270 clk_prepare_unlock(); 1271 1272 return accuracy; 1273 } 1274 1275 /** 1276 * clk_get_accuracy - return the accuracy of clk 1277 * @clk: the clk whose accuracy is being returned 1278 * 1279 * Simply returns the cached accuracy of the clk, unless 1280 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1281 * issued. 1282 * If clk is NULL then returns 0. 1283 */ 1284 long clk_get_accuracy(struct clk *clk) 1285 { 1286 if (!clk) 1287 return 0; 1288 1289 return clk_core_get_accuracy(clk->core); 1290 } 1291 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1292 1293 static unsigned long clk_recalc(struct clk_core *clk, 1294 unsigned long parent_rate) 1295 { 1296 if (clk->ops->recalc_rate) 1297 return clk->ops->recalc_rate(clk->hw, parent_rate); 1298 return parent_rate; 1299 } 1300 1301 /** 1302 * __clk_recalc_rates 1303 * @clk: first clk in the subtree 1304 * @msg: notification type (see include/linux/clk.h) 1305 * 1306 * Walks the subtree of clks starting with clk and recalculates rates as it 1307 * goes. Note that if a clk does not implement the .recalc_rate callback then 1308 * it is assumed that the clock will take on the rate of its parent. 1309 * 1310 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1311 * if necessary. 1312 * 1313 * Caller must hold prepare_lock. 1314 */ 1315 static void __clk_recalc_rates(struct clk_core *clk, unsigned long msg) 1316 { 1317 unsigned long old_rate; 1318 unsigned long parent_rate = 0; 1319 struct clk_core *child; 1320 1321 old_rate = clk->rate; 1322 1323 if (clk->parent) 1324 parent_rate = clk->parent->rate; 1325 1326 clk->rate = clk_recalc(clk, parent_rate); 1327 1328 /* 1329 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1330 * & ABORT_RATE_CHANGE notifiers 1331 */ 1332 if (clk->notifier_count && msg) 1333 __clk_notify(clk, msg, old_rate, clk->rate); 1334 1335 hlist_for_each_entry(child, &clk->children, child_node) 1336 __clk_recalc_rates(child, msg); 1337 } 1338 1339 static unsigned long clk_core_get_rate(struct clk_core *clk) 1340 { 1341 unsigned long rate; 1342 1343 clk_prepare_lock(); 1344 1345 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE)) 1346 __clk_recalc_rates(clk, 0); 1347 1348 rate = clk_core_get_rate_nolock(clk); 1349 clk_prepare_unlock(); 1350 1351 return rate; 1352 } 1353 1354 /** 1355 * clk_get_rate - return the rate of clk 1356 * @clk: the clk whose rate is being returned 1357 * 1358 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1359 * is set, which means a recalc_rate will be issued. 1360 * If clk is NULL then returns 0. 1361 */ 1362 unsigned long clk_get_rate(struct clk *clk) 1363 { 1364 if (!clk) 1365 return 0; 1366 1367 return clk_core_get_rate(clk->core); 1368 } 1369 EXPORT_SYMBOL_GPL(clk_get_rate); 1370 1371 static int clk_fetch_parent_index(struct clk_core *clk, 1372 struct clk_core *parent) 1373 { 1374 int i; 1375 1376 if (!clk->parents) { 1377 clk->parents = kcalloc(clk->num_parents, 1378 sizeof(struct clk *), GFP_KERNEL); 1379 if (!clk->parents) 1380 return -ENOMEM; 1381 } 1382 1383 /* 1384 * find index of new parent clock using cached parent ptrs, 1385 * or if not yet cached, use string name comparison and cache 1386 * them now to avoid future calls to clk_core_lookup. 1387 */ 1388 for (i = 0; i < clk->num_parents; i++) { 1389 if (clk->parents[i] == parent) 1390 return i; 1391 1392 if (clk->parents[i]) 1393 continue; 1394 1395 if (!strcmp(clk->parent_names[i], parent->name)) { 1396 clk->parents[i] = clk_core_lookup(parent->name); 1397 return i; 1398 } 1399 } 1400 1401 return -EINVAL; 1402 } 1403 1404 static void clk_reparent(struct clk_core *clk, struct clk_core *new_parent) 1405 { 1406 hlist_del(&clk->child_node); 1407 1408 if (new_parent) { 1409 /* avoid duplicate POST_RATE_CHANGE notifications */ 1410 if (new_parent->new_child == clk) 1411 new_parent->new_child = NULL; 1412 1413 hlist_add_head(&clk->child_node, &new_parent->children); 1414 } else { 1415 hlist_add_head(&clk->child_node, &clk_orphan_list); 1416 } 1417 1418 clk->parent = new_parent; 1419 } 1420 1421 static struct clk_core *__clk_set_parent_before(struct clk_core *clk, 1422 struct clk_core *parent) 1423 { 1424 unsigned long flags; 1425 struct clk_core *old_parent = clk->parent; 1426 1427 /* 1428 * Migrate prepare state between parents and prevent race with 1429 * clk_enable(). 1430 * 1431 * If the clock is not prepared, then a race with 1432 * clk_enable/disable() is impossible since we already have the 1433 * prepare lock (future calls to clk_enable() need to be preceded by 1434 * a clk_prepare()). 1435 * 1436 * If the clock is prepared, migrate the prepared state to the new 1437 * parent and also protect against a race with clk_enable() by 1438 * forcing the clock and the new parent on. This ensures that all 1439 * future calls to clk_enable() are practically NOPs with respect to 1440 * hardware and software states. 1441 * 1442 * See also: Comment for clk_set_parent() below. 1443 */ 1444 if (clk->prepare_count) { 1445 clk_core_prepare(parent); 1446 clk_core_enable(parent); 1447 clk_core_enable(clk); 1448 } 1449 1450 /* update the clk tree topology */ 1451 flags = clk_enable_lock(); 1452 clk_reparent(clk, parent); 1453 clk_enable_unlock(flags); 1454 1455 return old_parent; 1456 } 1457 1458 static void __clk_set_parent_after(struct clk_core *core, 1459 struct clk_core *parent, 1460 struct clk_core *old_parent) 1461 { 1462 /* 1463 * Finish the migration of prepare state and undo the changes done 1464 * for preventing a race with clk_enable(). 1465 */ 1466 if (core->prepare_count) { 1467 clk_core_disable(core); 1468 clk_core_disable(old_parent); 1469 clk_core_unprepare(old_parent); 1470 } 1471 } 1472 1473 static int __clk_set_parent(struct clk_core *clk, struct clk_core *parent, 1474 u8 p_index) 1475 { 1476 unsigned long flags; 1477 int ret = 0; 1478 struct clk_core *old_parent; 1479 1480 old_parent = __clk_set_parent_before(clk, parent); 1481 1482 /* change clock input source */ 1483 if (parent && clk->ops->set_parent) 1484 ret = clk->ops->set_parent(clk->hw, p_index); 1485 1486 if (ret) { 1487 flags = clk_enable_lock(); 1488 clk_reparent(clk, old_parent); 1489 clk_enable_unlock(flags); 1490 1491 if (clk->prepare_count) { 1492 clk_core_disable(clk); 1493 clk_core_disable(parent); 1494 clk_core_unprepare(parent); 1495 } 1496 return ret; 1497 } 1498 1499 __clk_set_parent_after(clk, parent, old_parent); 1500 1501 return 0; 1502 } 1503 1504 /** 1505 * __clk_speculate_rates 1506 * @clk: first clk in the subtree 1507 * @parent_rate: the "future" rate of clk's parent 1508 * 1509 * Walks the subtree of clks starting with clk, speculating rates as it 1510 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1511 * 1512 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1513 * pre-rate change notifications and returns early if no clks in the 1514 * subtree have subscribed to the notifications. Note that if a clk does not 1515 * implement the .recalc_rate callback then it is assumed that the clock will 1516 * take on the rate of its parent. 1517 * 1518 * Caller must hold prepare_lock. 1519 */ 1520 static int __clk_speculate_rates(struct clk_core *clk, 1521 unsigned long parent_rate) 1522 { 1523 struct clk_core *child; 1524 unsigned long new_rate; 1525 int ret = NOTIFY_DONE; 1526 1527 new_rate = clk_recalc(clk, parent_rate); 1528 1529 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1530 if (clk->notifier_count) 1531 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate); 1532 1533 if (ret & NOTIFY_STOP_MASK) { 1534 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1535 __func__, clk->name, ret); 1536 goto out; 1537 } 1538 1539 hlist_for_each_entry(child, &clk->children, child_node) { 1540 ret = __clk_speculate_rates(child, new_rate); 1541 if (ret & NOTIFY_STOP_MASK) 1542 break; 1543 } 1544 1545 out: 1546 return ret; 1547 } 1548 1549 static void clk_calc_subtree(struct clk_core *clk, unsigned long new_rate, 1550 struct clk_core *new_parent, u8 p_index) 1551 { 1552 struct clk_core *child; 1553 1554 clk->new_rate = new_rate; 1555 clk->new_parent = new_parent; 1556 clk->new_parent_index = p_index; 1557 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1558 clk->new_child = NULL; 1559 if (new_parent && new_parent != clk->parent) 1560 new_parent->new_child = clk; 1561 1562 hlist_for_each_entry(child, &clk->children, child_node) { 1563 child->new_rate = clk_recalc(child, new_rate); 1564 clk_calc_subtree(child, child->new_rate, NULL, 0); 1565 } 1566 } 1567 1568 /* 1569 * calculate the new rates returning the topmost clock that has to be 1570 * changed. 1571 */ 1572 static struct clk_core *clk_calc_new_rates(struct clk_core *clk, 1573 unsigned long rate) 1574 { 1575 struct clk_core *top = clk; 1576 struct clk_core *old_parent, *parent; 1577 struct clk_hw *parent_hw; 1578 unsigned long best_parent_rate = 0; 1579 unsigned long new_rate; 1580 unsigned long min_rate; 1581 unsigned long max_rate; 1582 int p_index = 0; 1583 1584 /* sanity */ 1585 if (IS_ERR_OR_NULL(clk)) 1586 return NULL; 1587 1588 /* save parent rate, if it exists */ 1589 parent = old_parent = clk->parent; 1590 if (parent) 1591 best_parent_rate = parent->rate; 1592 1593 clk_core_get_boundaries(clk, &min_rate, &max_rate); 1594 1595 /* find the closest rate and parent clk/rate */ 1596 if (clk->ops->determine_rate) { 1597 parent_hw = parent ? parent->hw : NULL; 1598 new_rate = clk->ops->determine_rate(clk->hw, rate, 1599 min_rate, 1600 max_rate, 1601 &best_parent_rate, 1602 &parent_hw); 1603 parent = parent_hw ? parent_hw->core : NULL; 1604 } else if (clk->ops->round_rate) { 1605 new_rate = clk->ops->round_rate(clk->hw, rate, 1606 &best_parent_rate); 1607 if (new_rate < min_rate || new_rate > max_rate) 1608 return NULL; 1609 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) { 1610 /* pass-through clock without adjustable parent */ 1611 clk->new_rate = clk->rate; 1612 return NULL; 1613 } else { 1614 /* pass-through clock with adjustable parent */ 1615 top = clk_calc_new_rates(parent, rate); 1616 new_rate = parent->new_rate; 1617 goto out; 1618 } 1619 1620 /* some clocks must be gated to change parent */ 1621 if (parent != old_parent && 1622 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 1623 pr_debug("%s: %s not gated but wants to reparent\n", 1624 __func__, clk->name); 1625 return NULL; 1626 } 1627 1628 /* try finding the new parent index */ 1629 if (parent && clk->num_parents > 1) { 1630 p_index = clk_fetch_parent_index(clk, parent); 1631 if (p_index < 0) { 1632 pr_debug("%s: clk %s can not be parent of clk %s\n", 1633 __func__, parent->name, clk->name); 1634 return NULL; 1635 } 1636 } 1637 1638 if ((clk->flags & CLK_SET_RATE_PARENT) && parent && 1639 best_parent_rate != parent->rate) 1640 top = clk_calc_new_rates(parent, best_parent_rate); 1641 1642 out: 1643 clk_calc_subtree(clk, new_rate, parent, p_index); 1644 1645 return top; 1646 } 1647 1648 /* 1649 * Notify about rate changes in a subtree. Always walk down the whole tree 1650 * so that in case of an error we can walk down the whole tree again and 1651 * abort the change. 1652 */ 1653 static struct clk_core *clk_propagate_rate_change(struct clk_core *clk, 1654 unsigned long event) 1655 { 1656 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1657 int ret = NOTIFY_DONE; 1658 1659 if (clk->rate == clk->new_rate) 1660 return NULL; 1661 1662 if (clk->notifier_count) { 1663 ret = __clk_notify(clk, event, clk->rate, clk->new_rate); 1664 if (ret & NOTIFY_STOP_MASK) 1665 fail_clk = clk; 1666 } 1667 1668 hlist_for_each_entry(child, &clk->children, child_node) { 1669 /* Skip children who will be reparented to another clock */ 1670 if (child->new_parent && child->new_parent != clk) 1671 continue; 1672 tmp_clk = clk_propagate_rate_change(child, event); 1673 if (tmp_clk) 1674 fail_clk = tmp_clk; 1675 } 1676 1677 /* handle the new child who might not be in clk->children yet */ 1678 if (clk->new_child) { 1679 tmp_clk = clk_propagate_rate_change(clk->new_child, event); 1680 if (tmp_clk) 1681 fail_clk = tmp_clk; 1682 } 1683 1684 return fail_clk; 1685 } 1686 1687 /* 1688 * walk down a subtree and set the new rates notifying the rate 1689 * change on the way 1690 */ 1691 static void clk_change_rate(struct clk_core *clk) 1692 { 1693 struct clk_core *child; 1694 struct hlist_node *tmp; 1695 unsigned long old_rate; 1696 unsigned long best_parent_rate = 0; 1697 bool skip_set_rate = false; 1698 struct clk_core *old_parent; 1699 1700 old_rate = clk->rate; 1701 1702 if (clk->new_parent) 1703 best_parent_rate = clk->new_parent->rate; 1704 else if (clk->parent) 1705 best_parent_rate = clk->parent->rate; 1706 1707 if (clk->new_parent && clk->new_parent != clk->parent) { 1708 old_parent = __clk_set_parent_before(clk, clk->new_parent); 1709 1710 if (clk->ops->set_rate_and_parent) { 1711 skip_set_rate = true; 1712 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate, 1713 best_parent_rate, 1714 clk->new_parent_index); 1715 } else if (clk->ops->set_parent) { 1716 clk->ops->set_parent(clk->hw, clk->new_parent_index); 1717 } 1718 1719 __clk_set_parent_after(clk, clk->new_parent, old_parent); 1720 } 1721 1722 if (!skip_set_rate && clk->ops->set_rate) 1723 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate); 1724 1725 clk->rate = clk_recalc(clk, best_parent_rate); 1726 1727 if (clk->notifier_count && old_rate != clk->rate) 1728 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate); 1729 1730 /* 1731 * Use safe iteration, as change_rate can actually swap parents 1732 * for certain clock types. 1733 */ 1734 hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) { 1735 /* Skip children who will be reparented to another clock */ 1736 if (child->new_parent && child->new_parent != clk) 1737 continue; 1738 clk_change_rate(child); 1739 } 1740 1741 /* handle the new child who might not be in clk->children yet */ 1742 if (clk->new_child) 1743 clk_change_rate(clk->new_child); 1744 } 1745 1746 static int clk_core_set_rate_nolock(struct clk_core *clk, 1747 unsigned long req_rate) 1748 { 1749 struct clk_core *top, *fail_clk; 1750 unsigned long rate = req_rate; 1751 int ret = 0; 1752 1753 if (!clk) 1754 return 0; 1755 1756 /* bail early if nothing to do */ 1757 if (rate == clk_core_get_rate_nolock(clk)) 1758 return 0; 1759 1760 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) 1761 return -EBUSY; 1762 1763 /* calculate new rates and get the topmost changed clock */ 1764 top = clk_calc_new_rates(clk, rate); 1765 if (!top) 1766 return -EINVAL; 1767 1768 /* notify that we are about to change rates */ 1769 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1770 if (fail_clk) { 1771 pr_debug("%s: failed to set %s rate\n", __func__, 1772 fail_clk->name); 1773 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1774 return -EBUSY; 1775 } 1776 1777 /* change the rates */ 1778 clk_change_rate(top); 1779 1780 clk->req_rate = req_rate; 1781 1782 return ret; 1783 } 1784 1785 /** 1786 * clk_set_rate - specify a new rate for clk 1787 * @clk: the clk whose rate is being changed 1788 * @rate: the new rate for clk 1789 * 1790 * In the simplest case clk_set_rate will only adjust the rate of clk. 1791 * 1792 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1793 * propagate up to clk's parent; whether or not this happens depends on the 1794 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1795 * after calling .round_rate then upstream parent propagation is ignored. If 1796 * *parent_rate comes back with a new rate for clk's parent then we propagate 1797 * up to clk's parent and set its rate. Upward propagation will continue 1798 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1799 * .round_rate stops requesting changes to clk's parent_rate. 1800 * 1801 * Rate changes are accomplished via tree traversal that also recalculates the 1802 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1803 * 1804 * Returns 0 on success, -EERROR otherwise. 1805 */ 1806 int clk_set_rate(struct clk *clk, unsigned long rate) 1807 { 1808 int ret; 1809 1810 if (!clk) 1811 return 0; 1812 1813 /* prevent racing with updates to the clock topology */ 1814 clk_prepare_lock(); 1815 1816 ret = clk_core_set_rate_nolock(clk->core, rate); 1817 1818 clk_prepare_unlock(); 1819 1820 return ret; 1821 } 1822 EXPORT_SYMBOL_GPL(clk_set_rate); 1823 1824 /** 1825 * clk_set_rate_range - set a rate range for a clock source 1826 * @clk: clock source 1827 * @min: desired minimum clock rate in Hz, inclusive 1828 * @max: desired maximum clock rate in Hz, inclusive 1829 * 1830 * Returns success (0) or negative errno. 1831 */ 1832 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 1833 { 1834 int ret = 0; 1835 1836 if (!clk) 1837 return 0; 1838 1839 if (min > max) { 1840 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 1841 __func__, clk->core->name, clk->dev_id, clk->con_id, 1842 min, max); 1843 return -EINVAL; 1844 } 1845 1846 clk_prepare_lock(); 1847 1848 if (min != clk->min_rate || max != clk->max_rate) { 1849 clk->min_rate = min; 1850 clk->max_rate = max; 1851 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 1852 } 1853 1854 clk_prepare_unlock(); 1855 1856 return ret; 1857 } 1858 EXPORT_SYMBOL_GPL(clk_set_rate_range); 1859 1860 /** 1861 * clk_set_min_rate - set a minimum clock rate for a clock source 1862 * @clk: clock source 1863 * @rate: desired minimum clock rate in Hz, inclusive 1864 * 1865 * Returns success (0) or negative errno. 1866 */ 1867 int clk_set_min_rate(struct clk *clk, unsigned long rate) 1868 { 1869 if (!clk) 1870 return 0; 1871 1872 return clk_set_rate_range(clk, rate, clk->max_rate); 1873 } 1874 EXPORT_SYMBOL_GPL(clk_set_min_rate); 1875 1876 /** 1877 * clk_set_max_rate - set a maximum clock rate for a clock source 1878 * @clk: clock source 1879 * @rate: desired maximum clock rate in Hz, inclusive 1880 * 1881 * Returns success (0) or negative errno. 1882 */ 1883 int clk_set_max_rate(struct clk *clk, unsigned long rate) 1884 { 1885 if (!clk) 1886 return 0; 1887 1888 return clk_set_rate_range(clk, clk->min_rate, rate); 1889 } 1890 EXPORT_SYMBOL_GPL(clk_set_max_rate); 1891 1892 /** 1893 * clk_get_parent - return the parent of a clk 1894 * @clk: the clk whose parent gets returned 1895 * 1896 * Simply returns clk->parent. Returns NULL if clk is NULL. 1897 */ 1898 struct clk *clk_get_parent(struct clk *clk) 1899 { 1900 struct clk *parent; 1901 1902 clk_prepare_lock(); 1903 parent = __clk_get_parent(clk); 1904 clk_prepare_unlock(); 1905 1906 return parent; 1907 } 1908 EXPORT_SYMBOL_GPL(clk_get_parent); 1909 1910 /* 1911 * .get_parent is mandatory for clocks with multiple possible parents. It is 1912 * optional for single-parent clocks. Always call .get_parent if it is 1913 * available and WARN if it is missing for multi-parent clocks. 1914 * 1915 * For single-parent clocks without .get_parent, first check to see if the 1916 * .parents array exists, and if so use it to avoid an expensive tree 1917 * traversal. If .parents does not exist then walk the tree. 1918 */ 1919 static struct clk_core *__clk_init_parent(struct clk_core *clk) 1920 { 1921 struct clk_core *ret = NULL; 1922 u8 index; 1923 1924 /* handle the trivial cases */ 1925 1926 if (!clk->num_parents) 1927 goto out; 1928 1929 if (clk->num_parents == 1) { 1930 if (IS_ERR_OR_NULL(clk->parent)) 1931 clk->parent = clk_core_lookup(clk->parent_names[0]); 1932 ret = clk->parent; 1933 goto out; 1934 } 1935 1936 if (!clk->ops->get_parent) { 1937 WARN(!clk->ops->get_parent, 1938 "%s: multi-parent clocks must implement .get_parent\n", 1939 __func__); 1940 goto out; 1941 }; 1942 1943 /* 1944 * Do our best to cache parent clocks in clk->parents. This prevents 1945 * unnecessary and expensive lookups. We don't set clk->parent here; 1946 * that is done by the calling function. 1947 */ 1948 1949 index = clk->ops->get_parent(clk->hw); 1950 1951 if (!clk->parents) 1952 clk->parents = 1953 kcalloc(clk->num_parents, sizeof(struct clk *), 1954 GFP_KERNEL); 1955 1956 ret = clk_core_get_parent_by_index(clk, index); 1957 1958 out: 1959 return ret; 1960 } 1961 1962 static void clk_core_reparent(struct clk_core *clk, 1963 struct clk_core *new_parent) 1964 { 1965 clk_reparent(clk, new_parent); 1966 __clk_recalc_accuracies(clk); 1967 __clk_recalc_rates(clk, POST_RATE_CHANGE); 1968 } 1969 1970 /** 1971 * clk_has_parent - check if a clock is a possible parent for another 1972 * @clk: clock source 1973 * @parent: parent clock source 1974 * 1975 * This function can be used in drivers that need to check that a clock can be 1976 * the parent of another without actually changing the parent. 1977 * 1978 * Returns true if @parent is a possible parent for @clk, false otherwise. 1979 */ 1980 bool clk_has_parent(struct clk *clk, struct clk *parent) 1981 { 1982 struct clk_core *core, *parent_core; 1983 unsigned int i; 1984 1985 /* NULL clocks should be nops, so return success if either is NULL. */ 1986 if (!clk || !parent) 1987 return true; 1988 1989 core = clk->core; 1990 parent_core = parent->core; 1991 1992 /* Optimize for the case where the parent is already the parent. */ 1993 if (core->parent == parent_core) 1994 return true; 1995 1996 for (i = 0; i < core->num_parents; i++) 1997 if (strcmp(core->parent_names[i], parent_core->name) == 0) 1998 return true; 1999 2000 return false; 2001 } 2002 EXPORT_SYMBOL_GPL(clk_has_parent); 2003 2004 static int clk_core_set_parent(struct clk_core *clk, struct clk_core *parent) 2005 { 2006 int ret = 0; 2007 int p_index = 0; 2008 unsigned long p_rate = 0; 2009 2010 if (!clk) 2011 return 0; 2012 2013 /* verify ops for for multi-parent clks */ 2014 if ((clk->num_parents > 1) && (!clk->ops->set_parent)) 2015 return -ENOSYS; 2016 2017 /* prevent racing with updates to the clock topology */ 2018 clk_prepare_lock(); 2019 2020 if (clk->parent == parent) 2021 goto out; 2022 2023 /* check that we are allowed to re-parent if the clock is in use */ 2024 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 2025 ret = -EBUSY; 2026 goto out; 2027 } 2028 2029 /* try finding the new parent index */ 2030 if (parent) { 2031 p_index = clk_fetch_parent_index(clk, parent); 2032 p_rate = parent->rate; 2033 if (p_index < 0) { 2034 pr_debug("%s: clk %s can not be parent of clk %s\n", 2035 __func__, parent->name, clk->name); 2036 ret = p_index; 2037 goto out; 2038 } 2039 } 2040 2041 /* propagate PRE_RATE_CHANGE notifications */ 2042 ret = __clk_speculate_rates(clk, p_rate); 2043 2044 /* abort if a driver objects */ 2045 if (ret & NOTIFY_STOP_MASK) 2046 goto out; 2047 2048 /* do the re-parent */ 2049 ret = __clk_set_parent(clk, parent, p_index); 2050 2051 /* propagate rate an accuracy recalculation accordingly */ 2052 if (ret) { 2053 __clk_recalc_rates(clk, ABORT_RATE_CHANGE); 2054 } else { 2055 __clk_recalc_rates(clk, POST_RATE_CHANGE); 2056 __clk_recalc_accuracies(clk); 2057 } 2058 2059 out: 2060 clk_prepare_unlock(); 2061 2062 return ret; 2063 } 2064 2065 /** 2066 * clk_set_parent - switch the parent of a mux clk 2067 * @clk: the mux clk whose input we are switching 2068 * @parent: the new input to clk 2069 * 2070 * Re-parent clk to use parent as its new input source. If clk is in 2071 * prepared state, the clk will get enabled for the duration of this call. If 2072 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2073 * that, the reparenting is glitchy in hardware, etc), use the 2074 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2075 * 2076 * After successfully changing clk's parent clk_set_parent will update the 2077 * clk topology, sysfs topology and propagate rate recalculation via 2078 * __clk_recalc_rates. 2079 * 2080 * Returns 0 on success, -EERROR otherwise. 2081 */ 2082 int clk_set_parent(struct clk *clk, struct clk *parent) 2083 { 2084 if (!clk) 2085 return 0; 2086 2087 return clk_core_set_parent(clk->core, parent ? parent->core : NULL); 2088 } 2089 EXPORT_SYMBOL_GPL(clk_set_parent); 2090 2091 /** 2092 * clk_set_phase - adjust the phase shift of a clock signal 2093 * @clk: clock signal source 2094 * @degrees: number of degrees the signal is shifted 2095 * 2096 * Shifts the phase of a clock signal by the specified 2097 * degrees. Returns 0 on success, -EERROR otherwise. 2098 * 2099 * This function makes no distinction about the input or reference 2100 * signal that we adjust the clock signal phase against. For example 2101 * phase locked-loop clock signal generators we may shift phase with 2102 * respect to feedback clock signal input, but for other cases the 2103 * clock phase may be shifted with respect to some other, unspecified 2104 * signal. 2105 * 2106 * Additionally the concept of phase shift does not propagate through 2107 * the clock tree hierarchy, which sets it apart from clock rates and 2108 * clock accuracy. A parent clock phase attribute does not have an 2109 * impact on the phase attribute of a child clock. 2110 */ 2111 int clk_set_phase(struct clk *clk, int degrees) 2112 { 2113 int ret = 0; 2114 2115 if (!clk) 2116 goto out; 2117 2118 /* sanity check degrees */ 2119 degrees %= 360; 2120 if (degrees < 0) 2121 degrees += 360; 2122 2123 clk_prepare_lock(); 2124 2125 if (!clk->core->ops->set_phase) 2126 goto out_unlock; 2127 2128 ret = clk->core->ops->set_phase(clk->core->hw, degrees); 2129 2130 if (!ret) 2131 clk->core->phase = degrees; 2132 2133 out_unlock: 2134 clk_prepare_unlock(); 2135 2136 out: 2137 return ret; 2138 } 2139 EXPORT_SYMBOL_GPL(clk_set_phase); 2140 2141 static int clk_core_get_phase(struct clk_core *clk) 2142 { 2143 int ret = 0; 2144 2145 if (!clk) 2146 goto out; 2147 2148 clk_prepare_lock(); 2149 ret = clk->phase; 2150 clk_prepare_unlock(); 2151 2152 out: 2153 return ret; 2154 } 2155 EXPORT_SYMBOL_GPL(clk_get_phase); 2156 2157 /** 2158 * clk_get_phase - return the phase shift of a clock signal 2159 * @clk: clock signal source 2160 * 2161 * Returns the phase shift of a clock node in degrees, otherwise returns 2162 * -EERROR. 2163 */ 2164 int clk_get_phase(struct clk *clk) 2165 { 2166 if (!clk) 2167 return 0; 2168 2169 return clk_core_get_phase(clk->core); 2170 } 2171 2172 /** 2173 * clk_is_match - check if two clk's point to the same hardware clock 2174 * @p: clk compared against q 2175 * @q: clk compared against p 2176 * 2177 * Returns true if the two struct clk pointers both point to the same hardware 2178 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2179 * share the same struct clk_core object. 2180 * 2181 * Returns false otherwise. Note that two NULL clks are treated as matching. 2182 */ 2183 bool clk_is_match(const struct clk *p, const struct clk *q) 2184 { 2185 /* trivial case: identical struct clk's or both NULL */ 2186 if (p == q) 2187 return true; 2188 2189 /* true if clk->core pointers match. Avoid derefing garbage */ 2190 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2191 if (p->core == q->core) 2192 return true; 2193 2194 return false; 2195 } 2196 EXPORT_SYMBOL_GPL(clk_is_match); 2197 2198 /** 2199 * __clk_init - initialize the data structures in a struct clk 2200 * @dev: device initializing this clk, placeholder for now 2201 * @clk: clk being initialized 2202 * 2203 * Initializes the lists in struct clk_core, queries the hardware for the 2204 * parent and rate and sets them both. 2205 */ 2206 static int __clk_init(struct device *dev, struct clk *clk_user) 2207 { 2208 int i, ret = 0; 2209 struct clk_core *orphan; 2210 struct hlist_node *tmp2; 2211 struct clk_core *clk; 2212 unsigned long rate; 2213 2214 if (!clk_user) 2215 return -EINVAL; 2216 2217 clk = clk_user->core; 2218 2219 clk_prepare_lock(); 2220 2221 /* check to see if a clock with this name is already registered */ 2222 if (clk_core_lookup(clk->name)) { 2223 pr_debug("%s: clk %s already initialized\n", 2224 __func__, clk->name); 2225 ret = -EEXIST; 2226 goto out; 2227 } 2228 2229 /* check that clk_ops are sane. See Documentation/clk.txt */ 2230 if (clk->ops->set_rate && 2231 !((clk->ops->round_rate || clk->ops->determine_rate) && 2232 clk->ops->recalc_rate)) { 2233 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2234 __func__, clk->name); 2235 ret = -EINVAL; 2236 goto out; 2237 } 2238 2239 if (clk->ops->set_parent && !clk->ops->get_parent) { 2240 pr_warning("%s: %s must implement .get_parent & .set_parent\n", 2241 __func__, clk->name); 2242 ret = -EINVAL; 2243 goto out; 2244 } 2245 2246 if (clk->ops->set_rate_and_parent && 2247 !(clk->ops->set_parent && clk->ops->set_rate)) { 2248 pr_warn("%s: %s must implement .set_parent & .set_rate\n", 2249 __func__, clk->name); 2250 ret = -EINVAL; 2251 goto out; 2252 } 2253 2254 /* throw a WARN if any entries in parent_names are NULL */ 2255 for (i = 0; i < clk->num_parents; i++) 2256 WARN(!clk->parent_names[i], 2257 "%s: invalid NULL in %s's .parent_names\n", 2258 __func__, clk->name); 2259 2260 /* 2261 * Allocate an array of struct clk *'s to avoid unnecessary string 2262 * look-ups of clk's possible parents. This can fail for clocks passed 2263 * in to clk_init during early boot; thus any access to clk->parents[] 2264 * must always check for a NULL pointer and try to populate it if 2265 * necessary. 2266 * 2267 * If clk->parents is not NULL we skip this entire block. This allows 2268 * for clock drivers to statically initialize clk->parents. 2269 */ 2270 if (clk->num_parents > 1 && !clk->parents) { 2271 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *), 2272 GFP_KERNEL); 2273 /* 2274 * clk_core_lookup returns NULL for parents that have not been 2275 * clk_init'd; thus any access to clk->parents[] must check 2276 * for a NULL pointer. We can always perform lazy lookups for 2277 * missing parents later on. 2278 */ 2279 if (clk->parents) 2280 for (i = 0; i < clk->num_parents; i++) 2281 clk->parents[i] = 2282 clk_core_lookup(clk->parent_names[i]); 2283 } 2284 2285 clk->parent = __clk_init_parent(clk); 2286 2287 /* 2288 * Populate clk->parent if parent has already been __clk_init'd. If 2289 * parent has not yet been __clk_init'd then place clk in the orphan 2290 * list. If clk has set the CLK_IS_ROOT flag then place it in the root 2291 * clk list. 2292 * 2293 * Every time a new clk is clk_init'd then we walk the list of orphan 2294 * clocks and re-parent any that are children of the clock currently 2295 * being clk_init'd. 2296 */ 2297 if (clk->parent) 2298 hlist_add_head(&clk->child_node, 2299 &clk->parent->children); 2300 else if (clk->flags & CLK_IS_ROOT) 2301 hlist_add_head(&clk->child_node, &clk_root_list); 2302 else 2303 hlist_add_head(&clk->child_node, &clk_orphan_list); 2304 2305 /* 2306 * Set clk's accuracy. The preferred method is to use 2307 * .recalc_accuracy. For simple clocks and lazy developers the default 2308 * fallback is to use the parent's accuracy. If a clock doesn't have a 2309 * parent (or is orphaned) then accuracy is set to zero (perfect 2310 * clock). 2311 */ 2312 if (clk->ops->recalc_accuracy) 2313 clk->accuracy = clk->ops->recalc_accuracy(clk->hw, 2314 __clk_get_accuracy(clk->parent)); 2315 else if (clk->parent) 2316 clk->accuracy = clk->parent->accuracy; 2317 else 2318 clk->accuracy = 0; 2319 2320 /* 2321 * Set clk's phase. 2322 * Since a phase is by definition relative to its parent, just 2323 * query the current clock phase, or just assume it's in phase. 2324 */ 2325 if (clk->ops->get_phase) 2326 clk->phase = clk->ops->get_phase(clk->hw); 2327 else 2328 clk->phase = 0; 2329 2330 /* 2331 * Set clk's rate. The preferred method is to use .recalc_rate. For 2332 * simple clocks and lazy developers the default fallback is to use the 2333 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2334 * then rate is set to zero. 2335 */ 2336 if (clk->ops->recalc_rate) 2337 rate = clk->ops->recalc_rate(clk->hw, 2338 clk_core_get_rate_nolock(clk->parent)); 2339 else if (clk->parent) 2340 rate = clk->parent->rate; 2341 else 2342 rate = 0; 2343 clk->rate = clk->req_rate = rate; 2344 2345 /* 2346 * walk the list of orphan clocks and reparent any that are children of 2347 * this clock 2348 */ 2349 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2350 if (orphan->num_parents && orphan->ops->get_parent) { 2351 i = orphan->ops->get_parent(orphan->hw); 2352 if (!strcmp(clk->name, orphan->parent_names[i])) 2353 clk_core_reparent(orphan, clk); 2354 continue; 2355 } 2356 2357 for (i = 0; i < orphan->num_parents; i++) 2358 if (!strcmp(clk->name, orphan->parent_names[i])) { 2359 clk_core_reparent(orphan, clk); 2360 break; 2361 } 2362 } 2363 2364 /* 2365 * optional platform-specific magic 2366 * 2367 * The .init callback is not used by any of the basic clock types, but 2368 * exists for weird hardware that must perform initialization magic. 2369 * Please consider other ways of solving initialization problems before 2370 * using this callback, as its use is discouraged. 2371 */ 2372 if (clk->ops->init) 2373 clk->ops->init(clk->hw); 2374 2375 kref_init(&clk->ref); 2376 out: 2377 clk_prepare_unlock(); 2378 2379 if (!ret) 2380 clk_debug_register(clk); 2381 2382 return ret; 2383 } 2384 2385 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 2386 const char *con_id) 2387 { 2388 struct clk *clk; 2389 2390 /* This is to allow this function to be chained to others */ 2391 if (!hw || IS_ERR(hw)) 2392 return (struct clk *) hw; 2393 2394 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2395 if (!clk) 2396 return ERR_PTR(-ENOMEM); 2397 2398 clk->core = hw->core; 2399 clk->dev_id = dev_id; 2400 clk->con_id = con_id; 2401 clk->max_rate = ULONG_MAX; 2402 2403 clk_prepare_lock(); 2404 hlist_add_head(&clk->child_node, &hw->core->clks); 2405 clk_prepare_unlock(); 2406 2407 return clk; 2408 } 2409 2410 void __clk_free_clk(struct clk *clk) 2411 { 2412 clk_prepare_lock(); 2413 hlist_del(&clk->child_node); 2414 clk_prepare_unlock(); 2415 2416 kfree(clk); 2417 } 2418 2419 /** 2420 * clk_register - allocate a new clock, register it and return an opaque cookie 2421 * @dev: device that is registering this clock 2422 * @hw: link to hardware-specific clock data 2423 * 2424 * clk_register is the primary interface for populating the clock tree with new 2425 * clock nodes. It returns a pointer to the newly allocated struct clk which 2426 * cannot be dereferenced by driver code but may be used in conjuction with the 2427 * rest of the clock API. In the event of an error clk_register will return an 2428 * error code; drivers must test for an error code after calling clk_register. 2429 */ 2430 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 2431 { 2432 int i, ret; 2433 struct clk_core *clk; 2434 2435 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2436 if (!clk) { 2437 pr_err("%s: could not allocate clk\n", __func__); 2438 ret = -ENOMEM; 2439 goto fail_out; 2440 } 2441 2442 clk->name = kstrdup_const(hw->init->name, GFP_KERNEL); 2443 if (!clk->name) { 2444 pr_err("%s: could not allocate clk->name\n", __func__); 2445 ret = -ENOMEM; 2446 goto fail_name; 2447 } 2448 clk->ops = hw->init->ops; 2449 if (dev && dev->driver) 2450 clk->owner = dev->driver->owner; 2451 clk->hw = hw; 2452 clk->flags = hw->init->flags; 2453 clk->num_parents = hw->init->num_parents; 2454 hw->core = clk; 2455 2456 /* allocate local copy in case parent_names is __initdata */ 2457 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *), 2458 GFP_KERNEL); 2459 2460 if (!clk->parent_names) { 2461 pr_err("%s: could not allocate clk->parent_names\n", __func__); 2462 ret = -ENOMEM; 2463 goto fail_parent_names; 2464 } 2465 2466 2467 /* copy each string name in case parent_names is __initdata */ 2468 for (i = 0; i < clk->num_parents; i++) { 2469 clk->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 2470 GFP_KERNEL); 2471 if (!clk->parent_names[i]) { 2472 pr_err("%s: could not copy parent_names\n", __func__); 2473 ret = -ENOMEM; 2474 goto fail_parent_names_copy; 2475 } 2476 } 2477 2478 INIT_HLIST_HEAD(&clk->clks); 2479 2480 hw->clk = __clk_create_clk(hw, NULL, NULL); 2481 if (IS_ERR(hw->clk)) { 2482 pr_err("%s: could not allocate per-user clk\n", __func__); 2483 ret = PTR_ERR(hw->clk); 2484 goto fail_parent_names_copy; 2485 } 2486 2487 ret = __clk_init(dev, hw->clk); 2488 if (!ret) 2489 return hw->clk; 2490 2491 __clk_free_clk(hw->clk); 2492 hw->clk = NULL; 2493 2494 fail_parent_names_copy: 2495 while (--i >= 0) 2496 kfree_const(clk->parent_names[i]); 2497 kfree(clk->parent_names); 2498 fail_parent_names: 2499 kfree_const(clk->name); 2500 fail_name: 2501 kfree(clk); 2502 fail_out: 2503 return ERR_PTR(ret); 2504 } 2505 EXPORT_SYMBOL_GPL(clk_register); 2506 2507 /* 2508 * Free memory allocated for a clock. 2509 * Caller must hold prepare_lock. 2510 */ 2511 static void __clk_release(struct kref *ref) 2512 { 2513 struct clk_core *clk = container_of(ref, struct clk_core, ref); 2514 int i = clk->num_parents; 2515 2516 kfree(clk->parents); 2517 while (--i >= 0) 2518 kfree_const(clk->parent_names[i]); 2519 2520 kfree(clk->parent_names); 2521 kfree_const(clk->name); 2522 kfree(clk); 2523 } 2524 2525 /* 2526 * Empty clk_ops for unregistered clocks. These are used temporarily 2527 * after clk_unregister() was called on a clock and until last clock 2528 * consumer calls clk_put() and the struct clk object is freed. 2529 */ 2530 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 2531 { 2532 return -ENXIO; 2533 } 2534 2535 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 2536 { 2537 WARN_ON_ONCE(1); 2538 } 2539 2540 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 2541 unsigned long parent_rate) 2542 { 2543 return -ENXIO; 2544 } 2545 2546 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 2547 { 2548 return -ENXIO; 2549 } 2550 2551 static const struct clk_ops clk_nodrv_ops = { 2552 .enable = clk_nodrv_prepare_enable, 2553 .disable = clk_nodrv_disable_unprepare, 2554 .prepare = clk_nodrv_prepare_enable, 2555 .unprepare = clk_nodrv_disable_unprepare, 2556 .set_rate = clk_nodrv_set_rate, 2557 .set_parent = clk_nodrv_set_parent, 2558 }; 2559 2560 /** 2561 * clk_unregister - unregister a currently registered clock 2562 * @clk: clock to unregister 2563 */ 2564 void clk_unregister(struct clk *clk) 2565 { 2566 unsigned long flags; 2567 2568 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2569 return; 2570 2571 clk_debug_unregister(clk->core); 2572 2573 clk_prepare_lock(); 2574 2575 if (clk->core->ops == &clk_nodrv_ops) { 2576 pr_err("%s: unregistered clock: %s\n", __func__, 2577 clk->core->name); 2578 return; 2579 } 2580 /* 2581 * Assign empty clock ops for consumers that might still hold 2582 * a reference to this clock. 2583 */ 2584 flags = clk_enable_lock(); 2585 clk->core->ops = &clk_nodrv_ops; 2586 clk_enable_unlock(flags); 2587 2588 if (!hlist_empty(&clk->core->children)) { 2589 struct clk_core *child; 2590 struct hlist_node *t; 2591 2592 /* Reparent all children to the orphan list. */ 2593 hlist_for_each_entry_safe(child, t, &clk->core->children, 2594 child_node) 2595 clk_core_set_parent(child, NULL); 2596 } 2597 2598 hlist_del_init(&clk->core->child_node); 2599 2600 if (clk->core->prepare_count) 2601 pr_warn("%s: unregistering prepared clock: %s\n", 2602 __func__, clk->core->name); 2603 kref_put(&clk->core->ref, __clk_release); 2604 2605 clk_prepare_unlock(); 2606 } 2607 EXPORT_SYMBOL_GPL(clk_unregister); 2608 2609 static void devm_clk_release(struct device *dev, void *res) 2610 { 2611 clk_unregister(*(struct clk **)res); 2612 } 2613 2614 /** 2615 * devm_clk_register - resource managed clk_register() 2616 * @dev: device that is registering this clock 2617 * @hw: link to hardware-specific clock data 2618 * 2619 * Managed clk_register(). Clocks returned from this function are 2620 * automatically clk_unregister()ed on driver detach. See clk_register() for 2621 * more information. 2622 */ 2623 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 2624 { 2625 struct clk *clk; 2626 struct clk **clkp; 2627 2628 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 2629 if (!clkp) 2630 return ERR_PTR(-ENOMEM); 2631 2632 clk = clk_register(dev, hw); 2633 if (!IS_ERR(clk)) { 2634 *clkp = clk; 2635 devres_add(dev, clkp); 2636 } else { 2637 devres_free(clkp); 2638 } 2639 2640 return clk; 2641 } 2642 EXPORT_SYMBOL_GPL(devm_clk_register); 2643 2644 static int devm_clk_match(struct device *dev, void *res, void *data) 2645 { 2646 struct clk *c = res; 2647 if (WARN_ON(!c)) 2648 return 0; 2649 return c == data; 2650 } 2651 2652 /** 2653 * devm_clk_unregister - resource managed clk_unregister() 2654 * @clk: clock to unregister 2655 * 2656 * Deallocate a clock allocated with devm_clk_register(). Normally 2657 * this function will not need to be called and the resource management 2658 * code will ensure that the resource is freed. 2659 */ 2660 void devm_clk_unregister(struct device *dev, struct clk *clk) 2661 { 2662 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 2663 } 2664 EXPORT_SYMBOL_GPL(devm_clk_unregister); 2665 2666 /* 2667 * clkdev helpers 2668 */ 2669 int __clk_get(struct clk *clk) 2670 { 2671 struct clk_core *core = !clk ? NULL : clk->core; 2672 2673 if (core) { 2674 if (!try_module_get(core->owner)) 2675 return 0; 2676 2677 kref_get(&core->ref); 2678 } 2679 return 1; 2680 } 2681 2682 void __clk_put(struct clk *clk) 2683 { 2684 struct module *owner; 2685 2686 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2687 return; 2688 2689 clk_prepare_lock(); 2690 2691 hlist_del(&clk->child_node); 2692 if (clk->min_rate > clk->core->req_rate || 2693 clk->max_rate < clk->core->req_rate) 2694 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 2695 2696 owner = clk->core->owner; 2697 kref_put(&clk->core->ref, __clk_release); 2698 2699 clk_prepare_unlock(); 2700 2701 module_put(owner); 2702 2703 kfree(clk); 2704 } 2705 2706 /*** clk rate change notifiers ***/ 2707 2708 /** 2709 * clk_notifier_register - add a clk rate change notifier 2710 * @clk: struct clk * to watch 2711 * @nb: struct notifier_block * with callback info 2712 * 2713 * Request notification when clk's rate changes. This uses an SRCU 2714 * notifier because we want it to block and notifier unregistrations are 2715 * uncommon. The callbacks associated with the notifier must not 2716 * re-enter into the clk framework by calling any top-level clk APIs; 2717 * this will cause a nested prepare_lock mutex. 2718 * 2719 * In all notification cases cases (pre, post and abort rate change) the 2720 * original clock rate is passed to the callback via struct 2721 * clk_notifier_data.old_rate and the new frequency is passed via struct 2722 * clk_notifier_data.new_rate. 2723 * 2724 * clk_notifier_register() must be called from non-atomic context. 2725 * Returns -EINVAL if called with null arguments, -ENOMEM upon 2726 * allocation failure; otherwise, passes along the return value of 2727 * srcu_notifier_chain_register(). 2728 */ 2729 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 2730 { 2731 struct clk_notifier *cn; 2732 int ret = -ENOMEM; 2733 2734 if (!clk || !nb) 2735 return -EINVAL; 2736 2737 clk_prepare_lock(); 2738 2739 /* search the list of notifiers for this clk */ 2740 list_for_each_entry(cn, &clk_notifier_list, node) 2741 if (cn->clk == clk) 2742 break; 2743 2744 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 2745 if (cn->clk != clk) { 2746 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 2747 if (!cn) 2748 goto out; 2749 2750 cn->clk = clk; 2751 srcu_init_notifier_head(&cn->notifier_head); 2752 2753 list_add(&cn->node, &clk_notifier_list); 2754 } 2755 2756 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 2757 2758 clk->core->notifier_count++; 2759 2760 out: 2761 clk_prepare_unlock(); 2762 2763 return ret; 2764 } 2765 EXPORT_SYMBOL_GPL(clk_notifier_register); 2766 2767 /** 2768 * clk_notifier_unregister - remove a clk rate change notifier 2769 * @clk: struct clk * 2770 * @nb: struct notifier_block * with callback info 2771 * 2772 * Request no further notification for changes to 'clk' and frees memory 2773 * allocated in clk_notifier_register. 2774 * 2775 * Returns -EINVAL if called with null arguments; otherwise, passes 2776 * along the return value of srcu_notifier_chain_unregister(). 2777 */ 2778 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 2779 { 2780 struct clk_notifier *cn = NULL; 2781 int ret = -EINVAL; 2782 2783 if (!clk || !nb) 2784 return -EINVAL; 2785 2786 clk_prepare_lock(); 2787 2788 list_for_each_entry(cn, &clk_notifier_list, node) 2789 if (cn->clk == clk) 2790 break; 2791 2792 if (cn->clk == clk) { 2793 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 2794 2795 clk->core->notifier_count--; 2796 2797 /* XXX the notifier code should handle this better */ 2798 if (!cn->notifier_head.head) { 2799 srcu_cleanup_notifier_head(&cn->notifier_head); 2800 list_del(&cn->node); 2801 kfree(cn); 2802 } 2803 2804 } else { 2805 ret = -ENOENT; 2806 } 2807 2808 clk_prepare_unlock(); 2809 2810 return ret; 2811 } 2812 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 2813 2814 #ifdef CONFIG_OF 2815 /** 2816 * struct of_clk_provider - Clock provider registration structure 2817 * @link: Entry in global list of clock providers 2818 * @node: Pointer to device tree node of clock provider 2819 * @get: Get clock callback. Returns NULL or a struct clk for the 2820 * given clock specifier 2821 * @data: context pointer to be passed into @get callback 2822 */ 2823 struct of_clk_provider { 2824 struct list_head link; 2825 2826 struct device_node *node; 2827 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 2828 void *data; 2829 }; 2830 2831 static const struct of_device_id __clk_of_table_sentinel 2832 __used __section(__clk_of_table_end); 2833 2834 static LIST_HEAD(of_clk_providers); 2835 static DEFINE_MUTEX(of_clk_mutex); 2836 2837 /* of_clk_provider list locking helpers */ 2838 void of_clk_lock(void) 2839 { 2840 mutex_lock(&of_clk_mutex); 2841 } 2842 2843 void of_clk_unlock(void) 2844 { 2845 mutex_unlock(&of_clk_mutex); 2846 } 2847 2848 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 2849 void *data) 2850 { 2851 return data; 2852 } 2853 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 2854 2855 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 2856 { 2857 struct clk_onecell_data *clk_data = data; 2858 unsigned int idx = clkspec->args[0]; 2859 2860 if (idx >= clk_data->clk_num) { 2861 pr_err("%s: invalid clock index %d\n", __func__, idx); 2862 return ERR_PTR(-EINVAL); 2863 } 2864 2865 return clk_data->clks[idx]; 2866 } 2867 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 2868 2869 /** 2870 * of_clk_add_provider() - Register a clock provider for a node 2871 * @np: Device node pointer associated with clock provider 2872 * @clk_src_get: callback for decoding clock 2873 * @data: context pointer for @clk_src_get callback. 2874 */ 2875 int of_clk_add_provider(struct device_node *np, 2876 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 2877 void *data), 2878 void *data) 2879 { 2880 struct of_clk_provider *cp; 2881 int ret; 2882 2883 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 2884 if (!cp) 2885 return -ENOMEM; 2886 2887 cp->node = of_node_get(np); 2888 cp->data = data; 2889 cp->get = clk_src_get; 2890 2891 mutex_lock(&of_clk_mutex); 2892 list_add(&cp->link, &of_clk_providers); 2893 mutex_unlock(&of_clk_mutex); 2894 pr_debug("Added clock from %s\n", np->full_name); 2895 2896 ret = of_clk_set_defaults(np, true); 2897 if (ret < 0) 2898 of_clk_del_provider(np); 2899 2900 return ret; 2901 } 2902 EXPORT_SYMBOL_GPL(of_clk_add_provider); 2903 2904 /** 2905 * of_clk_del_provider() - Remove a previously registered clock provider 2906 * @np: Device node pointer associated with clock provider 2907 */ 2908 void of_clk_del_provider(struct device_node *np) 2909 { 2910 struct of_clk_provider *cp; 2911 2912 mutex_lock(&of_clk_mutex); 2913 list_for_each_entry(cp, &of_clk_providers, link) { 2914 if (cp->node == np) { 2915 list_del(&cp->link); 2916 of_node_put(cp->node); 2917 kfree(cp); 2918 break; 2919 } 2920 } 2921 mutex_unlock(&of_clk_mutex); 2922 } 2923 EXPORT_SYMBOL_GPL(of_clk_del_provider); 2924 2925 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 2926 const char *dev_id, const char *con_id) 2927 { 2928 struct of_clk_provider *provider; 2929 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 2930 2931 /* Check if we have such a provider in our array */ 2932 list_for_each_entry(provider, &of_clk_providers, link) { 2933 if (provider->node == clkspec->np) 2934 clk = provider->get(clkspec, provider->data); 2935 if (!IS_ERR(clk)) { 2936 clk = __clk_create_clk(__clk_get_hw(clk), dev_id, 2937 con_id); 2938 2939 if (!IS_ERR(clk) && !__clk_get(clk)) { 2940 __clk_free_clk(clk); 2941 clk = ERR_PTR(-ENOENT); 2942 } 2943 2944 break; 2945 } 2946 } 2947 2948 return clk; 2949 } 2950 2951 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 2952 { 2953 struct clk *clk; 2954 2955 mutex_lock(&of_clk_mutex); 2956 clk = __of_clk_get_from_provider(clkspec, NULL, __func__); 2957 mutex_unlock(&of_clk_mutex); 2958 2959 return clk; 2960 } 2961 2962 int of_clk_get_parent_count(struct device_node *np) 2963 { 2964 return of_count_phandle_with_args(np, "clocks", "#clock-cells"); 2965 } 2966 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 2967 2968 const char *of_clk_get_parent_name(struct device_node *np, int index) 2969 { 2970 struct of_phandle_args clkspec; 2971 struct property *prop; 2972 const char *clk_name; 2973 const __be32 *vp; 2974 u32 pv; 2975 int rc; 2976 int count; 2977 2978 if (index < 0) 2979 return NULL; 2980 2981 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 2982 &clkspec); 2983 if (rc) 2984 return NULL; 2985 2986 index = clkspec.args_count ? clkspec.args[0] : 0; 2987 count = 0; 2988 2989 /* if there is an indices property, use it to transfer the index 2990 * specified into an array offset for the clock-output-names property. 2991 */ 2992 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 2993 if (index == pv) { 2994 index = count; 2995 break; 2996 } 2997 count++; 2998 } 2999 3000 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3001 index, 3002 &clk_name) < 0) 3003 clk_name = clkspec.np->name; 3004 3005 of_node_put(clkspec.np); 3006 return clk_name; 3007 } 3008 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3009 3010 struct clock_provider { 3011 of_clk_init_cb_t clk_init_cb; 3012 struct device_node *np; 3013 struct list_head node; 3014 }; 3015 3016 static LIST_HEAD(clk_provider_list); 3017 3018 /* 3019 * This function looks for a parent clock. If there is one, then it 3020 * checks that the provider for this parent clock was initialized, in 3021 * this case the parent clock will be ready. 3022 */ 3023 static int parent_ready(struct device_node *np) 3024 { 3025 int i = 0; 3026 3027 while (true) { 3028 struct clk *clk = of_clk_get(np, i); 3029 3030 /* this parent is ready we can check the next one */ 3031 if (!IS_ERR(clk)) { 3032 clk_put(clk); 3033 i++; 3034 continue; 3035 } 3036 3037 /* at least one parent is not ready, we exit now */ 3038 if (PTR_ERR(clk) == -EPROBE_DEFER) 3039 return 0; 3040 3041 /* 3042 * Here we make assumption that the device tree is 3043 * written correctly. So an error means that there is 3044 * no more parent. As we didn't exit yet, then the 3045 * previous parent are ready. If there is no clock 3046 * parent, no need to wait for them, then we can 3047 * consider their absence as being ready 3048 */ 3049 return 1; 3050 } 3051 } 3052 3053 /** 3054 * of_clk_init() - Scan and init clock providers from the DT 3055 * @matches: array of compatible values and init functions for providers. 3056 * 3057 * This function scans the device tree for matching clock providers 3058 * and calls their initialization functions. It also does it by trying 3059 * to follow the dependencies. 3060 */ 3061 void __init of_clk_init(const struct of_device_id *matches) 3062 { 3063 const struct of_device_id *match; 3064 struct device_node *np; 3065 struct clock_provider *clk_provider, *next; 3066 bool is_init_done; 3067 bool force = false; 3068 3069 if (!matches) 3070 matches = &__clk_of_table; 3071 3072 /* First prepare the list of the clocks providers */ 3073 for_each_matching_node_and_match(np, matches, &match) { 3074 struct clock_provider *parent = 3075 kzalloc(sizeof(struct clock_provider), GFP_KERNEL); 3076 3077 parent->clk_init_cb = match->data; 3078 parent->np = np; 3079 list_add_tail(&parent->node, &clk_provider_list); 3080 } 3081 3082 while (!list_empty(&clk_provider_list)) { 3083 is_init_done = false; 3084 list_for_each_entry_safe(clk_provider, next, 3085 &clk_provider_list, node) { 3086 if (force || parent_ready(clk_provider->np)) { 3087 3088 clk_provider->clk_init_cb(clk_provider->np); 3089 of_clk_set_defaults(clk_provider->np, true); 3090 3091 list_del(&clk_provider->node); 3092 kfree(clk_provider); 3093 is_init_done = true; 3094 } 3095 } 3096 3097 /* 3098 * We didn't manage to initialize any of the 3099 * remaining providers during the last loop, so now we 3100 * initialize all the remaining ones unconditionally 3101 * in case the clock parent was not mandatory 3102 */ 3103 if (!is_init_done) 3104 force = true; 3105 } 3106 } 3107 #endif 3108