xref: /openbmc/linux/drivers/clk/clk.c (revision 034f90b3)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk-provider.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static long clk_core_get_accuracy(struct clk_core *clk);
41 static unsigned long clk_core_get_rate(struct clk_core *clk);
42 static int clk_core_get_phase(struct clk_core *clk);
43 static bool clk_core_is_prepared(struct clk_core *clk);
44 static bool clk_core_is_enabled(struct clk_core *clk);
45 static struct clk_core *clk_core_lookup(const char *name);
46 
47 /***    private data structures    ***/
48 
49 struct clk_core {
50 	const char		*name;
51 	const struct clk_ops	*ops;
52 	struct clk_hw		*hw;
53 	struct module		*owner;
54 	struct clk_core		*parent;
55 	const char		**parent_names;
56 	struct clk_core		**parents;
57 	u8			num_parents;
58 	u8			new_parent_index;
59 	unsigned long		rate;
60 	unsigned long		req_rate;
61 	unsigned long		new_rate;
62 	struct clk_core		*new_parent;
63 	struct clk_core		*new_child;
64 	unsigned long		flags;
65 	unsigned int		enable_count;
66 	unsigned int		prepare_count;
67 	unsigned long		accuracy;
68 	int			phase;
69 	struct hlist_head	children;
70 	struct hlist_node	child_node;
71 	struct hlist_node	debug_node;
72 	struct hlist_head	clks;
73 	unsigned int		notifier_count;
74 #ifdef CONFIG_DEBUG_FS
75 	struct dentry		*dentry;
76 #endif
77 	struct kref		ref;
78 };
79 
80 struct clk {
81 	struct clk_core	*core;
82 	const char *dev_id;
83 	const char *con_id;
84 	unsigned long min_rate;
85 	unsigned long max_rate;
86 	struct hlist_node child_node;
87 };
88 
89 /***           locking             ***/
90 static void clk_prepare_lock(void)
91 {
92 	if (!mutex_trylock(&prepare_lock)) {
93 		if (prepare_owner == current) {
94 			prepare_refcnt++;
95 			return;
96 		}
97 		mutex_lock(&prepare_lock);
98 	}
99 	WARN_ON_ONCE(prepare_owner != NULL);
100 	WARN_ON_ONCE(prepare_refcnt != 0);
101 	prepare_owner = current;
102 	prepare_refcnt = 1;
103 }
104 
105 static void clk_prepare_unlock(void)
106 {
107 	WARN_ON_ONCE(prepare_owner != current);
108 	WARN_ON_ONCE(prepare_refcnt == 0);
109 
110 	if (--prepare_refcnt)
111 		return;
112 	prepare_owner = NULL;
113 	mutex_unlock(&prepare_lock);
114 }
115 
116 static unsigned long clk_enable_lock(void)
117 {
118 	unsigned long flags;
119 
120 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
121 		if (enable_owner == current) {
122 			enable_refcnt++;
123 			return flags;
124 		}
125 		spin_lock_irqsave(&enable_lock, flags);
126 	}
127 	WARN_ON_ONCE(enable_owner != NULL);
128 	WARN_ON_ONCE(enable_refcnt != 0);
129 	enable_owner = current;
130 	enable_refcnt = 1;
131 	return flags;
132 }
133 
134 static void clk_enable_unlock(unsigned long flags)
135 {
136 	WARN_ON_ONCE(enable_owner != current);
137 	WARN_ON_ONCE(enable_refcnt == 0);
138 
139 	if (--enable_refcnt)
140 		return;
141 	enable_owner = NULL;
142 	spin_unlock_irqrestore(&enable_lock, flags);
143 }
144 
145 /***        debugfs support        ***/
146 
147 #ifdef CONFIG_DEBUG_FS
148 #include <linux/debugfs.h>
149 
150 static struct dentry *rootdir;
151 static int inited = 0;
152 static DEFINE_MUTEX(clk_debug_lock);
153 static HLIST_HEAD(clk_debug_list);
154 
155 static struct hlist_head *all_lists[] = {
156 	&clk_root_list,
157 	&clk_orphan_list,
158 	NULL,
159 };
160 
161 static struct hlist_head *orphan_list[] = {
162 	&clk_orphan_list,
163 	NULL,
164 };
165 
166 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
167 				 int level)
168 {
169 	if (!c)
170 		return;
171 
172 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
173 		   level * 3 + 1, "",
174 		   30 - level * 3, c->name,
175 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
176 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
177 }
178 
179 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
180 				     int level)
181 {
182 	struct clk_core *child;
183 
184 	if (!c)
185 		return;
186 
187 	clk_summary_show_one(s, c, level);
188 
189 	hlist_for_each_entry(child, &c->children, child_node)
190 		clk_summary_show_subtree(s, child, level + 1);
191 }
192 
193 static int clk_summary_show(struct seq_file *s, void *data)
194 {
195 	struct clk_core *c;
196 	struct hlist_head **lists = (struct hlist_head **)s->private;
197 
198 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
199 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
200 
201 	clk_prepare_lock();
202 
203 	for (; *lists; lists++)
204 		hlist_for_each_entry(c, *lists, child_node)
205 			clk_summary_show_subtree(s, c, 0);
206 
207 	clk_prepare_unlock();
208 
209 	return 0;
210 }
211 
212 
213 static int clk_summary_open(struct inode *inode, struct file *file)
214 {
215 	return single_open(file, clk_summary_show, inode->i_private);
216 }
217 
218 static const struct file_operations clk_summary_fops = {
219 	.open		= clk_summary_open,
220 	.read		= seq_read,
221 	.llseek		= seq_lseek,
222 	.release	= single_release,
223 };
224 
225 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
226 {
227 	if (!c)
228 		return;
229 
230 	seq_printf(s, "\"%s\": { ", c->name);
231 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
232 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
233 	seq_printf(s, "\"rate\": %lu", clk_core_get_rate(c));
234 	seq_printf(s, "\"accuracy\": %lu", clk_core_get_accuracy(c));
235 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
236 }
237 
238 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
239 {
240 	struct clk_core *child;
241 
242 	if (!c)
243 		return;
244 
245 	clk_dump_one(s, c, level);
246 
247 	hlist_for_each_entry(child, &c->children, child_node) {
248 		seq_printf(s, ",");
249 		clk_dump_subtree(s, child, level + 1);
250 	}
251 
252 	seq_printf(s, "}");
253 }
254 
255 static int clk_dump(struct seq_file *s, void *data)
256 {
257 	struct clk_core *c;
258 	bool first_node = true;
259 	struct hlist_head **lists = (struct hlist_head **)s->private;
260 
261 	seq_printf(s, "{");
262 
263 	clk_prepare_lock();
264 
265 	for (; *lists; lists++) {
266 		hlist_for_each_entry(c, *lists, child_node) {
267 			if (!first_node)
268 				seq_puts(s, ",");
269 			first_node = false;
270 			clk_dump_subtree(s, c, 0);
271 		}
272 	}
273 
274 	clk_prepare_unlock();
275 
276 	seq_printf(s, "}");
277 	return 0;
278 }
279 
280 
281 static int clk_dump_open(struct inode *inode, struct file *file)
282 {
283 	return single_open(file, clk_dump, inode->i_private);
284 }
285 
286 static const struct file_operations clk_dump_fops = {
287 	.open		= clk_dump_open,
288 	.read		= seq_read,
289 	.llseek		= seq_lseek,
290 	.release	= single_release,
291 };
292 
293 static int clk_debug_create_one(struct clk_core *clk, struct dentry *pdentry)
294 {
295 	struct dentry *d;
296 	int ret = -ENOMEM;
297 
298 	if (!clk || !pdentry) {
299 		ret = -EINVAL;
300 		goto out;
301 	}
302 
303 	d = debugfs_create_dir(clk->name, pdentry);
304 	if (!d)
305 		goto out;
306 
307 	clk->dentry = d;
308 
309 	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
310 			(u32 *)&clk->rate);
311 	if (!d)
312 		goto err_out;
313 
314 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
315 			(u32 *)&clk->accuracy);
316 	if (!d)
317 		goto err_out;
318 
319 	d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry,
320 			(u32 *)&clk->phase);
321 	if (!d)
322 		goto err_out;
323 
324 	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
325 			(u32 *)&clk->flags);
326 	if (!d)
327 		goto err_out;
328 
329 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
330 			(u32 *)&clk->prepare_count);
331 	if (!d)
332 		goto err_out;
333 
334 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
335 			(u32 *)&clk->enable_count);
336 	if (!d)
337 		goto err_out;
338 
339 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
340 			(u32 *)&clk->notifier_count);
341 	if (!d)
342 		goto err_out;
343 
344 	if (clk->ops->debug_init) {
345 		ret = clk->ops->debug_init(clk->hw, clk->dentry);
346 		if (ret)
347 			goto err_out;
348 	}
349 
350 	ret = 0;
351 	goto out;
352 
353 err_out:
354 	debugfs_remove_recursive(clk->dentry);
355 	clk->dentry = NULL;
356 out:
357 	return ret;
358 }
359 
360 /**
361  * clk_debug_register - add a clk node to the debugfs clk tree
362  * @clk: the clk being added to the debugfs clk tree
363  *
364  * Dynamically adds a clk to the debugfs clk tree if debugfs has been
365  * initialized.  Otherwise it bails out early since the debugfs clk tree
366  * will be created lazily by clk_debug_init as part of a late_initcall.
367  */
368 static int clk_debug_register(struct clk_core *clk)
369 {
370 	int ret = 0;
371 
372 	mutex_lock(&clk_debug_lock);
373 	hlist_add_head(&clk->debug_node, &clk_debug_list);
374 
375 	if (!inited)
376 		goto unlock;
377 
378 	ret = clk_debug_create_one(clk, rootdir);
379 unlock:
380 	mutex_unlock(&clk_debug_lock);
381 
382 	return ret;
383 }
384 
385  /**
386  * clk_debug_unregister - remove a clk node from the debugfs clk tree
387  * @clk: the clk being removed from the debugfs clk tree
388  *
389  * Dynamically removes a clk and all it's children clk nodes from the
390  * debugfs clk tree if clk->dentry points to debugfs created by
391  * clk_debug_register in __clk_init.
392  */
393 static void clk_debug_unregister(struct clk_core *clk)
394 {
395 	mutex_lock(&clk_debug_lock);
396 	hlist_del_init(&clk->debug_node);
397 	debugfs_remove_recursive(clk->dentry);
398 	clk->dentry = NULL;
399 	mutex_unlock(&clk_debug_lock);
400 }
401 
402 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
403 				void *data, const struct file_operations *fops)
404 {
405 	struct dentry *d = NULL;
406 
407 	if (hw->core->dentry)
408 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
409 					fops);
410 
411 	return d;
412 }
413 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
414 
415 /**
416  * clk_debug_init - lazily create the debugfs clk tree visualization
417  *
418  * clks are often initialized very early during boot before memory can
419  * be dynamically allocated and well before debugfs is setup.
420  * clk_debug_init walks the clk tree hierarchy while holding
421  * prepare_lock and creates the topology as part of a late_initcall,
422  * thus insuring that clks initialized very early will still be
423  * represented in the debugfs clk tree.  This function should only be
424  * called once at boot-time, and all other clks added dynamically will
425  * be done so with clk_debug_register.
426  */
427 static int __init clk_debug_init(void)
428 {
429 	struct clk_core *clk;
430 	struct dentry *d;
431 
432 	rootdir = debugfs_create_dir("clk", NULL);
433 
434 	if (!rootdir)
435 		return -ENOMEM;
436 
437 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
438 				&clk_summary_fops);
439 	if (!d)
440 		return -ENOMEM;
441 
442 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
443 				&clk_dump_fops);
444 	if (!d)
445 		return -ENOMEM;
446 
447 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
448 				&orphan_list, &clk_summary_fops);
449 	if (!d)
450 		return -ENOMEM;
451 
452 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
453 				&orphan_list, &clk_dump_fops);
454 	if (!d)
455 		return -ENOMEM;
456 
457 	mutex_lock(&clk_debug_lock);
458 	hlist_for_each_entry(clk, &clk_debug_list, debug_node)
459 		clk_debug_create_one(clk, rootdir);
460 
461 	inited = 1;
462 	mutex_unlock(&clk_debug_lock);
463 
464 	return 0;
465 }
466 late_initcall(clk_debug_init);
467 #else
468 static inline int clk_debug_register(struct clk_core *clk) { return 0; }
469 static inline void clk_debug_reparent(struct clk_core *clk,
470 				      struct clk_core *new_parent)
471 {
472 }
473 static inline void clk_debug_unregister(struct clk_core *clk)
474 {
475 }
476 #endif
477 
478 /* caller must hold prepare_lock */
479 static void clk_unprepare_unused_subtree(struct clk_core *clk)
480 {
481 	struct clk_core *child;
482 
483 	hlist_for_each_entry(child, &clk->children, child_node)
484 		clk_unprepare_unused_subtree(child);
485 
486 	if (clk->prepare_count)
487 		return;
488 
489 	if (clk->flags & CLK_IGNORE_UNUSED)
490 		return;
491 
492 	if (clk_core_is_prepared(clk)) {
493 		if (clk->ops->unprepare_unused)
494 			clk->ops->unprepare_unused(clk->hw);
495 		else if (clk->ops->unprepare)
496 			clk->ops->unprepare(clk->hw);
497 	}
498 }
499 
500 /* caller must hold prepare_lock */
501 static void clk_disable_unused_subtree(struct clk_core *clk)
502 {
503 	struct clk_core *child;
504 	unsigned long flags;
505 
506 	hlist_for_each_entry(child, &clk->children, child_node)
507 		clk_disable_unused_subtree(child);
508 
509 	flags = clk_enable_lock();
510 
511 	if (clk->enable_count)
512 		goto unlock_out;
513 
514 	if (clk->flags & CLK_IGNORE_UNUSED)
515 		goto unlock_out;
516 
517 	/*
518 	 * some gate clocks have special needs during the disable-unused
519 	 * sequence.  call .disable_unused if available, otherwise fall
520 	 * back to .disable
521 	 */
522 	if (clk_core_is_enabled(clk)) {
523 		if (clk->ops->disable_unused)
524 			clk->ops->disable_unused(clk->hw);
525 		else if (clk->ops->disable)
526 			clk->ops->disable(clk->hw);
527 	}
528 
529 unlock_out:
530 	clk_enable_unlock(flags);
531 }
532 
533 static bool clk_ignore_unused;
534 static int __init clk_ignore_unused_setup(char *__unused)
535 {
536 	clk_ignore_unused = true;
537 	return 1;
538 }
539 __setup("clk_ignore_unused", clk_ignore_unused_setup);
540 
541 static int clk_disable_unused(void)
542 {
543 	struct clk_core *clk;
544 
545 	if (clk_ignore_unused) {
546 		pr_warn("clk: Not disabling unused clocks\n");
547 		return 0;
548 	}
549 
550 	clk_prepare_lock();
551 
552 	hlist_for_each_entry(clk, &clk_root_list, child_node)
553 		clk_disable_unused_subtree(clk);
554 
555 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
556 		clk_disable_unused_subtree(clk);
557 
558 	hlist_for_each_entry(clk, &clk_root_list, child_node)
559 		clk_unprepare_unused_subtree(clk);
560 
561 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
562 		clk_unprepare_unused_subtree(clk);
563 
564 	clk_prepare_unlock();
565 
566 	return 0;
567 }
568 late_initcall_sync(clk_disable_unused);
569 
570 /***    helper functions   ***/
571 
572 const char *__clk_get_name(struct clk *clk)
573 {
574 	return !clk ? NULL : clk->core->name;
575 }
576 EXPORT_SYMBOL_GPL(__clk_get_name);
577 
578 struct clk_hw *__clk_get_hw(struct clk *clk)
579 {
580 	return !clk ? NULL : clk->core->hw;
581 }
582 EXPORT_SYMBOL_GPL(__clk_get_hw);
583 
584 u8 __clk_get_num_parents(struct clk *clk)
585 {
586 	return !clk ? 0 : clk->core->num_parents;
587 }
588 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
589 
590 struct clk *__clk_get_parent(struct clk *clk)
591 {
592 	if (!clk)
593 		return NULL;
594 
595 	/* TODO: Create a per-user clk and change callers to call clk_put */
596 	return !clk->core->parent ? NULL : clk->core->parent->hw->clk;
597 }
598 EXPORT_SYMBOL_GPL(__clk_get_parent);
599 
600 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *clk,
601 							 u8 index)
602 {
603 	if (!clk || index >= clk->num_parents)
604 		return NULL;
605 	else if (!clk->parents)
606 		return clk_core_lookup(clk->parent_names[index]);
607 	else if (!clk->parents[index])
608 		return clk->parents[index] =
609 			clk_core_lookup(clk->parent_names[index]);
610 	else
611 		return clk->parents[index];
612 }
613 
614 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
615 {
616 	struct clk_core *parent;
617 
618 	if (!clk)
619 		return NULL;
620 
621 	parent = clk_core_get_parent_by_index(clk->core, index);
622 
623 	return !parent ? NULL : parent->hw->clk;
624 }
625 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
626 
627 unsigned int __clk_get_enable_count(struct clk *clk)
628 {
629 	return !clk ? 0 : clk->core->enable_count;
630 }
631 
632 static unsigned long clk_core_get_rate_nolock(struct clk_core *clk)
633 {
634 	unsigned long ret;
635 
636 	if (!clk) {
637 		ret = 0;
638 		goto out;
639 	}
640 
641 	ret = clk->rate;
642 
643 	if (clk->flags & CLK_IS_ROOT)
644 		goto out;
645 
646 	if (!clk->parent)
647 		ret = 0;
648 
649 out:
650 	return ret;
651 }
652 
653 unsigned long __clk_get_rate(struct clk *clk)
654 {
655 	if (!clk)
656 		return 0;
657 
658 	return clk_core_get_rate_nolock(clk->core);
659 }
660 EXPORT_SYMBOL_GPL(__clk_get_rate);
661 
662 static unsigned long __clk_get_accuracy(struct clk_core *clk)
663 {
664 	if (!clk)
665 		return 0;
666 
667 	return clk->accuracy;
668 }
669 
670 unsigned long __clk_get_flags(struct clk *clk)
671 {
672 	return !clk ? 0 : clk->core->flags;
673 }
674 EXPORT_SYMBOL_GPL(__clk_get_flags);
675 
676 static bool clk_core_is_prepared(struct clk_core *clk)
677 {
678 	int ret;
679 
680 	if (!clk)
681 		return false;
682 
683 	/*
684 	 * .is_prepared is optional for clocks that can prepare
685 	 * fall back to software usage counter if it is missing
686 	 */
687 	if (!clk->ops->is_prepared) {
688 		ret = clk->prepare_count ? 1 : 0;
689 		goto out;
690 	}
691 
692 	ret = clk->ops->is_prepared(clk->hw);
693 out:
694 	return !!ret;
695 }
696 
697 bool __clk_is_prepared(struct clk *clk)
698 {
699 	if (!clk)
700 		return false;
701 
702 	return clk_core_is_prepared(clk->core);
703 }
704 
705 static bool clk_core_is_enabled(struct clk_core *clk)
706 {
707 	int ret;
708 
709 	if (!clk)
710 		return false;
711 
712 	/*
713 	 * .is_enabled is only mandatory for clocks that gate
714 	 * fall back to software usage counter if .is_enabled is missing
715 	 */
716 	if (!clk->ops->is_enabled) {
717 		ret = clk->enable_count ? 1 : 0;
718 		goto out;
719 	}
720 
721 	ret = clk->ops->is_enabled(clk->hw);
722 out:
723 	return !!ret;
724 }
725 
726 bool __clk_is_enabled(struct clk *clk)
727 {
728 	if (!clk)
729 		return false;
730 
731 	return clk_core_is_enabled(clk->core);
732 }
733 EXPORT_SYMBOL_GPL(__clk_is_enabled);
734 
735 static struct clk_core *__clk_lookup_subtree(const char *name,
736 					     struct clk_core *clk)
737 {
738 	struct clk_core *child;
739 	struct clk_core *ret;
740 
741 	if (!strcmp(clk->name, name))
742 		return clk;
743 
744 	hlist_for_each_entry(child, &clk->children, child_node) {
745 		ret = __clk_lookup_subtree(name, child);
746 		if (ret)
747 			return ret;
748 	}
749 
750 	return NULL;
751 }
752 
753 static struct clk_core *clk_core_lookup(const char *name)
754 {
755 	struct clk_core *root_clk;
756 	struct clk_core *ret;
757 
758 	if (!name)
759 		return NULL;
760 
761 	/* search the 'proper' clk tree first */
762 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
763 		ret = __clk_lookup_subtree(name, root_clk);
764 		if (ret)
765 			return ret;
766 	}
767 
768 	/* if not found, then search the orphan tree */
769 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
770 		ret = __clk_lookup_subtree(name, root_clk);
771 		if (ret)
772 			return ret;
773 	}
774 
775 	return NULL;
776 }
777 
778 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
779 			   unsigned long best, unsigned long flags)
780 {
781 	if (flags & CLK_MUX_ROUND_CLOSEST)
782 		return abs(now - rate) < abs(best - rate);
783 
784 	return now <= rate && now > best;
785 }
786 
787 static long
788 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate,
789 			     unsigned long min_rate,
790 			     unsigned long max_rate,
791 			     unsigned long *best_parent_rate,
792 			     struct clk_hw **best_parent_p,
793 			     unsigned long flags)
794 {
795 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
796 	int i, num_parents;
797 	unsigned long parent_rate, best = 0;
798 
799 	/* if NO_REPARENT flag set, pass through to current parent */
800 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
801 		parent = core->parent;
802 		if (core->flags & CLK_SET_RATE_PARENT)
803 			best = __clk_determine_rate(parent ? parent->hw : NULL,
804 						    rate, min_rate, max_rate);
805 		else if (parent)
806 			best = clk_core_get_rate_nolock(parent);
807 		else
808 			best = clk_core_get_rate_nolock(core);
809 		goto out;
810 	}
811 
812 	/* find the parent that can provide the fastest rate <= rate */
813 	num_parents = core->num_parents;
814 	for (i = 0; i < num_parents; i++) {
815 		parent = clk_core_get_parent_by_index(core, i);
816 		if (!parent)
817 			continue;
818 		if (core->flags & CLK_SET_RATE_PARENT)
819 			parent_rate = __clk_determine_rate(parent->hw, rate,
820 							   min_rate,
821 							   max_rate);
822 		else
823 			parent_rate = clk_core_get_rate_nolock(parent);
824 		if (mux_is_better_rate(rate, parent_rate, best, flags)) {
825 			best_parent = parent;
826 			best = parent_rate;
827 		}
828 	}
829 
830 out:
831 	if (best_parent)
832 		*best_parent_p = best_parent->hw;
833 	*best_parent_rate = best;
834 
835 	return best;
836 }
837 
838 struct clk *__clk_lookup(const char *name)
839 {
840 	struct clk_core *core = clk_core_lookup(name);
841 
842 	return !core ? NULL : core->hw->clk;
843 }
844 
845 static void clk_core_get_boundaries(struct clk_core *clk,
846 				    unsigned long *min_rate,
847 				    unsigned long *max_rate)
848 {
849 	struct clk *clk_user;
850 
851 	*min_rate = 0;
852 	*max_rate = ULONG_MAX;
853 
854 	hlist_for_each_entry(clk_user, &clk->clks, child_node)
855 		*min_rate = max(*min_rate, clk_user->min_rate);
856 
857 	hlist_for_each_entry(clk_user, &clk->clks, child_node)
858 		*max_rate = min(*max_rate, clk_user->max_rate);
859 }
860 
861 /*
862  * Helper for finding best parent to provide a given frequency. This can be used
863  * directly as a determine_rate callback (e.g. for a mux), or from a more
864  * complex clock that may combine a mux with other operations.
865  */
866 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
867 			      unsigned long min_rate,
868 			      unsigned long max_rate,
869 			      unsigned long *best_parent_rate,
870 			      struct clk_hw **best_parent_p)
871 {
872 	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
873 					    best_parent_rate,
874 					    best_parent_p, 0);
875 }
876 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
877 
878 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate,
879 			      unsigned long min_rate,
880 			      unsigned long max_rate,
881 			      unsigned long *best_parent_rate,
882 			      struct clk_hw **best_parent_p)
883 {
884 	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
885 					    best_parent_rate,
886 					    best_parent_p,
887 					    CLK_MUX_ROUND_CLOSEST);
888 }
889 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
890 
891 /***        clk api        ***/
892 
893 static void clk_core_unprepare(struct clk_core *clk)
894 {
895 	if (!clk)
896 		return;
897 
898 	if (WARN_ON(clk->prepare_count == 0))
899 		return;
900 
901 	if (--clk->prepare_count > 0)
902 		return;
903 
904 	WARN_ON(clk->enable_count > 0);
905 
906 	if (clk->ops->unprepare)
907 		clk->ops->unprepare(clk->hw);
908 
909 	clk_core_unprepare(clk->parent);
910 }
911 
912 /**
913  * clk_unprepare - undo preparation of a clock source
914  * @clk: the clk being unprepared
915  *
916  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
917  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
918  * if the operation may sleep.  One example is a clk which is accessed over
919  * I2c.  In the complex case a clk gate operation may require a fast and a slow
920  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
921  * exclusive.  In fact clk_disable must be called before clk_unprepare.
922  */
923 void clk_unprepare(struct clk *clk)
924 {
925 	if (IS_ERR_OR_NULL(clk))
926 		return;
927 
928 	clk_prepare_lock();
929 	clk_core_unprepare(clk->core);
930 	clk_prepare_unlock();
931 }
932 EXPORT_SYMBOL_GPL(clk_unprepare);
933 
934 static int clk_core_prepare(struct clk_core *clk)
935 {
936 	int ret = 0;
937 
938 	if (!clk)
939 		return 0;
940 
941 	if (clk->prepare_count == 0) {
942 		ret = clk_core_prepare(clk->parent);
943 		if (ret)
944 			return ret;
945 
946 		if (clk->ops->prepare) {
947 			ret = clk->ops->prepare(clk->hw);
948 			if (ret) {
949 				clk_core_unprepare(clk->parent);
950 				return ret;
951 			}
952 		}
953 	}
954 
955 	clk->prepare_count++;
956 
957 	return 0;
958 }
959 
960 /**
961  * clk_prepare - prepare a clock source
962  * @clk: the clk being prepared
963  *
964  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
965  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
966  * operation may sleep.  One example is a clk which is accessed over I2c.  In
967  * the complex case a clk ungate operation may require a fast and a slow part.
968  * It is this reason that clk_prepare and clk_enable are not mutually
969  * exclusive.  In fact clk_prepare must be called before clk_enable.
970  * Returns 0 on success, -EERROR otherwise.
971  */
972 int clk_prepare(struct clk *clk)
973 {
974 	int ret;
975 
976 	if (!clk)
977 		return 0;
978 
979 	clk_prepare_lock();
980 	ret = clk_core_prepare(clk->core);
981 	clk_prepare_unlock();
982 
983 	return ret;
984 }
985 EXPORT_SYMBOL_GPL(clk_prepare);
986 
987 static void clk_core_disable(struct clk_core *clk)
988 {
989 	if (!clk)
990 		return;
991 
992 	if (WARN_ON(clk->enable_count == 0))
993 		return;
994 
995 	if (--clk->enable_count > 0)
996 		return;
997 
998 	if (clk->ops->disable)
999 		clk->ops->disable(clk->hw);
1000 
1001 	clk_core_disable(clk->parent);
1002 }
1003 
1004 static void __clk_disable(struct clk *clk)
1005 {
1006 	if (!clk)
1007 		return;
1008 
1009 	clk_core_disable(clk->core);
1010 }
1011 
1012 /**
1013  * clk_disable - gate a clock
1014  * @clk: the clk being gated
1015  *
1016  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1017  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1018  * clk if the operation is fast and will never sleep.  One example is a
1019  * SoC-internal clk which is controlled via simple register writes.  In the
1020  * complex case a clk gate operation may require a fast and a slow part.  It is
1021  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1022  * In fact clk_disable must be called before clk_unprepare.
1023  */
1024 void clk_disable(struct clk *clk)
1025 {
1026 	unsigned long flags;
1027 
1028 	if (IS_ERR_OR_NULL(clk))
1029 		return;
1030 
1031 	flags = clk_enable_lock();
1032 	__clk_disable(clk);
1033 	clk_enable_unlock(flags);
1034 }
1035 EXPORT_SYMBOL_GPL(clk_disable);
1036 
1037 static int clk_core_enable(struct clk_core *clk)
1038 {
1039 	int ret = 0;
1040 
1041 	if (!clk)
1042 		return 0;
1043 
1044 	if (WARN_ON(clk->prepare_count == 0))
1045 		return -ESHUTDOWN;
1046 
1047 	if (clk->enable_count == 0) {
1048 		ret = clk_core_enable(clk->parent);
1049 
1050 		if (ret)
1051 			return ret;
1052 
1053 		if (clk->ops->enable) {
1054 			ret = clk->ops->enable(clk->hw);
1055 			if (ret) {
1056 				clk_core_disable(clk->parent);
1057 				return ret;
1058 			}
1059 		}
1060 	}
1061 
1062 	clk->enable_count++;
1063 	return 0;
1064 }
1065 
1066 static int __clk_enable(struct clk *clk)
1067 {
1068 	if (!clk)
1069 		return 0;
1070 
1071 	return clk_core_enable(clk->core);
1072 }
1073 
1074 /**
1075  * clk_enable - ungate a clock
1076  * @clk: the clk being ungated
1077  *
1078  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1079  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1080  * if the operation will never sleep.  One example is a SoC-internal clk which
1081  * is controlled via simple register writes.  In the complex case a clk ungate
1082  * operation may require a fast and a slow part.  It is this reason that
1083  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1084  * must be called before clk_enable.  Returns 0 on success, -EERROR
1085  * otherwise.
1086  */
1087 int clk_enable(struct clk *clk)
1088 {
1089 	unsigned long flags;
1090 	int ret;
1091 
1092 	flags = clk_enable_lock();
1093 	ret = __clk_enable(clk);
1094 	clk_enable_unlock(flags);
1095 
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(clk_enable);
1099 
1100 static unsigned long clk_core_round_rate_nolock(struct clk_core *clk,
1101 						unsigned long rate,
1102 						unsigned long min_rate,
1103 						unsigned long max_rate)
1104 {
1105 	unsigned long parent_rate = 0;
1106 	struct clk_core *parent;
1107 	struct clk_hw *parent_hw;
1108 
1109 	if (!clk)
1110 		return 0;
1111 
1112 	parent = clk->parent;
1113 	if (parent)
1114 		parent_rate = parent->rate;
1115 
1116 	if (clk->ops->determine_rate) {
1117 		parent_hw = parent ? parent->hw : NULL;
1118 		return clk->ops->determine_rate(clk->hw, rate,
1119 						min_rate, max_rate,
1120 						&parent_rate, &parent_hw);
1121 	} else if (clk->ops->round_rate)
1122 		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1123 	else if (clk->flags & CLK_SET_RATE_PARENT)
1124 		return clk_core_round_rate_nolock(clk->parent, rate, min_rate,
1125 						  max_rate);
1126 	else
1127 		return clk->rate;
1128 }
1129 
1130 /**
1131  * __clk_determine_rate - get the closest rate actually supported by a clock
1132  * @hw: determine the rate of this clock
1133  * @rate: target rate
1134  * @min_rate: returned rate must be greater than this rate
1135  * @max_rate: returned rate must be less than this rate
1136  *
1137  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate and
1138  * .determine_rate.
1139  */
1140 unsigned long __clk_determine_rate(struct clk_hw *hw,
1141 				   unsigned long rate,
1142 				   unsigned long min_rate,
1143 				   unsigned long max_rate)
1144 {
1145 	if (!hw)
1146 		return 0;
1147 
1148 	return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate);
1149 }
1150 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1151 
1152 /**
1153  * __clk_round_rate - round the given rate for a clk
1154  * @clk: round the rate of this clock
1155  * @rate: the rate which is to be rounded
1156  *
1157  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
1158  */
1159 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
1160 {
1161 	unsigned long min_rate;
1162 	unsigned long max_rate;
1163 
1164 	if (!clk)
1165 		return 0;
1166 
1167 	clk_core_get_boundaries(clk->core, &min_rate, &max_rate);
1168 
1169 	return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate);
1170 }
1171 EXPORT_SYMBOL_GPL(__clk_round_rate);
1172 
1173 /**
1174  * clk_round_rate - round the given rate for a clk
1175  * @clk: the clk for which we are rounding a rate
1176  * @rate: the rate which is to be rounded
1177  *
1178  * Takes in a rate as input and rounds it to a rate that the clk can actually
1179  * use which is then returned.  If clk doesn't support round_rate operation
1180  * then the parent rate is returned.
1181  */
1182 long clk_round_rate(struct clk *clk, unsigned long rate)
1183 {
1184 	unsigned long ret;
1185 
1186 	if (!clk)
1187 		return 0;
1188 
1189 	clk_prepare_lock();
1190 	ret = __clk_round_rate(clk, rate);
1191 	clk_prepare_unlock();
1192 
1193 	return ret;
1194 }
1195 EXPORT_SYMBOL_GPL(clk_round_rate);
1196 
1197 /**
1198  * __clk_notify - call clk notifier chain
1199  * @clk: struct clk * that is changing rate
1200  * @msg: clk notifier type (see include/linux/clk.h)
1201  * @old_rate: old clk rate
1202  * @new_rate: new clk rate
1203  *
1204  * Triggers a notifier call chain on the clk rate-change notification
1205  * for 'clk'.  Passes a pointer to the struct clk and the previous
1206  * and current rates to the notifier callback.  Intended to be called by
1207  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1208  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1209  * a driver returns that.
1210  */
1211 static int __clk_notify(struct clk_core *clk, unsigned long msg,
1212 		unsigned long old_rate, unsigned long new_rate)
1213 {
1214 	struct clk_notifier *cn;
1215 	struct clk_notifier_data cnd;
1216 	int ret = NOTIFY_DONE;
1217 
1218 	cnd.old_rate = old_rate;
1219 	cnd.new_rate = new_rate;
1220 
1221 	list_for_each_entry(cn, &clk_notifier_list, node) {
1222 		if (cn->clk->core == clk) {
1223 			cnd.clk = cn->clk;
1224 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1225 					&cnd);
1226 		}
1227 	}
1228 
1229 	return ret;
1230 }
1231 
1232 /**
1233  * __clk_recalc_accuracies
1234  * @clk: first clk in the subtree
1235  *
1236  * Walks the subtree of clks starting with clk and recalculates accuracies as
1237  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1238  * callback then it is assumed that the clock will take on the accuracy of it's
1239  * parent.
1240  *
1241  * Caller must hold prepare_lock.
1242  */
1243 static void __clk_recalc_accuracies(struct clk_core *clk)
1244 {
1245 	unsigned long parent_accuracy = 0;
1246 	struct clk_core *child;
1247 
1248 	if (clk->parent)
1249 		parent_accuracy = clk->parent->accuracy;
1250 
1251 	if (clk->ops->recalc_accuracy)
1252 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1253 							  parent_accuracy);
1254 	else
1255 		clk->accuracy = parent_accuracy;
1256 
1257 	hlist_for_each_entry(child, &clk->children, child_node)
1258 		__clk_recalc_accuracies(child);
1259 }
1260 
1261 static long clk_core_get_accuracy(struct clk_core *clk)
1262 {
1263 	unsigned long accuracy;
1264 
1265 	clk_prepare_lock();
1266 	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1267 		__clk_recalc_accuracies(clk);
1268 
1269 	accuracy = __clk_get_accuracy(clk);
1270 	clk_prepare_unlock();
1271 
1272 	return accuracy;
1273 }
1274 
1275 /**
1276  * clk_get_accuracy - return the accuracy of clk
1277  * @clk: the clk whose accuracy is being returned
1278  *
1279  * Simply returns the cached accuracy of the clk, unless
1280  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1281  * issued.
1282  * If clk is NULL then returns 0.
1283  */
1284 long clk_get_accuracy(struct clk *clk)
1285 {
1286 	if (!clk)
1287 		return 0;
1288 
1289 	return clk_core_get_accuracy(clk->core);
1290 }
1291 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1292 
1293 static unsigned long clk_recalc(struct clk_core *clk,
1294 				unsigned long parent_rate)
1295 {
1296 	if (clk->ops->recalc_rate)
1297 		return clk->ops->recalc_rate(clk->hw, parent_rate);
1298 	return parent_rate;
1299 }
1300 
1301 /**
1302  * __clk_recalc_rates
1303  * @clk: first clk in the subtree
1304  * @msg: notification type (see include/linux/clk.h)
1305  *
1306  * Walks the subtree of clks starting with clk and recalculates rates as it
1307  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1308  * it is assumed that the clock will take on the rate of its parent.
1309  *
1310  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1311  * if necessary.
1312  *
1313  * Caller must hold prepare_lock.
1314  */
1315 static void __clk_recalc_rates(struct clk_core *clk, unsigned long msg)
1316 {
1317 	unsigned long old_rate;
1318 	unsigned long parent_rate = 0;
1319 	struct clk_core *child;
1320 
1321 	old_rate = clk->rate;
1322 
1323 	if (clk->parent)
1324 		parent_rate = clk->parent->rate;
1325 
1326 	clk->rate = clk_recalc(clk, parent_rate);
1327 
1328 	/*
1329 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1330 	 * & ABORT_RATE_CHANGE notifiers
1331 	 */
1332 	if (clk->notifier_count && msg)
1333 		__clk_notify(clk, msg, old_rate, clk->rate);
1334 
1335 	hlist_for_each_entry(child, &clk->children, child_node)
1336 		__clk_recalc_rates(child, msg);
1337 }
1338 
1339 static unsigned long clk_core_get_rate(struct clk_core *clk)
1340 {
1341 	unsigned long rate;
1342 
1343 	clk_prepare_lock();
1344 
1345 	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1346 		__clk_recalc_rates(clk, 0);
1347 
1348 	rate = clk_core_get_rate_nolock(clk);
1349 	clk_prepare_unlock();
1350 
1351 	return rate;
1352 }
1353 
1354 /**
1355  * clk_get_rate - return the rate of clk
1356  * @clk: the clk whose rate is being returned
1357  *
1358  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1359  * is set, which means a recalc_rate will be issued.
1360  * If clk is NULL then returns 0.
1361  */
1362 unsigned long clk_get_rate(struct clk *clk)
1363 {
1364 	if (!clk)
1365 		return 0;
1366 
1367 	return clk_core_get_rate(clk->core);
1368 }
1369 EXPORT_SYMBOL_GPL(clk_get_rate);
1370 
1371 static int clk_fetch_parent_index(struct clk_core *clk,
1372 				  struct clk_core *parent)
1373 {
1374 	int i;
1375 
1376 	if (!clk->parents) {
1377 		clk->parents = kcalloc(clk->num_parents,
1378 					sizeof(struct clk *), GFP_KERNEL);
1379 		if (!clk->parents)
1380 			return -ENOMEM;
1381 	}
1382 
1383 	/*
1384 	 * find index of new parent clock using cached parent ptrs,
1385 	 * or if not yet cached, use string name comparison and cache
1386 	 * them now to avoid future calls to clk_core_lookup.
1387 	 */
1388 	for (i = 0; i < clk->num_parents; i++) {
1389 		if (clk->parents[i] == parent)
1390 			return i;
1391 
1392 		if (clk->parents[i])
1393 			continue;
1394 
1395 		if (!strcmp(clk->parent_names[i], parent->name)) {
1396 			clk->parents[i] = clk_core_lookup(parent->name);
1397 			return i;
1398 		}
1399 	}
1400 
1401 	return -EINVAL;
1402 }
1403 
1404 static void clk_reparent(struct clk_core *clk, struct clk_core *new_parent)
1405 {
1406 	hlist_del(&clk->child_node);
1407 
1408 	if (new_parent) {
1409 		/* avoid duplicate POST_RATE_CHANGE notifications */
1410 		if (new_parent->new_child == clk)
1411 			new_parent->new_child = NULL;
1412 
1413 		hlist_add_head(&clk->child_node, &new_parent->children);
1414 	} else {
1415 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1416 	}
1417 
1418 	clk->parent = new_parent;
1419 }
1420 
1421 static struct clk_core *__clk_set_parent_before(struct clk_core *clk,
1422 					   struct clk_core *parent)
1423 {
1424 	unsigned long flags;
1425 	struct clk_core *old_parent = clk->parent;
1426 
1427 	/*
1428 	 * Migrate prepare state between parents and prevent race with
1429 	 * clk_enable().
1430 	 *
1431 	 * If the clock is not prepared, then a race with
1432 	 * clk_enable/disable() is impossible since we already have the
1433 	 * prepare lock (future calls to clk_enable() need to be preceded by
1434 	 * a clk_prepare()).
1435 	 *
1436 	 * If the clock is prepared, migrate the prepared state to the new
1437 	 * parent and also protect against a race with clk_enable() by
1438 	 * forcing the clock and the new parent on.  This ensures that all
1439 	 * future calls to clk_enable() are practically NOPs with respect to
1440 	 * hardware and software states.
1441 	 *
1442 	 * See also: Comment for clk_set_parent() below.
1443 	 */
1444 	if (clk->prepare_count) {
1445 		clk_core_prepare(parent);
1446 		clk_core_enable(parent);
1447 		clk_core_enable(clk);
1448 	}
1449 
1450 	/* update the clk tree topology */
1451 	flags = clk_enable_lock();
1452 	clk_reparent(clk, parent);
1453 	clk_enable_unlock(flags);
1454 
1455 	return old_parent;
1456 }
1457 
1458 static void __clk_set_parent_after(struct clk_core *core,
1459 				   struct clk_core *parent,
1460 				   struct clk_core *old_parent)
1461 {
1462 	/*
1463 	 * Finish the migration of prepare state and undo the changes done
1464 	 * for preventing a race with clk_enable().
1465 	 */
1466 	if (core->prepare_count) {
1467 		clk_core_disable(core);
1468 		clk_core_disable(old_parent);
1469 		clk_core_unprepare(old_parent);
1470 	}
1471 }
1472 
1473 static int __clk_set_parent(struct clk_core *clk, struct clk_core *parent,
1474 			    u8 p_index)
1475 {
1476 	unsigned long flags;
1477 	int ret = 0;
1478 	struct clk_core *old_parent;
1479 
1480 	old_parent = __clk_set_parent_before(clk, parent);
1481 
1482 	/* change clock input source */
1483 	if (parent && clk->ops->set_parent)
1484 		ret = clk->ops->set_parent(clk->hw, p_index);
1485 
1486 	if (ret) {
1487 		flags = clk_enable_lock();
1488 		clk_reparent(clk, old_parent);
1489 		clk_enable_unlock(flags);
1490 
1491 		if (clk->prepare_count) {
1492 			clk_core_disable(clk);
1493 			clk_core_disable(parent);
1494 			clk_core_unprepare(parent);
1495 		}
1496 		return ret;
1497 	}
1498 
1499 	__clk_set_parent_after(clk, parent, old_parent);
1500 
1501 	return 0;
1502 }
1503 
1504 /**
1505  * __clk_speculate_rates
1506  * @clk: first clk in the subtree
1507  * @parent_rate: the "future" rate of clk's parent
1508  *
1509  * Walks the subtree of clks starting with clk, speculating rates as it
1510  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1511  *
1512  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1513  * pre-rate change notifications and returns early if no clks in the
1514  * subtree have subscribed to the notifications.  Note that if a clk does not
1515  * implement the .recalc_rate callback then it is assumed that the clock will
1516  * take on the rate of its parent.
1517  *
1518  * Caller must hold prepare_lock.
1519  */
1520 static int __clk_speculate_rates(struct clk_core *clk,
1521 				 unsigned long parent_rate)
1522 {
1523 	struct clk_core *child;
1524 	unsigned long new_rate;
1525 	int ret = NOTIFY_DONE;
1526 
1527 	new_rate = clk_recalc(clk, parent_rate);
1528 
1529 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1530 	if (clk->notifier_count)
1531 		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1532 
1533 	if (ret & NOTIFY_STOP_MASK) {
1534 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1535 				__func__, clk->name, ret);
1536 		goto out;
1537 	}
1538 
1539 	hlist_for_each_entry(child, &clk->children, child_node) {
1540 		ret = __clk_speculate_rates(child, new_rate);
1541 		if (ret & NOTIFY_STOP_MASK)
1542 			break;
1543 	}
1544 
1545 out:
1546 	return ret;
1547 }
1548 
1549 static void clk_calc_subtree(struct clk_core *clk, unsigned long new_rate,
1550 			     struct clk_core *new_parent, u8 p_index)
1551 {
1552 	struct clk_core *child;
1553 
1554 	clk->new_rate = new_rate;
1555 	clk->new_parent = new_parent;
1556 	clk->new_parent_index = p_index;
1557 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1558 	clk->new_child = NULL;
1559 	if (new_parent && new_parent != clk->parent)
1560 		new_parent->new_child = clk;
1561 
1562 	hlist_for_each_entry(child, &clk->children, child_node) {
1563 		child->new_rate = clk_recalc(child, new_rate);
1564 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1565 	}
1566 }
1567 
1568 /*
1569  * calculate the new rates returning the topmost clock that has to be
1570  * changed.
1571  */
1572 static struct clk_core *clk_calc_new_rates(struct clk_core *clk,
1573 					   unsigned long rate)
1574 {
1575 	struct clk_core *top = clk;
1576 	struct clk_core *old_parent, *parent;
1577 	struct clk_hw *parent_hw;
1578 	unsigned long best_parent_rate = 0;
1579 	unsigned long new_rate;
1580 	unsigned long min_rate;
1581 	unsigned long max_rate;
1582 	int p_index = 0;
1583 
1584 	/* sanity */
1585 	if (IS_ERR_OR_NULL(clk))
1586 		return NULL;
1587 
1588 	/* save parent rate, if it exists */
1589 	parent = old_parent = clk->parent;
1590 	if (parent)
1591 		best_parent_rate = parent->rate;
1592 
1593 	clk_core_get_boundaries(clk, &min_rate, &max_rate);
1594 
1595 	/* find the closest rate and parent clk/rate */
1596 	if (clk->ops->determine_rate) {
1597 		parent_hw = parent ? parent->hw : NULL;
1598 		new_rate = clk->ops->determine_rate(clk->hw, rate,
1599 						    min_rate,
1600 						    max_rate,
1601 						    &best_parent_rate,
1602 						    &parent_hw);
1603 		parent = parent_hw ? parent_hw->core : NULL;
1604 	} else if (clk->ops->round_rate) {
1605 		new_rate = clk->ops->round_rate(clk->hw, rate,
1606 						&best_parent_rate);
1607 		if (new_rate < min_rate || new_rate > max_rate)
1608 			return NULL;
1609 	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1610 		/* pass-through clock without adjustable parent */
1611 		clk->new_rate = clk->rate;
1612 		return NULL;
1613 	} else {
1614 		/* pass-through clock with adjustable parent */
1615 		top = clk_calc_new_rates(parent, rate);
1616 		new_rate = parent->new_rate;
1617 		goto out;
1618 	}
1619 
1620 	/* some clocks must be gated to change parent */
1621 	if (parent != old_parent &&
1622 	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1623 		pr_debug("%s: %s not gated but wants to reparent\n",
1624 			 __func__, clk->name);
1625 		return NULL;
1626 	}
1627 
1628 	/* try finding the new parent index */
1629 	if (parent && clk->num_parents > 1) {
1630 		p_index = clk_fetch_parent_index(clk, parent);
1631 		if (p_index < 0) {
1632 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1633 				 __func__, parent->name, clk->name);
1634 			return NULL;
1635 		}
1636 	}
1637 
1638 	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1639 	    best_parent_rate != parent->rate)
1640 		top = clk_calc_new_rates(parent, best_parent_rate);
1641 
1642 out:
1643 	clk_calc_subtree(clk, new_rate, parent, p_index);
1644 
1645 	return top;
1646 }
1647 
1648 /*
1649  * Notify about rate changes in a subtree. Always walk down the whole tree
1650  * so that in case of an error we can walk down the whole tree again and
1651  * abort the change.
1652  */
1653 static struct clk_core *clk_propagate_rate_change(struct clk_core *clk,
1654 						  unsigned long event)
1655 {
1656 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1657 	int ret = NOTIFY_DONE;
1658 
1659 	if (clk->rate == clk->new_rate)
1660 		return NULL;
1661 
1662 	if (clk->notifier_count) {
1663 		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1664 		if (ret & NOTIFY_STOP_MASK)
1665 			fail_clk = clk;
1666 	}
1667 
1668 	hlist_for_each_entry(child, &clk->children, child_node) {
1669 		/* Skip children who will be reparented to another clock */
1670 		if (child->new_parent && child->new_parent != clk)
1671 			continue;
1672 		tmp_clk = clk_propagate_rate_change(child, event);
1673 		if (tmp_clk)
1674 			fail_clk = tmp_clk;
1675 	}
1676 
1677 	/* handle the new child who might not be in clk->children yet */
1678 	if (clk->new_child) {
1679 		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1680 		if (tmp_clk)
1681 			fail_clk = tmp_clk;
1682 	}
1683 
1684 	return fail_clk;
1685 }
1686 
1687 /*
1688  * walk down a subtree and set the new rates notifying the rate
1689  * change on the way
1690  */
1691 static void clk_change_rate(struct clk_core *clk)
1692 {
1693 	struct clk_core *child;
1694 	struct hlist_node *tmp;
1695 	unsigned long old_rate;
1696 	unsigned long best_parent_rate = 0;
1697 	bool skip_set_rate = false;
1698 	struct clk_core *old_parent;
1699 
1700 	old_rate = clk->rate;
1701 
1702 	if (clk->new_parent)
1703 		best_parent_rate = clk->new_parent->rate;
1704 	else if (clk->parent)
1705 		best_parent_rate = clk->parent->rate;
1706 
1707 	if (clk->new_parent && clk->new_parent != clk->parent) {
1708 		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1709 
1710 		if (clk->ops->set_rate_and_parent) {
1711 			skip_set_rate = true;
1712 			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1713 					best_parent_rate,
1714 					clk->new_parent_index);
1715 		} else if (clk->ops->set_parent) {
1716 			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1717 		}
1718 
1719 		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1720 	}
1721 
1722 	if (!skip_set_rate && clk->ops->set_rate)
1723 		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1724 
1725 	clk->rate = clk_recalc(clk, best_parent_rate);
1726 
1727 	if (clk->notifier_count && old_rate != clk->rate)
1728 		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1729 
1730 	/*
1731 	 * Use safe iteration, as change_rate can actually swap parents
1732 	 * for certain clock types.
1733 	 */
1734 	hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) {
1735 		/* Skip children who will be reparented to another clock */
1736 		if (child->new_parent && child->new_parent != clk)
1737 			continue;
1738 		clk_change_rate(child);
1739 	}
1740 
1741 	/* handle the new child who might not be in clk->children yet */
1742 	if (clk->new_child)
1743 		clk_change_rate(clk->new_child);
1744 }
1745 
1746 static int clk_core_set_rate_nolock(struct clk_core *clk,
1747 				    unsigned long req_rate)
1748 {
1749 	struct clk_core *top, *fail_clk;
1750 	unsigned long rate = req_rate;
1751 	int ret = 0;
1752 
1753 	if (!clk)
1754 		return 0;
1755 
1756 	/* bail early if nothing to do */
1757 	if (rate == clk_core_get_rate_nolock(clk))
1758 		return 0;
1759 
1760 	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count)
1761 		return -EBUSY;
1762 
1763 	/* calculate new rates and get the topmost changed clock */
1764 	top = clk_calc_new_rates(clk, rate);
1765 	if (!top)
1766 		return -EINVAL;
1767 
1768 	/* notify that we are about to change rates */
1769 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1770 	if (fail_clk) {
1771 		pr_debug("%s: failed to set %s rate\n", __func__,
1772 				fail_clk->name);
1773 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1774 		return -EBUSY;
1775 	}
1776 
1777 	/* change the rates */
1778 	clk_change_rate(top);
1779 
1780 	clk->req_rate = req_rate;
1781 
1782 	return ret;
1783 }
1784 
1785 /**
1786  * clk_set_rate - specify a new rate for clk
1787  * @clk: the clk whose rate is being changed
1788  * @rate: the new rate for clk
1789  *
1790  * In the simplest case clk_set_rate will only adjust the rate of clk.
1791  *
1792  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1793  * propagate up to clk's parent; whether or not this happens depends on the
1794  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1795  * after calling .round_rate then upstream parent propagation is ignored.  If
1796  * *parent_rate comes back with a new rate for clk's parent then we propagate
1797  * up to clk's parent and set its rate.  Upward propagation will continue
1798  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1799  * .round_rate stops requesting changes to clk's parent_rate.
1800  *
1801  * Rate changes are accomplished via tree traversal that also recalculates the
1802  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1803  *
1804  * Returns 0 on success, -EERROR otherwise.
1805  */
1806 int clk_set_rate(struct clk *clk, unsigned long rate)
1807 {
1808 	int ret;
1809 
1810 	if (!clk)
1811 		return 0;
1812 
1813 	/* prevent racing with updates to the clock topology */
1814 	clk_prepare_lock();
1815 
1816 	ret = clk_core_set_rate_nolock(clk->core, rate);
1817 
1818 	clk_prepare_unlock();
1819 
1820 	return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(clk_set_rate);
1823 
1824 /**
1825  * clk_set_rate_range - set a rate range for a clock source
1826  * @clk: clock source
1827  * @min: desired minimum clock rate in Hz, inclusive
1828  * @max: desired maximum clock rate in Hz, inclusive
1829  *
1830  * Returns success (0) or negative errno.
1831  */
1832 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1833 {
1834 	int ret = 0;
1835 
1836 	if (!clk)
1837 		return 0;
1838 
1839 	if (min > max) {
1840 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1841 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1842 		       min, max);
1843 		return -EINVAL;
1844 	}
1845 
1846 	clk_prepare_lock();
1847 
1848 	if (min != clk->min_rate || max != clk->max_rate) {
1849 		clk->min_rate = min;
1850 		clk->max_rate = max;
1851 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1852 	}
1853 
1854 	clk_prepare_unlock();
1855 
1856 	return ret;
1857 }
1858 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1859 
1860 /**
1861  * clk_set_min_rate - set a minimum clock rate for a clock source
1862  * @clk: clock source
1863  * @rate: desired minimum clock rate in Hz, inclusive
1864  *
1865  * Returns success (0) or negative errno.
1866  */
1867 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1868 {
1869 	if (!clk)
1870 		return 0;
1871 
1872 	return clk_set_rate_range(clk, rate, clk->max_rate);
1873 }
1874 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1875 
1876 /**
1877  * clk_set_max_rate - set a maximum clock rate for a clock source
1878  * @clk: clock source
1879  * @rate: desired maximum clock rate in Hz, inclusive
1880  *
1881  * Returns success (0) or negative errno.
1882  */
1883 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1884 {
1885 	if (!clk)
1886 		return 0;
1887 
1888 	return clk_set_rate_range(clk, clk->min_rate, rate);
1889 }
1890 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1891 
1892 /**
1893  * clk_get_parent - return the parent of a clk
1894  * @clk: the clk whose parent gets returned
1895  *
1896  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1897  */
1898 struct clk *clk_get_parent(struct clk *clk)
1899 {
1900 	struct clk *parent;
1901 
1902 	clk_prepare_lock();
1903 	parent = __clk_get_parent(clk);
1904 	clk_prepare_unlock();
1905 
1906 	return parent;
1907 }
1908 EXPORT_SYMBOL_GPL(clk_get_parent);
1909 
1910 /*
1911  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1912  * optional for single-parent clocks.  Always call .get_parent if it is
1913  * available and WARN if it is missing for multi-parent clocks.
1914  *
1915  * For single-parent clocks without .get_parent, first check to see if the
1916  * .parents array exists, and if so use it to avoid an expensive tree
1917  * traversal.  If .parents does not exist then walk the tree.
1918  */
1919 static struct clk_core *__clk_init_parent(struct clk_core *clk)
1920 {
1921 	struct clk_core *ret = NULL;
1922 	u8 index;
1923 
1924 	/* handle the trivial cases */
1925 
1926 	if (!clk->num_parents)
1927 		goto out;
1928 
1929 	if (clk->num_parents == 1) {
1930 		if (IS_ERR_OR_NULL(clk->parent))
1931 			clk->parent = clk_core_lookup(clk->parent_names[0]);
1932 		ret = clk->parent;
1933 		goto out;
1934 	}
1935 
1936 	if (!clk->ops->get_parent) {
1937 		WARN(!clk->ops->get_parent,
1938 			"%s: multi-parent clocks must implement .get_parent\n",
1939 			__func__);
1940 		goto out;
1941 	};
1942 
1943 	/*
1944 	 * Do our best to cache parent clocks in clk->parents.  This prevents
1945 	 * unnecessary and expensive lookups.  We don't set clk->parent here;
1946 	 * that is done by the calling function.
1947 	 */
1948 
1949 	index = clk->ops->get_parent(clk->hw);
1950 
1951 	if (!clk->parents)
1952 		clk->parents =
1953 			kcalloc(clk->num_parents, sizeof(struct clk *),
1954 					GFP_KERNEL);
1955 
1956 	ret = clk_core_get_parent_by_index(clk, index);
1957 
1958 out:
1959 	return ret;
1960 }
1961 
1962 static void clk_core_reparent(struct clk_core *clk,
1963 				  struct clk_core *new_parent)
1964 {
1965 	clk_reparent(clk, new_parent);
1966 	__clk_recalc_accuracies(clk);
1967 	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1968 }
1969 
1970 /**
1971  * clk_has_parent - check if a clock is a possible parent for another
1972  * @clk: clock source
1973  * @parent: parent clock source
1974  *
1975  * This function can be used in drivers that need to check that a clock can be
1976  * the parent of another without actually changing the parent.
1977  *
1978  * Returns true if @parent is a possible parent for @clk, false otherwise.
1979  */
1980 bool clk_has_parent(struct clk *clk, struct clk *parent)
1981 {
1982 	struct clk_core *core, *parent_core;
1983 	unsigned int i;
1984 
1985 	/* NULL clocks should be nops, so return success if either is NULL. */
1986 	if (!clk || !parent)
1987 		return true;
1988 
1989 	core = clk->core;
1990 	parent_core = parent->core;
1991 
1992 	/* Optimize for the case where the parent is already the parent. */
1993 	if (core->parent == parent_core)
1994 		return true;
1995 
1996 	for (i = 0; i < core->num_parents; i++)
1997 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1998 			return true;
1999 
2000 	return false;
2001 }
2002 EXPORT_SYMBOL_GPL(clk_has_parent);
2003 
2004 static int clk_core_set_parent(struct clk_core *clk, struct clk_core *parent)
2005 {
2006 	int ret = 0;
2007 	int p_index = 0;
2008 	unsigned long p_rate = 0;
2009 
2010 	if (!clk)
2011 		return 0;
2012 
2013 	/* verify ops for for multi-parent clks */
2014 	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
2015 		return -ENOSYS;
2016 
2017 	/* prevent racing with updates to the clock topology */
2018 	clk_prepare_lock();
2019 
2020 	if (clk->parent == parent)
2021 		goto out;
2022 
2023 	/* check that we are allowed to re-parent if the clock is in use */
2024 	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
2025 		ret = -EBUSY;
2026 		goto out;
2027 	}
2028 
2029 	/* try finding the new parent index */
2030 	if (parent) {
2031 		p_index = clk_fetch_parent_index(clk, parent);
2032 		p_rate = parent->rate;
2033 		if (p_index < 0) {
2034 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2035 					__func__, parent->name, clk->name);
2036 			ret = p_index;
2037 			goto out;
2038 		}
2039 	}
2040 
2041 	/* propagate PRE_RATE_CHANGE notifications */
2042 	ret = __clk_speculate_rates(clk, p_rate);
2043 
2044 	/* abort if a driver objects */
2045 	if (ret & NOTIFY_STOP_MASK)
2046 		goto out;
2047 
2048 	/* do the re-parent */
2049 	ret = __clk_set_parent(clk, parent, p_index);
2050 
2051 	/* propagate rate an accuracy recalculation accordingly */
2052 	if (ret) {
2053 		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
2054 	} else {
2055 		__clk_recalc_rates(clk, POST_RATE_CHANGE);
2056 		__clk_recalc_accuracies(clk);
2057 	}
2058 
2059 out:
2060 	clk_prepare_unlock();
2061 
2062 	return ret;
2063 }
2064 
2065 /**
2066  * clk_set_parent - switch the parent of a mux clk
2067  * @clk: the mux clk whose input we are switching
2068  * @parent: the new input to clk
2069  *
2070  * Re-parent clk to use parent as its new input source.  If clk is in
2071  * prepared state, the clk will get enabled for the duration of this call. If
2072  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2073  * that, the reparenting is glitchy in hardware, etc), use the
2074  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2075  *
2076  * After successfully changing clk's parent clk_set_parent will update the
2077  * clk topology, sysfs topology and propagate rate recalculation via
2078  * __clk_recalc_rates.
2079  *
2080  * Returns 0 on success, -EERROR otherwise.
2081  */
2082 int clk_set_parent(struct clk *clk, struct clk *parent)
2083 {
2084 	if (!clk)
2085 		return 0;
2086 
2087 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
2088 }
2089 EXPORT_SYMBOL_GPL(clk_set_parent);
2090 
2091 /**
2092  * clk_set_phase - adjust the phase shift of a clock signal
2093  * @clk: clock signal source
2094  * @degrees: number of degrees the signal is shifted
2095  *
2096  * Shifts the phase of a clock signal by the specified
2097  * degrees. Returns 0 on success, -EERROR otherwise.
2098  *
2099  * This function makes no distinction about the input or reference
2100  * signal that we adjust the clock signal phase against. For example
2101  * phase locked-loop clock signal generators we may shift phase with
2102  * respect to feedback clock signal input, but for other cases the
2103  * clock phase may be shifted with respect to some other, unspecified
2104  * signal.
2105  *
2106  * Additionally the concept of phase shift does not propagate through
2107  * the clock tree hierarchy, which sets it apart from clock rates and
2108  * clock accuracy. A parent clock phase attribute does not have an
2109  * impact on the phase attribute of a child clock.
2110  */
2111 int clk_set_phase(struct clk *clk, int degrees)
2112 {
2113 	int ret = 0;
2114 
2115 	if (!clk)
2116 		goto out;
2117 
2118 	/* sanity check degrees */
2119 	degrees %= 360;
2120 	if (degrees < 0)
2121 		degrees += 360;
2122 
2123 	clk_prepare_lock();
2124 
2125 	if (!clk->core->ops->set_phase)
2126 		goto out_unlock;
2127 
2128 	ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2129 
2130 	if (!ret)
2131 		clk->core->phase = degrees;
2132 
2133 out_unlock:
2134 	clk_prepare_unlock();
2135 
2136 out:
2137 	return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(clk_set_phase);
2140 
2141 static int clk_core_get_phase(struct clk_core *clk)
2142 {
2143 	int ret = 0;
2144 
2145 	if (!clk)
2146 		goto out;
2147 
2148 	clk_prepare_lock();
2149 	ret = clk->phase;
2150 	clk_prepare_unlock();
2151 
2152 out:
2153 	return ret;
2154 }
2155 EXPORT_SYMBOL_GPL(clk_get_phase);
2156 
2157 /**
2158  * clk_get_phase - return the phase shift of a clock signal
2159  * @clk: clock signal source
2160  *
2161  * Returns the phase shift of a clock node in degrees, otherwise returns
2162  * -EERROR.
2163  */
2164 int clk_get_phase(struct clk *clk)
2165 {
2166 	if (!clk)
2167 		return 0;
2168 
2169 	return clk_core_get_phase(clk->core);
2170 }
2171 
2172 /**
2173  * clk_is_match - check if two clk's point to the same hardware clock
2174  * @p: clk compared against q
2175  * @q: clk compared against p
2176  *
2177  * Returns true if the two struct clk pointers both point to the same hardware
2178  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2179  * share the same struct clk_core object.
2180  *
2181  * Returns false otherwise. Note that two NULL clks are treated as matching.
2182  */
2183 bool clk_is_match(const struct clk *p, const struct clk *q)
2184 {
2185 	/* trivial case: identical struct clk's or both NULL */
2186 	if (p == q)
2187 		return true;
2188 
2189 	/* true if clk->core pointers match. Avoid derefing garbage */
2190 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2191 		if (p->core == q->core)
2192 			return true;
2193 
2194 	return false;
2195 }
2196 EXPORT_SYMBOL_GPL(clk_is_match);
2197 
2198 /**
2199  * __clk_init - initialize the data structures in a struct clk
2200  * @dev:	device initializing this clk, placeholder for now
2201  * @clk:	clk being initialized
2202  *
2203  * Initializes the lists in struct clk_core, queries the hardware for the
2204  * parent and rate and sets them both.
2205  */
2206 static int __clk_init(struct device *dev, struct clk *clk_user)
2207 {
2208 	int i, ret = 0;
2209 	struct clk_core *orphan;
2210 	struct hlist_node *tmp2;
2211 	struct clk_core *clk;
2212 	unsigned long rate;
2213 
2214 	if (!clk_user)
2215 		return -EINVAL;
2216 
2217 	clk = clk_user->core;
2218 
2219 	clk_prepare_lock();
2220 
2221 	/* check to see if a clock with this name is already registered */
2222 	if (clk_core_lookup(clk->name)) {
2223 		pr_debug("%s: clk %s already initialized\n",
2224 				__func__, clk->name);
2225 		ret = -EEXIST;
2226 		goto out;
2227 	}
2228 
2229 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2230 	if (clk->ops->set_rate &&
2231 	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
2232 	      clk->ops->recalc_rate)) {
2233 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2234 				__func__, clk->name);
2235 		ret = -EINVAL;
2236 		goto out;
2237 	}
2238 
2239 	if (clk->ops->set_parent && !clk->ops->get_parent) {
2240 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2241 				__func__, clk->name);
2242 		ret = -EINVAL;
2243 		goto out;
2244 	}
2245 
2246 	if (clk->ops->set_rate_and_parent &&
2247 			!(clk->ops->set_parent && clk->ops->set_rate)) {
2248 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2249 				__func__, clk->name);
2250 		ret = -EINVAL;
2251 		goto out;
2252 	}
2253 
2254 	/* throw a WARN if any entries in parent_names are NULL */
2255 	for (i = 0; i < clk->num_parents; i++)
2256 		WARN(!clk->parent_names[i],
2257 				"%s: invalid NULL in %s's .parent_names\n",
2258 				__func__, clk->name);
2259 
2260 	/*
2261 	 * Allocate an array of struct clk *'s to avoid unnecessary string
2262 	 * look-ups of clk's possible parents.  This can fail for clocks passed
2263 	 * in to clk_init during early boot; thus any access to clk->parents[]
2264 	 * must always check for a NULL pointer and try to populate it if
2265 	 * necessary.
2266 	 *
2267 	 * If clk->parents is not NULL we skip this entire block.  This allows
2268 	 * for clock drivers to statically initialize clk->parents.
2269 	 */
2270 	if (clk->num_parents > 1 && !clk->parents) {
2271 		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
2272 					GFP_KERNEL);
2273 		/*
2274 		 * clk_core_lookup returns NULL for parents that have not been
2275 		 * clk_init'd; thus any access to clk->parents[] must check
2276 		 * for a NULL pointer.  We can always perform lazy lookups for
2277 		 * missing parents later on.
2278 		 */
2279 		if (clk->parents)
2280 			for (i = 0; i < clk->num_parents; i++)
2281 				clk->parents[i] =
2282 					clk_core_lookup(clk->parent_names[i]);
2283 	}
2284 
2285 	clk->parent = __clk_init_parent(clk);
2286 
2287 	/*
2288 	 * Populate clk->parent if parent has already been __clk_init'd.  If
2289 	 * parent has not yet been __clk_init'd then place clk in the orphan
2290 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
2291 	 * clk list.
2292 	 *
2293 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2294 	 * clocks and re-parent any that are children of the clock currently
2295 	 * being clk_init'd.
2296 	 */
2297 	if (clk->parent)
2298 		hlist_add_head(&clk->child_node,
2299 				&clk->parent->children);
2300 	else if (clk->flags & CLK_IS_ROOT)
2301 		hlist_add_head(&clk->child_node, &clk_root_list);
2302 	else
2303 		hlist_add_head(&clk->child_node, &clk_orphan_list);
2304 
2305 	/*
2306 	 * Set clk's accuracy.  The preferred method is to use
2307 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2308 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2309 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2310 	 * clock).
2311 	 */
2312 	if (clk->ops->recalc_accuracy)
2313 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
2314 					__clk_get_accuracy(clk->parent));
2315 	else if (clk->parent)
2316 		clk->accuracy = clk->parent->accuracy;
2317 	else
2318 		clk->accuracy = 0;
2319 
2320 	/*
2321 	 * Set clk's phase.
2322 	 * Since a phase is by definition relative to its parent, just
2323 	 * query the current clock phase, or just assume it's in phase.
2324 	 */
2325 	if (clk->ops->get_phase)
2326 		clk->phase = clk->ops->get_phase(clk->hw);
2327 	else
2328 		clk->phase = 0;
2329 
2330 	/*
2331 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2332 	 * simple clocks and lazy developers the default fallback is to use the
2333 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2334 	 * then rate is set to zero.
2335 	 */
2336 	if (clk->ops->recalc_rate)
2337 		rate = clk->ops->recalc_rate(clk->hw,
2338 				clk_core_get_rate_nolock(clk->parent));
2339 	else if (clk->parent)
2340 		rate = clk->parent->rate;
2341 	else
2342 		rate = 0;
2343 	clk->rate = clk->req_rate = rate;
2344 
2345 	/*
2346 	 * walk the list of orphan clocks and reparent any that are children of
2347 	 * this clock
2348 	 */
2349 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2350 		if (orphan->num_parents && orphan->ops->get_parent) {
2351 			i = orphan->ops->get_parent(orphan->hw);
2352 			if (!strcmp(clk->name, orphan->parent_names[i]))
2353 				clk_core_reparent(orphan, clk);
2354 			continue;
2355 		}
2356 
2357 		for (i = 0; i < orphan->num_parents; i++)
2358 			if (!strcmp(clk->name, orphan->parent_names[i])) {
2359 				clk_core_reparent(orphan, clk);
2360 				break;
2361 			}
2362 	 }
2363 
2364 	/*
2365 	 * optional platform-specific magic
2366 	 *
2367 	 * The .init callback is not used by any of the basic clock types, but
2368 	 * exists for weird hardware that must perform initialization magic.
2369 	 * Please consider other ways of solving initialization problems before
2370 	 * using this callback, as its use is discouraged.
2371 	 */
2372 	if (clk->ops->init)
2373 		clk->ops->init(clk->hw);
2374 
2375 	kref_init(&clk->ref);
2376 out:
2377 	clk_prepare_unlock();
2378 
2379 	if (!ret)
2380 		clk_debug_register(clk);
2381 
2382 	return ret;
2383 }
2384 
2385 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2386 			     const char *con_id)
2387 {
2388 	struct clk *clk;
2389 
2390 	/* This is to allow this function to be chained to others */
2391 	if (!hw || IS_ERR(hw))
2392 		return (struct clk *) hw;
2393 
2394 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2395 	if (!clk)
2396 		return ERR_PTR(-ENOMEM);
2397 
2398 	clk->core = hw->core;
2399 	clk->dev_id = dev_id;
2400 	clk->con_id = con_id;
2401 	clk->max_rate = ULONG_MAX;
2402 
2403 	clk_prepare_lock();
2404 	hlist_add_head(&clk->child_node, &hw->core->clks);
2405 	clk_prepare_unlock();
2406 
2407 	return clk;
2408 }
2409 
2410 void __clk_free_clk(struct clk *clk)
2411 {
2412 	clk_prepare_lock();
2413 	hlist_del(&clk->child_node);
2414 	clk_prepare_unlock();
2415 
2416 	kfree(clk);
2417 }
2418 
2419 /**
2420  * clk_register - allocate a new clock, register it and return an opaque cookie
2421  * @dev: device that is registering this clock
2422  * @hw: link to hardware-specific clock data
2423  *
2424  * clk_register is the primary interface for populating the clock tree with new
2425  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2426  * cannot be dereferenced by driver code but may be used in conjuction with the
2427  * rest of the clock API.  In the event of an error clk_register will return an
2428  * error code; drivers must test for an error code after calling clk_register.
2429  */
2430 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2431 {
2432 	int i, ret;
2433 	struct clk_core *clk;
2434 
2435 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2436 	if (!clk) {
2437 		pr_err("%s: could not allocate clk\n", __func__);
2438 		ret = -ENOMEM;
2439 		goto fail_out;
2440 	}
2441 
2442 	clk->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2443 	if (!clk->name) {
2444 		pr_err("%s: could not allocate clk->name\n", __func__);
2445 		ret = -ENOMEM;
2446 		goto fail_name;
2447 	}
2448 	clk->ops = hw->init->ops;
2449 	if (dev && dev->driver)
2450 		clk->owner = dev->driver->owner;
2451 	clk->hw = hw;
2452 	clk->flags = hw->init->flags;
2453 	clk->num_parents = hw->init->num_parents;
2454 	hw->core = clk;
2455 
2456 	/* allocate local copy in case parent_names is __initdata */
2457 	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2458 					GFP_KERNEL);
2459 
2460 	if (!clk->parent_names) {
2461 		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2462 		ret = -ENOMEM;
2463 		goto fail_parent_names;
2464 	}
2465 
2466 
2467 	/* copy each string name in case parent_names is __initdata */
2468 	for (i = 0; i < clk->num_parents; i++) {
2469 		clk->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2470 						GFP_KERNEL);
2471 		if (!clk->parent_names[i]) {
2472 			pr_err("%s: could not copy parent_names\n", __func__);
2473 			ret = -ENOMEM;
2474 			goto fail_parent_names_copy;
2475 		}
2476 	}
2477 
2478 	INIT_HLIST_HEAD(&clk->clks);
2479 
2480 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2481 	if (IS_ERR(hw->clk)) {
2482 		pr_err("%s: could not allocate per-user clk\n", __func__);
2483 		ret = PTR_ERR(hw->clk);
2484 		goto fail_parent_names_copy;
2485 	}
2486 
2487 	ret = __clk_init(dev, hw->clk);
2488 	if (!ret)
2489 		return hw->clk;
2490 
2491 	__clk_free_clk(hw->clk);
2492 	hw->clk = NULL;
2493 
2494 fail_parent_names_copy:
2495 	while (--i >= 0)
2496 		kfree_const(clk->parent_names[i]);
2497 	kfree(clk->parent_names);
2498 fail_parent_names:
2499 	kfree_const(clk->name);
2500 fail_name:
2501 	kfree(clk);
2502 fail_out:
2503 	return ERR_PTR(ret);
2504 }
2505 EXPORT_SYMBOL_GPL(clk_register);
2506 
2507 /*
2508  * Free memory allocated for a clock.
2509  * Caller must hold prepare_lock.
2510  */
2511 static void __clk_release(struct kref *ref)
2512 {
2513 	struct clk_core *clk = container_of(ref, struct clk_core, ref);
2514 	int i = clk->num_parents;
2515 
2516 	kfree(clk->parents);
2517 	while (--i >= 0)
2518 		kfree_const(clk->parent_names[i]);
2519 
2520 	kfree(clk->parent_names);
2521 	kfree_const(clk->name);
2522 	kfree(clk);
2523 }
2524 
2525 /*
2526  * Empty clk_ops for unregistered clocks. These are used temporarily
2527  * after clk_unregister() was called on a clock and until last clock
2528  * consumer calls clk_put() and the struct clk object is freed.
2529  */
2530 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2531 {
2532 	return -ENXIO;
2533 }
2534 
2535 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2536 {
2537 	WARN_ON_ONCE(1);
2538 }
2539 
2540 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2541 					unsigned long parent_rate)
2542 {
2543 	return -ENXIO;
2544 }
2545 
2546 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2547 {
2548 	return -ENXIO;
2549 }
2550 
2551 static const struct clk_ops clk_nodrv_ops = {
2552 	.enable		= clk_nodrv_prepare_enable,
2553 	.disable	= clk_nodrv_disable_unprepare,
2554 	.prepare	= clk_nodrv_prepare_enable,
2555 	.unprepare	= clk_nodrv_disable_unprepare,
2556 	.set_rate	= clk_nodrv_set_rate,
2557 	.set_parent	= clk_nodrv_set_parent,
2558 };
2559 
2560 /**
2561  * clk_unregister - unregister a currently registered clock
2562  * @clk: clock to unregister
2563  */
2564 void clk_unregister(struct clk *clk)
2565 {
2566 	unsigned long flags;
2567 
2568 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2569 		return;
2570 
2571 	clk_debug_unregister(clk->core);
2572 
2573 	clk_prepare_lock();
2574 
2575 	if (clk->core->ops == &clk_nodrv_ops) {
2576 		pr_err("%s: unregistered clock: %s\n", __func__,
2577 		       clk->core->name);
2578 		return;
2579 	}
2580 	/*
2581 	 * Assign empty clock ops for consumers that might still hold
2582 	 * a reference to this clock.
2583 	 */
2584 	flags = clk_enable_lock();
2585 	clk->core->ops = &clk_nodrv_ops;
2586 	clk_enable_unlock(flags);
2587 
2588 	if (!hlist_empty(&clk->core->children)) {
2589 		struct clk_core *child;
2590 		struct hlist_node *t;
2591 
2592 		/* Reparent all children to the orphan list. */
2593 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2594 					  child_node)
2595 			clk_core_set_parent(child, NULL);
2596 	}
2597 
2598 	hlist_del_init(&clk->core->child_node);
2599 
2600 	if (clk->core->prepare_count)
2601 		pr_warn("%s: unregistering prepared clock: %s\n",
2602 					__func__, clk->core->name);
2603 	kref_put(&clk->core->ref, __clk_release);
2604 
2605 	clk_prepare_unlock();
2606 }
2607 EXPORT_SYMBOL_GPL(clk_unregister);
2608 
2609 static void devm_clk_release(struct device *dev, void *res)
2610 {
2611 	clk_unregister(*(struct clk **)res);
2612 }
2613 
2614 /**
2615  * devm_clk_register - resource managed clk_register()
2616  * @dev: device that is registering this clock
2617  * @hw: link to hardware-specific clock data
2618  *
2619  * Managed clk_register(). Clocks returned from this function are
2620  * automatically clk_unregister()ed on driver detach. See clk_register() for
2621  * more information.
2622  */
2623 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2624 {
2625 	struct clk *clk;
2626 	struct clk **clkp;
2627 
2628 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2629 	if (!clkp)
2630 		return ERR_PTR(-ENOMEM);
2631 
2632 	clk = clk_register(dev, hw);
2633 	if (!IS_ERR(clk)) {
2634 		*clkp = clk;
2635 		devres_add(dev, clkp);
2636 	} else {
2637 		devres_free(clkp);
2638 	}
2639 
2640 	return clk;
2641 }
2642 EXPORT_SYMBOL_GPL(devm_clk_register);
2643 
2644 static int devm_clk_match(struct device *dev, void *res, void *data)
2645 {
2646 	struct clk *c = res;
2647 	if (WARN_ON(!c))
2648 		return 0;
2649 	return c == data;
2650 }
2651 
2652 /**
2653  * devm_clk_unregister - resource managed clk_unregister()
2654  * @clk: clock to unregister
2655  *
2656  * Deallocate a clock allocated with devm_clk_register(). Normally
2657  * this function will not need to be called and the resource management
2658  * code will ensure that the resource is freed.
2659  */
2660 void devm_clk_unregister(struct device *dev, struct clk *clk)
2661 {
2662 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2663 }
2664 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2665 
2666 /*
2667  * clkdev helpers
2668  */
2669 int __clk_get(struct clk *clk)
2670 {
2671 	struct clk_core *core = !clk ? NULL : clk->core;
2672 
2673 	if (core) {
2674 		if (!try_module_get(core->owner))
2675 			return 0;
2676 
2677 		kref_get(&core->ref);
2678 	}
2679 	return 1;
2680 }
2681 
2682 void __clk_put(struct clk *clk)
2683 {
2684 	struct module *owner;
2685 
2686 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2687 		return;
2688 
2689 	clk_prepare_lock();
2690 
2691 	hlist_del(&clk->child_node);
2692 	if (clk->min_rate > clk->core->req_rate ||
2693 	    clk->max_rate < clk->core->req_rate)
2694 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2695 
2696 	owner = clk->core->owner;
2697 	kref_put(&clk->core->ref, __clk_release);
2698 
2699 	clk_prepare_unlock();
2700 
2701 	module_put(owner);
2702 
2703 	kfree(clk);
2704 }
2705 
2706 /***        clk rate change notifiers        ***/
2707 
2708 /**
2709  * clk_notifier_register - add a clk rate change notifier
2710  * @clk: struct clk * to watch
2711  * @nb: struct notifier_block * with callback info
2712  *
2713  * Request notification when clk's rate changes.  This uses an SRCU
2714  * notifier because we want it to block and notifier unregistrations are
2715  * uncommon.  The callbacks associated with the notifier must not
2716  * re-enter into the clk framework by calling any top-level clk APIs;
2717  * this will cause a nested prepare_lock mutex.
2718  *
2719  * In all notification cases cases (pre, post and abort rate change) the
2720  * original clock rate is passed to the callback via struct
2721  * clk_notifier_data.old_rate and the new frequency is passed via struct
2722  * clk_notifier_data.new_rate.
2723  *
2724  * clk_notifier_register() must be called from non-atomic context.
2725  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2726  * allocation failure; otherwise, passes along the return value of
2727  * srcu_notifier_chain_register().
2728  */
2729 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2730 {
2731 	struct clk_notifier *cn;
2732 	int ret = -ENOMEM;
2733 
2734 	if (!clk || !nb)
2735 		return -EINVAL;
2736 
2737 	clk_prepare_lock();
2738 
2739 	/* search the list of notifiers for this clk */
2740 	list_for_each_entry(cn, &clk_notifier_list, node)
2741 		if (cn->clk == clk)
2742 			break;
2743 
2744 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2745 	if (cn->clk != clk) {
2746 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2747 		if (!cn)
2748 			goto out;
2749 
2750 		cn->clk = clk;
2751 		srcu_init_notifier_head(&cn->notifier_head);
2752 
2753 		list_add(&cn->node, &clk_notifier_list);
2754 	}
2755 
2756 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2757 
2758 	clk->core->notifier_count++;
2759 
2760 out:
2761 	clk_prepare_unlock();
2762 
2763 	return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(clk_notifier_register);
2766 
2767 /**
2768  * clk_notifier_unregister - remove a clk rate change notifier
2769  * @clk: struct clk *
2770  * @nb: struct notifier_block * with callback info
2771  *
2772  * Request no further notification for changes to 'clk' and frees memory
2773  * allocated in clk_notifier_register.
2774  *
2775  * Returns -EINVAL if called with null arguments; otherwise, passes
2776  * along the return value of srcu_notifier_chain_unregister().
2777  */
2778 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2779 {
2780 	struct clk_notifier *cn = NULL;
2781 	int ret = -EINVAL;
2782 
2783 	if (!clk || !nb)
2784 		return -EINVAL;
2785 
2786 	clk_prepare_lock();
2787 
2788 	list_for_each_entry(cn, &clk_notifier_list, node)
2789 		if (cn->clk == clk)
2790 			break;
2791 
2792 	if (cn->clk == clk) {
2793 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2794 
2795 		clk->core->notifier_count--;
2796 
2797 		/* XXX the notifier code should handle this better */
2798 		if (!cn->notifier_head.head) {
2799 			srcu_cleanup_notifier_head(&cn->notifier_head);
2800 			list_del(&cn->node);
2801 			kfree(cn);
2802 		}
2803 
2804 	} else {
2805 		ret = -ENOENT;
2806 	}
2807 
2808 	clk_prepare_unlock();
2809 
2810 	return ret;
2811 }
2812 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2813 
2814 #ifdef CONFIG_OF
2815 /**
2816  * struct of_clk_provider - Clock provider registration structure
2817  * @link: Entry in global list of clock providers
2818  * @node: Pointer to device tree node of clock provider
2819  * @get: Get clock callback.  Returns NULL or a struct clk for the
2820  *       given clock specifier
2821  * @data: context pointer to be passed into @get callback
2822  */
2823 struct of_clk_provider {
2824 	struct list_head link;
2825 
2826 	struct device_node *node;
2827 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2828 	void *data;
2829 };
2830 
2831 static const struct of_device_id __clk_of_table_sentinel
2832 	__used __section(__clk_of_table_end);
2833 
2834 static LIST_HEAD(of_clk_providers);
2835 static DEFINE_MUTEX(of_clk_mutex);
2836 
2837 /* of_clk_provider list locking helpers */
2838 void of_clk_lock(void)
2839 {
2840 	mutex_lock(&of_clk_mutex);
2841 }
2842 
2843 void of_clk_unlock(void)
2844 {
2845 	mutex_unlock(&of_clk_mutex);
2846 }
2847 
2848 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2849 				     void *data)
2850 {
2851 	return data;
2852 }
2853 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2854 
2855 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2856 {
2857 	struct clk_onecell_data *clk_data = data;
2858 	unsigned int idx = clkspec->args[0];
2859 
2860 	if (idx >= clk_data->clk_num) {
2861 		pr_err("%s: invalid clock index %d\n", __func__, idx);
2862 		return ERR_PTR(-EINVAL);
2863 	}
2864 
2865 	return clk_data->clks[idx];
2866 }
2867 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2868 
2869 /**
2870  * of_clk_add_provider() - Register a clock provider for a node
2871  * @np: Device node pointer associated with clock provider
2872  * @clk_src_get: callback for decoding clock
2873  * @data: context pointer for @clk_src_get callback.
2874  */
2875 int of_clk_add_provider(struct device_node *np,
2876 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2877 						   void *data),
2878 			void *data)
2879 {
2880 	struct of_clk_provider *cp;
2881 	int ret;
2882 
2883 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2884 	if (!cp)
2885 		return -ENOMEM;
2886 
2887 	cp->node = of_node_get(np);
2888 	cp->data = data;
2889 	cp->get = clk_src_get;
2890 
2891 	mutex_lock(&of_clk_mutex);
2892 	list_add(&cp->link, &of_clk_providers);
2893 	mutex_unlock(&of_clk_mutex);
2894 	pr_debug("Added clock from %s\n", np->full_name);
2895 
2896 	ret = of_clk_set_defaults(np, true);
2897 	if (ret < 0)
2898 		of_clk_del_provider(np);
2899 
2900 	return ret;
2901 }
2902 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2903 
2904 /**
2905  * of_clk_del_provider() - Remove a previously registered clock provider
2906  * @np: Device node pointer associated with clock provider
2907  */
2908 void of_clk_del_provider(struct device_node *np)
2909 {
2910 	struct of_clk_provider *cp;
2911 
2912 	mutex_lock(&of_clk_mutex);
2913 	list_for_each_entry(cp, &of_clk_providers, link) {
2914 		if (cp->node == np) {
2915 			list_del(&cp->link);
2916 			of_node_put(cp->node);
2917 			kfree(cp);
2918 			break;
2919 		}
2920 	}
2921 	mutex_unlock(&of_clk_mutex);
2922 }
2923 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2924 
2925 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2926 				       const char *dev_id, const char *con_id)
2927 {
2928 	struct of_clk_provider *provider;
2929 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2930 
2931 	/* Check if we have such a provider in our array */
2932 	list_for_each_entry(provider, &of_clk_providers, link) {
2933 		if (provider->node == clkspec->np)
2934 			clk = provider->get(clkspec, provider->data);
2935 		if (!IS_ERR(clk)) {
2936 			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2937 					       con_id);
2938 
2939 			if (!IS_ERR(clk) && !__clk_get(clk)) {
2940 				__clk_free_clk(clk);
2941 				clk = ERR_PTR(-ENOENT);
2942 			}
2943 
2944 			break;
2945 		}
2946 	}
2947 
2948 	return clk;
2949 }
2950 
2951 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2952 {
2953 	struct clk *clk;
2954 
2955 	mutex_lock(&of_clk_mutex);
2956 	clk = __of_clk_get_from_provider(clkspec, NULL, __func__);
2957 	mutex_unlock(&of_clk_mutex);
2958 
2959 	return clk;
2960 }
2961 
2962 int of_clk_get_parent_count(struct device_node *np)
2963 {
2964 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2965 }
2966 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2967 
2968 const char *of_clk_get_parent_name(struct device_node *np, int index)
2969 {
2970 	struct of_phandle_args clkspec;
2971 	struct property *prop;
2972 	const char *clk_name;
2973 	const __be32 *vp;
2974 	u32 pv;
2975 	int rc;
2976 	int count;
2977 
2978 	if (index < 0)
2979 		return NULL;
2980 
2981 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2982 					&clkspec);
2983 	if (rc)
2984 		return NULL;
2985 
2986 	index = clkspec.args_count ? clkspec.args[0] : 0;
2987 	count = 0;
2988 
2989 	/* if there is an indices property, use it to transfer the index
2990 	 * specified into an array offset for the clock-output-names property.
2991 	 */
2992 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
2993 		if (index == pv) {
2994 			index = count;
2995 			break;
2996 		}
2997 		count++;
2998 	}
2999 
3000 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3001 					  index,
3002 					  &clk_name) < 0)
3003 		clk_name = clkspec.np->name;
3004 
3005 	of_node_put(clkspec.np);
3006 	return clk_name;
3007 }
3008 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3009 
3010 struct clock_provider {
3011 	of_clk_init_cb_t clk_init_cb;
3012 	struct device_node *np;
3013 	struct list_head node;
3014 };
3015 
3016 static LIST_HEAD(clk_provider_list);
3017 
3018 /*
3019  * This function looks for a parent clock. If there is one, then it
3020  * checks that the provider for this parent clock was initialized, in
3021  * this case the parent clock will be ready.
3022  */
3023 static int parent_ready(struct device_node *np)
3024 {
3025 	int i = 0;
3026 
3027 	while (true) {
3028 		struct clk *clk = of_clk_get(np, i);
3029 
3030 		/* this parent is ready we can check the next one */
3031 		if (!IS_ERR(clk)) {
3032 			clk_put(clk);
3033 			i++;
3034 			continue;
3035 		}
3036 
3037 		/* at least one parent is not ready, we exit now */
3038 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3039 			return 0;
3040 
3041 		/*
3042 		 * Here we make assumption that the device tree is
3043 		 * written correctly. So an error means that there is
3044 		 * no more parent. As we didn't exit yet, then the
3045 		 * previous parent are ready. If there is no clock
3046 		 * parent, no need to wait for them, then we can
3047 		 * consider their absence as being ready
3048 		 */
3049 		return 1;
3050 	}
3051 }
3052 
3053 /**
3054  * of_clk_init() - Scan and init clock providers from the DT
3055  * @matches: array of compatible values and init functions for providers.
3056  *
3057  * This function scans the device tree for matching clock providers
3058  * and calls their initialization functions. It also does it by trying
3059  * to follow the dependencies.
3060  */
3061 void __init of_clk_init(const struct of_device_id *matches)
3062 {
3063 	const struct of_device_id *match;
3064 	struct device_node *np;
3065 	struct clock_provider *clk_provider, *next;
3066 	bool is_init_done;
3067 	bool force = false;
3068 
3069 	if (!matches)
3070 		matches = &__clk_of_table;
3071 
3072 	/* First prepare the list of the clocks providers */
3073 	for_each_matching_node_and_match(np, matches, &match) {
3074 		struct clock_provider *parent =
3075 			kzalloc(sizeof(struct clock_provider),	GFP_KERNEL);
3076 
3077 		parent->clk_init_cb = match->data;
3078 		parent->np = np;
3079 		list_add_tail(&parent->node, &clk_provider_list);
3080 	}
3081 
3082 	while (!list_empty(&clk_provider_list)) {
3083 		is_init_done = false;
3084 		list_for_each_entry_safe(clk_provider, next,
3085 					&clk_provider_list, node) {
3086 			if (force || parent_ready(clk_provider->np)) {
3087 
3088 				clk_provider->clk_init_cb(clk_provider->np);
3089 				of_clk_set_defaults(clk_provider->np, true);
3090 
3091 				list_del(&clk_provider->node);
3092 				kfree(clk_provider);
3093 				is_init_done = true;
3094 			}
3095 		}
3096 
3097 		/*
3098 		 * We didn't manage to initialize any of the
3099 		 * remaining providers during the last loop, so now we
3100 		 * initialize all the remaining ones unconditionally
3101 		 * in case the clock parent was not mandatory
3102 		 */
3103 		if (!is_init_done)
3104 			force = true;
3105 	}
3106 }
3107 #endif
3108