1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 /* List of registered clks that use runtime PM */
41 static HLIST_HEAD(clk_rpm_list);
42 static DEFINE_MUTEX(clk_rpm_list_lock);
43
44 static const struct hlist_head *all_lists[] = {
45 &clk_root_list,
46 &clk_orphan_list,
47 NULL,
48 };
49
50 /*** private data structures ***/
51
52 struct clk_parent_map {
53 const struct clk_hw *hw;
54 struct clk_core *core;
55 const char *fw_name;
56 const char *name;
57 int index;
58 };
59
60 struct clk_core {
61 const char *name;
62 const struct clk_ops *ops;
63 struct clk_hw *hw;
64 struct module *owner;
65 struct device *dev;
66 struct hlist_node rpm_node;
67 struct device_node *of_node;
68 struct clk_core *parent;
69 struct clk_parent_map *parents;
70 u8 num_parents;
71 u8 new_parent_index;
72 unsigned long rate;
73 unsigned long req_rate;
74 unsigned long new_rate;
75 struct clk_core *new_parent;
76 struct clk_core *new_child;
77 unsigned long flags;
78 bool orphan;
79 bool rpm_enabled;
80 unsigned int enable_count;
81 unsigned int prepare_count;
82 unsigned int protect_count;
83 unsigned long min_rate;
84 unsigned long max_rate;
85 unsigned long accuracy;
86 int phase;
87 struct clk_duty duty;
88 struct hlist_head children;
89 struct hlist_node child_node;
90 struct hlist_head clks;
91 unsigned int notifier_count;
92 #ifdef CONFIG_DEBUG_FS
93 struct dentry *dentry;
94 struct hlist_node debug_node;
95 #endif
96 struct kref ref;
97 };
98
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/clk.h>
101
102 struct clk {
103 struct clk_core *core;
104 struct device *dev;
105 const char *dev_id;
106 const char *con_id;
107 unsigned long min_rate;
108 unsigned long max_rate;
109 unsigned int exclusive_count;
110 struct hlist_node clks_node;
111 };
112
113 /*** runtime pm ***/
clk_pm_runtime_get(struct clk_core * core)114 static int clk_pm_runtime_get(struct clk_core *core)
115 {
116 if (!core->rpm_enabled)
117 return 0;
118
119 return pm_runtime_resume_and_get(core->dev);
120 }
121
clk_pm_runtime_put(struct clk_core * core)122 static void clk_pm_runtime_put(struct clk_core *core)
123 {
124 if (!core->rpm_enabled)
125 return;
126
127 pm_runtime_put_sync(core->dev);
128 }
129
130 /**
131 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
132 *
133 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
134 * that disabling unused clks avoids a deadlock where a device is runtime PM
135 * resuming/suspending and the runtime PM callback is trying to grab the
136 * prepare_lock for something like clk_prepare_enable() while
137 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
138 * PM resume/suspend the device as well.
139 *
140 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
141 * success. Otherwise the lock is released on failure.
142 *
143 * Return: 0 on success, negative errno otherwise.
144 */
clk_pm_runtime_get_all(void)145 static int clk_pm_runtime_get_all(void)
146 {
147 int ret;
148 struct clk_core *core, *failed;
149
150 /*
151 * Grab the list lock to prevent any new clks from being registered
152 * or unregistered until clk_pm_runtime_put_all().
153 */
154 mutex_lock(&clk_rpm_list_lock);
155
156 /*
157 * Runtime PM "get" all the devices that are needed for the clks
158 * currently registered. Do this without holding the prepare_lock, to
159 * avoid the deadlock.
160 */
161 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
162 ret = clk_pm_runtime_get(core);
163 if (ret) {
164 failed = core;
165 pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
166 dev_name(failed->dev), failed->name);
167 goto err;
168 }
169 }
170
171 return 0;
172
173 err:
174 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
175 if (core == failed)
176 break;
177
178 clk_pm_runtime_put(core);
179 }
180 mutex_unlock(&clk_rpm_list_lock);
181
182 return ret;
183 }
184
185 /**
186 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
187 *
188 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
189 * the 'clk_rpm_list_lock'.
190 */
clk_pm_runtime_put_all(void)191 static void clk_pm_runtime_put_all(void)
192 {
193 struct clk_core *core;
194
195 hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
196 clk_pm_runtime_put(core);
197 mutex_unlock(&clk_rpm_list_lock);
198 }
199
clk_pm_runtime_init(struct clk_core * core)200 static void clk_pm_runtime_init(struct clk_core *core)
201 {
202 struct device *dev = core->dev;
203
204 if (dev && pm_runtime_enabled(dev)) {
205 core->rpm_enabled = true;
206
207 mutex_lock(&clk_rpm_list_lock);
208 hlist_add_head(&core->rpm_node, &clk_rpm_list);
209 mutex_unlock(&clk_rpm_list_lock);
210 }
211 }
212
213 /*** locking ***/
clk_prepare_lock(void)214 static void clk_prepare_lock(void)
215 {
216 if (!mutex_trylock(&prepare_lock)) {
217 if (prepare_owner == current) {
218 prepare_refcnt++;
219 return;
220 }
221 mutex_lock(&prepare_lock);
222 }
223 WARN_ON_ONCE(prepare_owner != NULL);
224 WARN_ON_ONCE(prepare_refcnt != 0);
225 prepare_owner = current;
226 prepare_refcnt = 1;
227 }
228
clk_prepare_unlock(void)229 static void clk_prepare_unlock(void)
230 {
231 WARN_ON_ONCE(prepare_owner != current);
232 WARN_ON_ONCE(prepare_refcnt == 0);
233
234 if (--prepare_refcnt)
235 return;
236 prepare_owner = NULL;
237 mutex_unlock(&prepare_lock);
238 }
239
clk_enable_lock(void)240 static unsigned long clk_enable_lock(void)
241 __acquires(enable_lock)
242 {
243 unsigned long flags;
244
245 /*
246 * On UP systems, spin_trylock_irqsave() always returns true, even if
247 * we already hold the lock. So, in that case, we rely only on
248 * reference counting.
249 */
250 if (!IS_ENABLED(CONFIG_SMP) ||
251 !spin_trylock_irqsave(&enable_lock, flags)) {
252 if (enable_owner == current) {
253 enable_refcnt++;
254 __acquire(enable_lock);
255 if (!IS_ENABLED(CONFIG_SMP))
256 local_save_flags(flags);
257 return flags;
258 }
259 spin_lock_irqsave(&enable_lock, flags);
260 }
261 WARN_ON_ONCE(enable_owner != NULL);
262 WARN_ON_ONCE(enable_refcnt != 0);
263 enable_owner = current;
264 enable_refcnt = 1;
265 return flags;
266 }
267
clk_enable_unlock(unsigned long flags)268 static void clk_enable_unlock(unsigned long flags)
269 __releases(enable_lock)
270 {
271 WARN_ON_ONCE(enable_owner != current);
272 WARN_ON_ONCE(enable_refcnt == 0);
273
274 if (--enable_refcnt) {
275 __release(enable_lock);
276 return;
277 }
278 enable_owner = NULL;
279 spin_unlock_irqrestore(&enable_lock, flags);
280 }
281
clk_core_rate_is_protected(struct clk_core * core)282 static bool clk_core_rate_is_protected(struct clk_core *core)
283 {
284 return core->protect_count;
285 }
286
clk_core_is_prepared(struct clk_core * core)287 static bool clk_core_is_prepared(struct clk_core *core)
288 {
289 bool ret = false;
290
291 /*
292 * .is_prepared is optional for clocks that can prepare
293 * fall back to software usage counter if it is missing
294 */
295 if (!core->ops->is_prepared)
296 return core->prepare_count;
297
298 if (!clk_pm_runtime_get(core)) {
299 ret = core->ops->is_prepared(core->hw);
300 clk_pm_runtime_put(core);
301 }
302
303 return ret;
304 }
305
clk_core_is_enabled(struct clk_core * core)306 static bool clk_core_is_enabled(struct clk_core *core)
307 {
308 bool ret = false;
309
310 /*
311 * .is_enabled is only mandatory for clocks that gate
312 * fall back to software usage counter if .is_enabled is missing
313 */
314 if (!core->ops->is_enabled)
315 return core->enable_count;
316
317 /*
318 * Check if clock controller's device is runtime active before
319 * calling .is_enabled callback. If not, assume that clock is
320 * disabled, because we might be called from atomic context, from
321 * which pm_runtime_get() is not allowed.
322 * This function is called mainly from clk_disable_unused_subtree,
323 * which ensures proper runtime pm activation of controller before
324 * taking enable spinlock, but the below check is needed if one tries
325 * to call it from other places.
326 */
327 if (core->rpm_enabled) {
328 pm_runtime_get_noresume(core->dev);
329 if (!pm_runtime_active(core->dev)) {
330 ret = false;
331 goto done;
332 }
333 }
334
335 /*
336 * This could be called with the enable lock held, or from atomic
337 * context. If the parent isn't enabled already, we can't do
338 * anything here. We can also assume this clock isn't enabled.
339 */
340 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
341 if (!clk_core_is_enabled(core->parent)) {
342 ret = false;
343 goto done;
344 }
345
346 ret = core->ops->is_enabled(core->hw);
347 done:
348 if (core->rpm_enabled)
349 pm_runtime_put(core->dev);
350
351 return ret;
352 }
353
354 /*** helper functions ***/
355
__clk_get_name(const struct clk * clk)356 const char *__clk_get_name(const struct clk *clk)
357 {
358 return !clk ? NULL : clk->core->name;
359 }
360 EXPORT_SYMBOL_GPL(__clk_get_name);
361
clk_hw_get_name(const struct clk_hw * hw)362 const char *clk_hw_get_name(const struct clk_hw *hw)
363 {
364 return hw->core->name;
365 }
366 EXPORT_SYMBOL_GPL(clk_hw_get_name);
367
__clk_get_hw(struct clk * clk)368 struct clk_hw *__clk_get_hw(struct clk *clk)
369 {
370 return !clk ? NULL : clk->core->hw;
371 }
372 EXPORT_SYMBOL_GPL(__clk_get_hw);
373
clk_hw_get_num_parents(const struct clk_hw * hw)374 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
375 {
376 return hw->core->num_parents;
377 }
378 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
379
clk_hw_get_parent(const struct clk_hw * hw)380 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
381 {
382 return hw->core->parent ? hw->core->parent->hw : NULL;
383 }
384 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
385
__clk_lookup_subtree(const char * name,struct clk_core * core)386 static struct clk_core *__clk_lookup_subtree(const char *name,
387 struct clk_core *core)
388 {
389 struct clk_core *child;
390 struct clk_core *ret;
391
392 if (!strcmp(core->name, name))
393 return core;
394
395 hlist_for_each_entry(child, &core->children, child_node) {
396 ret = __clk_lookup_subtree(name, child);
397 if (ret)
398 return ret;
399 }
400
401 return NULL;
402 }
403
clk_core_lookup(const char * name)404 static struct clk_core *clk_core_lookup(const char *name)
405 {
406 struct clk_core *root_clk;
407 struct clk_core *ret;
408
409 if (!name)
410 return NULL;
411
412 /* search the 'proper' clk tree first */
413 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
414 ret = __clk_lookup_subtree(name, root_clk);
415 if (ret)
416 return ret;
417 }
418
419 /* if not found, then search the orphan tree */
420 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
421 ret = __clk_lookup_subtree(name, root_clk);
422 if (ret)
423 return ret;
424 }
425
426 return NULL;
427 }
428
429 #ifdef CONFIG_OF
430 static int of_parse_clkspec(const struct device_node *np, int index,
431 const char *name, struct of_phandle_args *out_args);
432 static struct clk_hw *
433 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
434 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)435 static inline int of_parse_clkspec(const struct device_node *np, int index,
436 const char *name,
437 struct of_phandle_args *out_args)
438 {
439 return -ENOENT;
440 }
441 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)442 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
443 {
444 return ERR_PTR(-ENOENT);
445 }
446 #endif
447
448 /**
449 * clk_core_get - Find the clk_core parent of a clk
450 * @core: clk to find parent of
451 * @p_index: parent index to search for
452 *
453 * This is the preferred method for clk providers to find the parent of a
454 * clk when that parent is external to the clk controller. The parent_names
455 * array is indexed and treated as a local name matching a string in the device
456 * node's 'clock-names' property or as the 'con_id' matching the device's
457 * dev_name() in a clk_lookup. This allows clk providers to use their own
458 * namespace instead of looking for a globally unique parent string.
459 *
460 * For example the following DT snippet would allow a clock registered by the
461 * clock-controller@c001 that has a clk_init_data::parent_data array
462 * with 'xtal' in the 'name' member to find the clock provided by the
463 * clock-controller@f00abcd without needing to get the globally unique name of
464 * the xtal clk.
465 *
466 * parent: clock-controller@f00abcd {
467 * reg = <0xf00abcd 0xabcd>;
468 * #clock-cells = <0>;
469 * };
470 *
471 * clock-controller@c001 {
472 * reg = <0xc001 0xf00d>;
473 * clocks = <&parent>;
474 * clock-names = "xtal";
475 * #clock-cells = <1>;
476 * };
477 *
478 * Returns: -ENOENT when the provider can't be found or the clk doesn't
479 * exist in the provider or the name can't be found in the DT node or
480 * in a clkdev lookup. NULL when the provider knows about the clk but it
481 * isn't provided on this system.
482 * A valid clk_core pointer when the clk can be found in the provider.
483 */
clk_core_get(struct clk_core * core,u8 p_index)484 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
485 {
486 const char *name = core->parents[p_index].fw_name;
487 int index = core->parents[p_index].index;
488 struct clk_hw *hw = ERR_PTR(-ENOENT);
489 struct device *dev = core->dev;
490 const char *dev_id = dev ? dev_name(dev) : NULL;
491 struct device_node *np = core->of_node;
492 struct of_phandle_args clkspec;
493
494 if (np && (name || index >= 0) &&
495 !of_parse_clkspec(np, index, name, &clkspec)) {
496 hw = of_clk_get_hw_from_clkspec(&clkspec);
497 of_node_put(clkspec.np);
498 } else if (name) {
499 /*
500 * If the DT search above couldn't find the provider fallback to
501 * looking up via clkdev based clk_lookups.
502 */
503 hw = clk_find_hw(dev_id, name);
504 }
505
506 if (IS_ERR(hw))
507 return ERR_CAST(hw);
508
509 if (!hw)
510 return NULL;
511
512 return hw->core;
513 }
514
clk_core_fill_parent_index(struct clk_core * core,u8 index)515 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
516 {
517 struct clk_parent_map *entry = &core->parents[index];
518 struct clk_core *parent;
519
520 if (entry->hw) {
521 parent = entry->hw->core;
522 } else {
523 parent = clk_core_get(core, index);
524 if (PTR_ERR(parent) == -ENOENT && entry->name)
525 parent = clk_core_lookup(entry->name);
526 }
527
528 /*
529 * We have a direct reference but it isn't registered yet?
530 * Orphan it and let clk_reparent() update the orphan status
531 * when the parent is registered.
532 */
533 if (!parent)
534 parent = ERR_PTR(-EPROBE_DEFER);
535
536 /* Only cache it if it's not an error */
537 if (!IS_ERR(parent))
538 entry->core = parent;
539 }
540
clk_core_get_parent_by_index(struct clk_core * core,u8 index)541 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
542 u8 index)
543 {
544 if (!core || index >= core->num_parents || !core->parents)
545 return NULL;
546
547 if (!core->parents[index].core)
548 clk_core_fill_parent_index(core, index);
549
550 return core->parents[index].core;
551 }
552
553 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)554 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
555 {
556 struct clk_core *parent;
557
558 parent = clk_core_get_parent_by_index(hw->core, index);
559
560 return !parent ? NULL : parent->hw;
561 }
562 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
563
__clk_get_enable_count(struct clk * clk)564 unsigned int __clk_get_enable_count(struct clk *clk)
565 {
566 return !clk ? 0 : clk->core->enable_count;
567 }
568
clk_core_get_rate_nolock(struct clk_core * core)569 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
570 {
571 if (!core)
572 return 0;
573
574 if (!core->num_parents || core->parent)
575 return core->rate;
576
577 /*
578 * Clk must have a parent because num_parents > 0 but the parent isn't
579 * known yet. Best to return 0 as the rate of this clk until we can
580 * properly recalc the rate based on the parent's rate.
581 */
582 return 0;
583 }
584
clk_hw_get_rate(const struct clk_hw * hw)585 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
586 {
587 return clk_core_get_rate_nolock(hw->core);
588 }
589 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
590
clk_core_get_accuracy_no_lock(struct clk_core * core)591 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
592 {
593 if (!core)
594 return 0;
595
596 return core->accuracy;
597 }
598
clk_hw_get_flags(const struct clk_hw * hw)599 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
600 {
601 return hw->core->flags;
602 }
603 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
604
clk_hw_is_prepared(const struct clk_hw * hw)605 bool clk_hw_is_prepared(const struct clk_hw *hw)
606 {
607 return clk_core_is_prepared(hw->core);
608 }
609 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
610
clk_hw_rate_is_protected(const struct clk_hw * hw)611 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
612 {
613 return clk_core_rate_is_protected(hw->core);
614 }
615 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
616
clk_hw_is_enabled(const struct clk_hw * hw)617 bool clk_hw_is_enabled(const struct clk_hw *hw)
618 {
619 return clk_core_is_enabled(hw->core);
620 }
621 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
622
__clk_is_enabled(struct clk * clk)623 bool __clk_is_enabled(struct clk *clk)
624 {
625 if (!clk)
626 return false;
627
628 return clk_core_is_enabled(clk->core);
629 }
630 EXPORT_SYMBOL_GPL(__clk_is_enabled);
631
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)632 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
633 unsigned long best, unsigned long flags)
634 {
635 if (flags & CLK_MUX_ROUND_CLOSEST)
636 return abs(now - rate) < abs(best - rate);
637
638 return now <= rate && now > best;
639 }
640
641 static void clk_core_init_rate_req(struct clk_core * const core,
642 struct clk_rate_request *req,
643 unsigned long rate);
644
645 static int clk_core_round_rate_nolock(struct clk_core *core,
646 struct clk_rate_request *req);
647
clk_core_has_parent(struct clk_core * core,const struct clk_core * parent)648 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
649 {
650 struct clk_core *tmp;
651 unsigned int i;
652
653 /* Optimize for the case where the parent is already the parent. */
654 if (core->parent == parent)
655 return true;
656
657 for (i = 0; i < core->num_parents; i++) {
658 tmp = clk_core_get_parent_by_index(core, i);
659 if (!tmp)
660 continue;
661
662 if (tmp == parent)
663 return true;
664 }
665
666 return false;
667 }
668
669 static void
clk_core_forward_rate_req(struct clk_core * core,const struct clk_rate_request * old_req,struct clk_core * parent,struct clk_rate_request * req,unsigned long parent_rate)670 clk_core_forward_rate_req(struct clk_core *core,
671 const struct clk_rate_request *old_req,
672 struct clk_core *parent,
673 struct clk_rate_request *req,
674 unsigned long parent_rate)
675 {
676 if (WARN_ON(!clk_core_has_parent(core, parent)))
677 return;
678
679 clk_core_init_rate_req(parent, req, parent_rate);
680
681 if (req->min_rate < old_req->min_rate)
682 req->min_rate = old_req->min_rate;
683
684 if (req->max_rate > old_req->max_rate)
685 req->max_rate = old_req->max_rate;
686 }
687
688 static int
clk_core_determine_rate_no_reparent(struct clk_hw * hw,struct clk_rate_request * req)689 clk_core_determine_rate_no_reparent(struct clk_hw *hw,
690 struct clk_rate_request *req)
691 {
692 struct clk_core *core = hw->core;
693 struct clk_core *parent = core->parent;
694 unsigned long best;
695 int ret;
696
697 if (core->flags & CLK_SET_RATE_PARENT) {
698 struct clk_rate_request parent_req;
699
700 if (!parent) {
701 req->rate = 0;
702 return 0;
703 }
704
705 clk_core_forward_rate_req(core, req, parent, &parent_req,
706 req->rate);
707
708 trace_clk_rate_request_start(&parent_req);
709
710 ret = clk_core_round_rate_nolock(parent, &parent_req);
711 if (ret)
712 return ret;
713
714 trace_clk_rate_request_done(&parent_req);
715
716 best = parent_req.rate;
717 } else if (parent) {
718 best = clk_core_get_rate_nolock(parent);
719 } else {
720 best = clk_core_get_rate_nolock(core);
721 }
722
723 req->best_parent_rate = best;
724 req->rate = best;
725
726 return 0;
727 }
728
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)729 int clk_mux_determine_rate_flags(struct clk_hw *hw,
730 struct clk_rate_request *req,
731 unsigned long flags)
732 {
733 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
734 int i, num_parents, ret;
735 unsigned long best = 0;
736
737 /* if NO_REPARENT flag set, pass through to current parent */
738 if (core->flags & CLK_SET_RATE_NO_REPARENT)
739 return clk_core_determine_rate_no_reparent(hw, req);
740
741 /* find the parent that can provide the fastest rate <= rate */
742 num_parents = core->num_parents;
743 for (i = 0; i < num_parents; i++) {
744 unsigned long parent_rate;
745
746 parent = clk_core_get_parent_by_index(core, i);
747 if (!parent)
748 continue;
749
750 if (core->flags & CLK_SET_RATE_PARENT) {
751 struct clk_rate_request parent_req;
752
753 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
754
755 trace_clk_rate_request_start(&parent_req);
756
757 ret = clk_core_round_rate_nolock(parent, &parent_req);
758 if (ret)
759 continue;
760
761 trace_clk_rate_request_done(&parent_req);
762
763 parent_rate = parent_req.rate;
764 } else {
765 parent_rate = clk_core_get_rate_nolock(parent);
766 }
767
768 if (mux_is_better_rate(req->rate, parent_rate,
769 best, flags)) {
770 best_parent = parent;
771 best = parent_rate;
772 }
773 }
774
775 if (!best_parent)
776 return -EINVAL;
777
778 req->best_parent_hw = best_parent->hw;
779 req->best_parent_rate = best;
780 req->rate = best;
781
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
785
__clk_lookup(const char * name)786 struct clk *__clk_lookup(const char *name)
787 {
788 struct clk_core *core = clk_core_lookup(name);
789
790 return !core ? NULL : core->hw->clk;
791 }
792
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)793 static void clk_core_get_boundaries(struct clk_core *core,
794 unsigned long *min_rate,
795 unsigned long *max_rate)
796 {
797 struct clk *clk_user;
798
799 lockdep_assert_held(&prepare_lock);
800
801 *min_rate = core->min_rate;
802 *max_rate = core->max_rate;
803
804 hlist_for_each_entry(clk_user, &core->clks, clks_node)
805 *min_rate = max(*min_rate, clk_user->min_rate);
806
807 hlist_for_each_entry(clk_user, &core->clks, clks_node)
808 *max_rate = min(*max_rate, clk_user->max_rate);
809 }
810
811 /*
812 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
813 * @hw: the hw clk we want to get the range from
814 * @min_rate: pointer to the variable that will hold the minimum
815 * @max_rate: pointer to the variable that will hold the maximum
816 *
817 * Fills the @min_rate and @max_rate variables with the minimum and
818 * maximum that clock can reach.
819 */
clk_hw_get_rate_range(struct clk_hw * hw,unsigned long * min_rate,unsigned long * max_rate)820 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
821 unsigned long *max_rate)
822 {
823 clk_core_get_boundaries(hw->core, min_rate, max_rate);
824 }
825 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
826
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)827 static bool clk_core_check_boundaries(struct clk_core *core,
828 unsigned long min_rate,
829 unsigned long max_rate)
830 {
831 struct clk *user;
832
833 lockdep_assert_held(&prepare_lock);
834
835 if (min_rate > core->max_rate || max_rate < core->min_rate)
836 return false;
837
838 hlist_for_each_entry(user, &core->clks, clks_node)
839 if (min_rate > user->max_rate || max_rate < user->min_rate)
840 return false;
841
842 return true;
843 }
844
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)845 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
846 unsigned long max_rate)
847 {
848 hw->core->min_rate = min_rate;
849 hw->core->max_rate = max_rate;
850 }
851 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
852
853 /*
854 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
855 * @hw: mux type clk to determine rate on
856 * @req: rate request, also used to return preferred parent and frequencies
857 *
858 * Helper for finding best parent to provide a given frequency. This can be used
859 * directly as a determine_rate callback (e.g. for a mux), or from a more
860 * complex clock that may combine a mux with other operations.
861 *
862 * Returns: 0 on success, -EERROR value on error
863 */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)864 int __clk_mux_determine_rate(struct clk_hw *hw,
865 struct clk_rate_request *req)
866 {
867 return clk_mux_determine_rate_flags(hw, req, 0);
868 }
869 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
870
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)871 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
872 struct clk_rate_request *req)
873 {
874 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
875 }
876 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
877
878 /*
879 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
880 * @hw: mux type clk to determine rate on
881 * @req: rate request, also used to return preferred frequency
882 *
883 * Helper for finding best parent rate to provide a given frequency.
884 * This can be used directly as a determine_rate callback (e.g. for a
885 * mux), or from a more complex clock that may combine a mux with other
886 * operations.
887 *
888 * Returns: 0 on success, -EERROR value on error
889 */
clk_hw_determine_rate_no_reparent(struct clk_hw * hw,struct clk_rate_request * req)890 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
891 struct clk_rate_request *req)
892 {
893 return clk_core_determine_rate_no_reparent(hw, req);
894 }
895 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
896
897 /*** clk api ***/
898
clk_core_rate_unprotect(struct clk_core * core)899 static void clk_core_rate_unprotect(struct clk_core *core)
900 {
901 lockdep_assert_held(&prepare_lock);
902
903 if (!core)
904 return;
905
906 if (WARN(core->protect_count == 0,
907 "%s already unprotected\n", core->name))
908 return;
909
910 if (--core->protect_count > 0)
911 return;
912
913 clk_core_rate_unprotect(core->parent);
914 }
915
clk_core_rate_nuke_protect(struct clk_core * core)916 static int clk_core_rate_nuke_protect(struct clk_core *core)
917 {
918 int ret;
919
920 lockdep_assert_held(&prepare_lock);
921
922 if (!core)
923 return -EINVAL;
924
925 if (core->protect_count == 0)
926 return 0;
927
928 ret = core->protect_count;
929 core->protect_count = 1;
930 clk_core_rate_unprotect(core);
931
932 return ret;
933 }
934
935 /**
936 * clk_rate_exclusive_put - release exclusivity over clock rate control
937 * @clk: the clk over which the exclusivity is released
938 *
939 * clk_rate_exclusive_put() completes a critical section during which a clock
940 * consumer cannot tolerate any other consumer making any operation on the
941 * clock which could result in a rate change or rate glitch. Exclusive clocks
942 * cannot have their rate changed, either directly or indirectly due to changes
943 * further up the parent chain of clocks. As a result, clocks up parent chain
944 * also get under exclusive control of the calling consumer.
945 *
946 * If exlusivity is claimed more than once on clock, even by the same consumer,
947 * the rate effectively gets locked as exclusivity can't be preempted.
948 *
949 * Calls to clk_rate_exclusive_put() must be balanced with calls to
950 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
951 * error status.
952 */
clk_rate_exclusive_put(struct clk * clk)953 void clk_rate_exclusive_put(struct clk *clk)
954 {
955 if (!clk)
956 return;
957
958 clk_prepare_lock();
959
960 /*
961 * if there is something wrong with this consumer protect count, stop
962 * here before messing with the provider
963 */
964 if (WARN_ON(clk->exclusive_count <= 0))
965 goto out;
966
967 clk_core_rate_unprotect(clk->core);
968 clk->exclusive_count--;
969 out:
970 clk_prepare_unlock();
971 }
972 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
973
clk_core_rate_protect(struct clk_core * core)974 static void clk_core_rate_protect(struct clk_core *core)
975 {
976 lockdep_assert_held(&prepare_lock);
977
978 if (!core)
979 return;
980
981 if (core->protect_count == 0)
982 clk_core_rate_protect(core->parent);
983
984 core->protect_count++;
985 }
986
clk_core_rate_restore_protect(struct clk_core * core,int count)987 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
988 {
989 lockdep_assert_held(&prepare_lock);
990
991 if (!core)
992 return;
993
994 if (count == 0)
995 return;
996
997 clk_core_rate_protect(core);
998 core->protect_count = count;
999 }
1000
1001 /**
1002 * clk_rate_exclusive_get - get exclusivity over the clk rate control
1003 * @clk: the clk over which the exclusity of rate control is requested
1004 *
1005 * clk_rate_exclusive_get() begins a critical section during which a clock
1006 * consumer cannot tolerate any other consumer making any operation on the
1007 * clock which could result in a rate change or rate glitch. Exclusive clocks
1008 * cannot have their rate changed, either directly or indirectly due to changes
1009 * further up the parent chain of clocks. As a result, clocks up parent chain
1010 * also get under exclusive control of the calling consumer.
1011 *
1012 * If exlusivity is claimed more than once on clock, even by the same consumer,
1013 * the rate effectively gets locked as exclusivity can't be preempted.
1014 *
1015 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1016 * clk_rate_exclusive_put(). Calls to this function may sleep.
1017 * Returns 0 on success, -EERROR otherwise
1018 */
clk_rate_exclusive_get(struct clk * clk)1019 int clk_rate_exclusive_get(struct clk *clk)
1020 {
1021 if (!clk)
1022 return 0;
1023
1024 clk_prepare_lock();
1025 clk_core_rate_protect(clk->core);
1026 clk->exclusive_count++;
1027 clk_prepare_unlock();
1028
1029 return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1032
clk_core_unprepare(struct clk_core * core)1033 static void clk_core_unprepare(struct clk_core *core)
1034 {
1035 lockdep_assert_held(&prepare_lock);
1036
1037 if (!core)
1038 return;
1039
1040 if (WARN(core->prepare_count == 0,
1041 "%s already unprepared\n", core->name))
1042 return;
1043
1044 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1045 "Unpreparing critical %s\n", core->name))
1046 return;
1047
1048 if (core->flags & CLK_SET_RATE_GATE)
1049 clk_core_rate_unprotect(core);
1050
1051 if (--core->prepare_count > 0)
1052 return;
1053
1054 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1055
1056 trace_clk_unprepare(core);
1057
1058 if (core->ops->unprepare)
1059 core->ops->unprepare(core->hw);
1060
1061 trace_clk_unprepare_complete(core);
1062 clk_core_unprepare(core->parent);
1063 clk_pm_runtime_put(core);
1064 }
1065
clk_core_unprepare_lock(struct clk_core * core)1066 static void clk_core_unprepare_lock(struct clk_core *core)
1067 {
1068 clk_prepare_lock();
1069 clk_core_unprepare(core);
1070 clk_prepare_unlock();
1071 }
1072
1073 /**
1074 * clk_unprepare - undo preparation of a clock source
1075 * @clk: the clk being unprepared
1076 *
1077 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
1078 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1079 * if the operation may sleep. One example is a clk which is accessed over
1080 * I2c. In the complex case a clk gate operation may require a fast and a slow
1081 * part. It is this reason that clk_unprepare and clk_disable are not mutually
1082 * exclusive. In fact clk_disable must be called before clk_unprepare.
1083 */
clk_unprepare(struct clk * clk)1084 void clk_unprepare(struct clk *clk)
1085 {
1086 if (IS_ERR_OR_NULL(clk))
1087 return;
1088
1089 clk_core_unprepare_lock(clk->core);
1090 }
1091 EXPORT_SYMBOL_GPL(clk_unprepare);
1092
clk_core_prepare(struct clk_core * core)1093 static int clk_core_prepare(struct clk_core *core)
1094 {
1095 int ret = 0;
1096
1097 lockdep_assert_held(&prepare_lock);
1098
1099 if (!core)
1100 return 0;
1101
1102 if (core->prepare_count == 0) {
1103 ret = clk_pm_runtime_get(core);
1104 if (ret)
1105 return ret;
1106
1107 ret = clk_core_prepare(core->parent);
1108 if (ret)
1109 goto runtime_put;
1110
1111 trace_clk_prepare(core);
1112
1113 if (core->ops->prepare)
1114 ret = core->ops->prepare(core->hw);
1115
1116 trace_clk_prepare_complete(core);
1117
1118 if (ret)
1119 goto unprepare;
1120 }
1121
1122 core->prepare_count++;
1123
1124 /*
1125 * CLK_SET_RATE_GATE is a special case of clock protection
1126 * Instead of a consumer claiming exclusive rate control, it is
1127 * actually the provider which prevents any consumer from making any
1128 * operation which could result in a rate change or rate glitch while
1129 * the clock is prepared.
1130 */
1131 if (core->flags & CLK_SET_RATE_GATE)
1132 clk_core_rate_protect(core);
1133
1134 return 0;
1135 unprepare:
1136 clk_core_unprepare(core->parent);
1137 runtime_put:
1138 clk_pm_runtime_put(core);
1139 return ret;
1140 }
1141
clk_core_prepare_lock(struct clk_core * core)1142 static int clk_core_prepare_lock(struct clk_core *core)
1143 {
1144 int ret;
1145
1146 clk_prepare_lock();
1147 ret = clk_core_prepare(core);
1148 clk_prepare_unlock();
1149
1150 return ret;
1151 }
1152
1153 /**
1154 * clk_prepare - prepare a clock source
1155 * @clk: the clk being prepared
1156 *
1157 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
1158 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1159 * operation may sleep. One example is a clk which is accessed over I2c. In
1160 * the complex case a clk ungate operation may require a fast and a slow part.
1161 * It is this reason that clk_prepare and clk_enable are not mutually
1162 * exclusive. In fact clk_prepare must be called before clk_enable.
1163 * Returns 0 on success, -EERROR otherwise.
1164 */
clk_prepare(struct clk * clk)1165 int clk_prepare(struct clk *clk)
1166 {
1167 if (!clk)
1168 return 0;
1169
1170 return clk_core_prepare_lock(clk->core);
1171 }
1172 EXPORT_SYMBOL_GPL(clk_prepare);
1173
clk_core_disable(struct clk_core * core)1174 static void clk_core_disable(struct clk_core *core)
1175 {
1176 lockdep_assert_held(&enable_lock);
1177
1178 if (!core)
1179 return;
1180
1181 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1182 return;
1183
1184 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1185 "Disabling critical %s\n", core->name))
1186 return;
1187
1188 if (--core->enable_count > 0)
1189 return;
1190
1191 trace_clk_disable(core);
1192
1193 if (core->ops->disable)
1194 core->ops->disable(core->hw);
1195
1196 trace_clk_disable_complete(core);
1197
1198 clk_core_disable(core->parent);
1199 }
1200
clk_core_disable_lock(struct clk_core * core)1201 static void clk_core_disable_lock(struct clk_core *core)
1202 {
1203 unsigned long flags;
1204
1205 flags = clk_enable_lock();
1206 clk_core_disable(core);
1207 clk_enable_unlock(flags);
1208 }
1209
1210 /**
1211 * clk_disable - gate a clock
1212 * @clk: the clk being gated
1213 *
1214 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
1215 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1216 * clk if the operation is fast and will never sleep. One example is a
1217 * SoC-internal clk which is controlled via simple register writes. In the
1218 * complex case a clk gate operation may require a fast and a slow part. It is
1219 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1220 * In fact clk_disable must be called before clk_unprepare.
1221 */
clk_disable(struct clk * clk)1222 void clk_disable(struct clk *clk)
1223 {
1224 if (IS_ERR_OR_NULL(clk))
1225 return;
1226
1227 clk_core_disable_lock(clk->core);
1228 }
1229 EXPORT_SYMBOL_GPL(clk_disable);
1230
clk_core_enable(struct clk_core * core)1231 static int clk_core_enable(struct clk_core *core)
1232 {
1233 int ret = 0;
1234
1235 lockdep_assert_held(&enable_lock);
1236
1237 if (!core)
1238 return 0;
1239
1240 if (WARN(core->prepare_count == 0,
1241 "Enabling unprepared %s\n", core->name))
1242 return -ESHUTDOWN;
1243
1244 if (core->enable_count == 0) {
1245 ret = clk_core_enable(core->parent);
1246
1247 if (ret)
1248 return ret;
1249
1250 trace_clk_enable(core);
1251
1252 if (core->ops->enable)
1253 ret = core->ops->enable(core->hw);
1254
1255 trace_clk_enable_complete(core);
1256
1257 if (ret) {
1258 clk_core_disable(core->parent);
1259 return ret;
1260 }
1261 }
1262
1263 core->enable_count++;
1264 return 0;
1265 }
1266
clk_core_enable_lock(struct clk_core * core)1267 static int clk_core_enable_lock(struct clk_core *core)
1268 {
1269 unsigned long flags;
1270 int ret;
1271
1272 flags = clk_enable_lock();
1273 ret = clk_core_enable(core);
1274 clk_enable_unlock(flags);
1275
1276 return ret;
1277 }
1278
1279 /**
1280 * clk_gate_restore_context - restore context for poweroff
1281 * @hw: the clk_hw pointer of clock whose state is to be restored
1282 *
1283 * The clock gate restore context function enables or disables
1284 * the gate clocks based on the enable_count. This is done in cases
1285 * where the clock context is lost and based on the enable_count
1286 * the clock either needs to be enabled/disabled. This
1287 * helps restore the state of gate clocks.
1288 */
clk_gate_restore_context(struct clk_hw * hw)1289 void clk_gate_restore_context(struct clk_hw *hw)
1290 {
1291 struct clk_core *core = hw->core;
1292
1293 if (core->enable_count)
1294 core->ops->enable(hw);
1295 else
1296 core->ops->disable(hw);
1297 }
1298 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1299
clk_core_save_context(struct clk_core * core)1300 static int clk_core_save_context(struct clk_core *core)
1301 {
1302 struct clk_core *child;
1303 int ret = 0;
1304
1305 hlist_for_each_entry(child, &core->children, child_node) {
1306 ret = clk_core_save_context(child);
1307 if (ret < 0)
1308 return ret;
1309 }
1310
1311 if (core->ops && core->ops->save_context)
1312 ret = core->ops->save_context(core->hw);
1313
1314 return ret;
1315 }
1316
clk_core_restore_context(struct clk_core * core)1317 static void clk_core_restore_context(struct clk_core *core)
1318 {
1319 struct clk_core *child;
1320
1321 if (core->ops && core->ops->restore_context)
1322 core->ops->restore_context(core->hw);
1323
1324 hlist_for_each_entry(child, &core->children, child_node)
1325 clk_core_restore_context(child);
1326 }
1327
1328 /**
1329 * clk_save_context - save clock context for poweroff
1330 *
1331 * Saves the context of the clock register for powerstates in which the
1332 * contents of the registers will be lost. Occurs deep within the suspend
1333 * code. Returns 0 on success.
1334 */
clk_save_context(void)1335 int clk_save_context(void)
1336 {
1337 struct clk_core *clk;
1338 int ret;
1339
1340 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1341 ret = clk_core_save_context(clk);
1342 if (ret < 0)
1343 return ret;
1344 }
1345
1346 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1347 ret = clk_core_save_context(clk);
1348 if (ret < 0)
1349 return ret;
1350 }
1351
1352 return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(clk_save_context);
1355
1356 /**
1357 * clk_restore_context - restore clock context after poweroff
1358 *
1359 * Restore the saved clock context upon resume.
1360 *
1361 */
clk_restore_context(void)1362 void clk_restore_context(void)
1363 {
1364 struct clk_core *core;
1365
1366 hlist_for_each_entry(core, &clk_root_list, child_node)
1367 clk_core_restore_context(core);
1368
1369 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1370 clk_core_restore_context(core);
1371 }
1372 EXPORT_SYMBOL_GPL(clk_restore_context);
1373
1374 /**
1375 * clk_enable - ungate a clock
1376 * @clk: the clk being ungated
1377 *
1378 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1379 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1380 * if the operation will never sleep. One example is a SoC-internal clk which
1381 * is controlled via simple register writes. In the complex case a clk ungate
1382 * operation may require a fast and a slow part. It is this reason that
1383 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1384 * must be called before clk_enable. Returns 0 on success, -EERROR
1385 * otherwise.
1386 */
clk_enable(struct clk * clk)1387 int clk_enable(struct clk *clk)
1388 {
1389 if (!clk)
1390 return 0;
1391
1392 return clk_core_enable_lock(clk->core);
1393 }
1394 EXPORT_SYMBOL_GPL(clk_enable);
1395
1396 /**
1397 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1398 * @clk: clock source
1399 *
1400 * Returns true if clk_prepare() implicitly enables the clock, effectively
1401 * making clk_enable()/clk_disable() no-ops, false otherwise.
1402 *
1403 * This is of interest mainly to power management code where actually
1404 * disabling the clock also requires unpreparing it to have any material
1405 * effect.
1406 *
1407 * Regardless of the value returned here, the caller must always invoke
1408 * clk_enable() or clk_prepare_enable() and counterparts for usage counts
1409 * to be right.
1410 */
clk_is_enabled_when_prepared(struct clk * clk)1411 bool clk_is_enabled_when_prepared(struct clk *clk)
1412 {
1413 return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1414 }
1415 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1416
clk_core_prepare_enable(struct clk_core * core)1417 static int clk_core_prepare_enable(struct clk_core *core)
1418 {
1419 int ret;
1420
1421 ret = clk_core_prepare_lock(core);
1422 if (ret)
1423 return ret;
1424
1425 ret = clk_core_enable_lock(core);
1426 if (ret)
1427 clk_core_unprepare_lock(core);
1428
1429 return ret;
1430 }
1431
clk_core_disable_unprepare(struct clk_core * core)1432 static void clk_core_disable_unprepare(struct clk_core *core)
1433 {
1434 clk_core_disable_lock(core);
1435 clk_core_unprepare_lock(core);
1436 }
1437
clk_unprepare_unused_subtree(struct clk_core * core)1438 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1439 {
1440 struct clk_core *child;
1441
1442 lockdep_assert_held(&prepare_lock);
1443
1444 hlist_for_each_entry(child, &core->children, child_node)
1445 clk_unprepare_unused_subtree(child);
1446
1447 if (core->prepare_count)
1448 return;
1449
1450 if (core->flags & CLK_IGNORE_UNUSED)
1451 return;
1452
1453 if (clk_core_is_prepared(core)) {
1454 trace_clk_unprepare(core);
1455 if (core->ops->unprepare_unused)
1456 core->ops->unprepare_unused(core->hw);
1457 else if (core->ops->unprepare)
1458 core->ops->unprepare(core->hw);
1459 trace_clk_unprepare_complete(core);
1460 }
1461 }
1462
clk_disable_unused_subtree(struct clk_core * core)1463 static void __init clk_disable_unused_subtree(struct clk_core *core)
1464 {
1465 struct clk_core *child;
1466 unsigned long flags;
1467
1468 lockdep_assert_held(&prepare_lock);
1469
1470 hlist_for_each_entry(child, &core->children, child_node)
1471 clk_disable_unused_subtree(child);
1472
1473 if (core->flags & CLK_OPS_PARENT_ENABLE)
1474 clk_core_prepare_enable(core->parent);
1475
1476 flags = clk_enable_lock();
1477
1478 if (core->enable_count)
1479 goto unlock_out;
1480
1481 if (core->flags & CLK_IGNORE_UNUSED)
1482 goto unlock_out;
1483
1484 /*
1485 * some gate clocks have special needs during the disable-unused
1486 * sequence. call .disable_unused if available, otherwise fall
1487 * back to .disable
1488 */
1489 if (clk_core_is_enabled(core)) {
1490 trace_clk_disable(core);
1491 if (core->ops->disable_unused)
1492 core->ops->disable_unused(core->hw);
1493 else if (core->ops->disable)
1494 core->ops->disable(core->hw);
1495 trace_clk_disable_complete(core);
1496 }
1497
1498 unlock_out:
1499 clk_enable_unlock(flags);
1500 if (core->flags & CLK_OPS_PARENT_ENABLE)
1501 clk_core_disable_unprepare(core->parent);
1502 }
1503
1504 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1505 static int __init clk_ignore_unused_setup(char *__unused)
1506 {
1507 clk_ignore_unused = true;
1508 return 1;
1509 }
1510 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1511
clk_disable_unused(void)1512 static int __init clk_disable_unused(void)
1513 {
1514 struct clk_core *core;
1515 int ret;
1516
1517 if (clk_ignore_unused) {
1518 pr_warn("clk: Not disabling unused clocks\n");
1519 return 0;
1520 }
1521
1522 pr_info("clk: Disabling unused clocks\n");
1523
1524 ret = clk_pm_runtime_get_all();
1525 if (ret)
1526 return ret;
1527 /*
1528 * Grab the prepare lock to keep the clk topology stable while iterating
1529 * over clks.
1530 */
1531 clk_prepare_lock();
1532
1533 hlist_for_each_entry(core, &clk_root_list, child_node)
1534 clk_disable_unused_subtree(core);
1535
1536 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1537 clk_disable_unused_subtree(core);
1538
1539 hlist_for_each_entry(core, &clk_root_list, child_node)
1540 clk_unprepare_unused_subtree(core);
1541
1542 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1543 clk_unprepare_unused_subtree(core);
1544
1545 clk_prepare_unlock();
1546
1547 clk_pm_runtime_put_all();
1548
1549 return 0;
1550 }
1551 late_initcall_sync(clk_disable_unused);
1552
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1553 static int clk_core_determine_round_nolock(struct clk_core *core,
1554 struct clk_rate_request *req)
1555 {
1556 long rate;
1557
1558 lockdep_assert_held(&prepare_lock);
1559
1560 if (!core)
1561 return 0;
1562
1563 /*
1564 * Some clock providers hand-craft their clk_rate_requests and
1565 * might not fill min_rate and max_rate.
1566 *
1567 * If it's the case, clamping the rate is equivalent to setting
1568 * the rate to 0 which is bad. Skip the clamping but complain so
1569 * that it gets fixed, hopefully.
1570 */
1571 if (!req->min_rate && !req->max_rate)
1572 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1573 __func__, core->name);
1574 else
1575 req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1576
1577 /*
1578 * At this point, core protection will be disabled
1579 * - if the provider is not protected at all
1580 * - if the calling consumer is the only one which has exclusivity
1581 * over the provider
1582 */
1583 if (clk_core_rate_is_protected(core)) {
1584 req->rate = core->rate;
1585 } else if (core->ops->determine_rate) {
1586 return core->ops->determine_rate(core->hw, req);
1587 } else if (core->ops->round_rate) {
1588 rate = core->ops->round_rate(core->hw, req->rate,
1589 &req->best_parent_rate);
1590 if (rate < 0)
1591 return rate;
1592
1593 req->rate = rate;
1594 } else {
1595 return -EINVAL;
1596 }
1597
1598 return 0;
1599 }
1600
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req,unsigned long rate)1601 static void clk_core_init_rate_req(struct clk_core * const core,
1602 struct clk_rate_request *req,
1603 unsigned long rate)
1604 {
1605 struct clk_core *parent;
1606
1607 if (WARN_ON(!req))
1608 return;
1609
1610 memset(req, 0, sizeof(*req));
1611 req->max_rate = ULONG_MAX;
1612
1613 if (!core)
1614 return;
1615
1616 req->core = core;
1617 req->rate = rate;
1618 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1619
1620 parent = core->parent;
1621 if (parent) {
1622 req->best_parent_hw = parent->hw;
1623 req->best_parent_rate = parent->rate;
1624 } else {
1625 req->best_parent_hw = NULL;
1626 req->best_parent_rate = 0;
1627 }
1628 }
1629
1630 /**
1631 * clk_hw_init_rate_request - Initializes a clk_rate_request
1632 * @hw: the clk for which we want to submit a rate request
1633 * @req: the clk_rate_request structure we want to initialise
1634 * @rate: the rate which is to be requested
1635 *
1636 * Initializes a clk_rate_request structure to submit to
1637 * __clk_determine_rate() or similar functions.
1638 */
clk_hw_init_rate_request(const struct clk_hw * hw,struct clk_rate_request * req,unsigned long rate)1639 void clk_hw_init_rate_request(const struct clk_hw *hw,
1640 struct clk_rate_request *req,
1641 unsigned long rate)
1642 {
1643 if (WARN_ON(!hw || !req))
1644 return;
1645
1646 clk_core_init_rate_req(hw->core, req, rate);
1647 }
1648 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1649
1650 /**
1651 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1652 * @hw: the original clock that got the rate request
1653 * @old_req: the original clk_rate_request structure we want to forward
1654 * @parent: the clk we want to forward @old_req to
1655 * @req: the clk_rate_request structure we want to initialise
1656 * @parent_rate: The rate which is to be requested to @parent
1657 *
1658 * Initializes a clk_rate_request structure to submit to a clock parent
1659 * in __clk_determine_rate() or similar functions.
1660 */
clk_hw_forward_rate_request(const struct clk_hw * hw,const struct clk_rate_request * old_req,const struct clk_hw * parent,struct clk_rate_request * req,unsigned long parent_rate)1661 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1662 const struct clk_rate_request *old_req,
1663 const struct clk_hw *parent,
1664 struct clk_rate_request *req,
1665 unsigned long parent_rate)
1666 {
1667 if (WARN_ON(!hw || !old_req || !parent || !req))
1668 return;
1669
1670 clk_core_forward_rate_req(hw->core, old_req,
1671 parent->core, req,
1672 parent_rate);
1673 }
1674 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1675
clk_core_can_round(struct clk_core * const core)1676 static bool clk_core_can_round(struct clk_core * const core)
1677 {
1678 return core->ops->determine_rate || core->ops->round_rate;
1679 }
1680
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1681 static int clk_core_round_rate_nolock(struct clk_core *core,
1682 struct clk_rate_request *req)
1683 {
1684 int ret;
1685
1686 lockdep_assert_held(&prepare_lock);
1687
1688 if (!core) {
1689 req->rate = 0;
1690 return 0;
1691 }
1692
1693 if (clk_core_can_round(core))
1694 return clk_core_determine_round_nolock(core, req);
1695
1696 if (core->flags & CLK_SET_RATE_PARENT) {
1697 struct clk_rate_request parent_req;
1698
1699 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1700
1701 trace_clk_rate_request_start(&parent_req);
1702
1703 ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1704 if (ret)
1705 return ret;
1706
1707 trace_clk_rate_request_done(&parent_req);
1708
1709 req->best_parent_rate = parent_req.rate;
1710 req->rate = parent_req.rate;
1711
1712 return 0;
1713 }
1714
1715 req->rate = core->rate;
1716 return 0;
1717 }
1718
1719 /**
1720 * __clk_determine_rate - get the closest rate actually supported by a clock
1721 * @hw: determine the rate of this clock
1722 * @req: target rate request
1723 *
1724 * Useful for clk_ops such as .set_rate and .determine_rate.
1725 */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1726 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1727 {
1728 if (!hw) {
1729 req->rate = 0;
1730 return 0;
1731 }
1732
1733 return clk_core_round_rate_nolock(hw->core, req);
1734 }
1735 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1736
1737 /**
1738 * clk_hw_round_rate() - round the given rate for a hw clk
1739 * @hw: the hw clk for which we are rounding a rate
1740 * @rate: the rate which is to be rounded
1741 *
1742 * Takes in a rate as input and rounds it to a rate that the clk can actually
1743 * use.
1744 *
1745 * Context: prepare_lock must be held.
1746 * For clk providers to call from within clk_ops such as .round_rate,
1747 * .determine_rate.
1748 *
1749 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1750 * else returns the parent rate.
1751 */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1752 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1753 {
1754 int ret;
1755 struct clk_rate_request req;
1756
1757 clk_core_init_rate_req(hw->core, &req, rate);
1758
1759 trace_clk_rate_request_start(&req);
1760
1761 ret = clk_core_round_rate_nolock(hw->core, &req);
1762 if (ret)
1763 return 0;
1764
1765 trace_clk_rate_request_done(&req);
1766
1767 return req.rate;
1768 }
1769 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1770
1771 /**
1772 * clk_round_rate - round the given rate for a clk
1773 * @clk: the clk for which we are rounding a rate
1774 * @rate: the rate which is to be rounded
1775 *
1776 * Takes in a rate as input and rounds it to a rate that the clk can actually
1777 * use which is then returned. If clk doesn't support round_rate operation
1778 * then the parent rate is returned.
1779 */
clk_round_rate(struct clk * clk,unsigned long rate)1780 long clk_round_rate(struct clk *clk, unsigned long rate)
1781 {
1782 struct clk_rate_request req;
1783 int ret;
1784
1785 if (!clk)
1786 return 0;
1787
1788 clk_prepare_lock();
1789
1790 if (clk->exclusive_count)
1791 clk_core_rate_unprotect(clk->core);
1792
1793 clk_core_init_rate_req(clk->core, &req, rate);
1794
1795 trace_clk_rate_request_start(&req);
1796
1797 ret = clk_core_round_rate_nolock(clk->core, &req);
1798
1799 trace_clk_rate_request_done(&req);
1800
1801 if (clk->exclusive_count)
1802 clk_core_rate_protect(clk->core);
1803
1804 clk_prepare_unlock();
1805
1806 if (ret)
1807 return ret;
1808
1809 return req.rate;
1810 }
1811 EXPORT_SYMBOL_GPL(clk_round_rate);
1812
1813 /**
1814 * __clk_notify - call clk notifier chain
1815 * @core: clk that is changing rate
1816 * @msg: clk notifier type (see include/linux/clk.h)
1817 * @old_rate: old clk rate
1818 * @new_rate: new clk rate
1819 *
1820 * Triggers a notifier call chain on the clk rate-change notification
1821 * for 'clk'. Passes a pointer to the struct clk and the previous
1822 * and current rates to the notifier callback. Intended to be called by
1823 * internal clock code only. Returns NOTIFY_DONE from the last driver
1824 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1825 * a driver returns that.
1826 */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1827 static int __clk_notify(struct clk_core *core, unsigned long msg,
1828 unsigned long old_rate, unsigned long new_rate)
1829 {
1830 struct clk_notifier *cn;
1831 struct clk_notifier_data cnd;
1832 int ret = NOTIFY_DONE;
1833
1834 cnd.old_rate = old_rate;
1835 cnd.new_rate = new_rate;
1836
1837 list_for_each_entry(cn, &clk_notifier_list, node) {
1838 if (cn->clk->core == core) {
1839 cnd.clk = cn->clk;
1840 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1841 &cnd);
1842 if (ret & NOTIFY_STOP_MASK)
1843 return ret;
1844 }
1845 }
1846
1847 return ret;
1848 }
1849
1850 /**
1851 * __clk_recalc_accuracies
1852 * @core: first clk in the subtree
1853 *
1854 * Walks the subtree of clks starting with clk and recalculates accuracies as
1855 * it goes. Note that if a clk does not implement the .recalc_accuracy
1856 * callback then it is assumed that the clock will take on the accuracy of its
1857 * parent.
1858 */
__clk_recalc_accuracies(struct clk_core * core)1859 static void __clk_recalc_accuracies(struct clk_core *core)
1860 {
1861 unsigned long parent_accuracy = 0;
1862 struct clk_core *child;
1863
1864 lockdep_assert_held(&prepare_lock);
1865
1866 if (core->parent)
1867 parent_accuracy = core->parent->accuracy;
1868
1869 if (core->ops->recalc_accuracy)
1870 core->accuracy = core->ops->recalc_accuracy(core->hw,
1871 parent_accuracy);
1872 else
1873 core->accuracy = parent_accuracy;
1874
1875 hlist_for_each_entry(child, &core->children, child_node)
1876 __clk_recalc_accuracies(child);
1877 }
1878
clk_core_get_accuracy_recalc(struct clk_core * core)1879 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1880 {
1881 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1882 __clk_recalc_accuracies(core);
1883
1884 return clk_core_get_accuracy_no_lock(core);
1885 }
1886
1887 /**
1888 * clk_get_accuracy - return the accuracy of clk
1889 * @clk: the clk whose accuracy is being returned
1890 *
1891 * Simply returns the cached accuracy of the clk, unless
1892 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1893 * issued.
1894 * If clk is NULL then returns 0.
1895 */
clk_get_accuracy(struct clk * clk)1896 long clk_get_accuracy(struct clk *clk)
1897 {
1898 long accuracy;
1899
1900 if (!clk)
1901 return 0;
1902
1903 clk_prepare_lock();
1904 accuracy = clk_core_get_accuracy_recalc(clk->core);
1905 clk_prepare_unlock();
1906
1907 return accuracy;
1908 }
1909 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1910
clk_recalc(struct clk_core * core,unsigned long parent_rate)1911 static unsigned long clk_recalc(struct clk_core *core,
1912 unsigned long parent_rate)
1913 {
1914 unsigned long rate = parent_rate;
1915
1916 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1917 rate = core->ops->recalc_rate(core->hw, parent_rate);
1918 clk_pm_runtime_put(core);
1919 }
1920 return rate;
1921 }
1922
1923 /**
1924 * __clk_recalc_rates
1925 * @core: first clk in the subtree
1926 * @update_req: Whether req_rate should be updated with the new rate
1927 * @msg: notification type (see include/linux/clk.h)
1928 *
1929 * Walks the subtree of clks starting with clk and recalculates rates as it
1930 * goes. Note that if a clk does not implement the .recalc_rate callback then
1931 * it is assumed that the clock will take on the rate of its parent.
1932 *
1933 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1934 * if necessary.
1935 */
__clk_recalc_rates(struct clk_core * core,bool update_req,unsigned long msg)1936 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1937 unsigned long msg)
1938 {
1939 unsigned long old_rate;
1940 unsigned long parent_rate = 0;
1941 struct clk_core *child;
1942
1943 lockdep_assert_held(&prepare_lock);
1944
1945 old_rate = core->rate;
1946
1947 if (core->parent)
1948 parent_rate = core->parent->rate;
1949
1950 core->rate = clk_recalc(core, parent_rate);
1951 if (update_req)
1952 core->req_rate = core->rate;
1953
1954 /*
1955 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1956 * & ABORT_RATE_CHANGE notifiers
1957 */
1958 if (core->notifier_count && msg)
1959 __clk_notify(core, msg, old_rate, core->rate);
1960
1961 hlist_for_each_entry(child, &core->children, child_node)
1962 __clk_recalc_rates(child, update_req, msg);
1963 }
1964
clk_core_get_rate_recalc(struct clk_core * core)1965 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1966 {
1967 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1968 __clk_recalc_rates(core, false, 0);
1969
1970 return clk_core_get_rate_nolock(core);
1971 }
1972
1973 /**
1974 * clk_get_rate - return the rate of clk
1975 * @clk: the clk whose rate is being returned
1976 *
1977 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1978 * is set, which means a recalc_rate will be issued. Can be called regardless of
1979 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1980 * 0.
1981 */
clk_get_rate(struct clk * clk)1982 unsigned long clk_get_rate(struct clk *clk)
1983 {
1984 unsigned long rate;
1985
1986 if (!clk)
1987 return 0;
1988
1989 clk_prepare_lock();
1990 rate = clk_core_get_rate_recalc(clk->core);
1991 clk_prepare_unlock();
1992
1993 return rate;
1994 }
1995 EXPORT_SYMBOL_GPL(clk_get_rate);
1996
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1997 static int clk_fetch_parent_index(struct clk_core *core,
1998 struct clk_core *parent)
1999 {
2000 int i;
2001
2002 if (!parent)
2003 return -EINVAL;
2004
2005 for (i = 0; i < core->num_parents; i++) {
2006 /* Found it first try! */
2007 if (core->parents[i].core == parent)
2008 return i;
2009
2010 /* Something else is here, so keep looking */
2011 if (core->parents[i].core)
2012 continue;
2013
2014 /* Maybe core hasn't been cached but the hw is all we know? */
2015 if (core->parents[i].hw) {
2016 if (core->parents[i].hw == parent->hw)
2017 break;
2018
2019 /* Didn't match, but we're expecting a clk_hw */
2020 continue;
2021 }
2022
2023 /* Maybe it hasn't been cached (clk_set_parent() path) */
2024 if (parent == clk_core_get(core, i))
2025 break;
2026
2027 /* Fallback to comparing globally unique names */
2028 if (core->parents[i].name &&
2029 !strcmp(parent->name, core->parents[i].name))
2030 break;
2031 }
2032
2033 if (i == core->num_parents)
2034 return -EINVAL;
2035
2036 core->parents[i].core = parent;
2037 return i;
2038 }
2039
2040 /**
2041 * clk_hw_get_parent_index - return the index of the parent clock
2042 * @hw: clk_hw associated with the clk being consumed
2043 *
2044 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2045 * clock does not have a current parent.
2046 */
clk_hw_get_parent_index(struct clk_hw * hw)2047 int clk_hw_get_parent_index(struct clk_hw *hw)
2048 {
2049 struct clk_hw *parent = clk_hw_get_parent(hw);
2050
2051 if (WARN_ON(parent == NULL))
2052 return -EINVAL;
2053
2054 return clk_fetch_parent_index(hw->core, parent->core);
2055 }
2056 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2057
2058 /*
2059 * Update the orphan status of @core and all its children.
2060 */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)2061 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2062 {
2063 struct clk_core *child;
2064
2065 core->orphan = is_orphan;
2066
2067 hlist_for_each_entry(child, &core->children, child_node)
2068 clk_core_update_orphan_status(child, is_orphan);
2069 }
2070
clk_reparent(struct clk_core * core,struct clk_core * new_parent)2071 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2072 {
2073 bool was_orphan = core->orphan;
2074
2075 hlist_del(&core->child_node);
2076
2077 if (new_parent) {
2078 bool becomes_orphan = new_parent->orphan;
2079
2080 /* avoid duplicate POST_RATE_CHANGE notifications */
2081 if (new_parent->new_child == core)
2082 new_parent->new_child = NULL;
2083
2084 hlist_add_head(&core->child_node, &new_parent->children);
2085
2086 if (was_orphan != becomes_orphan)
2087 clk_core_update_orphan_status(core, becomes_orphan);
2088 } else {
2089 hlist_add_head(&core->child_node, &clk_orphan_list);
2090 if (!was_orphan)
2091 clk_core_update_orphan_status(core, true);
2092 }
2093
2094 core->parent = new_parent;
2095 }
2096
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)2097 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2098 struct clk_core *parent)
2099 {
2100 unsigned long flags;
2101 struct clk_core *old_parent = core->parent;
2102
2103 /*
2104 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2105 *
2106 * 2. Migrate prepare state between parents and prevent race with
2107 * clk_enable().
2108 *
2109 * If the clock is not prepared, then a race with
2110 * clk_enable/disable() is impossible since we already have the
2111 * prepare lock (future calls to clk_enable() need to be preceded by
2112 * a clk_prepare()).
2113 *
2114 * If the clock is prepared, migrate the prepared state to the new
2115 * parent and also protect against a race with clk_enable() by
2116 * forcing the clock and the new parent on. This ensures that all
2117 * future calls to clk_enable() are practically NOPs with respect to
2118 * hardware and software states.
2119 *
2120 * See also: Comment for clk_set_parent() below.
2121 */
2122
2123 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2124 if (core->flags & CLK_OPS_PARENT_ENABLE) {
2125 clk_core_prepare_enable(old_parent);
2126 clk_core_prepare_enable(parent);
2127 }
2128
2129 /* migrate prepare count if > 0 */
2130 if (core->prepare_count) {
2131 clk_core_prepare_enable(parent);
2132 clk_core_enable_lock(core);
2133 }
2134
2135 /* update the clk tree topology */
2136 flags = clk_enable_lock();
2137 clk_reparent(core, parent);
2138 clk_enable_unlock(flags);
2139
2140 return old_parent;
2141 }
2142
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)2143 static void __clk_set_parent_after(struct clk_core *core,
2144 struct clk_core *parent,
2145 struct clk_core *old_parent)
2146 {
2147 /*
2148 * Finish the migration of prepare state and undo the changes done
2149 * for preventing a race with clk_enable().
2150 */
2151 if (core->prepare_count) {
2152 clk_core_disable_lock(core);
2153 clk_core_disable_unprepare(old_parent);
2154 }
2155
2156 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2157 if (core->flags & CLK_OPS_PARENT_ENABLE) {
2158 clk_core_disable_unprepare(parent);
2159 clk_core_disable_unprepare(old_parent);
2160 }
2161 }
2162
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)2163 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2164 u8 p_index)
2165 {
2166 unsigned long flags;
2167 int ret = 0;
2168 struct clk_core *old_parent;
2169
2170 old_parent = __clk_set_parent_before(core, parent);
2171
2172 trace_clk_set_parent(core, parent);
2173
2174 /* change clock input source */
2175 if (parent && core->ops->set_parent)
2176 ret = core->ops->set_parent(core->hw, p_index);
2177
2178 trace_clk_set_parent_complete(core, parent);
2179
2180 if (ret) {
2181 flags = clk_enable_lock();
2182 clk_reparent(core, old_parent);
2183 clk_enable_unlock(flags);
2184
2185 __clk_set_parent_after(core, old_parent, parent);
2186
2187 return ret;
2188 }
2189
2190 __clk_set_parent_after(core, parent, old_parent);
2191
2192 return 0;
2193 }
2194
2195 /**
2196 * __clk_speculate_rates
2197 * @core: first clk in the subtree
2198 * @parent_rate: the "future" rate of clk's parent
2199 *
2200 * Walks the subtree of clks starting with clk, speculating rates as it
2201 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2202 *
2203 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2204 * pre-rate change notifications and returns early if no clks in the
2205 * subtree have subscribed to the notifications. Note that if a clk does not
2206 * implement the .recalc_rate callback then it is assumed that the clock will
2207 * take on the rate of its parent.
2208 */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)2209 static int __clk_speculate_rates(struct clk_core *core,
2210 unsigned long parent_rate)
2211 {
2212 struct clk_core *child;
2213 unsigned long new_rate;
2214 int ret = NOTIFY_DONE;
2215
2216 lockdep_assert_held(&prepare_lock);
2217
2218 new_rate = clk_recalc(core, parent_rate);
2219
2220 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2221 if (core->notifier_count)
2222 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2223
2224 if (ret & NOTIFY_STOP_MASK) {
2225 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2226 __func__, core->name, ret);
2227 goto out;
2228 }
2229
2230 hlist_for_each_entry(child, &core->children, child_node) {
2231 ret = __clk_speculate_rates(child, new_rate);
2232 if (ret & NOTIFY_STOP_MASK)
2233 break;
2234 }
2235
2236 out:
2237 return ret;
2238 }
2239
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)2240 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2241 struct clk_core *new_parent, u8 p_index)
2242 {
2243 struct clk_core *child;
2244
2245 core->new_rate = new_rate;
2246 core->new_parent = new_parent;
2247 core->new_parent_index = p_index;
2248 /* include clk in new parent's PRE_RATE_CHANGE notifications */
2249 core->new_child = NULL;
2250 if (new_parent && new_parent != core->parent)
2251 new_parent->new_child = core;
2252
2253 hlist_for_each_entry(child, &core->children, child_node) {
2254 child->new_rate = clk_recalc(child, new_rate);
2255 clk_calc_subtree(child, child->new_rate, NULL, 0);
2256 }
2257 }
2258
2259 /*
2260 * calculate the new rates returning the topmost clock that has to be
2261 * changed.
2262 */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)2263 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2264 unsigned long rate)
2265 {
2266 struct clk_core *top = core;
2267 struct clk_core *old_parent, *parent;
2268 unsigned long best_parent_rate = 0;
2269 unsigned long new_rate;
2270 unsigned long min_rate;
2271 unsigned long max_rate;
2272 int p_index = 0;
2273 long ret;
2274
2275 /* sanity */
2276 if (IS_ERR_OR_NULL(core))
2277 return NULL;
2278
2279 /* save parent rate, if it exists */
2280 parent = old_parent = core->parent;
2281 if (parent)
2282 best_parent_rate = parent->rate;
2283
2284 clk_core_get_boundaries(core, &min_rate, &max_rate);
2285
2286 /* find the closest rate and parent clk/rate */
2287 if (clk_core_can_round(core)) {
2288 struct clk_rate_request req;
2289
2290 clk_core_init_rate_req(core, &req, rate);
2291
2292 trace_clk_rate_request_start(&req);
2293
2294 ret = clk_core_determine_round_nolock(core, &req);
2295 if (ret < 0)
2296 return NULL;
2297
2298 trace_clk_rate_request_done(&req);
2299
2300 best_parent_rate = req.best_parent_rate;
2301 new_rate = req.rate;
2302 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2303
2304 if (new_rate < min_rate || new_rate > max_rate)
2305 return NULL;
2306 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2307 /* pass-through clock without adjustable parent */
2308 core->new_rate = core->rate;
2309 return NULL;
2310 } else {
2311 /* pass-through clock with adjustable parent */
2312 top = clk_calc_new_rates(parent, rate);
2313 new_rate = parent->new_rate;
2314 goto out;
2315 }
2316
2317 /* some clocks must be gated to change parent */
2318 if (parent != old_parent &&
2319 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2320 pr_debug("%s: %s not gated but wants to reparent\n",
2321 __func__, core->name);
2322 return NULL;
2323 }
2324
2325 /* try finding the new parent index */
2326 if (parent && core->num_parents > 1) {
2327 p_index = clk_fetch_parent_index(core, parent);
2328 if (p_index < 0) {
2329 pr_debug("%s: clk %s can not be parent of clk %s\n",
2330 __func__, parent->name, core->name);
2331 return NULL;
2332 }
2333 }
2334
2335 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2336 best_parent_rate != parent->rate)
2337 top = clk_calc_new_rates(parent, best_parent_rate);
2338
2339 out:
2340 clk_calc_subtree(core, new_rate, parent, p_index);
2341
2342 return top;
2343 }
2344
2345 /*
2346 * Notify about rate changes in a subtree. Always walk down the whole tree
2347 * so that in case of an error we can walk down the whole tree again and
2348 * abort the change.
2349 */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2350 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2351 unsigned long event)
2352 {
2353 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2354 int ret = NOTIFY_DONE;
2355
2356 if (core->rate == core->new_rate)
2357 return NULL;
2358
2359 if (core->notifier_count) {
2360 ret = __clk_notify(core, event, core->rate, core->new_rate);
2361 if (ret & NOTIFY_STOP_MASK)
2362 fail_clk = core;
2363 }
2364
2365 hlist_for_each_entry(child, &core->children, child_node) {
2366 /* Skip children who will be reparented to another clock */
2367 if (child->new_parent && child->new_parent != core)
2368 continue;
2369 tmp_clk = clk_propagate_rate_change(child, event);
2370 if (tmp_clk)
2371 fail_clk = tmp_clk;
2372 }
2373
2374 /* handle the new child who might not be in core->children yet */
2375 if (core->new_child) {
2376 tmp_clk = clk_propagate_rate_change(core->new_child, event);
2377 if (tmp_clk)
2378 fail_clk = tmp_clk;
2379 }
2380
2381 return fail_clk;
2382 }
2383
2384 /*
2385 * walk down a subtree and set the new rates notifying the rate
2386 * change on the way
2387 */
clk_change_rate(struct clk_core * core)2388 static void clk_change_rate(struct clk_core *core)
2389 {
2390 struct clk_core *child;
2391 struct hlist_node *tmp;
2392 unsigned long old_rate;
2393 unsigned long best_parent_rate = 0;
2394 bool skip_set_rate = false;
2395 struct clk_core *old_parent;
2396 struct clk_core *parent = NULL;
2397
2398 old_rate = core->rate;
2399
2400 if (core->new_parent) {
2401 parent = core->new_parent;
2402 best_parent_rate = core->new_parent->rate;
2403 } else if (core->parent) {
2404 parent = core->parent;
2405 best_parent_rate = core->parent->rate;
2406 }
2407
2408 if (clk_pm_runtime_get(core))
2409 return;
2410
2411 if (core->flags & CLK_SET_RATE_UNGATE) {
2412 clk_core_prepare(core);
2413 clk_core_enable_lock(core);
2414 }
2415
2416 if (core->new_parent && core->new_parent != core->parent) {
2417 old_parent = __clk_set_parent_before(core, core->new_parent);
2418 trace_clk_set_parent(core, core->new_parent);
2419
2420 if (core->ops->set_rate_and_parent) {
2421 skip_set_rate = true;
2422 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2423 best_parent_rate,
2424 core->new_parent_index);
2425 } else if (core->ops->set_parent) {
2426 core->ops->set_parent(core->hw, core->new_parent_index);
2427 }
2428
2429 trace_clk_set_parent_complete(core, core->new_parent);
2430 __clk_set_parent_after(core, core->new_parent, old_parent);
2431 }
2432
2433 if (core->flags & CLK_OPS_PARENT_ENABLE)
2434 clk_core_prepare_enable(parent);
2435
2436 trace_clk_set_rate(core, core->new_rate);
2437
2438 if (!skip_set_rate && core->ops->set_rate)
2439 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2440
2441 trace_clk_set_rate_complete(core, core->new_rate);
2442
2443 core->rate = clk_recalc(core, best_parent_rate);
2444
2445 if (core->flags & CLK_SET_RATE_UNGATE) {
2446 clk_core_disable_lock(core);
2447 clk_core_unprepare(core);
2448 }
2449
2450 if (core->flags & CLK_OPS_PARENT_ENABLE)
2451 clk_core_disable_unprepare(parent);
2452
2453 if (core->notifier_count && old_rate != core->rate)
2454 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2455
2456 if (core->flags & CLK_RECALC_NEW_RATES)
2457 (void)clk_calc_new_rates(core, core->new_rate);
2458
2459 /*
2460 * Use safe iteration, as change_rate can actually swap parents
2461 * for certain clock types.
2462 */
2463 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2464 /* Skip children who will be reparented to another clock */
2465 if (child->new_parent && child->new_parent != core)
2466 continue;
2467 clk_change_rate(child);
2468 }
2469
2470 /* handle the new child who might not be in core->children yet */
2471 if (core->new_child)
2472 clk_change_rate(core->new_child);
2473
2474 clk_pm_runtime_put(core);
2475 }
2476
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2477 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2478 unsigned long req_rate)
2479 {
2480 int ret, cnt;
2481 struct clk_rate_request req;
2482
2483 lockdep_assert_held(&prepare_lock);
2484
2485 if (!core)
2486 return 0;
2487
2488 /* simulate what the rate would be if it could be freely set */
2489 cnt = clk_core_rate_nuke_protect(core);
2490 if (cnt < 0)
2491 return cnt;
2492
2493 clk_core_init_rate_req(core, &req, req_rate);
2494
2495 trace_clk_rate_request_start(&req);
2496
2497 ret = clk_core_round_rate_nolock(core, &req);
2498
2499 trace_clk_rate_request_done(&req);
2500
2501 /* restore the protection */
2502 clk_core_rate_restore_protect(core, cnt);
2503
2504 return ret ? 0 : req.rate;
2505 }
2506
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2507 static int clk_core_set_rate_nolock(struct clk_core *core,
2508 unsigned long req_rate)
2509 {
2510 struct clk_core *top, *fail_clk;
2511 unsigned long rate;
2512 int ret;
2513
2514 if (!core)
2515 return 0;
2516
2517 rate = clk_core_req_round_rate_nolock(core, req_rate);
2518
2519 /* bail early if nothing to do */
2520 if (rate == clk_core_get_rate_nolock(core))
2521 return 0;
2522
2523 /* fail on a direct rate set of a protected provider */
2524 if (clk_core_rate_is_protected(core))
2525 return -EBUSY;
2526
2527 /* calculate new rates and get the topmost changed clock */
2528 top = clk_calc_new_rates(core, req_rate);
2529 if (!top)
2530 return -EINVAL;
2531
2532 ret = clk_pm_runtime_get(core);
2533 if (ret)
2534 return ret;
2535
2536 /* notify that we are about to change rates */
2537 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2538 if (fail_clk) {
2539 pr_debug("%s: failed to set %s rate\n", __func__,
2540 fail_clk->name);
2541 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2542 ret = -EBUSY;
2543 goto err;
2544 }
2545
2546 /* change the rates */
2547 clk_change_rate(top);
2548
2549 core->req_rate = req_rate;
2550 err:
2551 clk_pm_runtime_put(core);
2552
2553 return ret;
2554 }
2555
2556 /**
2557 * clk_set_rate - specify a new rate for clk
2558 * @clk: the clk whose rate is being changed
2559 * @rate: the new rate for clk
2560 *
2561 * In the simplest case clk_set_rate will only adjust the rate of clk.
2562 *
2563 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2564 * propagate up to clk's parent; whether or not this happens depends on the
2565 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2566 * after calling .round_rate then upstream parent propagation is ignored. If
2567 * *parent_rate comes back with a new rate for clk's parent then we propagate
2568 * up to clk's parent and set its rate. Upward propagation will continue
2569 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2570 * .round_rate stops requesting changes to clk's parent_rate.
2571 *
2572 * Rate changes are accomplished via tree traversal that also recalculates the
2573 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2574 *
2575 * Returns 0 on success, -EERROR otherwise.
2576 */
clk_set_rate(struct clk * clk,unsigned long rate)2577 int clk_set_rate(struct clk *clk, unsigned long rate)
2578 {
2579 int ret;
2580
2581 if (!clk)
2582 return 0;
2583
2584 /* prevent racing with updates to the clock topology */
2585 clk_prepare_lock();
2586
2587 if (clk->exclusive_count)
2588 clk_core_rate_unprotect(clk->core);
2589
2590 ret = clk_core_set_rate_nolock(clk->core, rate);
2591
2592 if (clk->exclusive_count)
2593 clk_core_rate_protect(clk->core);
2594
2595 clk_prepare_unlock();
2596
2597 return ret;
2598 }
2599 EXPORT_SYMBOL_GPL(clk_set_rate);
2600
2601 /**
2602 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2603 * @clk: the clk whose rate is being changed
2604 * @rate: the new rate for clk
2605 *
2606 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2607 * within a critical section
2608 *
2609 * This can be used initially to ensure that at least 1 consumer is
2610 * satisfied when several consumers are competing for exclusivity over the
2611 * same clock provider.
2612 *
2613 * The exclusivity is not applied if setting the rate failed.
2614 *
2615 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2616 * clk_rate_exclusive_put().
2617 *
2618 * Returns 0 on success, -EERROR otherwise.
2619 */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2620 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2621 {
2622 int ret;
2623
2624 if (!clk)
2625 return 0;
2626
2627 /* prevent racing with updates to the clock topology */
2628 clk_prepare_lock();
2629
2630 /*
2631 * The temporary protection removal is not here, on purpose
2632 * This function is meant to be used instead of clk_rate_protect,
2633 * so before the consumer code path protect the clock provider
2634 */
2635
2636 ret = clk_core_set_rate_nolock(clk->core, rate);
2637 if (!ret) {
2638 clk_core_rate_protect(clk->core);
2639 clk->exclusive_count++;
2640 }
2641
2642 clk_prepare_unlock();
2643
2644 return ret;
2645 }
2646 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2647
clk_set_rate_range_nolock(struct clk * clk,unsigned long min,unsigned long max)2648 static int clk_set_rate_range_nolock(struct clk *clk,
2649 unsigned long min,
2650 unsigned long max)
2651 {
2652 int ret = 0;
2653 unsigned long old_min, old_max, rate;
2654
2655 lockdep_assert_held(&prepare_lock);
2656
2657 if (!clk)
2658 return 0;
2659
2660 trace_clk_set_rate_range(clk->core, min, max);
2661
2662 if (min > max) {
2663 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2664 __func__, clk->core->name, clk->dev_id, clk->con_id,
2665 min, max);
2666 return -EINVAL;
2667 }
2668
2669 if (clk->exclusive_count)
2670 clk_core_rate_unprotect(clk->core);
2671
2672 /* Save the current values in case we need to rollback the change */
2673 old_min = clk->min_rate;
2674 old_max = clk->max_rate;
2675 clk->min_rate = min;
2676 clk->max_rate = max;
2677
2678 if (!clk_core_check_boundaries(clk->core, min, max)) {
2679 ret = -EINVAL;
2680 goto out;
2681 }
2682
2683 rate = clk->core->req_rate;
2684 if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2685 rate = clk_core_get_rate_recalc(clk->core);
2686
2687 /*
2688 * Since the boundaries have been changed, let's give the
2689 * opportunity to the provider to adjust the clock rate based on
2690 * the new boundaries.
2691 *
2692 * We also need to handle the case where the clock is currently
2693 * outside of the boundaries. Clamping the last requested rate
2694 * to the current minimum and maximum will also handle this.
2695 *
2696 * FIXME:
2697 * There is a catch. It may fail for the usual reason (clock
2698 * broken, clock protected, etc) but also because:
2699 * - round_rate() was not favorable and fell on the wrong
2700 * side of the boundary
2701 * - the determine_rate() callback does not really check for
2702 * this corner case when determining the rate
2703 */
2704 rate = clamp(rate, min, max);
2705 ret = clk_core_set_rate_nolock(clk->core, rate);
2706 if (ret) {
2707 /* rollback the changes */
2708 clk->min_rate = old_min;
2709 clk->max_rate = old_max;
2710 }
2711
2712 out:
2713 if (clk->exclusive_count)
2714 clk_core_rate_protect(clk->core);
2715
2716 return ret;
2717 }
2718
2719 /**
2720 * clk_set_rate_range - set a rate range for a clock source
2721 * @clk: clock source
2722 * @min: desired minimum clock rate in Hz, inclusive
2723 * @max: desired maximum clock rate in Hz, inclusive
2724 *
2725 * Return: 0 for success or negative errno on failure.
2726 */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2727 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2728 {
2729 int ret;
2730
2731 if (!clk)
2732 return 0;
2733
2734 clk_prepare_lock();
2735
2736 ret = clk_set_rate_range_nolock(clk, min, max);
2737
2738 clk_prepare_unlock();
2739
2740 return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2743
2744 /**
2745 * clk_set_min_rate - set a minimum clock rate for a clock source
2746 * @clk: clock source
2747 * @rate: desired minimum clock rate in Hz, inclusive
2748 *
2749 * Returns success (0) or negative errno.
2750 */
clk_set_min_rate(struct clk * clk,unsigned long rate)2751 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2752 {
2753 if (!clk)
2754 return 0;
2755
2756 trace_clk_set_min_rate(clk->core, rate);
2757
2758 return clk_set_rate_range(clk, rate, clk->max_rate);
2759 }
2760 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2761
2762 /**
2763 * clk_set_max_rate - set a maximum clock rate for a clock source
2764 * @clk: clock source
2765 * @rate: desired maximum clock rate in Hz, inclusive
2766 *
2767 * Returns success (0) or negative errno.
2768 */
clk_set_max_rate(struct clk * clk,unsigned long rate)2769 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2770 {
2771 if (!clk)
2772 return 0;
2773
2774 trace_clk_set_max_rate(clk->core, rate);
2775
2776 return clk_set_rate_range(clk, clk->min_rate, rate);
2777 }
2778 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2779
2780 /**
2781 * clk_get_parent - return the parent of a clk
2782 * @clk: the clk whose parent gets returned
2783 *
2784 * Simply returns clk->parent. Returns NULL if clk is NULL.
2785 */
clk_get_parent(struct clk * clk)2786 struct clk *clk_get_parent(struct clk *clk)
2787 {
2788 struct clk *parent;
2789
2790 if (!clk)
2791 return NULL;
2792
2793 clk_prepare_lock();
2794 /* TODO: Create a per-user clk and change callers to call clk_put */
2795 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2796 clk_prepare_unlock();
2797
2798 return parent;
2799 }
2800 EXPORT_SYMBOL_GPL(clk_get_parent);
2801
__clk_init_parent(struct clk_core * core)2802 static struct clk_core *__clk_init_parent(struct clk_core *core)
2803 {
2804 u8 index = 0;
2805
2806 if (core->num_parents > 1 && core->ops->get_parent)
2807 index = core->ops->get_parent(core->hw);
2808
2809 return clk_core_get_parent_by_index(core, index);
2810 }
2811
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2812 static void clk_core_reparent(struct clk_core *core,
2813 struct clk_core *new_parent)
2814 {
2815 clk_reparent(core, new_parent);
2816 __clk_recalc_accuracies(core);
2817 __clk_recalc_rates(core, true, POST_RATE_CHANGE);
2818 }
2819
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2820 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2821 {
2822 if (!hw)
2823 return;
2824
2825 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2826 }
2827
2828 /**
2829 * clk_has_parent - check if a clock is a possible parent for another
2830 * @clk: clock source
2831 * @parent: parent clock source
2832 *
2833 * This function can be used in drivers that need to check that a clock can be
2834 * the parent of another without actually changing the parent.
2835 *
2836 * Returns true if @parent is a possible parent for @clk, false otherwise.
2837 */
clk_has_parent(const struct clk * clk,const struct clk * parent)2838 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2839 {
2840 /* NULL clocks should be nops, so return success if either is NULL. */
2841 if (!clk || !parent)
2842 return true;
2843
2844 return clk_core_has_parent(clk->core, parent->core);
2845 }
2846 EXPORT_SYMBOL_GPL(clk_has_parent);
2847
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2848 static int clk_core_set_parent_nolock(struct clk_core *core,
2849 struct clk_core *parent)
2850 {
2851 int ret = 0;
2852 int p_index = 0;
2853 unsigned long p_rate = 0;
2854
2855 lockdep_assert_held(&prepare_lock);
2856
2857 if (!core)
2858 return 0;
2859
2860 if (core->parent == parent)
2861 return 0;
2862
2863 /* verify ops for multi-parent clks */
2864 if (core->num_parents > 1 && !core->ops->set_parent)
2865 return -EPERM;
2866
2867 /* check that we are allowed to re-parent if the clock is in use */
2868 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2869 return -EBUSY;
2870
2871 if (clk_core_rate_is_protected(core))
2872 return -EBUSY;
2873
2874 /* try finding the new parent index */
2875 if (parent) {
2876 p_index = clk_fetch_parent_index(core, parent);
2877 if (p_index < 0) {
2878 pr_debug("%s: clk %s can not be parent of clk %s\n",
2879 __func__, parent->name, core->name);
2880 return p_index;
2881 }
2882 p_rate = parent->rate;
2883 }
2884
2885 ret = clk_pm_runtime_get(core);
2886 if (ret)
2887 return ret;
2888
2889 /* propagate PRE_RATE_CHANGE notifications */
2890 ret = __clk_speculate_rates(core, p_rate);
2891
2892 /* abort if a driver objects */
2893 if (ret & NOTIFY_STOP_MASK)
2894 goto runtime_put;
2895
2896 /* do the re-parent */
2897 ret = __clk_set_parent(core, parent, p_index);
2898
2899 /* propagate rate an accuracy recalculation accordingly */
2900 if (ret) {
2901 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2902 } else {
2903 __clk_recalc_rates(core, true, POST_RATE_CHANGE);
2904 __clk_recalc_accuracies(core);
2905 }
2906
2907 runtime_put:
2908 clk_pm_runtime_put(core);
2909
2910 return ret;
2911 }
2912
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2913 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2914 {
2915 return clk_core_set_parent_nolock(hw->core, parent->core);
2916 }
2917 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2918
2919 /**
2920 * clk_set_parent - switch the parent of a mux clk
2921 * @clk: the mux clk whose input we are switching
2922 * @parent: the new input to clk
2923 *
2924 * Re-parent clk to use parent as its new input source. If clk is in
2925 * prepared state, the clk will get enabled for the duration of this call. If
2926 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2927 * that, the reparenting is glitchy in hardware, etc), use the
2928 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2929 *
2930 * After successfully changing clk's parent clk_set_parent will update the
2931 * clk topology, sysfs topology and propagate rate recalculation via
2932 * __clk_recalc_rates.
2933 *
2934 * Returns 0 on success, -EERROR otherwise.
2935 */
clk_set_parent(struct clk * clk,struct clk * parent)2936 int clk_set_parent(struct clk *clk, struct clk *parent)
2937 {
2938 int ret;
2939
2940 if (!clk)
2941 return 0;
2942
2943 clk_prepare_lock();
2944
2945 if (clk->exclusive_count)
2946 clk_core_rate_unprotect(clk->core);
2947
2948 ret = clk_core_set_parent_nolock(clk->core,
2949 parent ? parent->core : NULL);
2950
2951 if (clk->exclusive_count)
2952 clk_core_rate_protect(clk->core);
2953
2954 clk_prepare_unlock();
2955
2956 return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(clk_set_parent);
2959
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2960 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2961 {
2962 int ret = -EINVAL;
2963
2964 lockdep_assert_held(&prepare_lock);
2965
2966 if (!core)
2967 return 0;
2968
2969 if (clk_core_rate_is_protected(core))
2970 return -EBUSY;
2971
2972 trace_clk_set_phase(core, degrees);
2973
2974 if (core->ops->set_phase) {
2975 ret = core->ops->set_phase(core->hw, degrees);
2976 if (!ret)
2977 core->phase = degrees;
2978 }
2979
2980 trace_clk_set_phase_complete(core, degrees);
2981
2982 return ret;
2983 }
2984
2985 /**
2986 * clk_set_phase - adjust the phase shift of a clock signal
2987 * @clk: clock signal source
2988 * @degrees: number of degrees the signal is shifted
2989 *
2990 * Shifts the phase of a clock signal by the specified
2991 * degrees. Returns 0 on success, -EERROR otherwise.
2992 *
2993 * This function makes no distinction about the input or reference
2994 * signal that we adjust the clock signal phase against. For example
2995 * phase locked-loop clock signal generators we may shift phase with
2996 * respect to feedback clock signal input, but for other cases the
2997 * clock phase may be shifted with respect to some other, unspecified
2998 * signal.
2999 *
3000 * Additionally the concept of phase shift does not propagate through
3001 * the clock tree hierarchy, which sets it apart from clock rates and
3002 * clock accuracy. A parent clock phase attribute does not have an
3003 * impact on the phase attribute of a child clock.
3004 */
clk_set_phase(struct clk * clk,int degrees)3005 int clk_set_phase(struct clk *clk, int degrees)
3006 {
3007 int ret;
3008
3009 if (!clk)
3010 return 0;
3011
3012 /* sanity check degrees */
3013 degrees %= 360;
3014 if (degrees < 0)
3015 degrees += 360;
3016
3017 clk_prepare_lock();
3018
3019 if (clk->exclusive_count)
3020 clk_core_rate_unprotect(clk->core);
3021
3022 ret = clk_core_set_phase_nolock(clk->core, degrees);
3023
3024 if (clk->exclusive_count)
3025 clk_core_rate_protect(clk->core);
3026
3027 clk_prepare_unlock();
3028
3029 return ret;
3030 }
3031 EXPORT_SYMBOL_GPL(clk_set_phase);
3032
clk_core_get_phase(struct clk_core * core)3033 static int clk_core_get_phase(struct clk_core *core)
3034 {
3035 int ret;
3036
3037 lockdep_assert_held(&prepare_lock);
3038 if (!core->ops->get_phase)
3039 return 0;
3040
3041 /* Always try to update cached phase if possible */
3042 ret = core->ops->get_phase(core->hw);
3043 if (ret >= 0)
3044 core->phase = ret;
3045
3046 return ret;
3047 }
3048
3049 /**
3050 * clk_get_phase - return the phase shift of a clock signal
3051 * @clk: clock signal source
3052 *
3053 * Returns the phase shift of a clock node in degrees, otherwise returns
3054 * -EERROR.
3055 */
clk_get_phase(struct clk * clk)3056 int clk_get_phase(struct clk *clk)
3057 {
3058 int ret;
3059
3060 if (!clk)
3061 return 0;
3062
3063 clk_prepare_lock();
3064 ret = clk_core_get_phase(clk->core);
3065 clk_prepare_unlock();
3066
3067 return ret;
3068 }
3069 EXPORT_SYMBOL_GPL(clk_get_phase);
3070
clk_core_reset_duty_cycle_nolock(struct clk_core * core)3071 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3072 {
3073 /* Assume a default value of 50% */
3074 core->duty.num = 1;
3075 core->duty.den = 2;
3076 }
3077
3078 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3079
clk_core_update_duty_cycle_nolock(struct clk_core * core)3080 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3081 {
3082 struct clk_duty *duty = &core->duty;
3083 int ret = 0;
3084
3085 if (!core->ops->get_duty_cycle)
3086 return clk_core_update_duty_cycle_parent_nolock(core);
3087
3088 ret = core->ops->get_duty_cycle(core->hw, duty);
3089 if (ret)
3090 goto reset;
3091
3092 /* Don't trust the clock provider too much */
3093 if (duty->den == 0 || duty->num > duty->den) {
3094 ret = -EINVAL;
3095 goto reset;
3096 }
3097
3098 return 0;
3099
3100 reset:
3101 clk_core_reset_duty_cycle_nolock(core);
3102 return ret;
3103 }
3104
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)3105 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3106 {
3107 int ret = 0;
3108
3109 if (core->parent &&
3110 core->flags & CLK_DUTY_CYCLE_PARENT) {
3111 ret = clk_core_update_duty_cycle_nolock(core->parent);
3112 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3113 } else {
3114 clk_core_reset_duty_cycle_nolock(core);
3115 }
3116
3117 return ret;
3118 }
3119
3120 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3121 struct clk_duty *duty);
3122
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)3123 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3124 struct clk_duty *duty)
3125 {
3126 int ret;
3127
3128 lockdep_assert_held(&prepare_lock);
3129
3130 if (clk_core_rate_is_protected(core))
3131 return -EBUSY;
3132
3133 trace_clk_set_duty_cycle(core, duty);
3134
3135 if (!core->ops->set_duty_cycle)
3136 return clk_core_set_duty_cycle_parent_nolock(core, duty);
3137
3138 ret = core->ops->set_duty_cycle(core->hw, duty);
3139 if (!ret)
3140 memcpy(&core->duty, duty, sizeof(*duty));
3141
3142 trace_clk_set_duty_cycle_complete(core, duty);
3143
3144 return ret;
3145 }
3146
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)3147 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3148 struct clk_duty *duty)
3149 {
3150 int ret = 0;
3151
3152 if (core->parent &&
3153 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3154 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3155 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3156 }
3157
3158 return ret;
3159 }
3160
3161 /**
3162 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3163 * @clk: clock signal source
3164 * @num: numerator of the duty cycle ratio to be applied
3165 * @den: denominator of the duty cycle ratio to be applied
3166 *
3167 * Apply the duty cycle ratio if the ratio is valid and the clock can
3168 * perform this operation
3169 *
3170 * Returns (0) on success, a negative errno otherwise.
3171 */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)3172 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3173 {
3174 int ret;
3175 struct clk_duty duty;
3176
3177 if (!clk)
3178 return 0;
3179
3180 /* sanity check the ratio */
3181 if (den == 0 || num > den)
3182 return -EINVAL;
3183
3184 duty.num = num;
3185 duty.den = den;
3186
3187 clk_prepare_lock();
3188
3189 if (clk->exclusive_count)
3190 clk_core_rate_unprotect(clk->core);
3191
3192 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3193
3194 if (clk->exclusive_count)
3195 clk_core_rate_protect(clk->core);
3196
3197 clk_prepare_unlock();
3198
3199 return ret;
3200 }
3201 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3202
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)3203 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3204 unsigned int scale)
3205 {
3206 struct clk_duty *duty = &core->duty;
3207 int ret;
3208
3209 clk_prepare_lock();
3210
3211 ret = clk_core_update_duty_cycle_nolock(core);
3212 if (!ret)
3213 ret = mult_frac(scale, duty->num, duty->den);
3214
3215 clk_prepare_unlock();
3216
3217 return ret;
3218 }
3219
3220 /**
3221 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3222 * @clk: clock signal source
3223 * @scale: scaling factor to be applied to represent the ratio as an integer
3224 *
3225 * Returns the duty cycle ratio of a clock node multiplied by the provided
3226 * scaling factor, or negative errno on error.
3227 */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)3228 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3229 {
3230 if (!clk)
3231 return 0;
3232
3233 return clk_core_get_scaled_duty_cycle(clk->core, scale);
3234 }
3235 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3236
3237 /**
3238 * clk_is_match - check if two clk's point to the same hardware clock
3239 * @p: clk compared against q
3240 * @q: clk compared against p
3241 *
3242 * Returns true if the two struct clk pointers both point to the same hardware
3243 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3244 * share the same struct clk_core object.
3245 *
3246 * Returns false otherwise. Note that two NULL clks are treated as matching.
3247 */
clk_is_match(const struct clk * p,const struct clk * q)3248 bool clk_is_match(const struct clk *p, const struct clk *q)
3249 {
3250 /* trivial case: identical struct clk's or both NULL */
3251 if (p == q)
3252 return true;
3253
3254 /* true if clk->core pointers match. Avoid dereferencing garbage */
3255 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3256 if (p->core == q->core)
3257 return true;
3258
3259 return false;
3260 }
3261 EXPORT_SYMBOL_GPL(clk_is_match);
3262
3263 /*** debugfs support ***/
3264
3265 #ifdef CONFIG_DEBUG_FS
3266 #include <linux/debugfs.h>
3267
3268 static struct dentry *rootdir;
3269 static int inited = 0;
3270 static DEFINE_MUTEX(clk_debug_lock);
3271 static HLIST_HEAD(clk_debug_list);
3272
3273 static struct hlist_head *orphan_list[] = {
3274 &clk_orphan_list,
3275 NULL,
3276 };
3277
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)3278 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3279 int level)
3280 {
3281 int phase;
3282 struct clk *clk_user;
3283 int multi_node = 0;
3284
3285 seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3286 level * 3 + 1, "",
3287 35 - level * 3, c->name,
3288 c->enable_count, c->prepare_count, c->protect_count,
3289 clk_core_get_rate_recalc(c),
3290 clk_core_get_accuracy_recalc(c));
3291
3292 phase = clk_core_get_phase(c);
3293 if (phase >= 0)
3294 seq_printf(s, "%-5d", phase);
3295 else
3296 seq_puts(s, "-----");
3297
3298 seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3299
3300 if (c->ops->is_enabled)
3301 seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3302 else if (!c->ops->enable)
3303 seq_printf(s, " %5c ", 'Y');
3304 else
3305 seq_printf(s, " %5c ", '?');
3306
3307 hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3308 seq_printf(s, "%*s%-*s %-25s\n",
3309 level * 3 + 2 + 105 * multi_node, "",
3310 30,
3311 clk_user->dev_id ? clk_user->dev_id : "deviceless",
3312 clk_user->con_id ? clk_user->con_id : "no_connection_id");
3313
3314 multi_node = 1;
3315 }
3316
3317 }
3318
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)3319 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3320 int level)
3321 {
3322 struct clk_core *child;
3323
3324 clk_summary_show_one(s, c, level);
3325
3326 hlist_for_each_entry(child, &c->children, child_node)
3327 clk_summary_show_subtree(s, child, level + 1);
3328 }
3329
clk_summary_show(struct seq_file * s,void * data)3330 static int clk_summary_show(struct seq_file *s, void *data)
3331 {
3332 struct clk_core *c;
3333 struct hlist_head **lists = s->private;
3334 int ret;
3335
3336 seq_puts(s, " enable prepare protect duty hardware connection\n");
3337 seq_puts(s, " clock count count count rate accuracy phase cycle enable consumer id\n");
3338 seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3339
3340 ret = clk_pm_runtime_get_all();
3341 if (ret)
3342 return ret;
3343
3344 clk_prepare_lock();
3345
3346 for (; *lists; lists++)
3347 hlist_for_each_entry(c, *lists, child_node)
3348 clk_summary_show_subtree(s, c, 0);
3349
3350 clk_prepare_unlock();
3351 clk_pm_runtime_put_all();
3352
3353 return 0;
3354 }
3355 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3356
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3357 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3358 {
3359 int phase;
3360 unsigned long min_rate, max_rate;
3361
3362 clk_core_get_boundaries(c, &min_rate, &max_rate);
3363
3364 /* This should be JSON format, i.e. elements separated with a comma */
3365 seq_printf(s, "\"%s\": { ", c->name);
3366 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3367 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3368 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3369 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3370 seq_printf(s, "\"min_rate\": %lu,", min_rate);
3371 seq_printf(s, "\"max_rate\": %lu,", max_rate);
3372 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3373 phase = clk_core_get_phase(c);
3374 if (phase >= 0)
3375 seq_printf(s, "\"phase\": %d,", phase);
3376 seq_printf(s, "\"duty_cycle\": %u",
3377 clk_core_get_scaled_duty_cycle(c, 100000));
3378 }
3379
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3380 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3381 {
3382 struct clk_core *child;
3383
3384 clk_dump_one(s, c, level);
3385
3386 hlist_for_each_entry(child, &c->children, child_node) {
3387 seq_putc(s, ',');
3388 clk_dump_subtree(s, child, level + 1);
3389 }
3390
3391 seq_putc(s, '}');
3392 }
3393
clk_dump_show(struct seq_file * s,void * data)3394 static int clk_dump_show(struct seq_file *s, void *data)
3395 {
3396 struct clk_core *c;
3397 bool first_node = true;
3398 struct hlist_head **lists = s->private;
3399 int ret;
3400
3401 ret = clk_pm_runtime_get_all();
3402 if (ret)
3403 return ret;
3404
3405 seq_putc(s, '{');
3406
3407 clk_prepare_lock();
3408
3409 for (; *lists; lists++) {
3410 hlist_for_each_entry(c, *lists, child_node) {
3411 if (!first_node)
3412 seq_putc(s, ',');
3413 first_node = false;
3414 clk_dump_subtree(s, c, 0);
3415 }
3416 }
3417
3418 clk_prepare_unlock();
3419 clk_pm_runtime_put_all();
3420
3421 seq_puts(s, "}\n");
3422 return 0;
3423 }
3424 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3425
3426 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3427 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3428 /*
3429 * This can be dangerous, therefore don't provide any real compile time
3430 * configuration option for this feature.
3431 * People who want to use this will need to modify the source code directly.
3432 */
clk_rate_set(void * data,u64 val)3433 static int clk_rate_set(void *data, u64 val)
3434 {
3435 struct clk_core *core = data;
3436 int ret;
3437
3438 clk_prepare_lock();
3439 ret = clk_core_set_rate_nolock(core, val);
3440 clk_prepare_unlock();
3441
3442 return ret;
3443 }
3444
3445 #define clk_rate_mode 0644
3446
clk_prepare_enable_set(void * data,u64 val)3447 static int clk_prepare_enable_set(void *data, u64 val)
3448 {
3449 struct clk_core *core = data;
3450 int ret = 0;
3451
3452 if (val)
3453 ret = clk_prepare_enable(core->hw->clk);
3454 else
3455 clk_disable_unprepare(core->hw->clk);
3456
3457 return ret;
3458 }
3459
clk_prepare_enable_get(void * data,u64 * val)3460 static int clk_prepare_enable_get(void *data, u64 *val)
3461 {
3462 struct clk_core *core = data;
3463
3464 *val = core->enable_count && core->prepare_count;
3465 return 0;
3466 }
3467
3468 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3469 clk_prepare_enable_set, "%llu\n");
3470
3471 #else
3472 #define clk_rate_set NULL
3473 #define clk_rate_mode 0444
3474 #endif
3475
clk_rate_get(void * data,u64 * val)3476 static int clk_rate_get(void *data, u64 *val)
3477 {
3478 struct clk_core *core = data;
3479
3480 clk_prepare_lock();
3481 *val = clk_core_get_rate_recalc(core);
3482 clk_prepare_unlock();
3483
3484 return 0;
3485 }
3486
3487 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3488
3489 static const struct {
3490 unsigned long flag;
3491 const char *name;
3492 } clk_flags[] = {
3493 #define ENTRY(f) { f, #f }
3494 ENTRY(CLK_SET_RATE_GATE),
3495 ENTRY(CLK_SET_PARENT_GATE),
3496 ENTRY(CLK_SET_RATE_PARENT),
3497 ENTRY(CLK_IGNORE_UNUSED),
3498 ENTRY(CLK_GET_RATE_NOCACHE),
3499 ENTRY(CLK_SET_RATE_NO_REPARENT),
3500 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3501 ENTRY(CLK_RECALC_NEW_RATES),
3502 ENTRY(CLK_SET_RATE_UNGATE),
3503 ENTRY(CLK_IS_CRITICAL),
3504 ENTRY(CLK_OPS_PARENT_ENABLE),
3505 ENTRY(CLK_DUTY_CYCLE_PARENT),
3506 #undef ENTRY
3507 };
3508
clk_flags_show(struct seq_file * s,void * data)3509 static int clk_flags_show(struct seq_file *s, void *data)
3510 {
3511 struct clk_core *core = s->private;
3512 unsigned long flags = core->flags;
3513 unsigned int i;
3514
3515 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3516 if (flags & clk_flags[i].flag) {
3517 seq_printf(s, "%s\n", clk_flags[i].name);
3518 flags &= ~clk_flags[i].flag;
3519 }
3520 }
3521 if (flags) {
3522 /* Unknown flags */
3523 seq_printf(s, "0x%lx\n", flags);
3524 }
3525
3526 return 0;
3527 }
3528 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3529
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3530 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3531 unsigned int i, char terminator)
3532 {
3533 struct clk_core *parent;
3534 const char *name = NULL;
3535
3536 /*
3537 * Go through the following options to fetch a parent's name.
3538 *
3539 * 1. Fetch the registered parent clock and use its name
3540 * 2. Use the global (fallback) name if specified
3541 * 3. Use the local fw_name if provided
3542 * 4. Fetch parent clock's clock-output-name if DT index was set
3543 *
3544 * This may still fail in some cases, such as when the parent is
3545 * specified directly via a struct clk_hw pointer, but it isn't
3546 * registered (yet).
3547 */
3548 parent = clk_core_get_parent_by_index(core, i);
3549 if (parent) {
3550 seq_puts(s, parent->name);
3551 } else if (core->parents[i].name) {
3552 seq_puts(s, core->parents[i].name);
3553 } else if (core->parents[i].fw_name) {
3554 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3555 } else {
3556 if (core->parents[i].index >= 0)
3557 name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3558 if (!name)
3559 name = "(missing)";
3560
3561 seq_puts(s, name);
3562 }
3563
3564 seq_putc(s, terminator);
3565 }
3566
possible_parents_show(struct seq_file * s,void * data)3567 static int possible_parents_show(struct seq_file *s, void *data)
3568 {
3569 struct clk_core *core = s->private;
3570 int i;
3571
3572 for (i = 0; i < core->num_parents - 1; i++)
3573 possible_parent_show(s, core, i, ' ');
3574
3575 possible_parent_show(s, core, i, '\n');
3576
3577 return 0;
3578 }
3579 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3580
current_parent_show(struct seq_file * s,void * data)3581 static int current_parent_show(struct seq_file *s, void *data)
3582 {
3583 struct clk_core *core = s->private;
3584
3585 if (core->parent)
3586 seq_printf(s, "%s\n", core->parent->name);
3587
3588 return 0;
3589 }
3590 DEFINE_SHOW_ATTRIBUTE(current_parent);
3591
3592 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
current_parent_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)3593 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3594 size_t count, loff_t *ppos)
3595 {
3596 struct seq_file *s = file->private_data;
3597 struct clk_core *core = s->private;
3598 struct clk_core *parent;
3599 u8 idx;
3600 int err;
3601
3602 err = kstrtou8_from_user(ubuf, count, 0, &idx);
3603 if (err < 0)
3604 return err;
3605
3606 parent = clk_core_get_parent_by_index(core, idx);
3607 if (!parent)
3608 return -ENOENT;
3609
3610 clk_prepare_lock();
3611 err = clk_core_set_parent_nolock(core, parent);
3612 clk_prepare_unlock();
3613 if (err)
3614 return err;
3615
3616 return count;
3617 }
3618
3619 static const struct file_operations current_parent_rw_fops = {
3620 .open = current_parent_open,
3621 .write = current_parent_write,
3622 .read = seq_read,
3623 .llseek = seq_lseek,
3624 .release = single_release,
3625 };
3626 #endif
3627
clk_duty_cycle_show(struct seq_file * s,void * data)3628 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3629 {
3630 struct clk_core *core = s->private;
3631 struct clk_duty *duty = &core->duty;
3632
3633 seq_printf(s, "%u/%u\n", duty->num, duty->den);
3634
3635 return 0;
3636 }
3637 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3638
clk_min_rate_show(struct seq_file * s,void * data)3639 static int clk_min_rate_show(struct seq_file *s, void *data)
3640 {
3641 struct clk_core *core = s->private;
3642 unsigned long min_rate, max_rate;
3643
3644 clk_prepare_lock();
3645 clk_core_get_boundaries(core, &min_rate, &max_rate);
3646 clk_prepare_unlock();
3647 seq_printf(s, "%lu\n", min_rate);
3648
3649 return 0;
3650 }
3651 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3652
clk_max_rate_show(struct seq_file * s,void * data)3653 static int clk_max_rate_show(struct seq_file *s, void *data)
3654 {
3655 struct clk_core *core = s->private;
3656 unsigned long min_rate, max_rate;
3657
3658 clk_prepare_lock();
3659 clk_core_get_boundaries(core, &min_rate, &max_rate);
3660 clk_prepare_unlock();
3661 seq_printf(s, "%lu\n", max_rate);
3662
3663 return 0;
3664 }
3665 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3666
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3667 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3668 {
3669 struct dentry *root;
3670
3671 if (!core || !pdentry)
3672 return;
3673
3674 root = debugfs_create_dir(core->name, pdentry);
3675 core->dentry = root;
3676
3677 debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3678 &clk_rate_fops);
3679 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3680 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3681 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3682 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3683 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3684 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3685 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3686 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3687 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3688 debugfs_create_file("clk_duty_cycle", 0444, root, core,
3689 &clk_duty_cycle_fops);
3690 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3691 debugfs_create_file("clk_prepare_enable", 0644, root, core,
3692 &clk_prepare_enable_fops);
3693
3694 if (core->num_parents > 1)
3695 debugfs_create_file("clk_parent", 0644, root, core,
3696 ¤t_parent_rw_fops);
3697 else
3698 #endif
3699 if (core->num_parents > 0)
3700 debugfs_create_file("clk_parent", 0444, root, core,
3701 ¤t_parent_fops);
3702
3703 if (core->num_parents > 1)
3704 debugfs_create_file("clk_possible_parents", 0444, root, core,
3705 &possible_parents_fops);
3706
3707 if (core->ops->debug_init)
3708 core->ops->debug_init(core->hw, core->dentry);
3709 }
3710
3711 /**
3712 * clk_debug_register - add a clk node to the debugfs clk directory
3713 * @core: the clk being added to the debugfs clk directory
3714 *
3715 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3716 * initialized. Otherwise it bails out early since the debugfs clk directory
3717 * will be created lazily by clk_debug_init as part of a late_initcall.
3718 */
clk_debug_register(struct clk_core * core)3719 static void clk_debug_register(struct clk_core *core)
3720 {
3721 mutex_lock(&clk_debug_lock);
3722 hlist_add_head(&core->debug_node, &clk_debug_list);
3723 if (inited)
3724 clk_debug_create_one(core, rootdir);
3725 mutex_unlock(&clk_debug_lock);
3726 }
3727
3728 /**
3729 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3730 * @core: the clk being removed from the debugfs clk directory
3731 *
3732 * Dynamically removes a clk and all its child nodes from the
3733 * debugfs clk directory if clk->dentry points to debugfs created by
3734 * clk_debug_register in __clk_core_init.
3735 */
clk_debug_unregister(struct clk_core * core)3736 static void clk_debug_unregister(struct clk_core *core)
3737 {
3738 mutex_lock(&clk_debug_lock);
3739 hlist_del_init(&core->debug_node);
3740 debugfs_remove_recursive(core->dentry);
3741 core->dentry = NULL;
3742 mutex_unlock(&clk_debug_lock);
3743 }
3744
3745 /**
3746 * clk_debug_init - lazily populate the debugfs clk directory
3747 *
3748 * clks are often initialized very early during boot before memory can be
3749 * dynamically allocated and well before debugfs is setup. This function
3750 * populates the debugfs clk directory once at boot-time when we know that
3751 * debugfs is setup. It should only be called once at boot-time, all other clks
3752 * added dynamically will be done so with clk_debug_register.
3753 */
clk_debug_init(void)3754 static int __init clk_debug_init(void)
3755 {
3756 struct clk_core *core;
3757
3758 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3759 pr_warn("\n");
3760 pr_warn("********************************************************************\n");
3761 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3762 pr_warn("** **\n");
3763 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3764 pr_warn("** **\n");
3765 pr_warn("** This means that this kernel is built to expose clk operations **\n");
3766 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n");
3767 pr_warn("** to userspace, which may compromise security on your system. **\n");
3768 pr_warn("** **\n");
3769 pr_warn("** If you see this message and you are not debugging the **\n");
3770 pr_warn("** kernel, report this immediately to your vendor! **\n");
3771 pr_warn("** **\n");
3772 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3773 pr_warn("********************************************************************\n");
3774 #endif
3775
3776 rootdir = debugfs_create_dir("clk", NULL);
3777
3778 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3779 &clk_summary_fops);
3780 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3781 &clk_dump_fops);
3782 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3783 &clk_summary_fops);
3784 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3785 &clk_dump_fops);
3786
3787 mutex_lock(&clk_debug_lock);
3788 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3789 clk_debug_create_one(core, rootdir);
3790
3791 inited = 1;
3792 mutex_unlock(&clk_debug_lock);
3793
3794 return 0;
3795 }
3796 late_initcall(clk_debug_init);
3797 #else
clk_debug_register(struct clk_core * core)3798 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3799 static inline void clk_debug_unregister(struct clk_core *core)
3800 {
3801 }
3802 #endif
3803
clk_core_reparent_orphans_nolock(void)3804 static void clk_core_reparent_orphans_nolock(void)
3805 {
3806 struct clk_core *orphan;
3807 struct hlist_node *tmp2;
3808
3809 /*
3810 * walk the list of orphan clocks and reparent any that newly finds a
3811 * parent.
3812 */
3813 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3814 struct clk_core *parent = __clk_init_parent(orphan);
3815
3816 /*
3817 * We need to use __clk_set_parent_before() and _after() to
3818 * properly migrate any prepare/enable count of the orphan
3819 * clock. This is important for CLK_IS_CRITICAL clocks, which
3820 * are enabled during init but might not have a parent yet.
3821 */
3822 if (parent) {
3823 /* update the clk tree topology */
3824 __clk_set_parent_before(orphan, parent);
3825 __clk_set_parent_after(orphan, parent, NULL);
3826 __clk_recalc_accuracies(orphan);
3827 __clk_recalc_rates(orphan, true, 0);
3828
3829 /*
3830 * __clk_init_parent() will set the initial req_rate to
3831 * 0 if the clock doesn't have clk_ops::recalc_rate and
3832 * is an orphan when it's registered.
3833 *
3834 * 'req_rate' is used by clk_set_rate_range() and
3835 * clk_put() to trigger a clk_set_rate() call whenever
3836 * the boundaries are modified. Let's make sure
3837 * 'req_rate' is set to something non-zero so that
3838 * clk_set_rate_range() doesn't drop the frequency.
3839 */
3840 orphan->req_rate = orphan->rate;
3841 }
3842 }
3843 }
3844
3845 /**
3846 * __clk_core_init - initialize the data structures in a struct clk_core
3847 * @core: clk_core being initialized
3848 *
3849 * Initializes the lists in struct clk_core, queries the hardware for the
3850 * parent and rate and sets them both.
3851 */
__clk_core_init(struct clk_core * core)3852 static int __clk_core_init(struct clk_core *core)
3853 {
3854 int ret;
3855 struct clk_core *parent;
3856 unsigned long rate;
3857 int phase;
3858
3859 clk_prepare_lock();
3860
3861 /*
3862 * Set hw->core after grabbing the prepare_lock to synchronize with
3863 * callers of clk_core_fill_parent_index() where we treat hw->core
3864 * being NULL as the clk not being registered yet. This is crucial so
3865 * that clks aren't parented until their parent is fully registered.
3866 */
3867 core->hw->core = core;
3868
3869 ret = clk_pm_runtime_get(core);
3870 if (ret)
3871 goto unlock;
3872
3873 /* check to see if a clock with this name is already registered */
3874 if (clk_core_lookup(core->name)) {
3875 pr_debug("%s: clk %s already initialized\n",
3876 __func__, core->name);
3877 ret = -EEXIST;
3878 goto out;
3879 }
3880
3881 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3882 if (core->ops->set_rate &&
3883 !((core->ops->round_rate || core->ops->determine_rate) &&
3884 core->ops->recalc_rate)) {
3885 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3886 __func__, core->name);
3887 ret = -EINVAL;
3888 goto out;
3889 }
3890
3891 if (core->ops->set_parent && !core->ops->get_parent) {
3892 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3893 __func__, core->name);
3894 ret = -EINVAL;
3895 goto out;
3896 }
3897
3898 if (core->ops->set_parent && !core->ops->determine_rate) {
3899 pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3900 __func__, core->name);
3901 ret = -EINVAL;
3902 goto out;
3903 }
3904
3905 if (core->num_parents > 1 && !core->ops->get_parent) {
3906 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3907 __func__, core->name);
3908 ret = -EINVAL;
3909 goto out;
3910 }
3911
3912 if (core->ops->set_rate_and_parent &&
3913 !(core->ops->set_parent && core->ops->set_rate)) {
3914 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3915 __func__, core->name);
3916 ret = -EINVAL;
3917 goto out;
3918 }
3919
3920 /*
3921 * optional platform-specific magic
3922 *
3923 * The .init callback is not used by any of the basic clock types, but
3924 * exists for weird hardware that must perform initialization magic for
3925 * CCF to get an accurate view of clock for any other callbacks. It may
3926 * also be used needs to perform dynamic allocations. Such allocation
3927 * must be freed in the terminate() callback.
3928 * This callback shall not be used to initialize the parameters state,
3929 * such as rate, parent, etc ...
3930 *
3931 * If it exist, this callback should called before any other callback of
3932 * the clock
3933 */
3934 if (core->ops->init) {
3935 ret = core->ops->init(core->hw);
3936 if (ret)
3937 goto out;
3938 }
3939
3940 parent = core->parent = __clk_init_parent(core);
3941
3942 /*
3943 * Populate core->parent if parent has already been clk_core_init'd. If
3944 * parent has not yet been clk_core_init'd then place clk in the orphan
3945 * list. If clk doesn't have any parents then place it in the root
3946 * clk list.
3947 *
3948 * Every time a new clk is clk_init'd then we walk the list of orphan
3949 * clocks and re-parent any that are children of the clock currently
3950 * being clk_init'd.
3951 */
3952 if (parent) {
3953 hlist_add_head(&core->child_node, &parent->children);
3954 core->orphan = parent->orphan;
3955 } else if (!core->num_parents) {
3956 hlist_add_head(&core->child_node, &clk_root_list);
3957 core->orphan = false;
3958 } else {
3959 hlist_add_head(&core->child_node, &clk_orphan_list);
3960 core->orphan = true;
3961 }
3962
3963 /*
3964 * Set clk's accuracy. The preferred method is to use
3965 * .recalc_accuracy. For simple clocks and lazy developers the default
3966 * fallback is to use the parent's accuracy. If a clock doesn't have a
3967 * parent (or is orphaned) then accuracy is set to zero (perfect
3968 * clock).
3969 */
3970 if (core->ops->recalc_accuracy)
3971 core->accuracy = core->ops->recalc_accuracy(core->hw,
3972 clk_core_get_accuracy_no_lock(parent));
3973 else if (parent)
3974 core->accuracy = parent->accuracy;
3975 else
3976 core->accuracy = 0;
3977
3978 /*
3979 * Set clk's phase by clk_core_get_phase() caching the phase.
3980 * Since a phase is by definition relative to its parent, just
3981 * query the current clock phase, or just assume it's in phase.
3982 */
3983 phase = clk_core_get_phase(core);
3984 if (phase < 0) {
3985 ret = phase;
3986 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3987 core->name);
3988 goto out;
3989 }
3990
3991 /*
3992 * Set clk's duty cycle.
3993 */
3994 clk_core_update_duty_cycle_nolock(core);
3995
3996 /*
3997 * Set clk's rate. The preferred method is to use .recalc_rate. For
3998 * simple clocks and lazy developers the default fallback is to use the
3999 * parent's rate. If a clock doesn't have a parent (or is orphaned)
4000 * then rate is set to zero.
4001 */
4002 if (core->ops->recalc_rate)
4003 rate = core->ops->recalc_rate(core->hw,
4004 clk_core_get_rate_nolock(parent));
4005 else if (parent)
4006 rate = parent->rate;
4007 else
4008 rate = 0;
4009 core->rate = core->req_rate = rate;
4010
4011 /*
4012 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4013 * don't get accidentally disabled when walking the orphan tree and
4014 * reparenting clocks
4015 */
4016 if (core->flags & CLK_IS_CRITICAL) {
4017 ret = clk_core_prepare(core);
4018 if (ret) {
4019 pr_warn("%s: critical clk '%s' failed to prepare\n",
4020 __func__, core->name);
4021 goto out;
4022 }
4023
4024 ret = clk_core_enable_lock(core);
4025 if (ret) {
4026 pr_warn("%s: critical clk '%s' failed to enable\n",
4027 __func__, core->name);
4028 clk_core_unprepare(core);
4029 goto out;
4030 }
4031 }
4032
4033 clk_core_reparent_orphans_nolock();
4034 out:
4035 clk_pm_runtime_put(core);
4036 unlock:
4037 if (ret) {
4038 hlist_del_init(&core->child_node);
4039 core->hw->core = NULL;
4040 }
4041
4042 clk_prepare_unlock();
4043
4044 if (!ret)
4045 clk_debug_register(core);
4046
4047 return ret;
4048 }
4049
4050 /**
4051 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4052 * @core: clk to add consumer to
4053 * @clk: consumer to link to a clk
4054 */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)4055 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4056 {
4057 clk_prepare_lock();
4058 hlist_add_head(&clk->clks_node, &core->clks);
4059 clk_prepare_unlock();
4060 }
4061
4062 /**
4063 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4064 * @clk: consumer to unlink
4065 */
clk_core_unlink_consumer(struct clk * clk)4066 static void clk_core_unlink_consumer(struct clk *clk)
4067 {
4068 lockdep_assert_held(&prepare_lock);
4069 hlist_del(&clk->clks_node);
4070 }
4071
4072 /**
4073 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4074 * @core: clk to allocate a consumer for
4075 * @dev_id: string describing device name
4076 * @con_id: connection ID string on device
4077 *
4078 * Returns: clk consumer left unlinked from the consumer list
4079 */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)4080 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4081 const char *con_id)
4082 {
4083 struct clk *clk;
4084
4085 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4086 if (!clk)
4087 return ERR_PTR(-ENOMEM);
4088
4089 clk->core = core;
4090 clk->dev_id = dev_id;
4091 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4092 clk->max_rate = ULONG_MAX;
4093
4094 return clk;
4095 }
4096
4097 /**
4098 * free_clk - Free a clk consumer
4099 * @clk: clk consumer to free
4100 *
4101 * Note, this assumes the clk has been unlinked from the clk_core consumer
4102 * list.
4103 */
free_clk(struct clk * clk)4104 static void free_clk(struct clk *clk)
4105 {
4106 kfree_const(clk->con_id);
4107 kfree(clk);
4108 }
4109
4110 /**
4111 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4112 * a clk_hw
4113 * @dev: clk consumer device
4114 * @hw: clk_hw associated with the clk being consumed
4115 * @dev_id: string describing device name
4116 * @con_id: connection ID string on device
4117 *
4118 * This is the main function used to create a clk pointer for use by clk
4119 * consumers. It connects a consumer to the clk_core and clk_hw structures
4120 * used by the framework and clk provider respectively.
4121 */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)4122 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4123 const char *dev_id, const char *con_id)
4124 {
4125 struct clk *clk;
4126 struct clk_core *core;
4127
4128 /* This is to allow this function to be chained to others */
4129 if (IS_ERR_OR_NULL(hw))
4130 return ERR_CAST(hw);
4131
4132 core = hw->core;
4133 clk = alloc_clk(core, dev_id, con_id);
4134 if (IS_ERR(clk))
4135 return clk;
4136 clk->dev = dev;
4137
4138 if (!try_module_get(core->owner)) {
4139 free_clk(clk);
4140 return ERR_PTR(-ENOENT);
4141 }
4142
4143 kref_get(&core->ref);
4144 clk_core_link_consumer(core, clk);
4145
4146 return clk;
4147 }
4148
4149 /**
4150 * clk_hw_get_clk - get clk consumer given an clk_hw
4151 * @hw: clk_hw associated with the clk being consumed
4152 * @con_id: connection ID string on device
4153 *
4154 * Returns: new clk consumer
4155 * This is the function to be used by providers which need
4156 * to get a consumer clk and act on the clock element
4157 * Calls to this function must be balanced with calls clk_put()
4158 */
clk_hw_get_clk(struct clk_hw * hw,const char * con_id)4159 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4160 {
4161 struct device *dev = hw->core->dev;
4162 const char *name = dev ? dev_name(dev) : NULL;
4163
4164 return clk_hw_create_clk(dev, hw, name, con_id);
4165 }
4166 EXPORT_SYMBOL(clk_hw_get_clk);
4167
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)4168 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4169 {
4170 const char *dst;
4171
4172 if (!src) {
4173 if (must_exist)
4174 return -EINVAL;
4175 return 0;
4176 }
4177
4178 *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4179 if (!dst)
4180 return -ENOMEM;
4181
4182 return 0;
4183 }
4184
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)4185 static int clk_core_populate_parent_map(struct clk_core *core,
4186 const struct clk_init_data *init)
4187 {
4188 u8 num_parents = init->num_parents;
4189 const char * const *parent_names = init->parent_names;
4190 const struct clk_hw **parent_hws = init->parent_hws;
4191 const struct clk_parent_data *parent_data = init->parent_data;
4192 int i, ret = 0;
4193 struct clk_parent_map *parents, *parent;
4194
4195 if (!num_parents)
4196 return 0;
4197
4198 /*
4199 * Avoid unnecessary string look-ups of clk_core's possible parents by
4200 * having a cache of names/clk_hw pointers to clk_core pointers.
4201 */
4202 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4203 core->parents = parents;
4204 if (!parents)
4205 return -ENOMEM;
4206
4207 /* Copy everything over because it might be __initdata */
4208 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4209 parent->index = -1;
4210 if (parent_names) {
4211 /* throw a WARN if any entries are NULL */
4212 WARN(!parent_names[i],
4213 "%s: invalid NULL in %s's .parent_names\n",
4214 __func__, core->name);
4215 ret = clk_cpy_name(&parent->name, parent_names[i],
4216 true);
4217 } else if (parent_data) {
4218 parent->hw = parent_data[i].hw;
4219 parent->index = parent_data[i].index;
4220 ret = clk_cpy_name(&parent->fw_name,
4221 parent_data[i].fw_name, false);
4222 if (!ret)
4223 ret = clk_cpy_name(&parent->name,
4224 parent_data[i].name,
4225 false);
4226 } else if (parent_hws) {
4227 parent->hw = parent_hws[i];
4228 } else {
4229 ret = -EINVAL;
4230 WARN(1, "Must specify parents if num_parents > 0\n");
4231 }
4232
4233 if (ret) {
4234 do {
4235 kfree_const(parents[i].name);
4236 kfree_const(parents[i].fw_name);
4237 } while (--i >= 0);
4238 kfree(parents);
4239
4240 return ret;
4241 }
4242 }
4243
4244 return 0;
4245 }
4246
clk_core_free_parent_map(struct clk_core * core)4247 static void clk_core_free_parent_map(struct clk_core *core)
4248 {
4249 int i = core->num_parents;
4250
4251 if (!core->num_parents)
4252 return;
4253
4254 while (--i >= 0) {
4255 kfree_const(core->parents[i].name);
4256 kfree_const(core->parents[i].fw_name);
4257 }
4258
4259 kfree(core->parents);
4260 }
4261
4262 /* Free memory allocated for a struct clk_core */
__clk_release(struct kref * ref)4263 static void __clk_release(struct kref *ref)
4264 {
4265 struct clk_core *core = container_of(ref, struct clk_core, ref);
4266
4267 if (core->rpm_enabled) {
4268 mutex_lock(&clk_rpm_list_lock);
4269 hlist_del(&core->rpm_node);
4270 mutex_unlock(&clk_rpm_list_lock);
4271 }
4272
4273 clk_core_free_parent_map(core);
4274 kfree_const(core->name);
4275 kfree(core);
4276 }
4277
4278 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)4279 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4280 {
4281 int ret;
4282 struct clk_core *core;
4283 const struct clk_init_data *init = hw->init;
4284
4285 /*
4286 * The init data is not supposed to be used outside of registration path.
4287 * Set it to NULL so that provider drivers can't use it either and so that
4288 * we catch use of hw->init early on in the core.
4289 */
4290 hw->init = NULL;
4291
4292 core = kzalloc(sizeof(*core), GFP_KERNEL);
4293 if (!core) {
4294 ret = -ENOMEM;
4295 goto fail_out;
4296 }
4297
4298 kref_init(&core->ref);
4299
4300 core->name = kstrdup_const(init->name, GFP_KERNEL);
4301 if (!core->name) {
4302 ret = -ENOMEM;
4303 goto fail_name;
4304 }
4305
4306 if (WARN_ON(!init->ops)) {
4307 ret = -EINVAL;
4308 goto fail_ops;
4309 }
4310 core->ops = init->ops;
4311
4312 core->dev = dev;
4313 clk_pm_runtime_init(core);
4314 core->of_node = np;
4315 if (dev && dev->driver)
4316 core->owner = dev->driver->owner;
4317 core->hw = hw;
4318 core->flags = init->flags;
4319 core->num_parents = init->num_parents;
4320 core->min_rate = 0;
4321 core->max_rate = ULONG_MAX;
4322
4323 ret = clk_core_populate_parent_map(core, init);
4324 if (ret)
4325 goto fail_parents;
4326
4327 INIT_HLIST_HEAD(&core->clks);
4328
4329 /*
4330 * Don't call clk_hw_create_clk() here because that would pin the
4331 * provider module to itself and prevent it from ever being removed.
4332 */
4333 hw->clk = alloc_clk(core, NULL, NULL);
4334 if (IS_ERR(hw->clk)) {
4335 ret = PTR_ERR(hw->clk);
4336 goto fail_create_clk;
4337 }
4338
4339 clk_core_link_consumer(core, hw->clk);
4340
4341 ret = __clk_core_init(core);
4342 if (!ret)
4343 return hw->clk;
4344
4345 clk_prepare_lock();
4346 clk_core_unlink_consumer(hw->clk);
4347 clk_prepare_unlock();
4348
4349 free_clk(hw->clk);
4350 hw->clk = NULL;
4351
4352 fail_create_clk:
4353 fail_parents:
4354 fail_ops:
4355 fail_name:
4356 kref_put(&core->ref, __clk_release);
4357 fail_out:
4358 return ERR_PTR(ret);
4359 }
4360
4361 /**
4362 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4363 * @dev: Device to get device node of
4364 *
4365 * Return: device node pointer of @dev, or the device node pointer of
4366 * @dev->parent if dev doesn't have a device node, or NULL if neither
4367 * @dev or @dev->parent have a device node.
4368 */
dev_or_parent_of_node(struct device * dev)4369 static struct device_node *dev_or_parent_of_node(struct device *dev)
4370 {
4371 struct device_node *np;
4372
4373 if (!dev)
4374 return NULL;
4375
4376 np = dev_of_node(dev);
4377 if (!np)
4378 np = dev_of_node(dev->parent);
4379
4380 return np;
4381 }
4382
4383 /**
4384 * clk_register - allocate a new clock, register it and return an opaque cookie
4385 * @dev: device that is registering this clock
4386 * @hw: link to hardware-specific clock data
4387 *
4388 * clk_register is the *deprecated* interface for populating the clock tree with
4389 * new clock nodes. Use clk_hw_register() instead.
4390 *
4391 * Returns: a pointer to the newly allocated struct clk which
4392 * cannot be dereferenced by driver code but may be used in conjunction with the
4393 * rest of the clock API. In the event of an error clk_register will return an
4394 * error code; drivers must test for an error code after calling clk_register.
4395 */
clk_register(struct device * dev,struct clk_hw * hw)4396 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4397 {
4398 return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4399 }
4400 EXPORT_SYMBOL_GPL(clk_register);
4401
4402 /**
4403 * clk_hw_register - register a clk_hw and return an error code
4404 * @dev: device that is registering this clock
4405 * @hw: link to hardware-specific clock data
4406 *
4407 * clk_hw_register is the primary interface for populating the clock tree with
4408 * new clock nodes. It returns an integer equal to zero indicating success or
4409 * less than zero indicating failure. Drivers must test for an error code after
4410 * calling clk_hw_register().
4411 */
clk_hw_register(struct device * dev,struct clk_hw * hw)4412 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4413 {
4414 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4415 hw));
4416 }
4417 EXPORT_SYMBOL_GPL(clk_hw_register);
4418
4419 /*
4420 * of_clk_hw_register - register a clk_hw and return an error code
4421 * @node: device_node of device that is registering this clock
4422 * @hw: link to hardware-specific clock data
4423 *
4424 * of_clk_hw_register() is the primary interface for populating the clock tree
4425 * with new clock nodes when a struct device is not available, but a struct
4426 * device_node is. It returns an integer equal to zero indicating success or
4427 * less than zero indicating failure. Drivers must test for an error code after
4428 * calling of_clk_hw_register().
4429 */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)4430 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4431 {
4432 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4433 }
4434 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4435
4436 /*
4437 * Empty clk_ops for unregistered clocks. These are used temporarily
4438 * after clk_unregister() was called on a clock and until last clock
4439 * consumer calls clk_put() and the struct clk object is freed.
4440 */
clk_nodrv_prepare_enable(struct clk_hw * hw)4441 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4442 {
4443 return -ENXIO;
4444 }
4445
clk_nodrv_disable_unprepare(struct clk_hw * hw)4446 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4447 {
4448 WARN_ON_ONCE(1);
4449 }
4450
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4451 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4452 unsigned long parent_rate)
4453 {
4454 return -ENXIO;
4455 }
4456
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4457 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4458 {
4459 return -ENXIO;
4460 }
4461
clk_nodrv_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)4462 static int clk_nodrv_determine_rate(struct clk_hw *hw,
4463 struct clk_rate_request *req)
4464 {
4465 return -ENXIO;
4466 }
4467
4468 static const struct clk_ops clk_nodrv_ops = {
4469 .enable = clk_nodrv_prepare_enable,
4470 .disable = clk_nodrv_disable_unprepare,
4471 .prepare = clk_nodrv_prepare_enable,
4472 .unprepare = clk_nodrv_disable_unprepare,
4473 .determine_rate = clk_nodrv_determine_rate,
4474 .set_rate = clk_nodrv_set_rate,
4475 .set_parent = clk_nodrv_set_parent,
4476 };
4477
clk_core_evict_parent_cache_subtree(struct clk_core * root,const struct clk_core * target)4478 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4479 const struct clk_core *target)
4480 {
4481 int i;
4482 struct clk_core *child;
4483
4484 for (i = 0; i < root->num_parents; i++)
4485 if (root->parents[i].core == target)
4486 root->parents[i].core = NULL;
4487
4488 hlist_for_each_entry(child, &root->children, child_node)
4489 clk_core_evict_parent_cache_subtree(child, target);
4490 }
4491
4492 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4493 static void clk_core_evict_parent_cache(struct clk_core *core)
4494 {
4495 const struct hlist_head **lists;
4496 struct clk_core *root;
4497
4498 lockdep_assert_held(&prepare_lock);
4499
4500 for (lists = all_lists; *lists; lists++)
4501 hlist_for_each_entry(root, *lists, child_node)
4502 clk_core_evict_parent_cache_subtree(root, core);
4503
4504 }
4505
4506 /**
4507 * clk_unregister - unregister a currently registered clock
4508 * @clk: clock to unregister
4509 */
clk_unregister(struct clk * clk)4510 void clk_unregister(struct clk *clk)
4511 {
4512 unsigned long flags;
4513 const struct clk_ops *ops;
4514
4515 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4516 return;
4517
4518 clk_debug_unregister(clk->core);
4519
4520 clk_prepare_lock();
4521
4522 ops = clk->core->ops;
4523 if (ops == &clk_nodrv_ops) {
4524 pr_err("%s: unregistered clock: %s\n", __func__,
4525 clk->core->name);
4526 clk_prepare_unlock();
4527 return;
4528 }
4529 /*
4530 * Assign empty clock ops for consumers that might still hold
4531 * a reference to this clock.
4532 */
4533 flags = clk_enable_lock();
4534 clk->core->ops = &clk_nodrv_ops;
4535 clk_enable_unlock(flags);
4536
4537 if (ops->terminate)
4538 ops->terminate(clk->core->hw);
4539
4540 if (!hlist_empty(&clk->core->children)) {
4541 struct clk_core *child;
4542 struct hlist_node *t;
4543
4544 /* Reparent all children to the orphan list. */
4545 hlist_for_each_entry_safe(child, t, &clk->core->children,
4546 child_node)
4547 clk_core_set_parent_nolock(child, NULL);
4548 }
4549
4550 clk_core_evict_parent_cache(clk->core);
4551
4552 hlist_del_init(&clk->core->child_node);
4553
4554 if (clk->core->prepare_count)
4555 pr_warn("%s: unregistering prepared clock: %s\n",
4556 __func__, clk->core->name);
4557
4558 if (clk->core->protect_count)
4559 pr_warn("%s: unregistering protected clock: %s\n",
4560 __func__, clk->core->name);
4561 clk_prepare_unlock();
4562
4563 kref_put(&clk->core->ref, __clk_release);
4564 free_clk(clk);
4565 }
4566 EXPORT_SYMBOL_GPL(clk_unregister);
4567
4568 /**
4569 * clk_hw_unregister - unregister a currently registered clk_hw
4570 * @hw: hardware-specific clock data to unregister
4571 */
clk_hw_unregister(struct clk_hw * hw)4572 void clk_hw_unregister(struct clk_hw *hw)
4573 {
4574 clk_unregister(hw->clk);
4575 }
4576 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4577
devm_clk_unregister_cb(struct device * dev,void * res)4578 static void devm_clk_unregister_cb(struct device *dev, void *res)
4579 {
4580 clk_unregister(*(struct clk **)res);
4581 }
4582
devm_clk_hw_unregister_cb(struct device * dev,void * res)4583 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4584 {
4585 clk_hw_unregister(*(struct clk_hw **)res);
4586 }
4587
4588 /**
4589 * devm_clk_register - resource managed clk_register()
4590 * @dev: device that is registering this clock
4591 * @hw: link to hardware-specific clock data
4592 *
4593 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4594 *
4595 * Clocks returned from this function are automatically clk_unregister()ed on
4596 * driver detach. See clk_register() for more information.
4597 */
devm_clk_register(struct device * dev,struct clk_hw * hw)4598 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4599 {
4600 struct clk *clk;
4601 struct clk **clkp;
4602
4603 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4604 if (!clkp)
4605 return ERR_PTR(-ENOMEM);
4606
4607 clk = clk_register(dev, hw);
4608 if (!IS_ERR(clk)) {
4609 *clkp = clk;
4610 devres_add(dev, clkp);
4611 } else {
4612 devres_free(clkp);
4613 }
4614
4615 return clk;
4616 }
4617 EXPORT_SYMBOL_GPL(devm_clk_register);
4618
4619 /**
4620 * devm_clk_hw_register - resource managed clk_hw_register()
4621 * @dev: device that is registering this clock
4622 * @hw: link to hardware-specific clock data
4623 *
4624 * Managed clk_hw_register(). Clocks registered by this function are
4625 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4626 * for more information.
4627 */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4628 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4629 {
4630 struct clk_hw **hwp;
4631 int ret;
4632
4633 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4634 if (!hwp)
4635 return -ENOMEM;
4636
4637 ret = clk_hw_register(dev, hw);
4638 if (!ret) {
4639 *hwp = hw;
4640 devres_add(dev, hwp);
4641 } else {
4642 devres_free(hwp);
4643 }
4644
4645 return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4648
devm_clk_release(struct device * dev,void * res)4649 static void devm_clk_release(struct device *dev, void *res)
4650 {
4651 clk_put(*(struct clk **)res);
4652 }
4653
4654 /**
4655 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4656 * @dev: device that is registering this clock
4657 * @hw: clk_hw associated with the clk being consumed
4658 * @con_id: connection ID string on device
4659 *
4660 * Managed clk_hw_get_clk(). Clocks got with this function are
4661 * automatically clk_put() on driver detach. See clk_put()
4662 * for more information.
4663 */
devm_clk_hw_get_clk(struct device * dev,struct clk_hw * hw,const char * con_id)4664 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4665 const char *con_id)
4666 {
4667 struct clk *clk;
4668 struct clk **clkp;
4669
4670 /* This should not happen because it would mean we have drivers
4671 * passing around clk_hw pointers instead of having the caller use
4672 * proper clk_get() style APIs
4673 */
4674 WARN_ON_ONCE(dev != hw->core->dev);
4675
4676 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4677 if (!clkp)
4678 return ERR_PTR(-ENOMEM);
4679
4680 clk = clk_hw_get_clk(hw, con_id);
4681 if (!IS_ERR(clk)) {
4682 *clkp = clk;
4683 devres_add(dev, clkp);
4684 } else {
4685 devres_free(clkp);
4686 }
4687
4688 return clk;
4689 }
4690 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4691
4692 /*
4693 * clkdev helpers
4694 */
4695
__clk_put(struct clk * clk)4696 void __clk_put(struct clk *clk)
4697 {
4698 struct module *owner;
4699
4700 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4701 return;
4702
4703 clk_prepare_lock();
4704
4705 /*
4706 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4707 * given user should be balanced with calls to clk_rate_exclusive_put()
4708 * and by that same consumer
4709 */
4710 if (WARN_ON(clk->exclusive_count)) {
4711 /* We voiced our concern, let's sanitize the situation */
4712 clk->core->protect_count -= (clk->exclusive_count - 1);
4713 clk_core_rate_unprotect(clk->core);
4714 clk->exclusive_count = 0;
4715 }
4716
4717 hlist_del(&clk->clks_node);
4718
4719 /* If we had any boundaries on that clock, let's drop them. */
4720 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4721 clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4722
4723 clk_prepare_unlock();
4724
4725 owner = clk->core->owner;
4726 kref_put(&clk->core->ref, __clk_release);
4727 module_put(owner);
4728 free_clk(clk);
4729 }
4730
4731 /*** clk rate change notifiers ***/
4732
4733 /**
4734 * clk_notifier_register - add a clk rate change notifier
4735 * @clk: struct clk * to watch
4736 * @nb: struct notifier_block * with callback info
4737 *
4738 * Request notification when clk's rate changes. This uses an SRCU
4739 * notifier because we want it to block and notifier unregistrations are
4740 * uncommon. The callbacks associated with the notifier must not
4741 * re-enter into the clk framework by calling any top-level clk APIs;
4742 * this will cause a nested prepare_lock mutex.
4743 *
4744 * In all notification cases (pre, post and abort rate change) the original
4745 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4746 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4747 *
4748 * clk_notifier_register() must be called from non-atomic context.
4749 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4750 * allocation failure; otherwise, passes along the return value of
4751 * srcu_notifier_chain_register().
4752 */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4753 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4754 {
4755 struct clk_notifier *cn;
4756 int ret = -ENOMEM;
4757
4758 if (!clk || !nb)
4759 return -EINVAL;
4760
4761 clk_prepare_lock();
4762
4763 /* search the list of notifiers for this clk */
4764 list_for_each_entry(cn, &clk_notifier_list, node)
4765 if (cn->clk == clk)
4766 goto found;
4767
4768 /* if clk wasn't in the notifier list, allocate new clk_notifier */
4769 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4770 if (!cn)
4771 goto out;
4772
4773 cn->clk = clk;
4774 srcu_init_notifier_head(&cn->notifier_head);
4775
4776 list_add(&cn->node, &clk_notifier_list);
4777
4778 found:
4779 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4780
4781 clk->core->notifier_count++;
4782
4783 out:
4784 clk_prepare_unlock();
4785
4786 return ret;
4787 }
4788 EXPORT_SYMBOL_GPL(clk_notifier_register);
4789
4790 /**
4791 * clk_notifier_unregister - remove a clk rate change notifier
4792 * @clk: struct clk *
4793 * @nb: struct notifier_block * with callback info
4794 *
4795 * Request no further notification for changes to 'clk' and frees memory
4796 * allocated in clk_notifier_register.
4797 *
4798 * Returns -EINVAL if called with null arguments; otherwise, passes
4799 * along the return value of srcu_notifier_chain_unregister().
4800 */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4801 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4802 {
4803 struct clk_notifier *cn;
4804 int ret = -ENOENT;
4805
4806 if (!clk || !nb)
4807 return -EINVAL;
4808
4809 clk_prepare_lock();
4810
4811 list_for_each_entry(cn, &clk_notifier_list, node) {
4812 if (cn->clk == clk) {
4813 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4814
4815 clk->core->notifier_count--;
4816
4817 /* XXX the notifier code should handle this better */
4818 if (!cn->notifier_head.head) {
4819 srcu_cleanup_notifier_head(&cn->notifier_head);
4820 list_del(&cn->node);
4821 kfree(cn);
4822 }
4823 break;
4824 }
4825 }
4826
4827 clk_prepare_unlock();
4828
4829 return ret;
4830 }
4831 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4832
4833 struct clk_notifier_devres {
4834 struct clk *clk;
4835 struct notifier_block *nb;
4836 };
4837
devm_clk_notifier_release(struct device * dev,void * res)4838 static void devm_clk_notifier_release(struct device *dev, void *res)
4839 {
4840 struct clk_notifier_devres *devres = res;
4841
4842 clk_notifier_unregister(devres->clk, devres->nb);
4843 }
4844
devm_clk_notifier_register(struct device * dev,struct clk * clk,struct notifier_block * nb)4845 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4846 struct notifier_block *nb)
4847 {
4848 struct clk_notifier_devres *devres;
4849 int ret;
4850
4851 devres = devres_alloc(devm_clk_notifier_release,
4852 sizeof(*devres), GFP_KERNEL);
4853
4854 if (!devres)
4855 return -ENOMEM;
4856
4857 ret = clk_notifier_register(clk, nb);
4858 if (!ret) {
4859 devres->clk = clk;
4860 devres->nb = nb;
4861 devres_add(dev, devres);
4862 } else {
4863 devres_free(devres);
4864 }
4865
4866 return ret;
4867 }
4868 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4869
4870 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4871 static void clk_core_reparent_orphans(void)
4872 {
4873 clk_prepare_lock();
4874 clk_core_reparent_orphans_nolock();
4875 clk_prepare_unlock();
4876 }
4877
4878 /**
4879 * struct of_clk_provider - Clock provider registration structure
4880 * @link: Entry in global list of clock providers
4881 * @node: Pointer to device tree node of clock provider
4882 * @get: Get clock callback. Returns NULL or a struct clk for the
4883 * given clock specifier
4884 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a
4885 * struct clk_hw for the given clock specifier
4886 * @data: context pointer to be passed into @get callback
4887 */
4888 struct of_clk_provider {
4889 struct list_head link;
4890
4891 struct device_node *node;
4892 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4893 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4894 void *data;
4895 };
4896
4897 extern struct of_device_id __clk_of_table;
4898 static const struct of_device_id __clk_of_table_sentinel
4899 __used __section("__clk_of_table_end");
4900
4901 static LIST_HEAD(of_clk_providers);
4902 static DEFINE_MUTEX(of_clk_mutex);
4903
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4904 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4905 void *data)
4906 {
4907 return data;
4908 }
4909 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4910
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4911 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4912 {
4913 return data;
4914 }
4915 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4916
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4917 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4918 {
4919 struct clk_onecell_data *clk_data = data;
4920 unsigned int idx = clkspec->args[0];
4921
4922 if (idx >= clk_data->clk_num) {
4923 pr_err("%s: invalid clock index %u\n", __func__, idx);
4924 return ERR_PTR(-EINVAL);
4925 }
4926
4927 return clk_data->clks[idx];
4928 }
4929 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4930
4931 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4932 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4933 {
4934 struct clk_hw_onecell_data *hw_data = data;
4935 unsigned int idx = clkspec->args[0];
4936
4937 if (idx >= hw_data->num) {
4938 pr_err("%s: invalid index %u\n", __func__, idx);
4939 return ERR_PTR(-EINVAL);
4940 }
4941
4942 return hw_data->hws[idx];
4943 }
4944 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4945
4946 /**
4947 * of_clk_add_provider() - Register a clock provider for a node
4948 * @np: Device node pointer associated with clock provider
4949 * @clk_src_get: callback for decoding clock
4950 * @data: context pointer for @clk_src_get callback.
4951 *
4952 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4953 */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)4954 int of_clk_add_provider(struct device_node *np,
4955 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4956 void *data),
4957 void *data)
4958 {
4959 struct of_clk_provider *cp;
4960 int ret;
4961
4962 if (!np)
4963 return 0;
4964
4965 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4966 if (!cp)
4967 return -ENOMEM;
4968
4969 cp->node = of_node_get(np);
4970 cp->data = data;
4971 cp->get = clk_src_get;
4972
4973 mutex_lock(&of_clk_mutex);
4974 list_add(&cp->link, &of_clk_providers);
4975 mutex_unlock(&of_clk_mutex);
4976 pr_debug("Added clock from %pOF\n", np);
4977
4978 clk_core_reparent_orphans();
4979
4980 ret = of_clk_set_defaults(np, true);
4981 if (ret < 0)
4982 of_clk_del_provider(np);
4983
4984 fwnode_dev_initialized(&np->fwnode, true);
4985
4986 return ret;
4987 }
4988 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4989
4990 /**
4991 * of_clk_add_hw_provider() - Register a clock provider for a node
4992 * @np: Device node pointer associated with clock provider
4993 * @get: callback for decoding clk_hw
4994 * @data: context pointer for @get callback.
4995 */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4996 int of_clk_add_hw_provider(struct device_node *np,
4997 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4998 void *data),
4999 void *data)
5000 {
5001 struct of_clk_provider *cp;
5002 int ret;
5003
5004 if (!np)
5005 return 0;
5006
5007 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5008 if (!cp)
5009 return -ENOMEM;
5010
5011 cp->node = of_node_get(np);
5012 cp->data = data;
5013 cp->get_hw = get;
5014
5015 mutex_lock(&of_clk_mutex);
5016 list_add(&cp->link, &of_clk_providers);
5017 mutex_unlock(&of_clk_mutex);
5018 pr_debug("Added clk_hw provider from %pOF\n", np);
5019
5020 clk_core_reparent_orphans();
5021
5022 ret = of_clk_set_defaults(np, true);
5023 if (ret < 0)
5024 of_clk_del_provider(np);
5025
5026 fwnode_dev_initialized(&np->fwnode, true);
5027
5028 return ret;
5029 }
5030 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5031
devm_of_clk_release_provider(struct device * dev,void * res)5032 static void devm_of_clk_release_provider(struct device *dev, void *res)
5033 {
5034 of_clk_del_provider(*(struct device_node **)res);
5035 }
5036
5037 /*
5038 * We allow a child device to use its parent device as the clock provider node
5039 * for cases like MFD sub-devices where the child device driver wants to use
5040 * devm_*() APIs but not list the device in DT as a sub-node.
5041 */
get_clk_provider_node(struct device * dev)5042 static struct device_node *get_clk_provider_node(struct device *dev)
5043 {
5044 struct device_node *np, *parent_np;
5045
5046 np = dev->of_node;
5047 parent_np = dev->parent ? dev->parent->of_node : NULL;
5048
5049 if (!of_property_present(np, "#clock-cells"))
5050 if (of_property_present(parent_np, "#clock-cells"))
5051 np = parent_np;
5052
5053 return np;
5054 }
5055
5056 /**
5057 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5058 * @dev: Device acting as the clock provider (used for DT node and lifetime)
5059 * @get: callback for decoding clk_hw
5060 * @data: context pointer for @get callback
5061 *
5062 * Registers clock provider for given device's node. If the device has no DT
5063 * node or if the device node lacks of clock provider information (#clock-cells)
5064 * then the parent device's node is scanned for this information. If parent node
5065 * has the #clock-cells then it is used in registration. Provider is
5066 * automatically released at device exit.
5067 *
5068 * Return: 0 on success or an errno on failure.
5069 */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)5070 int devm_of_clk_add_hw_provider(struct device *dev,
5071 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5072 void *data),
5073 void *data)
5074 {
5075 struct device_node **ptr, *np;
5076 int ret;
5077
5078 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5079 GFP_KERNEL);
5080 if (!ptr)
5081 return -ENOMEM;
5082
5083 np = get_clk_provider_node(dev);
5084 ret = of_clk_add_hw_provider(np, get, data);
5085 if (!ret) {
5086 *ptr = np;
5087 devres_add(dev, ptr);
5088 } else {
5089 devres_free(ptr);
5090 }
5091
5092 return ret;
5093 }
5094 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5095
5096 /**
5097 * of_clk_del_provider() - Remove a previously registered clock provider
5098 * @np: Device node pointer associated with clock provider
5099 */
of_clk_del_provider(struct device_node * np)5100 void of_clk_del_provider(struct device_node *np)
5101 {
5102 struct of_clk_provider *cp;
5103
5104 if (!np)
5105 return;
5106
5107 mutex_lock(&of_clk_mutex);
5108 list_for_each_entry(cp, &of_clk_providers, link) {
5109 if (cp->node == np) {
5110 list_del(&cp->link);
5111 fwnode_dev_initialized(&np->fwnode, false);
5112 of_node_put(cp->node);
5113 kfree(cp);
5114 break;
5115 }
5116 }
5117 mutex_unlock(&of_clk_mutex);
5118 }
5119 EXPORT_SYMBOL_GPL(of_clk_del_provider);
5120
5121 /**
5122 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5123 * @np: device node to parse clock specifier from
5124 * @index: index of phandle to parse clock out of. If index < 0, @name is used
5125 * @name: clock name to find and parse. If name is NULL, the index is used
5126 * @out_args: Result of parsing the clock specifier
5127 *
5128 * Parses a device node's "clocks" and "clock-names" properties to find the
5129 * phandle and cells for the index or name that is desired. The resulting clock
5130 * specifier is placed into @out_args, or an errno is returned when there's a
5131 * parsing error. The @index argument is ignored if @name is non-NULL.
5132 *
5133 * Example:
5134 *
5135 * phandle1: clock-controller@1 {
5136 * #clock-cells = <2>;
5137 * }
5138 *
5139 * phandle2: clock-controller@2 {
5140 * #clock-cells = <1>;
5141 * }
5142 *
5143 * clock-consumer@3 {
5144 * clocks = <&phandle1 1 2 &phandle2 3>;
5145 * clock-names = "name1", "name2";
5146 * }
5147 *
5148 * To get a device_node for `clock-controller@2' node you may call this
5149 * function a few different ways:
5150 *
5151 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5152 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5153 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5154 *
5155 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5156 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5157 * the "clock-names" property of @np.
5158 */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)5159 static int of_parse_clkspec(const struct device_node *np, int index,
5160 const char *name, struct of_phandle_args *out_args)
5161 {
5162 int ret = -ENOENT;
5163
5164 /* Walk up the tree of devices looking for a clock property that matches */
5165 while (np) {
5166 /*
5167 * For named clocks, first look up the name in the
5168 * "clock-names" property. If it cannot be found, then index
5169 * will be an error code and of_parse_phandle_with_args() will
5170 * return -EINVAL.
5171 */
5172 if (name)
5173 index = of_property_match_string(np, "clock-names", name);
5174 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5175 index, out_args);
5176 if (!ret)
5177 break;
5178 if (name && index >= 0)
5179 break;
5180
5181 /*
5182 * No matching clock found on this node. If the parent node
5183 * has a "clock-ranges" property, then we can try one of its
5184 * clocks.
5185 */
5186 np = np->parent;
5187 if (np && !of_get_property(np, "clock-ranges", NULL))
5188 break;
5189 index = 0;
5190 }
5191
5192 return ret;
5193 }
5194
5195 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)5196 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5197 struct of_phandle_args *clkspec)
5198 {
5199 struct clk *clk;
5200
5201 if (provider->get_hw)
5202 return provider->get_hw(clkspec, provider->data);
5203
5204 clk = provider->get(clkspec, provider->data);
5205 if (IS_ERR(clk))
5206 return ERR_CAST(clk);
5207 return __clk_get_hw(clk);
5208 }
5209
5210 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)5211 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5212 {
5213 struct of_clk_provider *provider;
5214 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5215
5216 if (!clkspec)
5217 return ERR_PTR(-EINVAL);
5218
5219 mutex_lock(&of_clk_mutex);
5220 list_for_each_entry(provider, &of_clk_providers, link) {
5221 if (provider->node == clkspec->np) {
5222 hw = __of_clk_get_hw_from_provider(provider, clkspec);
5223 if (!IS_ERR(hw))
5224 break;
5225 }
5226 }
5227 mutex_unlock(&of_clk_mutex);
5228
5229 return hw;
5230 }
5231
5232 /**
5233 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5234 * @clkspec: pointer to a clock specifier data structure
5235 *
5236 * This function looks up a struct clk from the registered list of clock
5237 * providers, an input is a clock specifier data structure as returned
5238 * from the of_parse_phandle_with_args() function call.
5239 */
of_clk_get_from_provider(struct of_phandle_args * clkspec)5240 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5241 {
5242 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5243
5244 return clk_hw_create_clk(NULL, hw, NULL, __func__);
5245 }
5246 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5247
of_clk_get_hw(struct device_node * np,int index,const char * con_id)5248 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5249 const char *con_id)
5250 {
5251 int ret;
5252 struct clk_hw *hw;
5253 struct of_phandle_args clkspec;
5254
5255 ret = of_parse_clkspec(np, index, con_id, &clkspec);
5256 if (ret)
5257 return ERR_PTR(ret);
5258
5259 hw = of_clk_get_hw_from_clkspec(&clkspec);
5260 of_node_put(clkspec.np);
5261
5262 return hw;
5263 }
5264
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)5265 static struct clk *__of_clk_get(struct device_node *np,
5266 int index, const char *dev_id,
5267 const char *con_id)
5268 {
5269 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5270
5271 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5272 }
5273
of_clk_get(struct device_node * np,int index)5274 struct clk *of_clk_get(struct device_node *np, int index)
5275 {
5276 return __of_clk_get(np, index, np->full_name, NULL);
5277 }
5278 EXPORT_SYMBOL(of_clk_get);
5279
5280 /**
5281 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5282 * @np: pointer to clock consumer node
5283 * @name: name of consumer's clock input, or NULL for the first clock reference
5284 *
5285 * This function parses the clocks and clock-names properties,
5286 * and uses them to look up the struct clk from the registered list of clock
5287 * providers.
5288 */
of_clk_get_by_name(struct device_node * np,const char * name)5289 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5290 {
5291 if (!np)
5292 return ERR_PTR(-ENOENT);
5293
5294 return __of_clk_get(np, 0, np->full_name, name);
5295 }
5296 EXPORT_SYMBOL(of_clk_get_by_name);
5297
5298 /**
5299 * of_clk_get_parent_count() - Count the number of clocks a device node has
5300 * @np: device node to count
5301 *
5302 * Returns: The number of clocks that are possible parents of this node
5303 */
of_clk_get_parent_count(const struct device_node * np)5304 unsigned int of_clk_get_parent_count(const struct device_node *np)
5305 {
5306 int count;
5307
5308 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5309 if (count < 0)
5310 return 0;
5311
5312 return count;
5313 }
5314 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5315
of_clk_get_parent_name(const struct device_node * np,int index)5316 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5317 {
5318 struct of_phandle_args clkspec;
5319 struct property *prop;
5320 const char *clk_name;
5321 const __be32 *vp;
5322 u32 pv;
5323 int rc;
5324 int count;
5325 struct clk *clk;
5326
5327 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5328 &clkspec);
5329 if (rc)
5330 return NULL;
5331
5332 index = clkspec.args_count ? clkspec.args[0] : 0;
5333 count = 0;
5334
5335 /* if there is an indices property, use it to transfer the index
5336 * specified into an array offset for the clock-output-names property.
5337 */
5338 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5339 if (index == pv) {
5340 index = count;
5341 break;
5342 }
5343 count++;
5344 }
5345 /* We went off the end of 'clock-indices' without finding it */
5346 if (prop && !vp)
5347 return NULL;
5348
5349 if (of_property_read_string_index(clkspec.np, "clock-output-names",
5350 index,
5351 &clk_name) < 0) {
5352 /*
5353 * Best effort to get the name if the clock has been
5354 * registered with the framework. If the clock isn't
5355 * registered, we return the node name as the name of
5356 * the clock as long as #clock-cells = 0.
5357 */
5358 clk = of_clk_get_from_provider(&clkspec);
5359 if (IS_ERR(clk)) {
5360 if (clkspec.args_count == 0)
5361 clk_name = clkspec.np->name;
5362 else
5363 clk_name = NULL;
5364 } else {
5365 clk_name = __clk_get_name(clk);
5366 clk_put(clk);
5367 }
5368 }
5369
5370
5371 of_node_put(clkspec.np);
5372 return clk_name;
5373 }
5374 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5375
5376 /**
5377 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5378 * number of parents
5379 * @np: Device node pointer associated with clock provider
5380 * @parents: pointer to char array that hold the parents' names
5381 * @size: size of the @parents array
5382 *
5383 * Return: number of parents for the clock node.
5384 */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)5385 int of_clk_parent_fill(struct device_node *np, const char **parents,
5386 unsigned int size)
5387 {
5388 unsigned int i = 0;
5389
5390 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5391 i++;
5392
5393 return i;
5394 }
5395 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5396
5397 struct clock_provider {
5398 void (*clk_init_cb)(struct device_node *);
5399 struct device_node *np;
5400 struct list_head node;
5401 };
5402
5403 /*
5404 * This function looks for a parent clock. If there is one, then it
5405 * checks that the provider for this parent clock was initialized, in
5406 * this case the parent clock will be ready.
5407 */
parent_ready(struct device_node * np)5408 static int parent_ready(struct device_node *np)
5409 {
5410 int i = 0;
5411
5412 while (true) {
5413 struct clk *clk = of_clk_get(np, i);
5414
5415 /* this parent is ready we can check the next one */
5416 if (!IS_ERR(clk)) {
5417 clk_put(clk);
5418 i++;
5419 continue;
5420 }
5421
5422 /* at least one parent is not ready, we exit now */
5423 if (PTR_ERR(clk) == -EPROBE_DEFER)
5424 return 0;
5425
5426 /*
5427 * Here we make assumption that the device tree is
5428 * written correctly. So an error means that there is
5429 * no more parent. As we didn't exit yet, then the
5430 * previous parent are ready. If there is no clock
5431 * parent, no need to wait for them, then we can
5432 * consider their absence as being ready
5433 */
5434 return 1;
5435 }
5436 }
5437
5438 /**
5439 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5440 * @np: Device node pointer associated with clock provider
5441 * @index: clock index
5442 * @flags: pointer to top-level framework flags
5443 *
5444 * Detects if the clock-critical property exists and, if so, sets the
5445 * corresponding CLK_IS_CRITICAL flag.
5446 *
5447 * Do not use this function. It exists only for legacy Device Tree
5448 * bindings, such as the one-clock-per-node style that are outdated.
5449 * Those bindings typically put all clock data into .dts and the Linux
5450 * driver has no clock data, thus making it impossible to set this flag
5451 * correctly from the driver. Only those drivers may call
5452 * of_clk_detect_critical from their setup functions.
5453 *
5454 * Return: error code or zero on success
5455 */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5456 int of_clk_detect_critical(struct device_node *np, int index,
5457 unsigned long *flags)
5458 {
5459 struct property *prop;
5460 const __be32 *cur;
5461 uint32_t idx;
5462
5463 if (!np || !flags)
5464 return -EINVAL;
5465
5466 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5467 if (index == idx)
5468 *flags |= CLK_IS_CRITICAL;
5469
5470 return 0;
5471 }
5472
5473 /**
5474 * of_clk_init() - Scan and init clock providers from the DT
5475 * @matches: array of compatible values and init functions for providers.
5476 *
5477 * This function scans the device tree for matching clock providers
5478 * and calls their initialization functions. It also does it by trying
5479 * to follow the dependencies.
5480 */
of_clk_init(const struct of_device_id * matches)5481 void __init of_clk_init(const struct of_device_id *matches)
5482 {
5483 const struct of_device_id *match;
5484 struct device_node *np;
5485 struct clock_provider *clk_provider, *next;
5486 bool is_init_done;
5487 bool force = false;
5488 LIST_HEAD(clk_provider_list);
5489
5490 if (!matches)
5491 matches = &__clk_of_table;
5492
5493 /* First prepare the list of the clocks providers */
5494 for_each_matching_node_and_match(np, matches, &match) {
5495 struct clock_provider *parent;
5496
5497 if (!of_device_is_available(np))
5498 continue;
5499
5500 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5501 if (!parent) {
5502 list_for_each_entry_safe(clk_provider, next,
5503 &clk_provider_list, node) {
5504 list_del(&clk_provider->node);
5505 of_node_put(clk_provider->np);
5506 kfree(clk_provider);
5507 }
5508 of_node_put(np);
5509 return;
5510 }
5511
5512 parent->clk_init_cb = match->data;
5513 parent->np = of_node_get(np);
5514 list_add_tail(&parent->node, &clk_provider_list);
5515 }
5516
5517 while (!list_empty(&clk_provider_list)) {
5518 is_init_done = false;
5519 list_for_each_entry_safe(clk_provider, next,
5520 &clk_provider_list, node) {
5521 if (force || parent_ready(clk_provider->np)) {
5522
5523 /* Don't populate platform devices */
5524 of_node_set_flag(clk_provider->np,
5525 OF_POPULATED);
5526
5527 clk_provider->clk_init_cb(clk_provider->np);
5528 of_clk_set_defaults(clk_provider->np, true);
5529
5530 list_del(&clk_provider->node);
5531 of_node_put(clk_provider->np);
5532 kfree(clk_provider);
5533 is_init_done = true;
5534 }
5535 }
5536
5537 /*
5538 * We didn't manage to initialize any of the
5539 * remaining providers during the last loop, so now we
5540 * initialize all the remaining ones unconditionally
5541 * in case the clock parent was not mandatory
5542 */
5543 if (!is_init_done)
5544 force = true;
5545 }
5546 }
5547 #endif
5548