xref: /openbmc/linux/drivers/clk/clk-versaclock7.c (revision eb96b740192b2a09720aaed8a8c132e6a29d5bdb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common clock framework driver for the Versaclock7 family of timing devices.
4  *
5  * Copyright (c) 2022 Renesas Electronics Corporation
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/clk-provider.h>
13 #include <linux/i2c.h>
14 #include <linux/math64.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_platform.h>
18 #include <linux/regmap.h>
19 #include <linux/swab.h>
20 
21 /*
22  * 16-bit register address: the lower 8 bits of the register address come
23  * from the offset addr byte and the upper 8 bits come from the page register.
24  */
25 #define VC7_PAGE_ADDR			0xFD
26 #define VC7_PAGE_WINDOW			256
27 #define VC7_MAX_REG			0x364
28 
29 /* Maximum number of banks supported by VC7 */
30 #define VC7_NUM_BANKS			7
31 
32 /* Maximum number of FODs supported by VC7 */
33 #define VC7_NUM_FOD			3
34 
35 /* Maximum number of IODs supported by VC7 */
36 #define VC7_NUM_IOD			4
37 
38 /* Maximum number of outputs supported by VC7 */
39 #define VC7_NUM_OUT			12
40 
41 /* VCO valid range is 9.5 GHz to 10.7 GHz */
42 #define VC7_APLL_VCO_MIN		9500000000UL
43 #define VC7_APLL_VCO_MAX		10700000000UL
44 
45 /* APLL denominator is fixed at 2^27 */
46 #define VC7_APLL_DENOMINATOR_BITS	27
47 
48 /* FOD 1st stage denominator is fixed 2^34 */
49 #define VC7_FOD_DENOMINATOR_BITS	34
50 
51 /* IOD can operate between 1kHz and 650MHz */
52 #define VC7_IOD_RATE_MIN		1000UL
53 #define VC7_IOD_RATE_MAX		650000000UL
54 #define VC7_IOD_MIN_DIVISOR		14
55 #define VC7_IOD_MAX_DIVISOR		0x1ffffff /* 25-bit */
56 
57 #define VC7_FOD_RATE_MIN		1000UL
58 #define VC7_FOD_RATE_MAX		650000000UL
59 #define VC7_FOD_1ST_STAGE_RATE_MIN	33000000UL /* 33 MHz */
60 #define VC7_FOD_1ST_STAGE_RATE_MAX	650000000UL /* 650 MHz */
61 #define VC7_FOD_1ST_INT_MAX		324
62 #define VC7_FOD_2ND_INT_MIN		2
63 #define VC7_FOD_2ND_INT_MAX		0x1ffff /* 17-bit */
64 
65 /* VC7 Registers */
66 
67 #define VC7_REG_XO_CNFG			0x2C
68 #define VC7_REG_XO_CNFG_COUNT		4
69 #define VC7_REG_XO_IB_H_DIV_SHIFT	24
70 #define VC7_REG_XO_IB_H_DIV_MASK	GENMASK(28, VC7_REG_XO_IB_H_DIV_SHIFT)
71 
72 #define VC7_REG_APLL_FB_DIV_FRAC	0x120
73 #define VC7_REG_APLL_FB_DIV_FRAC_COUNT	4
74 #define VC7_REG_APLL_FB_DIV_FRAC_MASK	GENMASK(26, 0)
75 
76 #define VC7_REG_APLL_FB_DIV_INT		0x124
77 #define VC7_REG_APLL_FB_DIV_INT_COUNT	2
78 #define VC7_REG_APLL_FB_DIV_INT_MASK	GENMASK(9, 0)
79 
80 #define VC7_REG_APLL_CNFG		0x127
81 #define VC7_REG_APLL_EN_DOUBLER		BIT(0)
82 
83 #define VC7_REG_OUT_BANK_CNFG(idx)	(0x280 + (0x4 * (idx)))
84 #define VC7_REG_OUTPUT_BANK_SRC_MASK	GENMASK(2, 0)
85 
86 #define VC7_REG_FOD_INT_CNFG(idx)	(0x1E0 + (0x10 * (idx)))
87 #define VC7_REG_FOD_INT_CNFG_COUNT	8
88 #define VC7_REG_FOD_1ST_INT_MASK	GENMASK(8, 0)
89 #define VC7_REG_FOD_2ND_INT_SHIFT	9
90 #define VC7_REG_FOD_2ND_INT_MASK	GENMASK(25, VC7_REG_FOD_2ND_INT_SHIFT)
91 #define VC7_REG_FOD_FRAC_SHIFT		26
92 #define VC7_REG_FOD_FRAC_MASK		GENMASK_ULL(59, VC7_REG_FOD_FRAC_SHIFT)
93 
94 #define VC7_REG_IOD_INT_CNFG(idx)	(0x1C0 + (0x8 * (idx)))
95 #define VC7_REG_IOD_INT_CNFG_COUNT	4
96 #define VC7_REG_IOD_INT_MASK		GENMASK(24, 0)
97 
98 #define VC7_REG_ODRV_EN(idx)		(0x240 + (0x4 * (idx)))
99 #define VC7_REG_OUT_DIS			BIT(0)
100 
101 struct vc7_driver_data;
102 static const struct regmap_config vc7_regmap_config;
103 
104 /* Supported Renesas VC7 models */
105 enum vc7_model {
106 	VC7_RC21008A,
107 };
108 
109 struct vc7_chip_info {
110 	const enum vc7_model model;
111 	const unsigned int banks[VC7_NUM_BANKS];
112 	const unsigned int num_banks;
113 	const unsigned int outputs[VC7_NUM_OUT];
114 	const unsigned int num_outputs;
115 };
116 
117 /*
118  * Changing the APLL frequency is currently not supported.
119  * The APLL will consist of an opaque block between the XO and FOD/IODs and
120  * its frequency will be computed based on the current state of the device.
121  */
122 struct vc7_apll_data {
123 	struct clk *clk;
124 	struct vc7_driver_data *vc7;
125 	u8 xo_ib_h_div;
126 	u8 en_doubler;
127 	u16 apll_fb_div_int;
128 	u32 apll_fb_div_frac;
129 };
130 
131 struct vc7_fod_data {
132 	struct clk_hw hw;
133 	struct vc7_driver_data *vc7;
134 	unsigned int num;
135 	u32 fod_1st_int;
136 	u32 fod_2nd_int;
137 	u64 fod_frac;
138 };
139 
140 struct vc7_iod_data {
141 	struct clk_hw hw;
142 	struct vc7_driver_data *vc7;
143 	unsigned int num;
144 	u32 iod_int;
145 };
146 
147 struct vc7_out_data {
148 	struct clk_hw hw;
149 	struct vc7_driver_data *vc7;
150 	unsigned int num;
151 	unsigned int out_dis;
152 };
153 
154 struct vc7_driver_data {
155 	struct i2c_client *client;
156 	struct regmap *regmap;
157 	const struct vc7_chip_info *chip_info;
158 
159 	struct clk *pin_xin;
160 	struct vc7_apll_data clk_apll;
161 	struct vc7_fod_data clk_fod[VC7_NUM_FOD];
162 	struct vc7_iod_data clk_iod[VC7_NUM_IOD];
163 	struct vc7_out_data clk_out[VC7_NUM_OUT];
164 };
165 
166 struct vc7_bank_src_map {
167 	enum vc7_bank_src_type {
168 		VC7_FOD,
169 		VC7_IOD,
170 	} type;
171 	union _divider {
172 		struct vc7_iod_data *iod;
173 		struct vc7_fod_data *fod;
174 	} src;
175 };
176 
177 static struct clk_hw *vc7_of_clk_get(struct of_phandle_args *clkspec,
178 				     void *data)
179 {
180 	struct vc7_driver_data *vc7 = data;
181 	unsigned int idx = clkspec->args[0];
182 
183 	if (idx >= vc7->chip_info->num_outputs)
184 		return ERR_PTR(-EINVAL);
185 
186 	return &vc7->clk_out[idx].hw;
187 }
188 
189 static const unsigned int RC21008A_index_to_output_mapping[] = {
190 	1, 2, 3, 6, 7, 8, 10, 11
191 };
192 
193 static int vc7_map_index_to_output(const enum vc7_model model, const unsigned int i)
194 {
195 	switch (model) {
196 	case VC7_RC21008A:
197 		return RC21008A_index_to_output_mapping[i];
198 	default:
199 		return i;
200 	}
201 }
202 
203 /* bank to output mapping, same across all variants */
204 static const unsigned int output_bank_mapping[] = {
205 	0, /* Output 0 */
206 	1, /* Output 1 */
207 	2, /* Output 2 */
208 	2, /* Output 3 */
209 	3, /* Output 4 */
210 	3, /* Output 5 */
211 	3, /* Output 6 */
212 	3, /* Output 7 */
213 	4, /* Output 8 */
214 	4, /* Output 9 */
215 	5, /* Output 10 */
216 	6  /* Output 11 */
217 };
218 
219 /**
220  * vc7_64_mul_64_to_128() - Multiply two u64 and return an unsigned 128-bit integer
221  * as an upper and lower part.
222  *
223  * @left: The left argument.
224  * @right: The right argument.
225  * @hi: The upper 64-bits of the 128-bit product.
226  * @lo: The lower 64-bits of the 128-bit product.
227  *
228  * From mul_64_64 in crypto/ecc.c:350 in the linux kernel, accessed in v5.17.2.
229  */
230 static void vc7_64_mul_64_to_128(u64 left, u64 right, u64 *hi, u64 *lo)
231 {
232 	u64 a0 = left & 0xffffffffull;
233 	u64 a1 = left >> 32;
234 	u64 b0 = right & 0xffffffffull;
235 	u64 b1 = right >> 32;
236 	u64 m0 = a0 * b0;
237 	u64 m1 = a0 * b1;
238 	u64 m2 = a1 * b0;
239 	u64 m3 = a1 * b1;
240 
241 	m2 += (m0 >> 32);
242 	m2 += m1;
243 
244 	/* Overflow */
245 	if (m2 < m1)
246 		m3 += 0x100000000ull;
247 
248 	*lo = (m0 & 0xffffffffull) | (m2 << 32);
249 	*hi = m3 + (m2 >> 32);
250 }
251 
252 /**
253  * vc7_128_div_64_to_64() - Divides a 128-bit uint by a 64-bit divisor, return a 64-bit quotient.
254  *
255  * @numhi: The uppper 64-bits of the dividend.
256  * @numlo: The lower 64-bits of the dividend.
257  * @den: The denominator (divisor).
258  * @r: The remainder, pass NULL if the remainder is not needed.
259  *
260  * Originally from libdivide, modified to use kernel u64/u32 types.
261  *
262  * See https://github.com/ridiculousfish/libdivide/blob/master/libdivide.h#L471.
263  *
264  * Return: The 64-bit quotient of the division.
265  *
266  * In case of overflow of division by zero, max(u64) is returned.
267  */
268 static u64 vc7_128_div_64_to_64(u64 numhi, u64 numlo, u64 den, u64 *r)
269 {
270 	/*
271 	 * We work in base 2**32.
272 	 * A uint32 holds a single digit. A uint64 holds two digits.
273 	 * Our numerator is conceptually [num3, num2, num1, num0].
274 	 * Our denominator is [den1, den0].
275 	 */
276 	const u64 b = ((u64)1 << 32);
277 
278 	/* The high and low digits of our computed quotient. */
279 	u32 q1, q0;
280 
281 	/* The normalization shift factor */
282 	int shift;
283 
284 	/*
285 	 * The high and low digits of our denominator (after normalizing).
286 	 * Also the low 2 digits of our numerator (after normalizing).
287 	 */
288 	u32 den1, den0, num1, num0;
289 
290 	/* A partial remainder; */
291 	u64 rem;
292 
293 	/*
294 	 * The estimated quotient, and its corresponding remainder (unrelated
295 	 * to true remainder).
296 	 */
297 	u64 qhat, rhat;
298 
299 	/* Variables used to correct the estimated quotient. */
300 	u64 c1, c2;
301 
302 	/* Check for overflow and divide by 0. */
303 	if (numhi >= den) {
304 		if (r)
305 			*r = ~0ull;
306 		return ~0ull;
307 	}
308 
309 	/*
310 	 * Determine the normalization factor. We multiply den by this, so that
311 	 * its leading digit is at least half b. In binary this means just
312 	 * shifting left by the number of leading zeros, so that there's a 1 in
313 	 * the MSB.
314 	 *
315 	 * We also shift numer by the same amount. This cannot overflow because
316 	 * numhi < den.  The expression (-shift & 63) is the same as (64 -
317 	 * shift), except it avoids the UB of shifting by 64. The funny bitwise
318 	 * 'and' ensures that numlo does not get shifted into numhi if shift is
319 	 * 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The
320 	 * sequence below avoids it.
321 	 */
322 	shift = __builtin_clzll(den);
323 	den <<= shift;
324 	numhi <<= shift;
325 	numhi |= (numlo >> (-shift & 63)) & (-(s64)shift >> 63);
326 	numlo <<= shift;
327 
328 	/*
329 	 * Extract the low digits of the numerator and both digits of the
330 	 * denominator.
331 	 */
332 	num1 = (u32)(numlo >> 32);
333 	num0 = (u32)(numlo & 0xFFFFFFFFu);
334 	den1 = (u32)(den >> 32);
335 	den0 = (u32)(den & 0xFFFFFFFFu);
336 
337 	/*
338 	 * We wish to compute q1 = [n3 n2 n1] / [d1 d0].
339 	 * Estimate q1 as [n3 n2] / [d1], and then correct it.
340 	 * Note while qhat may be 2 digits, q1 is always 1 digit.
341 	 */
342 	qhat = div64_u64_rem(numhi, den1, &rhat);
343 	c1 = qhat * den0;
344 	c2 = rhat * b + num1;
345 	if (c1 > c2)
346 		qhat -= (c1 - c2 > den) ? 2 : 1;
347 	q1 = (u32)qhat;
348 
349 	/* Compute the true (partial) remainder. */
350 	rem = numhi * b + num1 - q1 * den;
351 
352 	/*
353 	 * We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
354 	 * Estimate q0 as [rem1 rem0] / [d1] and correct it.
355 	 */
356 	qhat = div64_u64_rem(rem, den1, &rhat);
357 	c1 = qhat * den0;
358 	c2 = rhat * b + num0;
359 	if (c1 > c2)
360 		qhat -= (c1 - c2 > den) ? 2 : 1;
361 	q0 = (u32)qhat;
362 
363 	/* Return remainder if requested. */
364 	if (r)
365 		*r = (rem * b + num0 - q0 * den) >> shift;
366 	return ((u64)q1 << 32) | q0;
367 }
368 
369 static int vc7_get_bank_clk(struct vc7_driver_data *vc7,
370 			    unsigned int bank_idx,
371 			    unsigned int output_bank_src,
372 			    struct vc7_bank_src_map *map)
373 {
374 	/* Mapping from Table 38 in datasheet */
375 	if (bank_idx == 0 || bank_idx == 1) {
376 		switch (output_bank_src) {
377 		case 0:
378 			map->type = VC7_IOD,
379 			map->src.iod = &vc7->clk_iod[0];
380 			return 0;
381 		case 1:
382 			map->type = VC7_IOD,
383 			map->src.iod = &vc7->clk_iod[1];
384 			return 0;
385 		case 4:
386 			map->type = VC7_FOD,
387 			map->src.fod = &vc7->clk_fod[0];
388 			return 0;
389 		case 5:
390 			map->type = VC7_FOD,
391 			map->src.fod = &vc7->clk_fod[1];
392 			return 0;
393 		default:
394 			break;
395 		}
396 	} else if (bank_idx == 2) {
397 		switch (output_bank_src) {
398 		case 1:
399 			map->type = VC7_IOD,
400 			map->src.iod = &vc7->clk_iod[1];
401 			return 0;
402 		case 4:
403 			map->type = VC7_FOD,
404 			map->src.fod = &vc7->clk_fod[0];
405 			return 0;
406 		case 5:
407 			map->type = VC7_FOD,
408 			map->src.fod = &vc7->clk_fod[1];
409 			return 0;
410 		default:
411 			break;
412 		}
413 	} else if (bank_idx == 3) {
414 		switch (output_bank_src) {
415 		case 4:
416 			map->type = VC7_FOD,
417 			map->src.fod = &vc7->clk_fod[0];
418 			return 0;
419 		case 5:
420 			map->type = VC7_FOD,
421 			map->src.fod = &vc7->clk_fod[1];
422 			return 0;
423 		case 6:
424 			map->type = VC7_FOD,
425 			map->src.fod = &vc7->clk_fod[2];
426 			return 0;
427 		default:
428 			break;
429 		}
430 	} else if (bank_idx == 4) {
431 		switch (output_bank_src) {
432 		case 0:
433 			/* CLKIN1 not supported in this driver */
434 			break;
435 		case 2:
436 			map->type = VC7_IOD,
437 			map->src.iod = &vc7->clk_iod[2];
438 			return 0;
439 		case 5:
440 			map->type = VC7_FOD,
441 			map->src.fod = &vc7->clk_fod[1];
442 			return 0;
443 		case 6:
444 			map->type = VC7_FOD,
445 			map->src.fod = &vc7->clk_fod[2];
446 			return 0;
447 		case 7:
448 			/* CLKIN0 not supported in this driver */
449 			break;
450 		default:
451 			break;
452 		}
453 	} else if (bank_idx == 5) {
454 		switch (output_bank_src) {
455 		case 0:
456 			/* CLKIN1 not supported in this driver */
457 			break;
458 		case 1:
459 			/* XIN_REFIN not supported in this driver */
460 			break;
461 		case 2:
462 			map->type = VC7_IOD,
463 			map->src.iod = &vc7->clk_iod[2];
464 			return 0;
465 		case 3:
466 			map->type = VC7_IOD,
467 			map->src.iod = &vc7->clk_iod[3];
468 			return 0;
469 		case 5:
470 			map->type = VC7_FOD,
471 			map->src.fod = &vc7->clk_fod[1];
472 			return 0;
473 		case 6:
474 			map->type = VC7_FOD,
475 			map->src.fod = &vc7->clk_fod[2];
476 			return 0;
477 		case 7:
478 			/* CLKIN0 not supported in this driver */
479 			break;
480 		default:
481 			break;
482 		}
483 	} else if (bank_idx == 6) {
484 		switch (output_bank_src) {
485 		case 0:
486 			/* CLKIN1 not supported in this driver */
487 			break;
488 		case 2:
489 			map->type = VC7_IOD,
490 			map->src.iod = &vc7->clk_iod[2];
491 			return 0;
492 		case 3:
493 			map->type = VC7_IOD,
494 			map->src.iod = &vc7->clk_iod[3];
495 			return 0;
496 		case 5:
497 			map->type = VC7_FOD,
498 			map->src.fod = &vc7->clk_fod[1];
499 			return 0;
500 		case 6:
501 			map->type = VC7_FOD,
502 			map->src.fod = &vc7->clk_fod[2];
503 			return 0;
504 		case 7:
505 			/* CLKIN0 not supported in this driver */
506 			break;
507 		default:
508 			break;
509 		}
510 	}
511 
512 	pr_warn("bank_src%d = %d is not supported\n", bank_idx, output_bank_src);
513 	return -1;
514 }
515 
516 static int vc7_read_apll(struct vc7_driver_data *vc7)
517 {
518 	int err;
519 	u32 val32;
520 	u16 val16;
521 
522 	err = regmap_bulk_read(vc7->regmap,
523 			       VC7_REG_XO_CNFG,
524 			       (u32 *)&val32,
525 			       VC7_REG_XO_CNFG_COUNT);
526 	if (err) {
527 		dev_err(&vc7->client->dev, "failed to read XO_CNFG\n");
528 		return err;
529 	}
530 
531 	vc7->clk_apll.xo_ib_h_div = (val32 & VC7_REG_XO_IB_H_DIV_MASK)
532 		>> VC7_REG_XO_IB_H_DIV_SHIFT;
533 
534 	err = regmap_read(vc7->regmap,
535 			  VC7_REG_APLL_CNFG,
536 			  &val32);
537 	if (err) {
538 		dev_err(&vc7->client->dev, "failed to read APLL_CNFG\n");
539 		return err;
540 	}
541 
542 	vc7->clk_apll.en_doubler = val32 & VC7_REG_APLL_EN_DOUBLER;
543 
544 	err = regmap_bulk_read(vc7->regmap,
545 			       VC7_REG_APLL_FB_DIV_FRAC,
546 			       (u32 *)&val32,
547 			       VC7_REG_APLL_FB_DIV_FRAC_COUNT);
548 	if (err) {
549 		dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_FRAC\n");
550 		return err;
551 	}
552 
553 	vc7->clk_apll.apll_fb_div_frac = val32 & VC7_REG_APLL_FB_DIV_FRAC_MASK;
554 
555 	err = regmap_bulk_read(vc7->regmap,
556 			       VC7_REG_APLL_FB_DIV_INT,
557 			       (u16 *)&val16,
558 			       VC7_REG_APLL_FB_DIV_INT_COUNT);
559 	if (err) {
560 		dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_INT\n");
561 		return err;
562 	}
563 
564 	vc7->clk_apll.apll_fb_div_int = val16 & VC7_REG_APLL_FB_DIV_INT_MASK;
565 
566 	return 0;
567 }
568 
569 static int vc7_read_fod(struct vc7_driver_data *vc7, unsigned int idx)
570 {
571 	int err;
572 	u64 val;
573 
574 	err = regmap_bulk_read(vc7->regmap,
575 			       VC7_REG_FOD_INT_CNFG(idx),
576 			       (u64 *)&val,
577 			       VC7_REG_FOD_INT_CNFG_COUNT);
578 	if (err) {
579 		dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
580 		return err;
581 	}
582 
583 	vc7->clk_fod[idx].fod_1st_int = (val & VC7_REG_FOD_1ST_INT_MASK);
584 	vc7->clk_fod[idx].fod_2nd_int =
585 	    (val & VC7_REG_FOD_2ND_INT_MASK) >> VC7_REG_FOD_2ND_INT_SHIFT;
586 	vc7->clk_fod[idx].fod_frac = (val & VC7_REG_FOD_FRAC_MASK)
587 		>> VC7_REG_FOD_FRAC_SHIFT;
588 
589 	return 0;
590 }
591 
592 static int vc7_write_fod(struct vc7_driver_data *vc7, unsigned int idx)
593 {
594 	int err;
595 	u64 val;
596 
597 	/*
598 	 * FOD dividers are part of an atomic group where fod_1st_int,
599 	 * fod_2nd_int, and fod_frac must be written together. The new divider
600 	 * is applied when the MSB of fod_frac is written.
601 	 */
602 
603 	err = regmap_bulk_read(vc7->regmap,
604 			       VC7_REG_FOD_INT_CNFG(idx),
605 			       (u64 *)&val,
606 			       VC7_REG_FOD_INT_CNFG_COUNT);
607 	if (err) {
608 		dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
609 		return err;
610 	}
611 
612 	val = u64_replace_bits(val,
613 			       vc7->clk_fod[idx].fod_1st_int,
614 			       VC7_REG_FOD_1ST_INT_MASK);
615 	val = u64_replace_bits(val,
616 			       vc7->clk_fod[idx].fod_2nd_int,
617 			       VC7_REG_FOD_2ND_INT_MASK);
618 	val = u64_replace_bits(val,
619 			       vc7->clk_fod[idx].fod_frac,
620 			       VC7_REG_FOD_FRAC_MASK);
621 
622 	err = regmap_bulk_write(vc7->regmap,
623 				VC7_REG_FOD_INT_CNFG(idx),
624 				(u64 *)&val,
625 				sizeof(u64));
626 	if (err) {
627 		dev_err(&vc7->client->dev, "failed to write FOD%d\n", idx);
628 		return err;
629 	}
630 
631 	return 0;
632 }
633 
634 static int vc7_read_iod(struct vc7_driver_data *vc7, unsigned int idx)
635 {
636 	int err;
637 	u32 val;
638 
639 	err = regmap_bulk_read(vc7->regmap,
640 			       VC7_REG_IOD_INT_CNFG(idx),
641 			       (u32 *)&val,
642 			       VC7_REG_IOD_INT_CNFG_COUNT);
643 	if (err) {
644 		dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
645 		return err;
646 	}
647 
648 	vc7->clk_iod[idx].iod_int = (val & VC7_REG_IOD_INT_MASK);
649 
650 	return 0;
651 }
652 
653 static int vc7_write_iod(struct vc7_driver_data *vc7, unsigned int idx)
654 {
655 	int err;
656 	u32 val;
657 
658 	/*
659 	 * IOD divider field is atomic and all bits must be written.
660 	 * The new divider is applied when the MSB of iod_int is written.
661 	 */
662 
663 	err = regmap_bulk_read(vc7->regmap,
664 			       VC7_REG_IOD_INT_CNFG(idx),
665 			       (u32 *)&val,
666 			       VC7_REG_IOD_INT_CNFG_COUNT);
667 	if (err) {
668 		dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
669 		return err;
670 	}
671 
672 	val = u32_replace_bits(val,
673 			       vc7->clk_iod[idx].iod_int,
674 			       VC7_REG_IOD_INT_MASK);
675 
676 	err = regmap_bulk_write(vc7->regmap,
677 				VC7_REG_IOD_INT_CNFG(idx),
678 				(u32 *)&val,
679 				sizeof(u32));
680 	if (err) {
681 		dev_err(&vc7->client->dev, "failed to write IOD%d\n", idx);
682 		return err;
683 	}
684 
685 	return 0;
686 }
687 
688 static int vc7_read_output(struct vc7_driver_data *vc7, unsigned int idx)
689 {
690 	int err;
691 	unsigned int val, out_num;
692 
693 	out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
694 	err = regmap_read(vc7->regmap,
695 			  VC7_REG_ODRV_EN(out_num),
696 			  &val);
697 	if (err) {
698 		dev_err(&vc7->client->dev, "failed to read ODRV_EN[%d]\n", idx);
699 		return err;
700 	}
701 
702 	vc7->clk_out[idx].out_dis = val & VC7_REG_OUT_DIS;
703 
704 	return 0;
705 }
706 
707 static int vc7_write_output(struct vc7_driver_data *vc7, unsigned int idx)
708 {
709 	int err;
710 	unsigned int out_num;
711 
712 	out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
713 	err = regmap_write_bits(vc7->regmap,
714 				VC7_REG_ODRV_EN(out_num),
715 				VC7_REG_OUT_DIS,
716 				vc7->clk_out[idx].out_dis);
717 
718 	if (err) {
719 		dev_err(&vc7->client->dev, "failed to write ODRV_EN[%d]\n", idx);
720 		return err;
721 	}
722 
723 	return 0;
724 }
725 
726 static unsigned long vc7_get_apll_rate(struct vc7_driver_data *vc7)
727 {
728 	int err;
729 	unsigned long xtal_rate;
730 	u64 refin_div, apll_rate;
731 
732 	xtal_rate = clk_get_rate(vc7->pin_xin);
733 	err = vc7_read_apll(vc7);
734 	if (err) {
735 		dev_err(&vc7->client->dev, "unable to read apll\n");
736 		return err;
737 	}
738 
739 	/* 0 is bypassed, 1 is reserved */
740 	if (vc7->clk_apll.xo_ib_h_div < 2)
741 		refin_div = xtal_rate;
742 	else
743 		refin_div = div64_u64(xtal_rate, vc7->clk_apll.xo_ib_h_div);
744 
745 	if (vc7->clk_apll.en_doubler)
746 		refin_div *= 2;
747 
748 	/* divider = int + (frac / 2^27) */
749 	apll_rate = (refin_div * vc7->clk_apll.apll_fb_div_int) +
750 		    ((refin_div * vc7->clk_apll.apll_fb_div_frac) >> VC7_APLL_DENOMINATOR_BITS);
751 
752 	pr_debug("%s - xo_ib_h_div: %u, apll_fb_div_int: %u, apll_fb_div_frac: %u\n",
753 		 __func__, vc7->clk_apll.xo_ib_h_div, vc7->clk_apll.apll_fb_div_int,
754 		 vc7->clk_apll.apll_fb_div_frac);
755 	pr_debug("%s - refin_div: %llu, apll rate: %llu\n",
756 		 __func__, refin_div, apll_rate);
757 
758 	return apll_rate;
759 }
760 
761 static void vc7_calc_iod_divider(unsigned long rate, unsigned long parent_rate,
762 				 u32 *divider)
763 {
764 	*divider = DIV_ROUND_UP(parent_rate, rate);
765 	if (*divider < VC7_IOD_MIN_DIVISOR)
766 		*divider = VC7_IOD_MIN_DIVISOR;
767 	if (*divider > VC7_IOD_MAX_DIVISOR)
768 		*divider = VC7_IOD_MAX_DIVISOR;
769 }
770 
771 static void vc7_calc_fod_1st_stage(unsigned long rate, unsigned long parent_rate,
772 				   u32 *div_int, u64 *div_frac)
773 {
774 	u64 rem;
775 
776 	*div_int = (u32)div64_u64_rem(parent_rate, rate, &rem);
777 	*div_frac = div64_u64(rem << VC7_FOD_DENOMINATOR_BITS, rate);
778 }
779 
780 static unsigned long vc7_calc_fod_1st_stage_rate(unsigned long parent_rate,
781 						 u32 fod_1st_int, u64 fod_frac)
782 {
783 	u64 numer, denom, hi, lo, divisor;
784 
785 	numer = fod_frac;
786 	denom = BIT_ULL(VC7_FOD_DENOMINATOR_BITS);
787 
788 	if (fod_frac) {
789 		vc7_64_mul_64_to_128(parent_rate, denom, &hi, &lo);
790 		divisor = ((u64)fod_1st_int * denom) + numer;
791 		return vc7_128_div_64_to_64(hi, lo, divisor, NULL);
792 	}
793 
794 	return div64_u64(parent_rate, fod_1st_int);
795 }
796 
797 static unsigned long vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate,
798 						 u32 fod_1st_int, u32 fod_2nd_int, u64 fod_frac)
799 {
800 	unsigned long fod_1st_stage_rate;
801 
802 	fod_1st_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, fod_1st_int, fod_frac);
803 
804 	if (fod_2nd_int < 2)
805 		return fod_1st_stage_rate;
806 
807 	/*
808 	 * There is a div-by-2 preceding the 2nd stage integer divider
809 	 * (not shown on block diagram) so the actual 2nd stage integer
810 	 * divisor is 2 * N.
811 	 */
812 	return div64_u64(fod_1st_stage_rate >> 1, fod_2nd_int);
813 }
814 
815 static void vc7_calc_fod_divider(unsigned long rate, unsigned long parent_rate,
816 				 u32 *fod_1st_int, u32 *fod_2nd_int, u64 *fod_frac)
817 {
818 	unsigned int allow_frac, i, best_frac_i;
819 	unsigned long first_stage_rate;
820 
821 	vc7_calc_fod_1st_stage(rate, parent_rate, fod_1st_int, fod_frac);
822 	first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, *fod_1st_int, *fod_frac);
823 
824 	*fod_2nd_int = 0;
825 
826 	/* Do we need the second stage integer divider? */
827 	if (first_stage_rate < VC7_FOD_1ST_STAGE_RATE_MIN) {
828 		allow_frac = 0;
829 		best_frac_i = VC7_FOD_2ND_INT_MIN;
830 
831 		for (i = VC7_FOD_2ND_INT_MIN; i <= VC7_FOD_2ND_INT_MAX; i++) {
832 			/*
833 			 * 1) There is a div-by-2 preceding the 2nd stage integer divider
834 			 *    (not shown on block diagram) so the actual 2nd stage integer
835 			 *    divisor is 2 * N.
836 			 * 2) Attempt to find an integer solution first. This means stepping
837 			 *    through each 2nd stage integer and recalculating the 1st stage
838 			 *    until the 1st stage frequency is out of bounds. If no integer
839 			 *    solution is found, use the best fractional solution.
840 			 */
841 			vc7_calc_fod_1st_stage(parent_rate, rate * 2 * i, fod_1st_int, fod_frac);
842 			first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate,
843 								       *fod_1st_int,
844 								       *fod_frac);
845 
846 			/* Remember the first viable fractional solution */
847 			if (best_frac_i == VC7_FOD_2ND_INT_MIN &&
848 			    first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MIN) {
849 				best_frac_i = i;
850 			}
851 
852 			/* Is the divider viable? Prefer integer solutions over fractional. */
853 			if (*fod_1st_int < VC7_FOD_1ST_INT_MAX &&
854 			    first_stage_rate >= VC7_FOD_1ST_STAGE_RATE_MIN &&
855 			    (allow_frac || *fod_frac == 0)) {
856 				*fod_2nd_int = i;
857 				break;
858 			}
859 
860 			/* Ran out of divisors or the 1st stage frequency is out of range */
861 			if (i >= VC7_FOD_2ND_INT_MAX ||
862 			    first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MAX) {
863 				allow_frac = 1;
864 				i = best_frac_i;
865 
866 				/* Restore the best frac and rerun the loop for the last time */
867 				if (best_frac_i != VC7_FOD_2ND_INT_MIN)
868 					i--;
869 
870 				continue;
871 			}
872 		}
873 	}
874 }
875 
876 static unsigned long vc7_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
877 {
878 	struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
879 	struct vc7_driver_data *vc7 = fod->vc7;
880 	int err;
881 	unsigned long fod_rate;
882 
883 	err = vc7_read_fod(vc7, fod->num);
884 	if (err) {
885 		dev_err(&vc7->client->dev, "error reading registers for %s\n",
886 			clk_hw_get_name(hw));
887 		return err;
888 	}
889 
890 	pr_debug("%s - %s: parent_rate: %lu\n", __func__, clk_hw_get_name(hw), parent_rate);
891 
892 	fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
893 					       fod->fod_2nd_int, fod->fod_frac);
894 
895 	pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
896 		 __func__, clk_hw_get_name(hw),
897 		 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
898 	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
899 
900 	return fod_rate;
901 }
902 
903 static long vc7_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
904 {
905 	struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
906 	unsigned long fod_rate;
907 
908 	pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
909 		 __func__, clk_hw_get_name(hw), rate, *parent_rate);
910 
911 	vc7_calc_fod_divider(rate, *parent_rate,
912 			     &fod->fod_1st_int, &fod->fod_2nd_int, &fod->fod_frac);
913 	fod_rate = vc7_calc_fod_2nd_stage_rate(*parent_rate, fod->fod_1st_int,
914 					       fod->fod_2nd_int, fod->fod_frac);
915 
916 	pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
917 		 __func__, clk_hw_get_name(hw),
918 		 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
919 	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
920 
921 	return fod_rate;
922 }
923 
924 static int vc7_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
925 {
926 	struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
927 	struct vc7_driver_data *vc7 = fod->vc7;
928 	unsigned long fod_rate;
929 
930 	pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
931 		 __func__, clk_hw_get_name(hw), rate, parent_rate);
932 
933 	if (rate < VC7_FOD_RATE_MIN || rate > VC7_FOD_RATE_MAX) {
934 		dev_err(&vc7->client->dev,
935 			"requested frequency %lu Hz for %s is out of range\n",
936 			rate, clk_hw_get_name(hw));
937 		return -EINVAL;
938 	}
939 
940 	vc7_write_fod(vc7, fod->num);
941 
942 	fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
943 					       fod->fod_2nd_int, fod->fod_frac);
944 
945 	pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
946 		 __func__, clk_hw_get_name(hw),
947 		 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
948 	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
949 
950 	return 0;
951 }
952 
953 static const struct clk_ops vc7_fod_ops = {
954 	.recalc_rate = vc7_fod_recalc_rate,
955 	.round_rate = vc7_fod_round_rate,
956 	.set_rate = vc7_fod_set_rate,
957 };
958 
959 static unsigned long vc7_iod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
960 {
961 	struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
962 	struct vc7_driver_data *vc7 = iod->vc7;
963 	int err;
964 	unsigned long iod_rate;
965 
966 	err = vc7_read_iod(vc7, iod->num);
967 	if (err) {
968 		dev_err(&vc7->client->dev, "error reading registers for %s\n",
969 			clk_hw_get_name(hw));
970 		return err;
971 	}
972 
973 	iod_rate = div64_u64(parent_rate, iod->iod_int);
974 
975 	pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
976 	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), iod_rate);
977 
978 	return iod_rate;
979 }
980 
981 static long vc7_iod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
982 {
983 	struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
984 	unsigned long iod_rate;
985 
986 	pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
987 		 __func__, clk_hw_get_name(hw), rate, *parent_rate);
988 
989 	vc7_calc_iod_divider(rate, *parent_rate, &iod->iod_int);
990 	iod_rate = div64_u64(*parent_rate, iod->iod_int);
991 
992 	pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
993 	pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
994 
995 	return iod_rate;
996 }
997 
998 static int vc7_iod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
999 {
1000 	struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
1001 	struct vc7_driver_data *vc7 = iod->vc7;
1002 	unsigned long iod_rate;
1003 
1004 	pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
1005 		 __func__, clk_hw_get_name(hw), rate, parent_rate);
1006 
1007 	if (rate < VC7_IOD_RATE_MIN || rate > VC7_IOD_RATE_MAX) {
1008 		dev_err(&vc7->client->dev,
1009 			"requested frequency %lu Hz for %s is out of range\n",
1010 			rate, clk_hw_get_name(hw));
1011 		return -EINVAL;
1012 	}
1013 
1014 	vc7_write_iod(vc7, iod->num);
1015 
1016 	iod_rate = div64_u64(parent_rate, iod->iod_int);
1017 
1018 	pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
1019 	pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
1020 
1021 	return 0;
1022 }
1023 
1024 static const struct clk_ops vc7_iod_ops = {
1025 	.recalc_rate = vc7_iod_recalc_rate,
1026 	.round_rate = vc7_iod_round_rate,
1027 	.set_rate = vc7_iod_set_rate,
1028 };
1029 
1030 static int vc7_clk_out_prepare(struct clk_hw *hw)
1031 {
1032 	struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1033 	struct vc7_driver_data *vc7 = out->vc7;
1034 	int err;
1035 
1036 	out->out_dis = 0;
1037 
1038 	err = vc7_write_output(vc7, out->num);
1039 	if (err) {
1040 		dev_err(&vc7->client->dev, "error writing registers for %s\n",
1041 			clk_hw_get_name(hw));
1042 		return err;
1043 	}
1044 
1045 	pr_debug("%s - %s: clk prepared\n", __func__, clk_hw_get_name(hw));
1046 
1047 	return 0;
1048 }
1049 
1050 static void vc7_clk_out_unprepare(struct clk_hw *hw)
1051 {
1052 	struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1053 	struct vc7_driver_data *vc7 = out->vc7;
1054 	int err;
1055 
1056 	out->out_dis = 1;
1057 
1058 	err = vc7_write_output(vc7, out->num);
1059 	if (err) {
1060 		dev_err(&vc7->client->dev, "error writing registers for %s\n",
1061 			clk_hw_get_name(hw));
1062 		return;
1063 	}
1064 
1065 	pr_debug("%s - %s: clk unprepared\n", __func__, clk_hw_get_name(hw));
1066 }
1067 
1068 static int vc7_clk_out_is_enabled(struct clk_hw *hw)
1069 {
1070 	struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1071 	struct vc7_driver_data *vc7 = out->vc7;
1072 	int err, is_enabled;
1073 
1074 	err = vc7_read_output(vc7, out->num);
1075 	if (err) {
1076 		dev_err(&vc7->client->dev, "error reading registers for %s\n",
1077 			clk_hw_get_name(hw));
1078 		return err;
1079 	}
1080 
1081 	is_enabled = !out->out_dis;
1082 
1083 	pr_debug("%s - %s: is_enabled=%d\n", __func__, clk_hw_get_name(hw), is_enabled);
1084 
1085 	return is_enabled;
1086 }
1087 
1088 static const struct clk_ops vc7_clk_out_ops = {
1089 	.prepare = vc7_clk_out_prepare,
1090 	.unprepare = vc7_clk_out_unprepare,
1091 	.is_enabled = vc7_clk_out_is_enabled,
1092 };
1093 
1094 static int vc7_probe(struct i2c_client *client)
1095 {
1096 	struct vc7_driver_data *vc7;
1097 	struct clk_init_data clk_init;
1098 	struct vc7_bank_src_map bank_src_map;
1099 	const char *node_name, *apll_name;
1100 	const char *parent_names[1];
1101 	unsigned int i, val, bank_idx, out_num;
1102 	unsigned long apll_rate;
1103 	int ret;
1104 
1105 	vc7 = devm_kzalloc(&client->dev, sizeof(*vc7), GFP_KERNEL);
1106 	if (!vc7)
1107 		return -ENOMEM;
1108 
1109 	i2c_set_clientdata(client, vc7);
1110 	vc7->client = client;
1111 	vc7->chip_info = of_device_get_match_data(&client->dev);
1112 
1113 	vc7->pin_xin = devm_clk_get(&client->dev, "xin");
1114 	if (PTR_ERR(vc7->pin_xin) == -EPROBE_DEFER) {
1115 		return dev_err_probe(&client->dev, -EPROBE_DEFER,
1116 				     "xin not specified\n");
1117 	}
1118 
1119 	vc7->regmap = devm_regmap_init_i2c(client, &vc7_regmap_config);
1120 	if (IS_ERR(vc7->regmap)) {
1121 		return dev_err_probe(&client->dev, PTR_ERR(vc7->regmap),
1122 				     "failed to allocate register map\n");
1123 	}
1124 
1125 	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1126 				    &node_name))
1127 		node_name = client->dev.of_node->name;
1128 
1129 	/* Register APLL */
1130 	apll_rate = vc7_get_apll_rate(vc7);
1131 	apll_name = kasprintf(GFP_KERNEL, "%s_apll", node_name);
1132 	vc7->clk_apll.clk = clk_register_fixed_rate(&client->dev, apll_name,
1133 						    __clk_get_name(vc7->pin_xin),
1134 						    0, apll_rate);
1135 	kfree(apll_name); /* ccf made a copy of the name */
1136 	if (IS_ERR(vc7->clk_apll.clk)) {
1137 		return dev_err_probe(&client->dev, PTR_ERR(vc7->clk_apll.clk),
1138 				     "failed to register apll\n");
1139 	}
1140 
1141 	/* Register FODs */
1142 	for (i = 0; i < VC7_NUM_FOD; i++) {
1143 		memset(&clk_init, 0, sizeof(clk_init));
1144 		clk_init.name = kasprintf(GFP_KERNEL, "%s_fod%d", node_name, i);
1145 		clk_init.ops = &vc7_fod_ops;
1146 		clk_init.parent_names = parent_names;
1147 		parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1148 		clk_init.num_parents = 1;
1149 		vc7->clk_fod[i].num = i;
1150 		vc7->clk_fod[i].vc7 = vc7;
1151 		vc7->clk_fod[i].hw.init = &clk_init;
1152 		ret = devm_clk_hw_register(&client->dev, &vc7->clk_fod[i].hw);
1153 		if (ret)
1154 			goto err_clk_register;
1155 		kfree(clk_init.name); /* ccf made a copy of the name */
1156 	}
1157 
1158 	/* Register IODs */
1159 	for (i = 0; i < VC7_NUM_IOD; i++) {
1160 		memset(&clk_init, 0, sizeof(clk_init));
1161 		clk_init.name = kasprintf(GFP_KERNEL, "%s_iod%d", node_name, i);
1162 		clk_init.ops = &vc7_iod_ops;
1163 		clk_init.parent_names = parent_names;
1164 		parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1165 		clk_init.num_parents = 1;
1166 		vc7->clk_iod[i].num = i;
1167 		vc7->clk_iod[i].vc7 = vc7;
1168 		vc7->clk_iod[i].hw.init = &clk_init;
1169 		ret = devm_clk_hw_register(&client->dev, &vc7->clk_iod[i].hw);
1170 		if (ret)
1171 			goto err_clk_register;
1172 		kfree(clk_init.name); /* ccf made a copy of the name */
1173 	}
1174 
1175 	/* Register outputs */
1176 	for (i = 0; i < vc7->chip_info->num_outputs; i++) {
1177 		out_num = vc7_map_index_to_output(vc7->chip_info->model, i);
1178 
1179 		/*
1180 		 * This driver does not support remapping FOD/IOD to banks.
1181 		 * The device state is read and the driver is setup to match
1182 		 * the device's existing mapping.
1183 		 */
1184 		bank_idx = output_bank_mapping[out_num];
1185 
1186 		regmap_read(vc7->regmap, VC7_REG_OUT_BANK_CNFG(bank_idx), &val);
1187 		val &= VC7_REG_OUTPUT_BANK_SRC_MASK;
1188 
1189 		memset(&bank_src_map, 0, sizeof(bank_src_map));
1190 		ret = vc7_get_bank_clk(vc7, bank_idx, val, &bank_src_map);
1191 		if (ret) {
1192 			dev_err_probe(&client->dev, ret,
1193 				      "unable to register output %d\n", i);
1194 			return ret;
1195 		}
1196 
1197 		switch (bank_src_map.type) {
1198 		case VC7_FOD:
1199 			parent_names[0] = clk_hw_get_name(&bank_src_map.src.fod->hw);
1200 			break;
1201 		case VC7_IOD:
1202 			parent_names[0] = clk_hw_get_name(&bank_src_map.src.iod->hw);
1203 			break;
1204 		}
1205 
1206 		memset(&clk_init, 0, sizeof(clk_init));
1207 		clk_init.name = kasprintf(GFP_KERNEL, "%s_out%d", node_name, i);
1208 		clk_init.ops = &vc7_clk_out_ops;
1209 		clk_init.flags = CLK_SET_RATE_PARENT;
1210 		clk_init.parent_names = parent_names;
1211 		clk_init.num_parents = 1;
1212 		vc7->clk_out[i].num = i;
1213 		vc7->clk_out[i].vc7 = vc7;
1214 		vc7->clk_out[i].hw.init = &clk_init;
1215 		ret = devm_clk_hw_register(&client->dev, &vc7->clk_out[i].hw);
1216 		if (ret)
1217 			goto err_clk_register;
1218 		kfree(clk_init.name); /* ccf made a copy of the name */
1219 	}
1220 
1221 	ret = of_clk_add_hw_provider(client->dev.of_node, vc7_of_clk_get, vc7);
1222 	if (ret) {
1223 		dev_err_probe(&client->dev, ret, "unable to add clk provider\n");
1224 		goto err_clk;
1225 	}
1226 
1227 	return ret;
1228 
1229 err_clk_register:
1230 	dev_err_probe(&client->dev, ret,
1231 		      "unable to register %s\n", clk_init.name);
1232 	kfree(clk_init.name); /* ccf made a copy of the name */
1233 err_clk:
1234 	clk_unregister_fixed_rate(vc7->clk_apll.clk);
1235 	return ret;
1236 }
1237 
1238 static void vc7_remove(struct i2c_client *client)
1239 {
1240 	struct vc7_driver_data *vc7 = i2c_get_clientdata(client);
1241 
1242 	of_clk_del_provider(client->dev.of_node);
1243 	clk_unregister_fixed_rate(vc7->clk_apll.clk);
1244 }
1245 
1246 static bool vc7_volatile_reg(struct device *dev, unsigned int reg)
1247 {
1248 	if (reg == VC7_PAGE_ADDR)
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 static const struct vc7_chip_info vc7_rc21008a_info = {
1255 	.model = VC7_RC21008A,
1256 	.num_banks = 6,
1257 	.num_outputs = 8,
1258 };
1259 
1260 static struct regmap_range_cfg vc7_range_cfg[] = {
1261 {
1262 	.range_min = 0,
1263 	.range_max = VC7_MAX_REG,
1264 	.selector_reg = VC7_PAGE_ADDR,
1265 	.selector_mask = 0xFF,
1266 	.selector_shift = 0,
1267 	.window_start = 0,
1268 	.window_len = VC7_PAGE_WINDOW,
1269 }};
1270 
1271 static const struct regmap_config vc7_regmap_config = {
1272 	.reg_bits = 8,
1273 	.val_bits = 8,
1274 	.max_register = VC7_MAX_REG,
1275 	.ranges = vc7_range_cfg,
1276 	.num_ranges = ARRAY_SIZE(vc7_range_cfg),
1277 	.volatile_reg = vc7_volatile_reg,
1278 	.cache_type = REGCACHE_RBTREE,
1279 	.can_multi_write = true,
1280 	.reg_format_endian = REGMAP_ENDIAN_LITTLE,
1281 	.val_format_endian = REGMAP_ENDIAN_LITTLE,
1282 };
1283 
1284 static const struct i2c_device_id vc7_i2c_id[] = {
1285 	{ "rc21008a", VC7_RC21008A },
1286 	{}
1287 };
1288 MODULE_DEVICE_TABLE(i2c, vc7_i2c_id);
1289 
1290 static const struct of_device_id vc7_of_match[] = {
1291 	{ .compatible = "renesas,rc21008a", .data = &vc7_rc21008a_info },
1292 	{}
1293 };
1294 MODULE_DEVICE_TABLE(of, vc7_of_match);
1295 
1296 static struct i2c_driver vc7_i2c_driver = {
1297 	.driver = {
1298 		.name = "vc7",
1299 		.of_match_table = vc7_of_match,
1300 	},
1301 	.probe_new = vc7_probe,
1302 	.remove = vc7_remove,
1303 	.id_table = vc7_i2c_id,
1304 };
1305 module_i2c_driver(vc7_i2c_driver);
1306 
1307 MODULE_LICENSE("GPL");
1308 MODULE_AUTHOR("Alex Helms <alexander.helms.jy@renesas.com");
1309 MODULE_DESCRIPTION("Renesas Versaclock7 common clock framework driver");
1310