1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common clock framework driver for the Versaclock7 family of timing devices.
4 *
5 * Copyright (c) 2022 Renesas Electronics Corporation
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/clk-provider.h>
13 #include <linux/i2c.h>
14 #include <linux/math64.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/property.h>
18 #include <linux/regmap.h>
19 #include <linux/swab.h>
20
21 /*
22 * 16-bit register address: the lower 8 bits of the register address come
23 * from the offset addr byte and the upper 8 bits come from the page register.
24 */
25 #define VC7_PAGE_ADDR 0xFD
26 #define VC7_PAGE_WINDOW 256
27 #define VC7_MAX_REG 0x364
28
29 /* Maximum number of banks supported by VC7 */
30 #define VC7_NUM_BANKS 7
31
32 /* Maximum number of FODs supported by VC7 */
33 #define VC7_NUM_FOD 3
34
35 /* Maximum number of IODs supported by VC7 */
36 #define VC7_NUM_IOD 4
37
38 /* Maximum number of outputs supported by VC7 */
39 #define VC7_NUM_OUT 12
40
41 /* VCO valid range is 9.5 GHz to 10.7 GHz */
42 #define VC7_APLL_VCO_MIN 9500000000UL
43 #define VC7_APLL_VCO_MAX 10700000000UL
44
45 /* APLL denominator is fixed at 2^27 */
46 #define VC7_APLL_DENOMINATOR_BITS 27
47
48 /* FOD 1st stage denominator is fixed 2^34 */
49 #define VC7_FOD_DENOMINATOR_BITS 34
50
51 /* IOD can operate between 1kHz and 650MHz */
52 #define VC7_IOD_RATE_MIN 1000UL
53 #define VC7_IOD_RATE_MAX 650000000UL
54 #define VC7_IOD_MIN_DIVISOR 14
55 #define VC7_IOD_MAX_DIVISOR 0x1ffffff /* 25-bit */
56
57 #define VC7_FOD_RATE_MIN 1000UL
58 #define VC7_FOD_RATE_MAX 650000000UL
59 #define VC7_FOD_1ST_STAGE_RATE_MIN 33000000UL /* 33 MHz */
60 #define VC7_FOD_1ST_STAGE_RATE_MAX 650000000UL /* 650 MHz */
61 #define VC7_FOD_1ST_INT_MAX 324
62 #define VC7_FOD_2ND_INT_MIN 2
63 #define VC7_FOD_2ND_INT_MAX 0x1ffff /* 17-bit */
64
65 /* VC7 Registers */
66
67 #define VC7_REG_XO_CNFG 0x2C
68 #define VC7_REG_XO_CNFG_COUNT 4
69 #define VC7_REG_XO_IB_H_DIV_SHIFT 24
70 #define VC7_REG_XO_IB_H_DIV_MASK GENMASK(28, VC7_REG_XO_IB_H_DIV_SHIFT)
71
72 #define VC7_REG_APLL_FB_DIV_FRAC 0x120
73 #define VC7_REG_APLL_FB_DIV_FRAC_COUNT 4
74 #define VC7_REG_APLL_FB_DIV_FRAC_MASK GENMASK(26, 0)
75
76 #define VC7_REG_APLL_FB_DIV_INT 0x124
77 #define VC7_REG_APLL_FB_DIV_INT_COUNT 2
78 #define VC7_REG_APLL_FB_DIV_INT_MASK GENMASK(9, 0)
79
80 #define VC7_REG_APLL_CNFG 0x127
81 #define VC7_REG_APLL_EN_DOUBLER BIT(0)
82
83 #define VC7_REG_OUT_BANK_CNFG(idx) (0x280 + (0x4 * (idx)))
84 #define VC7_REG_OUTPUT_BANK_SRC_MASK GENMASK(2, 0)
85
86 #define VC7_REG_FOD_INT_CNFG(idx) (0x1E0 + (0x10 * (idx)))
87 #define VC7_REG_FOD_INT_CNFG_COUNT 8
88 #define VC7_REG_FOD_1ST_INT_MASK GENMASK(8, 0)
89 #define VC7_REG_FOD_2ND_INT_SHIFT 9
90 #define VC7_REG_FOD_2ND_INT_MASK GENMASK(25, VC7_REG_FOD_2ND_INT_SHIFT)
91 #define VC7_REG_FOD_FRAC_SHIFT 26
92 #define VC7_REG_FOD_FRAC_MASK GENMASK_ULL(59, VC7_REG_FOD_FRAC_SHIFT)
93
94 #define VC7_REG_IOD_INT_CNFG(idx) (0x1C0 + (0x8 * (idx)))
95 #define VC7_REG_IOD_INT_CNFG_COUNT 4
96 #define VC7_REG_IOD_INT_MASK GENMASK(24, 0)
97
98 #define VC7_REG_ODRV_EN(idx) (0x240 + (0x4 * (idx)))
99 #define VC7_REG_OUT_DIS BIT(0)
100
101 struct vc7_driver_data;
102 static const struct regmap_config vc7_regmap_config;
103
104 /* Supported Renesas VC7 models */
105 enum vc7_model {
106 VC7_RC21008A,
107 };
108
109 struct vc7_chip_info {
110 const enum vc7_model model;
111 const unsigned int banks[VC7_NUM_BANKS];
112 const unsigned int num_banks;
113 const unsigned int outputs[VC7_NUM_OUT];
114 const unsigned int num_outputs;
115 };
116
117 /*
118 * Changing the APLL frequency is currently not supported.
119 * The APLL will consist of an opaque block between the XO and FOD/IODs and
120 * its frequency will be computed based on the current state of the device.
121 */
122 struct vc7_apll_data {
123 struct clk *clk;
124 struct vc7_driver_data *vc7;
125 u8 xo_ib_h_div;
126 u8 en_doubler;
127 u16 apll_fb_div_int;
128 u32 apll_fb_div_frac;
129 };
130
131 struct vc7_fod_data {
132 struct clk_hw hw;
133 struct vc7_driver_data *vc7;
134 unsigned int num;
135 u32 fod_1st_int;
136 u32 fod_2nd_int;
137 u64 fod_frac;
138 };
139
140 struct vc7_iod_data {
141 struct clk_hw hw;
142 struct vc7_driver_data *vc7;
143 unsigned int num;
144 u32 iod_int;
145 };
146
147 struct vc7_out_data {
148 struct clk_hw hw;
149 struct vc7_driver_data *vc7;
150 unsigned int num;
151 unsigned int out_dis;
152 };
153
154 struct vc7_driver_data {
155 struct i2c_client *client;
156 struct regmap *regmap;
157 const struct vc7_chip_info *chip_info;
158
159 struct clk *pin_xin;
160 struct vc7_apll_data clk_apll;
161 struct vc7_fod_data clk_fod[VC7_NUM_FOD];
162 struct vc7_iod_data clk_iod[VC7_NUM_IOD];
163 struct vc7_out_data clk_out[VC7_NUM_OUT];
164 };
165
166 struct vc7_bank_src_map {
167 enum vc7_bank_src_type {
168 VC7_FOD,
169 VC7_IOD,
170 } type;
171 union _divider {
172 struct vc7_iod_data *iod;
173 struct vc7_fod_data *fod;
174 } src;
175 };
176
vc7_of_clk_get(struct of_phandle_args * clkspec,void * data)177 static struct clk_hw *vc7_of_clk_get(struct of_phandle_args *clkspec,
178 void *data)
179 {
180 struct vc7_driver_data *vc7 = data;
181 unsigned int idx = clkspec->args[0];
182
183 if (idx >= vc7->chip_info->num_outputs)
184 return ERR_PTR(-EINVAL);
185
186 return &vc7->clk_out[idx].hw;
187 }
188
189 static const unsigned int RC21008A_index_to_output_mapping[] = {
190 1, 2, 3, 6, 7, 8, 10, 11
191 };
192
vc7_map_index_to_output(const enum vc7_model model,const unsigned int i)193 static int vc7_map_index_to_output(const enum vc7_model model, const unsigned int i)
194 {
195 switch (model) {
196 case VC7_RC21008A:
197 return RC21008A_index_to_output_mapping[i];
198 default:
199 return i;
200 }
201 }
202
203 /* bank to output mapping, same across all variants */
204 static const unsigned int output_bank_mapping[] = {
205 0, /* Output 0 */
206 1, /* Output 1 */
207 2, /* Output 2 */
208 2, /* Output 3 */
209 3, /* Output 4 */
210 3, /* Output 5 */
211 3, /* Output 6 */
212 3, /* Output 7 */
213 4, /* Output 8 */
214 4, /* Output 9 */
215 5, /* Output 10 */
216 6 /* Output 11 */
217 };
218
219 /**
220 * vc7_64_mul_64_to_128() - Multiply two u64 and return an unsigned 128-bit integer
221 * as an upper and lower part.
222 *
223 * @left: The left argument.
224 * @right: The right argument.
225 * @hi: The upper 64-bits of the 128-bit product.
226 * @lo: The lower 64-bits of the 128-bit product.
227 *
228 * From mul_64_64 in crypto/ecc.c:350 in the linux kernel, accessed in v5.17.2.
229 */
vc7_64_mul_64_to_128(u64 left,u64 right,u64 * hi,u64 * lo)230 static void vc7_64_mul_64_to_128(u64 left, u64 right, u64 *hi, u64 *lo)
231 {
232 u64 a0 = left & 0xffffffffull;
233 u64 a1 = left >> 32;
234 u64 b0 = right & 0xffffffffull;
235 u64 b1 = right >> 32;
236 u64 m0 = a0 * b0;
237 u64 m1 = a0 * b1;
238 u64 m2 = a1 * b0;
239 u64 m3 = a1 * b1;
240
241 m2 += (m0 >> 32);
242 m2 += m1;
243
244 /* Overflow */
245 if (m2 < m1)
246 m3 += 0x100000000ull;
247
248 *lo = (m0 & 0xffffffffull) | (m2 << 32);
249 *hi = m3 + (m2 >> 32);
250 }
251
252 /**
253 * vc7_128_div_64_to_64() - Divides a 128-bit uint by a 64-bit divisor, return a 64-bit quotient.
254 *
255 * @numhi: The uppper 64-bits of the dividend.
256 * @numlo: The lower 64-bits of the dividend.
257 * @den: The denominator (divisor).
258 * @r: The remainder, pass NULL if the remainder is not needed.
259 *
260 * Originally from libdivide, modified to use kernel u64/u32 types.
261 *
262 * See https://github.com/ridiculousfish/libdivide/blob/master/libdivide.h#L471.
263 *
264 * Return: The 64-bit quotient of the division.
265 *
266 * In case of overflow of division by zero, max(u64) is returned.
267 */
vc7_128_div_64_to_64(u64 numhi,u64 numlo,u64 den,u64 * r)268 static u64 vc7_128_div_64_to_64(u64 numhi, u64 numlo, u64 den, u64 *r)
269 {
270 /*
271 * We work in base 2**32.
272 * A uint32 holds a single digit. A uint64 holds two digits.
273 * Our numerator is conceptually [num3, num2, num1, num0].
274 * Our denominator is [den1, den0].
275 */
276 const u64 b = ((u64)1 << 32);
277
278 /* The high and low digits of our computed quotient. */
279 u32 q1, q0;
280
281 /* The normalization shift factor */
282 int shift;
283
284 /*
285 * The high and low digits of our denominator (after normalizing).
286 * Also the low 2 digits of our numerator (after normalizing).
287 */
288 u32 den1, den0, num1, num0;
289
290 /* A partial remainder; */
291 u64 rem;
292
293 /*
294 * The estimated quotient, and its corresponding remainder (unrelated
295 * to true remainder).
296 */
297 u64 qhat, rhat;
298
299 /* Variables used to correct the estimated quotient. */
300 u64 c1, c2;
301
302 /* Check for overflow and divide by 0. */
303 if (numhi >= den) {
304 if (r)
305 *r = ~0ull;
306 return ~0ull;
307 }
308
309 /*
310 * Determine the normalization factor. We multiply den by this, so that
311 * its leading digit is at least half b. In binary this means just
312 * shifting left by the number of leading zeros, so that there's a 1 in
313 * the MSB.
314 *
315 * We also shift numer by the same amount. This cannot overflow because
316 * numhi < den. The expression (-shift & 63) is the same as (64 -
317 * shift), except it avoids the UB of shifting by 64. The funny bitwise
318 * 'and' ensures that numlo does not get shifted into numhi if shift is
319 * 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The
320 * sequence below avoids it.
321 */
322 shift = __builtin_clzll(den);
323 den <<= shift;
324 numhi <<= shift;
325 numhi |= (numlo >> (-shift & 63)) & (-(s64)shift >> 63);
326 numlo <<= shift;
327
328 /*
329 * Extract the low digits of the numerator and both digits of the
330 * denominator.
331 */
332 num1 = (u32)(numlo >> 32);
333 num0 = (u32)(numlo & 0xFFFFFFFFu);
334 den1 = (u32)(den >> 32);
335 den0 = (u32)(den & 0xFFFFFFFFu);
336
337 /*
338 * We wish to compute q1 = [n3 n2 n1] / [d1 d0].
339 * Estimate q1 as [n3 n2] / [d1], and then correct it.
340 * Note while qhat may be 2 digits, q1 is always 1 digit.
341 */
342 qhat = div64_u64_rem(numhi, den1, &rhat);
343 c1 = qhat * den0;
344 c2 = rhat * b + num1;
345 if (c1 > c2)
346 qhat -= (c1 - c2 > den) ? 2 : 1;
347 q1 = (u32)qhat;
348
349 /* Compute the true (partial) remainder. */
350 rem = numhi * b + num1 - q1 * den;
351
352 /*
353 * We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
354 * Estimate q0 as [rem1 rem0] / [d1] and correct it.
355 */
356 qhat = div64_u64_rem(rem, den1, &rhat);
357 c1 = qhat * den0;
358 c2 = rhat * b + num0;
359 if (c1 > c2)
360 qhat -= (c1 - c2 > den) ? 2 : 1;
361 q0 = (u32)qhat;
362
363 /* Return remainder if requested. */
364 if (r)
365 *r = (rem * b + num0 - q0 * den) >> shift;
366 return ((u64)q1 << 32) | q0;
367 }
368
vc7_get_bank_clk(struct vc7_driver_data * vc7,unsigned int bank_idx,unsigned int output_bank_src,struct vc7_bank_src_map * map)369 static int vc7_get_bank_clk(struct vc7_driver_data *vc7,
370 unsigned int bank_idx,
371 unsigned int output_bank_src,
372 struct vc7_bank_src_map *map)
373 {
374 /* Mapping from Table 38 in datasheet */
375 if (bank_idx == 0 || bank_idx == 1) {
376 switch (output_bank_src) {
377 case 0:
378 map->type = VC7_IOD,
379 map->src.iod = &vc7->clk_iod[0];
380 return 0;
381 case 1:
382 map->type = VC7_IOD,
383 map->src.iod = &vc7->clk_iod[1];
384 return 0;
385 case 4:
386 map->type = VC7_FOD,
387 map->src.fod = &vc7->clk_fod[0];
388 return 0;
389 case 5:
390 map->type = VC7_FOD,
391 map->src.fod = &vc7->clk_fod[1];
392 return 0;
393 default:
394 break;
395 }
396 } else if (bank_idx == 2) {
397 switch (output_bank_src) {
398 case 1:
399 map->type = VC7_IOD,
400 map->src.iod = &vc7->clk_iod[1];
401 return 0;
402 case 4:
403 map->type = VC7_FOD,
404 map->src.fod = &vc7->clk_fod[0];
405 return 0;
406 case 5:
407 map->type = VC7_FOD,
408 map->src.fod = &vc7->clk_fod[1];
409 return 0;
410 default:
411 break;
412 }
413 } else if (bank_idx == 3) {
414 switch (output_bank_src) {
415 case 4:
416 map->type = VC7_FOD,
417 map->src.fod = &vc7->clk_fod[0];
418 return 0;
419 case 5:
420 map->type = VC7_FOD,
421 map->src.fod = &vc7->clk_fod[1];
422 return 0;
423 case 6:
424 map->type = VC7_FOD,
425 map->src.fod = &vc7->clk_fod[2];
426 return 0;
427 default:
428 break;
429 }
430 } else if (bank_idx == 4) {
431 switch (output_bank_src) {
432 case 0:
433 /* CLKIN1 not supported in this driver */
434 break;
435 case 2:
436 map->type = VC7_IOD,
437 map->src.iod = &vc7->clk_iod[2];
438 return 0;
439 case 5:
440 map->type = VC7_FOD,
441 map->src.fod = &vc7->clk_fod[1];
442 return 0;
443 case 6:
444 map->type = VC7_FOD,
445 map->src.fod = &vc7->clk_fod[2];
446 return 0;
447 case 7:
448 /* CLKIN0 not supported in this driver */
449 break;
450 default:
451 break;
452 }
453 } else if (bank_idx == 5) {
454 switch (output_bank_src) {
455 case 0:
456 /* CLKIN1 not supported in this driver */
457 break;
458 case 1:
459 /* XIN_REFIN not supported in this driver */
460 break;
461 case 2:
462 map->type = VC7_IOD,
463 map->src.iod = &vc7->clk_iod[2];
464 return 0;
465 case 3:
466 map->type = VC7_IOD,
467 map->src.iod = &vc7->clk_iod[3];
468 return 0;
469 case 5:
470 map->type = VC7_FOD,
471 map->src.fod = &vc7->clk_fod[1];
472 return 0;
473 case 6:
474 map->type = VC7_FOD,
475 map->src.fod = &vc7->clk_fod[2];
476 return 0;
477 case 7:
478 /* CLKIN0 not supported in this driver */
479 break;
480 default:
481 break;
482 }
483 } else if (bank_idx == 6) {
484 switch (output_bank_src) {
485 case 0:
486 /* CLKIN1 not supported in this driver */
487 break;
488 case 2:
489 map->type = VC7_IOD,
490 map->src.iod = &vc7->clk_iod[2];
491 return 0;
492 case 3:
493 map->type = VC7_IOD,
494 map->src.iod = &vc7->clk_iod[3];
495 return 0;
496 case 5:
497 map->type = VC7_FOD,
498 map->src.fod = &vc7->clk_fod[1];
499 return 0;
500 case 6:
501 map->type = VC7_FOD,
502 map->src.fod = &vc7->clk_fod[2];
503 return 0;
504 case 7:
505 /* CLKIN0 not supported in this driver */
506 break;
507 default:
508 break;
509 }
510 }
511
512 pr_warn("bank_src%d = %d is not supported\n", bank_idx, output_bank_src);
513 return -1;
514 }
515
vc7_read_apll(struct vc7_driver_data * vc7)516 static int vc7_read_apll(struct vc7_driver_data *vc7)
517 {
518 int err;
519 u32 val32;
520 u16 val16;
521
522 err = regmap_bulk_read(vc7->regmap,
523 VC7_REG_XO_CNFG,
524 (u32 *)&val32,
525 VC7_REG_XO_CNFG_COUNT);
526 if (err) {
527 dev_err(&vc7->client->dev, "failed to read XO_CNFG\n");
528 return err;
529 }
530
531 vc7->clk_apll.xo_ib_h_div = (val32 & VC7_REG_XO_IB_H_DIV_MASK)
532 >> VC7_REG_XO_IB_H_DIV_SHIFT;
533
534 err = regmap_read(vc7->regmap,
535 VC7_REG_APLL_CNFG,
536 &val32);
537 if (err) {
538 dev_err(&vc7->client->dev, "failed to read APLL_CNFG\n");
539 return err;
540 }
541
542 vc7->clk_apll.en_doubler = val32 & VC7_REG_APLL_EN_DOUBLER;
543
544 err = regmap_bulk_read(vc7->regmap,
545 VC7_REG_APLL_FB_DIV_FRAC,
546 (u32 *)&val32,
547 VC7_REG_APLL_FB_DIV_FRAC_COUNT);
548 if (err) {
549 dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_FRAC\n");
550 return err;
551 }
552
553 vc7->clk_apll.apll_fb_div_frac = val32 & VC7_REG_APLL_FB_DIV_FRAC_MASK;
554
555 err = regmap_bulk_read(vc7->regmap,
556 VC7_REG_APLL_FB_DIV_INT,
557 (u16 *)&val16,
558 VC7_REG_APLL_FB_DIV_INT_COUNT);
559 if (err) {
560 dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_INT\n");
561 return err;
562 }
563
564 vc7->clk_apll.apll_fb_div_int = val16 & VC7_REG_APLL_FB_DIV_INT_MASK;
565
566 return 0;
567 }
568
vc7_read_fod(struct vc7_driver_data * vc7,unsigned int idx)569 static int vc7_read_fod(struct vc7_driver_data *vc7, unsigned int idx)
570 {
571 int err;
572 u64 val;
573
574 err = regmap_bulk_read(vc7->regmap,
575 VC7_REG_FOD_INT_CNFG(idx),
576 (u64 *)&val,
577 VC7_REG_FOD_INT_CNFG_COUNT);
578 if (err) {
579 dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
580 return err;
581 }
582
583 vc7->clk_fod[idx].fod_1st_int = (val & VC7_REG_FOD_1ST_INT_MASK);
584 vc7->clk_fod[idx].fod_2nd_int =
585 (val & VC7_REG_FOD_2ND_INT_MASK) >> VC7_REG_FOD_2ND_INT_SHIFT;
586 vc7->clk_fod[idx].fod_frac = (val & VC7_REG_FOD_FRAC_MASK)
587 >> VC7_REG_FOD_FRAC_SHIFT;
588
589 return 0;
590 }
591
vc7_write_fod(struct vc7_driver_data * vc7,unsigned int idx)592 static int vc7_write_fod(struct vc7_driver_data *vc7, unsigned int idx)
593 {
594 int err;
595 u64 val;
596
597 /*
598 * FOD dividers are part of an atomic group where fod_1st_int,
599 * fod_2nd_int, and fod_frac must be written together. The new divider
600 * is applied when the MSB of fod_frac is written.
601 */
602
603 err = regmap_bulk_read(vc7->regmap,
604 VC7_REG_FOD_INT_CNFG(idx),
605 (u64 *)&val,
606 VC7_REG_FOD_INT_CNFG_COUNT);
607 if (err) {
608 dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
609 return err;
610 }
611
612 val = u64_replace_bits(val,
613 vc7->clk_fod[idx].fod_1st_int,
614 VC7_REG_FOD_1ST_INT_MASK);
615 val = u64_replace_bits(val,
616 vc7->clk_fod[idx].fod_2nd_int,
617 VC7_REG_FOD_2ND_INT_MASK);
618 val = u64_replace_bits(val,
619 vc7->clk_fod[idx].fod_frac,
620 VC7_REG_FOD_FRAC_MASK);
621
622 err = regmap_bulk_write(vc7->regmap,
623 VC7_REG_FOD_INT_CNFG(idx),
624 (u64 *)&val,
625 sizeof(u64));
626 if (err) {
627 dev_err(&vc7->client->dev, "failed to write FOD%d\n", idx);
628 return err;
629 }
630
631 return 0;
632 }
633
vc7_read_iod(struct vc7_driver_data * vc7,unsigned int idx)634 static int vc7_read_iod(struct vc7_driver_data *vc7, unsigned int idx)
635 {
636 int err;
637 u32 val;
638
639 err = regmap_bulk_read(vc7->regmap,
640 VC7_REG_IOD_INT_CNFG(idx),
641 (u32 *)&val,
642 VC7_REG_IOD_INT_CNFG_COUNT);
643 if (err) {
644 dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
645 return err;
646 }
647
648 vc7->clk_iod[idx].iod_int = (val & VC7_REG_IOD_INT_MASK);
649
650 return 0;
651 }
652
vc7_write_iod(struct vc7_driver_data * vc7,unsigned int idx)653 static int vc7_write_iod(struct vc7_driver_data *vc7, unsigned int idx)
654 {
655 int err;
656 u32 val;
657
658 /*
659 * IOD divider field is atomic and all bits must be written.
660 * The new divider is applied when the MSB of iod_int is written.
661 */
662
663 err = regmap_bulk_read(vc7->regmap,
664 VC7_REG_IOD_INT_CNFG(idx),
665 (u32 *)&val,
666 VC7_REG_IOD_INT_CNFG_COUNT);
667 if (err) {
668 dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
669 return err;
670 }
671
672 val = u32_replace_bits(val,
673 vc7->clk_iod[idx].iod_int,
674 VC7_REG_IOD_INT_MASK);
675
676 err = regmap_bulk_write(vc7->regmap,
677 VC7_REG_IOD_INT_CNFG(idx),
678 (u32 *)&val,
679 sizeof(u32));
680 if (err) {
681 dev_err(&vc7->client->dev, "failed to write IOD%d\n", idx);
682 return err;
683 }
684
685 return 0;
686 }
687
vc7_read_output(struct vc7_driver_data * vc7,unsigned int idx)688 static int vc7_read_output(struct vc7_driver_data *vc7, unsigned int idx)
689 {
690 int err;
691 unsigned int val, out_num;
692
693 out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
694 err = regmap_read(vc7->regmap,
695 VC7_REG_ODRV_EN(out_num),
696 &val);
697 if (err) {
698 dev_err(&vc7->client->dev, "failed to read ODRV_EN[%d]\n", idx);
699 return err;
700 }
701
702 vc7->clk_out[idx].out_dis = val & VC7_REG_OUT_DIS;
703
704 return 0;
705 }
706
vc7_write_output(struct vc7_driver_data * vc7,unsigned int idx)707 static int vc7_write_output(struct vc7_driver_data *vc7, unsigned int idx)
708 {
709 int err;
710 unsigned int out_num;
711
712 out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
713 err = regmap_write_bits(vc7->regmap,
714 VC7_REG_ODRV_EN(out_num),
715 VC7_REG_OUT_DIS,
716 vc7->clk_out[idx].out_dis);
717
718 if (err) {
719 dev_err(&vc7->client->dev, "failed to write ODRV_EN[%d]\n", idx);
720 return err;
721 }
722
723 return 0;
724 }
725
vc7_get_apll_rate(struct vc7_driver_data * vc7)726 static unsigned long vc7_get_apll_rate(struct vc7_driver_data *vc7)
727 {
728 int err;
729 unsigned long xtal_rate;
730 u64 refin_div, apll_rate;
731
732 xtal_rate = clk_get_rate(vc7->pin_xin);
733 err = vc7_read_apll(vc7);
734 if (err) {
735 dev_err(&vc7->client->dev, "unable to read apll\n");
736 return err;
737 }
738
739 /* 0 is bypassed, 1 is reserved */
740 if (vc7->clk_apll.xo_ib_h_div < 2)
741 refin_div = xtal_rate;
742 else
743 refin_div = div64_u64(xtal_rate, vc7->clk_apll.xo_ib_h_div);
744
745 if (vc7->clk_apll.en_doubler)
746 refin_div *= 2;
747
748 /* divider = int + (frac / 2^27) */
749 apll_rate = (refin_div * vc7->clk_apll.apll_fb_div_int) +
750 ((refin_div * vc7->clk_apll.apll_fb_div_frac) >> VC7_APLL_DENOMINATOR_BITS);
751
752 pr_debug("%s - xo_ib_h_div: %u, apll_fb_div_int: %u, apll_fb_div_frac: %u\n",
753 __func__, vc7->clk_apll.xo_ib_h_div, vc7->clk_apll.apll_fb_div_int,
754 vc7->clk_apll.apll_fb_div_frac);
755 pr_debug("%s - refin_div: %llu, apll rate: %llu\n",
756 __func__, refin_div, apll_rate);
757
758 return apll_rate;
759 }
760
vc7_calc_iod_divider(unsigned long rate,unsigned long parent_rate,u32 * divider)761 static void vc7_calc_iod_divider(unsigned long rate, unsigned long parent_rate,
762 u32 *divider)
763 {
764 *divider = DIV_ROUND_UP(parent_rate, rate);
765 if (*divider < VC7_IOD_MIN_DIVISOR)
766 *divider = VC7_IOD_MIN_DIVISOR;
767 if (*divider > VC7_IOD_MAX_DIVISOR)
768 *divider = VC7_IOD_MAX_DIVISOR;
769 }
770
vc7_calc_fod_1st_stage(unsigned long rate,unsigned long parent_rate,u32 * div_int,u64 * div_frac)771 static void vc7_calc_fod_1st_stage(unsigned long rate, unsigned long parent_rate,
772 u32 *div_int, u64 *div_frac)
773 {
774 u64 rem;
775
776 *div_int = (u32)div64_u64_rem(parent_rate, rate, &rem);
777 *div_frac = div64_u64(rem << VC7_FOD_DENOMINATOR_BITS, rate);
778 }
779
vc7_calc_fod_1st_stage_rate(unsigned long parent_rate,u32 fod_1st_int,u64 fod_frac)780 static unsigned long vc7_calc_fod_1st_stage_rate(unsigned long parent_rate,
781 u32 fod_1st_int, u64 fod_frac)
782 {
783 u64 numer, denom, hi, lo, divisor;
784
785 numer = fod_frac;
786 denom = BIT_ULL(VC7_FOD_DENOMINATOR_BITS);
787
788 if (fod_frac) {
789 vc7_64_mul_64_to_128(parent_rate, denom, &hi, &lo);
790 divisor = ((u64)fod_1st_int * denom) + numer;
791 return vc7_128_div_64_to_64(hi, lo, divisor, NULL);
792 }
793
794 return div64_u64(parent_rate, fod_1st_int);
795 }
796
vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate,u32 fod_1st_int,u32 fod_2nd_int,u64 fod_frac)797 static unsigned long vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate,
798 u32 fod_1st_int, u32 fod_2nd_int, u64 fod_frac)
799 {
800 unsigned long fod_1st_stage_rate;
801
802 fod_1st_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, fod_1st_int, fod_frac);
803
804 if (fod_2nd_int < 2)
805 return fod_1st_stage_rate;
806
807 /*
808 * There is a div-by-2 preceding the 2nd stage integer divider
809 * (not shown on block diagram) so the actual 2nd stage integer
810 * divisor is 2 * N.
811 */
812 return div64_u64(fod_1st_stage_rate >> 1, fod_2nd_int);
813 }
814
vc7_calc_fod_divider(unsigned long rate,unsigned long parent_rate,u32 * fod_1st_int,u32 * fod_2nd_int,u64 * fod_frac)815 static void vc7_calc_fod_divider(unsigned long rate, unsigned long parent_rate,
816 u32 *fod_1st_int, u32 *fod_2nd_int, u64 *fod_frac)
817 {
818 unsigned int allow_frac, i, best_frac_i;
819 unsigned long first_stage_rate;
820
821 vc7_calc_fod_1st_stage(rate, parent_rate, fod_1st_int, fod_frac);
822 first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, *fod_1st_int, *fod_frac);
823
824 *fod_2nd_int = 0;
825
826 /* Do we need the second stage integer divider? */
827 if (first_stage_rate < VC7_FOD_1ST_STAGE_RATE_MIN) {
828 allow_frac = 0;
829 best_frac_i = VC7_FOD_2ND_INT_MIN;
830
831 for (i = VC7_FOD_2ND_INT_MIN; i <= VC7_FOD_2ND_INT_MAX; i++) {
832 /*
833 * 1) There is a div-by-2 preceding the 2nd stage integer divider
834 * (not shown on block diagram) so the actual 2nd stage integer
835 * divisor is 2 * N.
836 * 2) Attempt to find an integer solution first. This means stepping
837 * through each 2nd stage integer and recalculating the 1st stage
838 * until the 1st stage frequency is out of bounds. If no integer
839 * solution is found, use the best fractional solution.
840 */
841 vc7_calc_fod_1st_stage(parent_rate, rate * 2 * i, fod_1st_int, fod_frac);
842 first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate,
843 *fod_1st_int,
844 *fod_frac);
845
846 /* Remember the first viable fractional solution */
847 if (best_frac_i == VC7_FOD_2ND_INT_MIN &&
848 first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MIN) {
849 best_frac_i = i;
850 }
851
852 /* Is the divider viable? Prefer integer solutions over fractional. */
853 if (*fod_1st_int < VC7_FOD_1ST_INT_MAX &&
854 first_stage_rate >= VC7_FOD_1ST_STAGE_RATE_MIN &&
855 (allow_frac || *fod_frac == 0)) {
856 *fod_2nd_int = i;
857 break;
858 }
859
860 /* Ran out of divisors or the 1st stage frequency is out of range */
861 if (i >= VC7_FOD_2ND_INT_MAX ||
862 first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MAX) {
863 allow_frac = 1;
864 i = best_frac_i;
865
866 /* Restore the best frac and rerun the loop for the last time */
867 if (best_frac_i != VC7_FOD_2ND_INT_MIN)
868 i--;
869
870 continue;
871 }
872 }
873 }
874 }
875
vc7_fod_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)876 static unsigned long vc7_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
877 {
878 struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
879 struct vc7_driver_data *vc7 = fod->vc7;
880 int err;
881 unsigned long fod_rate;
882
883 err = vc7_read_fod(vc7, fod->num);
884 if (err) {
885 dev_err(&vc7->client->dev, "error reading registers for %s\n",
886 clk_hw_get_name(hw));
887 return err;
888 }
889
890 pr_debug("%s - %s: parent_rate: %lu\n", __func__, clk_hw_get_name(hw), parent_rate);
891
892 fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
893 fod->fod_2nd_int, fod->fod_frac);
894
895 pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
896 __func__, clk_hw_get_name(hw),
897 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
898 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
899
900 return fod_rate;
901 }
902
vc7_fod_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)903 static long vc7_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
904 {
905 struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
906 unsigned long fod_rate;
907
908 pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
909 __func__, clk_hw_get_name(hw), rate, *parent_rate);
910
911 vc7_calc_fod_divider(rate, *parent_rate,
912 &fod->fod_1st_int, &fod->fod_2nd_int, &fod->fod_frac);
913 fod_rate = vc7_calc_fod_2nd_stage_rate(*parent_rate, fod->fod_1st_int,
914 fod->fod_2nd_int, fod->fod_frac);
915
916 pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
917 __func__, clk_hw_get_name(hw),
918 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
919 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
920
921 return fod_rate;
922 }
923
vc7_fod_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)924 static int vc7_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
925 {
926 struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
927 struct vc7_driver_data *vc7 = fod->vc7;
928 unsigned long fod_rate;
929
930 pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
931 __func__, clk_hw_get_name(hw), rate, parent_rate);
932
933 if (rate < VC7_FOD_RATE_MIN || rate > VC7_FOD_RATE_MAX) {
934 dev_err(&vc7->client->dev,
935 "requested frequency %lu Hz for %s is out of range\n",
936 rate, clk_hw_get_name(hw));
937 return -EINVAL;
938 }
939
940 vc7_write_fod(vc7, fod->num);
941
942 fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
943 fod->fod_2nd_int, fod->fod_frac);
944
945 pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
946 __func__, clk_hw_get_name(hw),
947 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
948 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
949
950 return 0;
951 }
952
953 static const struct clk_ops vc7_fod_ops = {
954 .recalc_rate = vc7_fod_recalc_rate,
955 .round_rate = vc7_fod_round_rate,
956 .set_rate = vc7_fod_set_rate,
957 };
958
vc7_iod_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)959 static unsigned long vc7_iod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
960 {
961 struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
962 struct vc7_driver_data *vc7 = iod->vc7;
963 int err;
964 unsigned long iod_rate;
965
966 err = vc7_read_iod(vc7, iod->num);
967 if (err) {
968 dev_err(&vc7->client->dev, "error reading registers for %s\n",
969 clk_hw_get_name(hw));
970 return err;
971 }
972
973 iod_rate = div64_u64(parent_rate, iod->iod_int);
974
975 pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
976 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), iod_rate);
977
978 return iod_rate;
979 }
980
vc7_iod_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)981 static long vc7_iod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
982 {
983 struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
984 unsigned long iod_rate;
985
986 pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
987 __func__, clk_hw_get_name(hw), rate, *parent_rate);
988
989 vc7_calc_iod_divider(rate, *parent_rate, &iod->iod_int);
990 iod_rate = div64_u64(*parent_rate, iod->iod_int);
991
992 pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
993 pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
994
995 return iod_rate;
996 }
997
vc7_iod_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)998 static int vc7_iod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
999 {
1000 struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
1001 struct vc7_driver_data *vc7 = iod->vc7;
1002 unsigned long iod_rate;
1003
1004 pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
1005 __func__, clk_hw_get_name(hw), rate, parent_rate);
1006
1007 if (rate < VC7_IOD_RATE_MIN || rate > VC7_IOD_RATE_MAX) {
1008 dev_err(&vc7->client->dev,
1009 "requested frequency %lu Hz for %s is out of range\n",
1010 rate, clk_hw_get_name(hw));
1011 return -EINVAL;
1012 }
1013
1014 vc7_write_iod(vc7, iod->num);
1015
1016 iod_rate = div64_u64(parent_rate, iod->iod_int);
1017
1018 pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
1019 pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
1020
1021 return 0;
1022 }
1023
1024 static const struct clk_ops vc7_iod_ops = {
1025 .recalc_rate = vc7_iod_recalc_rate,
1026 .round_rate = vc7_iod_round_rate,
1027 .set_rate = vc7_iod_set_rate,
1028 };
1029
vc7_clk_out_prepare(struct clk_hw * hw)1030 static int vc7_clk_out_prepare(struct clk_hw *hw)
1031 {
1032 struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1033 struct vc7_driver_data *vc7 = out->vc7;
1034 int err;
1035
1036 out->out_dis = 0;
1037
1038 err = vc7_write_output(vc7, out->num);
1039 if (err) {
1040 dev_err(&vc7->client->dev, "error writing registers for %s\n",
1041 clk_hw_get_name(hw));
1042 return err;
1043 }
1044
1045 pr_debug("%s - %s: clk prepared\n", __func__, clk_hw_get_name(hw));
1046
1047 return 0;
1048 }
1049
vc7_clk_out_unprepare(struct clk_hw * hw)1050 static void vc7_clk_out_unprepare(struct clk_hw *hw)
1051 {
1052 struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1053 struct vc7_driver_data *vc7 = out->vc7;
1054 int err;
1055
1056 out->out_dis = 1;
1057
1058 err = vc7_write_output(vc7, out->num);
1059 if (err) {
1060 dev_err(&vc7->client->dev, "error writing registers for %s\n",
1061 clk_hw_get_name(hw));
1062 return;
1063 }
1064
1065 pr_debug("%s - %s: clk unprepared\n", __func__, clk_hw_get_name(hw));
1066 }
1067
vc7_clk_out_is_enabled(struct clk_hw * hw)1068 static int vc7_clk_out_is_enabled(struct clk_hw *hw)
1069 {
1070 struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1071 struct vc7_driver_data *vc7 = out->vc7;
1072 int err, is_enabled;
1073
1074 err = vc7_read_output(vc7, out->num);
1075 if (err) {
1076 dev_err(&vc7->client->dev, "error reading registers for %s\n",
1077 clk_hw_get_name(hw));
1078 return err;
1079 }
1080
1081 is_enabled = !out->out_dis;
1082
1083 pr_debug("%s - %s: is_enabled=%d\n", __func__, clk_hw_get_name(hw), is_enabled);
1084
1085 return is_enabled;
1086 }
1087
1088 static const struct clk_ops vc7_clk_out_ops = {
1089 .prepare = vc7_clk_out_prepare,
1090 .unprepare = vc7_clk_out_unprepare,
1091 .is_enabled = vc7_clk_out_is_enabled,
1092 };
1093
vc7_probe(struct i2c_client * client)1094 static int vc7_probe(struct i2c_client *client)
1095 {
1096 struct vc7_driver_data *vc7;
1097 struct clk_init_data clk_init;
1098 struct vc7_bank_src_map bank_src_map;
1099 const char *node_name, *apll_name;
1100 const char *parent_names[1];
1101 unsigned int i, val, bank_idx, out_num;
1102 unsigned long apll_rate;
1103 int ret;
1104
1105 vc7 = devm_kzalloc(&client->dev, sizeof(*vc7), GFP_KERNEL);
1106 if (!vc7)
1107 return -ENOMEM;
1108
1109 i2c_set_clientdata(client, vc7);
1110 vc7->client = client;
1111 vc7->chip_info = i2c_get_match_data(client);
1112
1113 vc7->pin_xin = devm_clk_get(&client->dev, "xin");
1114 if (PTR_ERR(vc7->pin_xin) == -EPROBE_DEFER) {
1115 return dev_err_probe(&client->dev, -EPROBE_DEFER,
1116 "xin not specified\n");
1117 }
1118
1119 vc7->regmap = devm_regmap_init_i2c(client, &vc7_regmap_config);
1120 if (IS_ERR(vc7->regmap)) {
1121 return dev_err_probe(&client->dev, PTR_ERR(vc7->regmap),
1122 "failed to allocate register map\n");
1123 }
1124
1125 if (of_property_read_string(client->dev.of_node, "clock-output-names",
1126 &node_name))
1127 node_name = client->dev.of_node->name;
1128
1129 /* Register APLL */
1130 apll_rate = vc7_get_apll_rate(vc7);
1131 apll_name = kasprintf(GFP_KERNEL, "%s_apll", node_name);
1132 vc7->clk_apll.clk = clk_register_fixed_rate(&client->dev, apll_name,
1133 __clk_get_name(vc7->pin_xin),
1134 0, apll_rate);
1135 kfree(apll_name); /* ccf made a copy of the name */
1136 if (IS_ERR(vc7->clk_apll.clk)) {
1137 return dev_err_probe(&client->dev, PTR_ERR(vc7->clk_apll.clk),
1138 "failed to register apll\n");
1139 }
1140
1141 /* Register FODs */
1142 for (i = 0; i < VC7_NUM_FOD; i++) {
1143 memset(&clk_init, 0, sizeof(clk_init));
1144 clk_init.name = kasprintf(GFP_KERNEL, "%s_fod%d", node_name, i);
1145 clk_init.ops = &vc7_fod_ops;
1146 clk_init.parent_names = parent_names;
1147 parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1148 clk_init.num_parents = 1;
1149 vc7->clk_fod[i].num = i;
1150 vc7->clk_fod[i].vc7 = vc7;
1151 vc7->clk_fod[i].hw.init = &clk_init;
1152 ret = devm_clk_hw_register(&client->dev, &vc7->clk_fod[i].hw);
1153 if (ret)
1154 goto err_clk_register;
1155 kfree(clk_init.name); /* ccf made a copy of the name */
1156 }
1157
1158 /* Register IODs */
1159 for (i = 0; i < VC7_NUM_IOD; i++) {
1160 memset(&clk_init, 0, sizeof(clk_init));
1161 clk_init.name = kasprintf(GFP_KERNEL, "%s_iod%d", node_name, i);
1162 clk_init.ops = &vc7_iod_ops;
1163 clk_init.parent_names = parent_names;
1164 parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1165 clk_init.num_parents = 1;
1166 vc7->clk_iod[i].num = i;
1167 vc7->clk_iod[i].vc7 = vc7;
1168 vc7->clk_iod[i].hw.init = &clk_init;
1169 ret = devm_clk_hw_register(&client->dev, &vc7->clk_iod[i].hw);
1170 if (ret)
1171 goto err_clk_register;
1172 kfree(clk_init.name); /* ccf made a copy of the name */
1173 }
1174
1175 /* Register outputs */
1176 for (i = 0; i < vc7->chip_info->num_outputs; i++) {
1177 out_num = vc7_map_index_to_output(vc7->chip_info->model, i);
1178
1179 /*
1180 * This driver does not support remapping FOD/IOD to banks.
1181 * The device state is read and the driver is setup to match
1182 * the device's existing mapping.
1183 */
1184 bank_idx = output_bank_mapping[out_num];
1185
1186 regmap_read(vc7->regmap, VC7_REG_OUT_BANK_CNFG(bank_idx), &val);
1187 val &= VC7_REG_OUTPUT_BANK_SRC_MASK;
1188
1189 memset(&bank_src_map, 0, sizeof(bank_src_map));
1190 ret = vc7_get_bank_clk(vc7, bank_idx, val, &bank_src_map);
1191 if (ret) {
1192 dev_err_probe(&client->dev, ret,
1193 "unable to register output %d\n", i);
1194 return ret;
1195 }
1196
1197 switch (bank_src_map.type) {
1198 case VC7_FOD:
1199 parent_names[0] = clk_hw_get_name(&bank_src_map.src.fod->hw);
1200 break;
1201 case VC7_IOD:
1202 parent_names[0] = clk_hw_get_name(&bank_src_map.src.iod->hw);
1203 break;
1204 }
1205
1206 memset(&clk_init, 0, sizeof(clk_init));
1207 clk_init.name = kasprintf(GFP_KERNEL, "%s_out%d", node_name, i);
1208 clk_init.ops = &vc7_clk_out_ops;
1209 clk_init.flags = CLK_SET_RATE_PARENT;
1210 clk_init.parent_names = parent_names;
1211 clk_init.num_parents = 1;
1212 vc7->clk_out[i].num = i;
1213 vc7->clk_out[i].vc7 = vc7;
1214 vc7->clk_out[i].hw.init = &clk_init;
1215 ret = devm_clk_hw_register(&client->dev, &vc7->clk_out[i].hw);
1216 if (ret)
1217 goto err_clk_register;
1218 kfree(clk_init.name); /* ccf made a copy of the name */
1219 }
1220
1221 ret = of_clk_add_hw_provider(client->dev.of_node, vc7_of_clk_get, vc7);
1222 if (ret) {
1223 dev_err_probe(&client->dev, ret, "unable to add clk provider\n");
1224 goto err_clk;
1225 }
1226
1227 return ret;
1228
1229 err_clk_register:
1230 dev_err_probe(&client->dev, ret,
1231 "unable to register %s\n", clk_init.name);
1232 kfree(clk_init.name); /* ccf made a copy of the name */
1233 err_clk:
1234 clk_unregister_fixed_rate(vc7->clk_apll.clk);
1235 return ret;
1236 }
1237
vc7_remove(struct i2c_client * client)1238 static void vc7_remove(struct i2c_client *client)
1239 {
1240 struct vc7_driver_data *vc7 = i2c_get_clientdata(client);
1241
1242 of_clk_del_provider(client->dev.of_node);
1243 clk_unregister_fixed_rate(vc7->clk_apll.clk);
1244 }
1245
vc7_volatile_reg(struct device * dev,unsigned int reg)1246 static bool vc7_volatile_reg(struct device *dev, unsigned int reg)
1247 {
1248 if (reg == VC7_PAGE_ADDR)
1249 return false;
1250
1251 return true;
1252 }
1253
1254 static const struct vc7_chip_info vc7_rc21008a_info = {
1255 .model = VC7_RC21008A,
1256 .num_banks = 6,
1257 .num_outputs = 8,
1258 };
1259
1260 static struct regmap_range_cfg vc7_range_cfg[] = {
1261 {
1262 .range_min = 0,
1263 .range_max = VC7_MAX_REG,
1264 .selector_reg = VC7_PAGE_ADDR,
1265 .selector_mask = 0xFF,
1266 .selector_shift = 0,
1267 .window_start = 0,
1268 .window_len = VC7_PAGE_WINDOW,
1269 }};
1270
1271 static const struct regmap_config vc7_regmap_config = {
1272 .reg_bits = 8,
1273 .val_bits = 8,
1274 .max_register = VC7_MAX_REG,
1275 .ranges = vc7_range_cfg,
1276 .num_ranges = ARRAY_SIZE(vc7_range_cfg),
1277 .volatile_reg = vc7_volatile_reg,
1278 .cache_type = REGCACHE_RBTREE,
1279 .can_multi_write = true,
1280 .reg_format_endian = REGMAP_ENDIAN_LITTLE,
1281 .val_format_endian = REGMAP_ENDIAN_LITTLE,
1282 };
1283
1284 static const struct i2c_device_id vc7_i2c_id[] = {
1285 { "rc21008a", .driver_data = (kernel_ulong_t)&vc7_rc21008a_info },
1286 {}
1287 };
1288 MODULE_DEVICE_TABLE(i2c, vc7_i2c_id);
1289
1290 static const struct of_device_id vc7_of_match[] = {
1291 { .compatible = "renesas,rc21008a", .data = &vc7_rc21008a_info },
1292 {}
1293 };
1294 MODULE_DEVICE_TABLE(of, vc7_of_match);
1295
1296 static struct i2c_driver vc7_i2c_driver = {
1297 .driver = {
1298 .name = "vc7",
1299 .of_match_table = vc7_of_match,
1300 },
1301 .probe = vc7_probe,
1302 .remove = vc7_remove,
1303 .id_table = vc7_i2c_id,
1304 };
1305 module_i2c_driver(vc7_i2c_driver);
1306
1307 MODULE_LICENSE("GPL");
1308 MODULE_AUTHOR("Alex Helms <alexander.helms.jy@renesas.com");
1309 MODULE_DESCRIPTION("Renesas Versaclock7 common clock framework driver");
1310