xref: /openbmc/linux/drivers/clk/clk-versaclock5.c (revision 94047df1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for IDT Versaclock 5
4  *
5  * Copyright (C) 2017 Marek Vasut <marek.vasut@gmail.com>
6  */
7 
8 /*
9  * Possible optimizations:
10  * - Use spread spectrum
11  * - Use integer divider in FOD if applicable
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/i2c.h>
18 #include <linux/interrupt.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_platform.h>
23 #include <linux/rational.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26 
27 #include <dt-bindings/clk/versaclock.h>
28 
29 /* VersaClock5 registers */
30 #define VC5_OTP_CONTROL				0x00
31 
32 /* Factory-reserved register block */
33 #define VC5_RSVD_DEVICE_ID			0x01
34 #define VC5_RSVD_ADC_GAIN_7_0			0x02
35 #define VC5_RSVD_ADC_GAIN_15_8			0x03
36 #define VC5_RSVD_ADC_OFFSET_7_0			0x04
37 #define VC5_RSVD_ADC_OFFSET_15_8		0x05
38 #define VC5_RSVD_TEMPY				0x06
39 #define VC5_RSVD_OFFSET_TBIN			0x07
40 #define VC5_RSVD_GAIN				0x08
41 #define VC5_RSVD_TEST_NP			0x09
42 #define VC5_RSVD_UNUSED				0x0a
43 #define VC5_RSVD_BANDGAP_TRIM_UP		0x0b
44 #define VC5_RSVD_BANDGAP_TRIM_DN		0x0c
45 #define VC5_RSVD_CLK_R_12_CLK_AMP_4		0x0d
46 #define VC5_RSVD_CLK_R_34_CLK_AMP_4		0x0e
47 #define VC5_RSVD_CLK_AMP_123			0x0f
48 
49 /* Configuration register block */
50 #define VC5_PRIM_SRC_SHDN			0x10
51 #define VC5_PRIM_SRC_SHDN_EN_XTAL		BIT(7)
52 #define VC5_PRIM_SRC_SHDN_EN_CLKIN		BIT(6)
53 #define VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ	BIT(3)
54 #define VC5_PRIM_SRC_SHDN_SP			BIT(1)
55 #define VC5_PRIM_SRC_SHDN_EN_GBL_SHDN		BIT(0)
56 
57 #define VC5_VCO_BAND				0x11
58 #define VC5_XTAL_X1_LOAD_CAP			0x12
59 #define VC5_XTAL_X2_LOAD_CAP			0x13
60 #define VC5_REF_DIVIDER				0x15
61 #define VC5_REF_DIVIDER_SEL_PREDIV2		BIT(7)
62 #define VC5_REF_DIVIDER_REF_DIV(n)		((n) & 0x3f)
63 
64 #define VC5_VCO_CTRL_AND_PREDIV			0x16
65 #define VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV	BIT(7)
66 
67 #define VC5_FEEDBACK_INT_DIV			0x17
68 #define VC5_FEEDBACK_INT_DIV_BITS		0x18
69 #define VC5_FEEDBACK_FRAC_DIV(n)		(0x19 + (n))
70 #define VC5_RC_CONTROL0				0x1e
71 #define VC5_RC_CONTROL1				0x1f
72 
73 /* These registers are named "Unused Factory Reserved Registers" */
74 #define VC5_RESERVED_X0(idx)		(0x20 + ((idx) * 0x10))
75 #define VC5_RESERVED_X0_BYPASS_SYNC	BIT(7) /* bypass_sync<idx> bit */
76 
77 /* Output divider control for divider 1,2,3,4 */
78 #define VC5_OUT_DIV_CONTROL(idx)	(0x21 + ((idx) * 0x10))
79 #define VC5_OUT_DIV_CONTROL_RESET	BIT(7)
80 #define VC5_OUT_DIV_CONTROL_SELB_NORM	BIT(3)
81 #define VC5_OUT_DIV_CONTROL_SEL_EXT	BIT(2)
82 #define VC5_OUT_DIV_CONTROL_INT_MODE	BIT(1)
83 #define VC5_OUT_DIV_CONTROL_EN_FOD	BIT(0)
84 
85 #define VC5_OUT_DIV_FRAC(idx, n)	(0x22 + ((idx) * 0x10) + (n))
86 #define VC5_OUT_DIV_FRAC4_OD_SCEE	BIT(1)
87 
88 #define VC5_OUT_DIV_STEP_SPREAD(idx, n)	(0x26 + ((idx) * 0x10) + (n))
89 #define VC5_OUT_DIV_SPREAD_MOD(idx, n)	(0x29 + ((idx) * 0x10) + (n))
90 #define VC5_OUT_DIV_SKEW_INT(idx, n)	(0x2b + ((idx) * 0x10) + (n))
91 #define VC5_OUT_DIV_INT(idx, n)		(0x2d + ((idx) * 0x10) + (n))
92 #define VC5_OUT_DIV_SKEW_FRAC(idx)	(0x2f + ((idx) * 0x10))
93 
94 /* Clock control register for clock 1,2 */
95 #define VC5_CLK_OUTPUT_CFG(idx, n)	(0x60 + ((idx) * 0x2) + (n))
96 #define VC5_CLK_OUTPUT_CFG0_CFG_SHIFT	5
97 #define VC5_CLK_OUTPUT_CFG0_CFG_MASK GENMASK(7, VC5_CLK_OUTPUT_CFG0_CFG_SHIFT)
98 
99 #define VC5_CLK_OUTPUT_CFG0_CFG_LVPECL	(VC5_LVPECL)
100 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS		(VC5_CMOS)
101 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL33	(VC5_HCSL33)
102 #define VC5_CLK_OUTPUT_CFG0_CFG_LVDS		(VC5_LVDS)
103 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS2		(VC5_CMOS2)
104 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOSD		(VC5_CMOSD)
105 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL25	(VC5_HCSL25)
106 
107 #define VC5_CLK_OUTPUT_CFG0_PWR_SHIFT	3
108 #define VC5_CLK_OUTPUT_CFG0_PWR_MASK GENMASK(4, VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
109 #define VC5_CLK_OUTPUT_CFG0_PWR_18	(0<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
110 #define VC5_CLK_OUTPUT_CFG0_PWR_25	(2<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
111 #define VC5_CLK_OUTPUT_CFG0_PWR_33	(3<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
112 #define VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT	0
113 #define VC5_CLK_OUTPUT_CFG0_SLEW_MASK GENMASK(1, VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
114 #define VC5_CLK_OUTPUT_CFG0_SLEW_80	(0<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
115 #define VC5_CLK_OUTPUT_CFG0_SLEW_85	(1<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
116 #define VC5_CLK_OUTPUT_CFG0_SLEW_90	(2<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
117 #define VC5_CLK_OUTPUT_CFG0_SLEW_100	(3<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
118 #define VC5_CLK_OUTPUT_CFG1_EN_CLKBUF	BIT(0)
119 
120 #define VC5_CLK_OE_SHDN				0x68
121 #define VC5_CLK_OS_SHDN				0x69
122 
123 #define VC5_GLOBAL_REGISTER			0x76
124 #define VC5_GLOBAL_REGISTER_GLOBAL_RESET	BIT(5)
125 
126 /* PLL/VCO runs between 2.5 GHz and 3.0 GHz */
127 #define VC5_PLL_VCO_MIN				2500000000UL
128 #define VC5_PLL_VCO_MAX				3000000000UL
129 
130 /* VC5 Input mux settings */
131 #define VC5_MUX_IN_XIN		BIT(0)
132 #define VC5_MUX_IN_CLKIN	BIT(1)
133 
134 /* Maximum number of clk_out supported by this driver */
135 #define VC5_MAX_CLK_OUT_NUM	5
136 
137 /* Maximum number of FODs supported by this driver */
138 #define VC5_MAX_FOD_NUM	4
139 
140 /* flags to describe chip features */
141 /* chip has built-in oscilator */
142 #define VC5_HAS_INTERNAL_XTAL	BIT(0)
143 /* chip has PFD requency doubler */
144 #define VC5_HAS_PFD_FREQ_DBL	BIT(1)
145 /* chip has bits to disable FOD sync */
146 #define VC5_HAS_BYPASS_SYNC_BIT	BIT(2)
147 
148 /* Supported IDT VC5 models. */
149 enum vc5_model {
150 	IDT_VC5_5P49V5923,
151 	IDT_VC5_5P49V5925,
152 	IDT_VC5_5P49V5933,
153 	IDT_VC5_5P49V5935,
154 	IDT_VC6_5P49V6901,
155 	IDT_VC6_5P49V6965,
156 };
157 
158 /* Structure to describe features of a particular VC5 model */
159 struct vc5_chip_info {
160 	const enum vc5_model	model;
161 	const unsigned int	clk_fod_cnt;
162 	const unsigned int	clk_out_cnt;
163 	const u32		flags;
164 };
165 
166 struct vc5_driver_data;
167 
168 struct vc5_hw_data {
169 	struct clk_hw		hw;
170 	struct vc5_driver_data	*vc5;
171 	u32			div_int;
172 	u32			div_frc;
173 	unsigned int		num;
174 };
175 
176 struct vc5_out_data {
177 	struct clk_hw		hw;
178 	struct vc5_driver_data	*vc5;
179 	unsigned int		num;
180 	unsigned int		clk_output_cfg0;
181 	unsigned int		clk_output_cfg0_mask;
182 };
183 
184 struct vc5_driver_data {
185 	struct i2c_client	*client;
186 	struct regmap		*regmap;
187 	const struct vc5_chip_info	*chip_info;
188 
189 	struct clk		*pin_xin;
190 	struct clk		*pin_clkin;
191 	unsigned char		clk_mux_ins;
192 	struct clk_hw		clk_mux;
193 	struct clk_hw		clk_mul;
194 	struct clk_hw		clk_pfd;
195 	struct vc5_hw_data	clk_pll;
196 	struct vc5_hw_data	clk_fod[VC5_MAX_FOD_NUM];
197 	struct vc5_out_data	clk_out[VC5_MAX_CLK_OUT_NUM];
198 };
199 
200 /*
201  * VersaClock5 i2c regmap
202  */
203 static bool vc5_regmap_is_writeable(struct device *dev, unsigned int reg)
204 {
205 	/* Factory reserved regs, make them read-only */
206 	if (reg <= 0xf)
207 		return false;
208 
209 	/* Factory reserved regs, make them read-only */
210 	if (reg == 0x14 || reg == 0x1c || reg == 0x1d)
211 		return false;
212 
213 	return true;
214 }
215 
216 static const struct regmap_config vc5_regmap_config = {
217 	.reg_bits = 8,
218 	.val_bits = 8,
219 	.cache_type = REGCACHE_RBTREE,
220 	.max_register = 0x76,
221 	.writeable_reg = vc5_regmap_is_writeable,
222 };
223 
224 /*
225  * VersaClock5 input multiplexer between XTAL and CLKIN divider
226  */
227 static unsigned char vc5_mux_get_parent(struct clk_hw *hw)
228 {
229 	struct vc5_driver_data *vc5 =
230 		container_of(hw, struct vc5_driver_data, clk_mux);
231 	const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
232 	unsigned int src;
233 
234 	regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &src);
235 	src &= mask;
236 
237 	if (src == VC5_PRIM_SRC_SHDN_EN_XTAL)
238 		return 0;
239 
240 	if (src == VC5_PRIM_SRC_SHDN_EN_CLKIN)
241 		return 1;
242 
243 	dev_warn(&vc5->client->dev,
244 		 "Invalid clock input configuration (%02x)\n", src);
245 	return 0;
246 }
247 
248 static int vc5_mux_set_parent(struct clk_hw *hw, u8 index)
249 {
250 	struct vc5_driver_data *vc5 =
251 		container_of(hw, struct vc5_driver_data, clk_mux);
252 	const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
253 	u8 src;
254 
255 	if ((index > 1) || !vc5->clk_mux_ins)
256 		return -EINVAL;
257 
258 	if (vc5->clk_mux_ins == (VC5_MUX_IN_CLKIN | VC5_MUX_IN_XIN)) {
259 		if (index == 0)
260 			src = VC5_PRIM_SRC_SHDN_EN_XTAL;
261 		if (index == 1)
262 			src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
263 	} else {
264 		if (index != 0)
265 			return -EINVAL;
266 
267 		if (vc5->clk_mux_ins == VC5_MUX_IN_XIN)
268 			src = VC5_PRIM_SRC_SHDN_EN_XTAL;
269 		else if (vc5->clk_mux_ins == VC5_MUX_IN_CLKIN)
270 			src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
271 		else /* Invalid; should have been caught by vc5_probe() */
272 			return -EINVAL;
273 	}
274 
275 	return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, mask, src);
276 }
277 
278 static const struct clk_ops vc5_mux_ops = {
279 	.set_parent	= vc5_mux_set_parent,
280 	.get_parent	= vc5_mux_get_parent,
281 };
282 
283 static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw,
284 					 unsigned long parent_rate)
285 {
286 	struct vc5_driver_data *vc5 =
287 		container_of(hw, struct vc5_driver_data, clk_mul);
288 	unsigned int premul;
289 
290 	regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul);
291 	if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ)
292 		parent_rate *= 2;
293 
294 	return parent_rate;
295 }
296 
297 static long vc5_dbl_round_rate(struct clk_hw *hw, unsigned long rate,
298 			       unsigned long *parent_rate)
299 {
300 	if ((*parent_rate == rate) || ((*parent_rate * 2) == rate))
301 		return rate;
302 	else
303 		return -EINVAL;
304 }
305 
306 static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate,
307 			    unsigned long parent_rate)
308 {
309 	struct vc5_driver_data *vc5 =
310 		container_of(hw, struct vc5_driver_data, clk_mul);
311 	u32 mask;
312 
313 	if ((parent_rate * 2) == rate)
314 		mask = VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ;
315 	else
316 		mask = 0;
317 
318 	regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN,
319 			   VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ,
320 			   mask);
321 
322 	return 0;
323 }
324 
325 static const struct clk_ops vc5_dbl_ops = {
326 	.recalc_rate	= vc5_dbl_recalc_rate,
327 	.round_rate	= vc5_dbl_round_rate,
328 	.set_rate	= vc5_dbl_set_rate,
329 };
330 
331 static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw,
332 					 unsigned long parent_rate)
333 {
334 	struct vc5_driver_data *vc5 =
335 		container_of(hw, struct vc5_driver_data, clk_pfd);
336 	unsigned int prediv, div;
337 
338 	regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv);
339 
340 	/* The bypass_prediv is set, PLL fed from Ref_in directly. */
341 	if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV)
342 		return parent_rate;
343 
344 	regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div);
345 
346 	/* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */
347 	if (div & VC5_REF_DIVIDER_SEL_PREDIV2)
348 		return parent_rate / 2;
349 	else
350 		return parent_rate / VC5_REF_DIVIDER_REF_DIV(div);
351 }
352 
353 static long vc5_pfd_round_rate(struct clk_hw *hw, unsigned long rate,
354 			       unsigned long *parent_rate)
355 {
356 	unsigned long idiv;
357 
358 	/* PLL cannot operate with input clock above 50 MHz. */
359 	if (rate > 50000000)
360 		return -EINVAL;
361 
362 	/* CLKIN within range of PLL input, feed directly to PLL. */
363 	if (*parent_rate <= 50000000)
364 		return *parent_rate;
365 
366 	idiv = DIV_ROUND_UP(*parent_rate, rate);
367 	if (idiv > 127)
368 		return -EINVAL;
369 
370 	return *parent_rate / idiv;
371 }
372 
373 static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate,
374 			    unsigned long parent_rate)
375 {
376 	struct vc5_driver_data *vc5 =
377 		container_of(hw, struct vc5_driver_data, clk_pfd);
378 	unsigned long idiv;
379 	u8 div;
380 
381 	/* CLKIN within range of PLL input, feed directly to PLL. */
382 	if (parent_rate <= 50000000) {
383 		regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
384 				   VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV,
385 				   VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
386 		regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00);
387 		return 0;
388 	}
389 
390 	idiv = DIV_ROUND_UP(parent_rate, rate);
391 
392 	/* We have dedicated div-2 predivider. */
393 	if (idiv == 2)
394 		div = VC5_REF_DIVIDER_SEL_PREDIV2;
395 	else
396 		div = VC5_REF_DIVIDER_REF_DIV(idiv);
397 
398 	regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div);
399 	regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
400 			   VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV, 0);
401 
402 	return 0;
403 }
404 
405 static const struct clk_ops vc5_pfd_ops = {
406 	.recalc_rate	= vc5_pfd_recalc_rate,
407 	.round_rate	= vc5_pfd_round_rate,
408 	.set_rate	= vc5_pfd_set_rate,
409 };
410 
411 /*
412  * VersaClock5 PLL/VCO
413  */
414 static unsigned long vc5_pll_recalc_rate(struct clk_hw *hw,
415 					 unsigned long parent_rate)
416 {
417 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
418 	struct vc5_driver_data *vc5 = hwdata->vc5;
419 	u32 div_int, div_frc;
420 	u8 fb[5];
421 
422 	regmap_bulk_read(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
423 
424 	div_int = (fb[0] << 4) | (fb[1] >> 4);
425 	div_frc = (fb[2] << 16) | (fb[3] << 8) | fb[4];
426 
427 	/* The PLL divider has 12 integer bits and 24 fractional bits */
428 	return (parent_rate * div_int) + ((parent_rate * div_frc) >> 24);
429 }
430 
431 static long vc5_pll_round_rate(struct clk_hw *hw, unsigned long rate,
432 			       unsigned long *parent_rate)
433 {
434 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
435 	u32 div_int;
436 	u64 div_frc;
437 
438 	if (rate < VC5_PLL_VCO_MIN)
439 		rate = VC5_PLL_VCO_MIN;
440 	if (rate > VC5_PLL_VCO_MAX)
441 		rate = VC5_PLL_VCO_MAX;
442 
443 	/* Determine integer part, which is 12 bit wide */
444 	div_int = rate / *parent_rate;
445 	if (div_int > 0xfff)
446 		rate = *parent_rate * 0xfff;
447 
448 	/* Determine best fractional part, which is 24 bit wide */
449 	div_frc = rate % *parent_rate;
450 	div_frc *= BIT(24) - 1;
451 	do_div(div_frc, *parent_rate);
452 
453 	hwdata->div_int = div_int;
454 	hwdata->div_frc = (u32)div_frc;
455 
456 	return (*parent_rate * div_int) + ((*parent_rate * div_frc) >> 24);
457 }
458 
459 static int vc5_pll_set_rate(struct clk_hw *hw, unsigned long rate,
460 			    unsigned long parent_rate)
461 {
462 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
463 	struct vc5_driver_data *vc5 = hwdata->vc5;
464 	u8 fb[5];
465 
466 	fb[0] = hwdata->div_int >> 4;
467 	fb[1] = hwdata->div_int << 4;
468 	fb[2] = hwdata->div_frc >> 16;
469 	fb[3] = hwdata->div_frc >> 8;
470 	fb[4] = hwdata->div_frc;
471 
472 	return regmap_bulk_write(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
473 }
474 
475 static const struct clk_ops vc5_pll_ops = {
476 	.recalc_rate	= vc5_pll_recalc_rate,
477 	.round_rate	= vc5_pll_round_rate,
478 	.set_rate	= vc5_pll_set_rate,
479 };
480 
481 static unsigned long vc5_fod_recalc_rate(struct clk_hw *hw,
482 					 unsigned long parent_rate)
483 {
484 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
485 	struct vc5_driver_data *vc5 = hwdata->vc5;
486 	/* VCO frequency is divided by two before entering FOD */
487 	u32 f_in = parent_rate / 2;
488 	u32 div_int, div_frc;
489 	u8 od_int[2];
490 	u8 od_frc[4];
491 
492 	regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_INT(hwdata->num, 0),
493 			 od_int, 2);
494 	regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
495 			 od_frc, 4);
496 
497 	div_int = (od_int[0] << 4) | (od_int[1] >> 4);
498 	div_frc = (od_frc[0] << 22) | (od_frc[1] << 14) |
499 		  (od_frc[2] << 6) | (od_frc[3] >> 2);
500 
501 	/* Avoid division by zero if the output is not configured. */
502 	if (div_int == 0 && div_frc == 0)
503 		return 0;
504 
505 	/* The PLL divider has 12 integer bits and 30 fractional bits */
506 	return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
507 }
508 
509 static long vc5_fod_round_rate(struct clk_hw *hw, unsigned long rate,
510 			       unsigned long *parent_rate)
511 {
512 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
513 	/* VCO frequency is divided by two before entering FOD */
514 	u32 f_in = *parent_rate / 2;
515 	u32 div_int;
516 	u64 div_frc;
517 
518 	/* Determine integer part, which is 12 bit wide */
519 	div_int = f_in / rate;
520 	/*
521 	 * WARNING: The clock chip does not output signal if the integer part
522 	 *          of the divider is 0xfff and fractional part is non-zero.
523 	 *          Clamp the divider at 0xffe to keep the code simple.
524 	 */
525 	if (div_int > 0xffe) {
526 		div_int = 0xffe;
527 		rate = f_in / div_int;
528 	}
529 
530 	/* Determine best fractional part, which is 30 bit wide */
531 	div_frc = f_in % rate;
532 	div_frc <<= 24;
533 	do_div(div_frc, rate);
534 
535 	hwdata->div_int = div_int;
536 	hwdata->div_frc = (u32)div_frc;
537 
538 	return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
539 }
540 
541 static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate,
542 			    unsigned long parent_rate)
543 {
544 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
545 	struct vc5_driver_data *vc5 = hwdata->vc5;
546 	u8 data[14] = {
547 		hwdata->div_frc >> 22, hwdata->div_frc >> 14,
548 		hwdata->div_frc >> 6, hwdata->div_frc << 2,
549 		0, 0, 0, 0, 0,
550 		0, 0,
551 		hwdata->div_int >> 4, hwdata->div_int << 4,
552 		0
553 	};
554 
555 	regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
556 			  data, 14);
557 
558 	/*
559 	 * Toggle magic bit in undocumented register for unknown reason.
560 	 * This is what the IDT timing commander tool does and the chip
561 	 * datasheet somewhat implies this is needed, but the register
562 	 * and the bit is not documented.
563 	 */
564 	regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
565 			   VC5_GLOBAL_REGISTER_GLOBAL_RESET, 0);
566 	regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
567 			   VC5_GLOBAL_REGISTER_GLOBAL_RESET,
568 			   VC5_GLOBAL_REGISTER_GLOBAL_RESET);
569 	return 0;
570 }
571 
572 static const struct clk_ops vc5_fod_ops = {
573 	.recalc_rate	= vc5_fod_recalc_rate,
574 	.round_rate	= vc5_fod_round_rate,
575 	.set_rate	= vc5_fod_set_rate,
576 };
577 
578 static int vc5_clk_out_prepare(struct clk_hw *hw)
579 {
580 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
581 	struct vc5_driver_data *vc5 = hwdata->vc5;
582 	const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
583 			VC5_OUT_DIV_CONTROL_SEL_EXT |
584 			VC5_OUT_DIV_CONTROL_EN_FOD;
585 	unsigned int src;
586 	int ret;
587 
588 	/*
589 	 * When enabling a FOD, all currently enabled FODs are briefly
590 	 * stopped in order to synchronize all of them. This causes a clock
591 	 * disruption to any unrelated chips that might be already using
592 	 * other clock outputs. Bypass the sync feature to avoid the issue,
593 	 * which is possible on the VersaClock 6E family via reserved
594 	 * registers.
595 	 */
596 	if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) {
597 		ret = regmap_update_bits(vc5->regmap,
598 					 VC5_RESERVED_X0(hwdata->num),
599 					 VC5_RESERVED_X0_BYPASS_SYNC,
600 					 VC5_RESERVED_X0_BYPASS_SYNC);
601 		if (ret)
602 			return ret;
603 	}
604 
605 	/*
606 	 * If the input mux is disabled, enable it first and
607 	 * select source from matching FOD.
608 	 */
609 	regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
610 	if ((src & mask) == 0) {
611 		src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD;
612 		ret = regmap_update_bits(vc5->regmap,
613 					 VC5_OUT_DIV_CONTROL(hwdata->num),
614 					 mask | VC5_OUT_DIV_CONTROL_RESET, src);
615 		if (ret)
616 			return ret;
617 	}
618 
619 	/* Enable the clock buffer */
620 	regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
621 			   VC5_CLK_OUTPUT_CFG1_EN_CLKBUF,
622 			   VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
623 	if (hwdata->clk_output_cfg0_mask) {
624 		dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n",
625 			hwdata->num, hwdata->clk_output_cfg0_mask,
626 			hwdata->clk_output_cfg0);
627 
628 		regmap_update_bits(vc5->regmap,
629 			VC5_CLK_OUTPUT_CFG(hwdata->num, 0),
630 			hwdata->clk_output_cfg0_mask,
631 			hwdata->clk_output_cfg0);
632 	}
633 
634 	return 0;
635 }
636 
637 static void vc5_clk_out_unprepare(struct clk_hw *hw)
638 {
639 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
640 	struct vc5_driver_data *vc5 = hwdata->vc5;
641 
642 	/* Disable the clock buffer */
643 	regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
644 			   VC5_CLK_OUTPUT_CFG1_EN_CLKBUF, 0);
645 }
646 
647 static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw)
648 {
649 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
650 	struct vc5_driver_data *vc5 = hwdata->vc5;
651 	const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
652 			VC5_OUT_DIV_CONTROL_SEL_EXT |
653 			VC5_OUT_DIV_CONTROL_EN_FOD;
654 	const u8 fodclkmask = VC5_OUT_DIV_CONTROL_SELB_NORM |
655 			      VC5_OUT_DIV_CONTROL_EN_FOD;
656 	const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
657 			  VC5_OUT_DIV_CONTROL_SEL_EXT;
658 	unsigned int src;
659 
660 	regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
661 	src &= mask;
662 
663 	if (src == 0)	/* Input mux set to DISABLED */
664 		return 0;
665 
666 	if ((src & fodclkmask) == VC5_OUT_DIV_CONTROL_EN_FOD)
667 		return 0;
668 
669 	if (src == extclk)
670 		return 1;
671 
672 	dev_warn(&vc5->client->dev,
673 		 "Invalid clock output configuration (%02x)\n", src);
674 	return 0;
675 }
676 
677 static int vc5_clk_out_set_parent(struct clk_hw *hw, u8 index)
678 {
679 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
680 	struct vc5_driver_data *vc5 = hwdata->vc5;
681 	const u8 mask = VC5_OUT_DIV_CONTROL_RESET |
682 			VC5_OUT_DIV_CONTROL_SELB_NORM |
683 			VC5_OUT_DIV_CONTROL_SEL_EXT |
684 			VC5_OUT_DIV_CONTROL_EN_FOD;
685 	const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
686 			  VC5_OUT_DIV_CONTROL_SEL_EXT;
687 	u8 src = VC5_OUT_DIV_CONTROL_RESET;
688 
689 	if (index == 0)
690 		src |= VC5_OUT_DIV_CONTROL_EN_FOD;
691 	else
692 		src |= extclk;
693 
694 	return regmap_update_bits(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num),
695 				  mask, src);
696 }
697 
698 static const struct clk_ops vc5_clk_out_ops = {
699 	.prepare	= vc5_clk_out_prepare,
700 	.unprepare	= vc5_clk_out_unprepare,
701 	.set_parent	= vc5_clk_out_set_parent,
702 	.get_parent	= vc5_clk_out_get_parent,
703 };
704 
705 static struct clk_hw *vc5_of_clk_get(struct of_phandle_args *clkspec,
706 				     void *data)
707 {
708 	struct vc5_driver_data *vc5 = data;
709 	unsigned int idx = clkspec->args[0];
710 
711 	if (idx >= vc5->chip_info->clk_out_cnt)
712 		return ERR_PTR(-EINVAL);
713 
714 	return &vc5->clk_out[idx].hw;
715 }
716 
717 static int vc5_map_index_to_output(const enum vc5_model model,
718 				   const unsigned int n)
719 {
720 	switch (model) {
721 	case IDT_VC5_5P49V5933:
722 		return (n == 0) ? 0 : 3;
723 	case IDT_VC5_5P49V5923:
724 	case IDT_VC5_5P49V5925:
725 	case IDT_VC5_5P49V5935:
726 	case IDT_VC6_5P49V6901:
727 	case IDT_VC6_5P49V6965:
728 	default:
729 		return n;
730 	}
731 }
732 
733 static int vc5_update_mode(struct device_node *np_output,
734 			   struct vc5_out_data *clk_out)
735 {
736 	u32 value;
737 
738 	if (!of_property_read_u32(np_output, "idt,mode", &value)) {
739 		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_CFG_MASK;
740 		switch (value) {
741 		case VC5_CLK_OUTPUT_CFG0_CFG_LVPECL:
742 		case VC5_CLK_OUTPUT_CFG0_CFG_CMOS:
743 		case VC5_CLK_OUTPUT_CFG0_CFG_HCSL33:
744 		case VC5_CLK_OUTPUT_CFG0_CFG_LVDS:
745 		case VC5_CLK_OUTPUT_CFG0_CFG_CMOS2:
746 		case VC5_CLK_OUTPUT_CFG0_CFG_CMOSD:
747 		case VC5_CLK_OUTPUT_CFG0_CFG_HCSL25:
748 			clk_out->clk_output_cfg0 |=
749 			    value << VC5_CLK_OUTPUT_CFG0_CFG_SHIFT;
750 			break;
751 		default:
752 			return -EINVAL;
753 		}
754 	}
755 	return 0;
756 }
757 
758 static int vc5_update_power(struct device_node *np_output,
759 			    struct vc5_out_data *clk_out)
760 {
761 	u32 value;
762 
763 	if (!of_property_read_u32(np_output, "idt,voltage-microvolt",
764 				  &value)) {
765 		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_PWR_MASK;
766 		switch (value) {
767 		case 1800000:
768 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_18;
769 			break;
770 		case 2500000:
771 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_25;
772 			break;
773 		case 3300000:
774 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_33;
775 			break;
776 		default:
777 			return -EINVAL;
778 		}
779 	}
780 	return 0;
781 }
782 
783 static int vc5_map_cap_value(u32 femtofarads)
784 {
785 	int mapped_value;
786 
787 	/*
788 	 * The datasheet explicitly states 9000 - 25000 with 0.5pF
789 	 * steps, but the Programmer's guide shows the steps are 0.430pF.
790 	 * After getting feedback from Renesas, the .5pF steps were the
791 	 * goal, but 430nF was the actual values.
792 	 * Because of this, the actual range goes to 22760 instead of 25000
793 	 */
794 	if (femtofarads < 9000 || femtofarads > 22760)
795 		return -EINVAL;
796 
797 	/*
798 	 * The Programmer's guide shows XTAL[5:0] but in reality,
799 	 * XTAL[0] and XTAL[1] are both LSB which makes the math
800 	 * strange.  With clarfication from Renesas, setting the
801 	 * values should be simpler by ignoring XTAL[0]
802 	 */
803 	mapped_value = DIV_ROUND_CLOSEST(femtofarads - 9000, 430);
804 
805 	/*
806 	 * Since the calculation ignores XTAL[0], there is one
807 	 * special case where mapped_value = 32.  In reality, this means
808 	 * the real mapped value should be 111111b.  In other cases,
809 	 * the mapped_value needs to be shifted 1 to the left.
810 	 */
811 	if (mapped_value > 31)
812 		mapped_value = 0x3f;
813 	else
814 		mapped_value <<= 1;
815 
816 	return mapped_value;
817 }
818 static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data *vc5)
819 {
820 	u32 value;
821 	int mapped_value;
822 
823 	if (!of_property_read_u32(node, "idt,xtal-load-femtofarads", &value)) {
824 		mapped_value = vc5_map_cap_value(value);
825 		if (mapped_value < 0)
826 			return mapped_value;
827 
828 		/*
829 		 * The mapped_value is really the high 6 bits of
830 		 * VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so
831 		 * shift the value 2 places.
832 		 */
833 		regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03, mapped_value << 2);
834 		regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03, mapped_value << 2);
835 	}
836 
837 	return 0;
838 }
839 
840 static int vc5_update_slew(struct device_node *np_output,
841 			   struct vc5_out_data *clk_out)
842 {
843 	u32 value;
844 
845 	if (!of_property_read_u32(np_output, "idt,slew-percent", &value)) {
846 		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_SLEW_MASK;
847 		switch (value) {
848 		case 80:
849 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_80;
850 			break;
851 		case 85:
852 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_85;
853 			break;
854 		case 90:
855 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_90;
856 			break;
857 		case 100:
858 			clk_out->clk_output_cfg0 |=
859 			    VC5_CLK_OUTPUT_CFG0_SLEW_100;
860 			break;
861 		default:
862 			return -EINVAL;
863 		}
864 	}
865 	return 0;
866 }
867 
868 static int vc5_get_output_config(struct i2c_client *client,
869 				 struct vc5_out_data *clk_out)
870 {
871 	struct device_node *np_output;
872 	char *child_name;
873 	int ret = 0;
874 
875 	child_name = kasprintf(GFP_KERNEL, "OUT%d", clk_out->num + 1);
876 	if (!child_name)
877 		return -ENOMEM;
878 
879 	np_output = of_get_child_by_name(client->dev.of_node, child_name);
880 	kfree(child_name);
881 	if (!np_output)
882 		return 0;
883 
884 	ret = vc5_update_mode(np_output, clk_out);
885 	if (ret)
886 		goto output_error;
887 
888 	ret = vc5_update_power(np_output, clk_out);
889 	if (ret)
890 		goto output_error;
891 
892 	ret = vc5_update_slew(np_output, clk_out);
893 
894 output_error:
895 	if (ret) {
896 		dev_err(&client->dev,
897 			"Invalid clock output configuration OUT%d\n",
898 			clk_out->num + 1);
899 	}
900 
901 	of_node_put(np_output);
902 
903 	return ret;
904 }
905 
906 static const struct of_device_id clk_vc5_of_match[];
907 
908 static int vc5_probe(struct i2c_client *client)
909 {
910 	unsigned int oe, sd, src_mask = 0, src_val = 0;
911 	struct vc5_driver_data *vc5;
912 	struct clk_init_data init;
913 	const char *parent_names[2];
914 	unsigned int n, idx = 0;
915 	int ret;
916 
917 	vc5 = devm_kzalloc(&client->dev, sizeof(*vc5), GFP_KERNEL);
918 	if (!vc5)
919 		return -ENOMEM;
920 
921 	i2c_set_clientdata(client, vc5);
922 	vc5->client = client;
923 	vc5->chip_info = of_device_get_match_data(&client->dev);
924 
925 	vc5->pin_xin = devm_clk_get(&client->dev, "xin");
926 	if (PTR_ERR(vc5->pin_xin) == -EPROBE_DEFER)
927 		return -EPROBE_DEFER;
928 
929 	vc5->pin_clkin = devm_clk_get(&client->dev, "clkin");
930 	if (PTR_ERR(vc5->pin_clkin) == -EPROBE_DEFER)
931 		return -EPROBE_DEFER;
932 
933 	vc5->regmap = devm_regmap_init_i2c(client, &vc5_regmap_config);
934 	if (IS_ERR(vc5->regmap))
935 		return dev_err_probe(&client->dev, PTR_ERR(vc5->regmap),
936 				     "failed to allocate register map\n");
937 
938 	ret = of_property_read_u32(client->dev.of_node, "idt,shutdown", &sd);
939 	if (!ret) {
940 		src_mask |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
941 		if (sd)
942 			src_val |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
943 	} else if (ret != -EINVAL) {
944 		return dev_err_probe(&client->dev, ret,
945 				     "could not read idt,shutdown\n");
946 	}
947 
948 	ret = of_property_read_u32(client->dev.of_node,
949 				   "idt,output-enable-active", &oe);
950 	if (!ret) {
951 		src_mask |= VC5_PRIM_SRC_SHDN_SP;
952 		if (oe)
953 			src_val |= VC5_PRIM_SRC_SHDN_SP;
954 	} else if (ret != -EINVAL) {
955 		return dev_err_probe(&client->dev, ret,
956 				     "could not read idt,output-enable-active\n");
957 	}
958 
959 	regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, src_mask, src_val);
960 
961 	/* Register clock input mux */
962 	memset(&init, 0, sizeof(init));
963 
964 	if (!IS_ERR(vc5->pin_xin)) {
965 		vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
966 		parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
967 	} else if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) {
968 		vc5->pin_xin = clk_register_fixed_rate(&client->dev,
969 						       "internal-xtal", NULL,
970 						       0, 25000000);
971 		if (IS_ERR(vc5->pin_xin))
972 			return PTR_ERR(vc5->pin_xin);
973 		vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
974 		parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
975 	}
976 
977 	if (!IS_ERR(vc5->pin_clkin)) {
978 		vc5->clk_mux_ins |= VC5_MUX_IN_CLKIN;
979 		parent_names[init.num_parents++] =
980 		    __clk_get_name(vc5->pin_clkin);
981 	}
982 
983 	if (!init.num_parents)
984 		return dev_err_probe(&client->dev, -EINVAL,
985 				     "no input clock specified!\n");
986 
987 	/* Configure Optional Loading Capacitance for external XTAL */
988 	if (!(vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)) {
989 		ret = vc5_update_cap_load(client->dev.of_node, vc5);
990 		if (ret)
991 			goto err_clk_register;
992 	}
993 
994 	init.name = kasprintf(GFP_KERNEL, "%pOFn.mux", client->dev.of_node);
995 	init.ops = &vc5_mux_ops;
996 	init.flags = 0;
997 	init.parent_names = parent_names;
998 	vc5->clk_mux.init = &init;
999 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_mux);
1000 	if (ret)
1001 		goto err_clk_register;
1002 	kfree(init.name);	/* clock framework made a copy of the name */
1003 
1004 	if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL) {
1005 		/* Register frequency doubler */
1006 		memset(&init, 0, sizeof(init));
1007 		init.name = kasprintf(GFP_KERNEL, "%pOFn.dbl",
1008 				      client->dev.of_node);
1009 		init.ops = &vc5_dbl_ops;
1010 		init.flags = CLK_SET_RATE_PARENT;
1011 		init.parent_names = parent_names;
1012 		parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1013 		init.num_parents = 1;
1014 		vc5->clk_mul.init = &init;
1015 		ret = devm_clk_hw_register(&client->dev, &vc5->clk_mul);
1016 		if (ret)
1017 			goto err_clk_register;
1018 		kfree(init.name); /* clock framework made a copy of the name */
1019 	}
1020 
1021 	/* Register PFD */
1022 	memset(&init, 0, sizeof(init));
1023 	init.name = kasprintf(GFP_KERNEL, "%pOFn.pfd", client->dev.of_node);
1024 	init.ops = &vc5_pfd_ops;
1025 	init.flags = CLK_SET_RATE_PARENT;
1026 	init.parent_names = parent_names;
1027 	if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL)
1028 		parent_names[0] = clk_hw_get_name(&vc5->clk_mul);
1029 	else
1030 		parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1031 	init.num_parents = 1;
1032 	vc5->clk_pfd.init = &init;
1033 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_pfd);
1034 	if (ret)
1035 		goto err_clk_register;
1036 	kfree(init.name);	/* clock framework made a copy of the name */
1037 
1038 	/* Register PLL */
1039 	memset(&init, 0, sizeof(init));
1040 	init.name = kasprintf(GFP_KERNEL, "%pOFn.pll", client->dev.of_node);
1041 	init.ops = &vc5_pll_ops;
1042 	init.flags = CLK_SET_RATE_PARENT;
1043 	init.parent_names = parent_names;
1044 	parent_names[0] = clk_hw_get_name(&vc5->clk_pfd);
1045 	init.num_parents = 1;
1046 	vc5->clk_pll.num = 0;
1047 	vc5->clk_pll.vc5 = vc5;
1048 	vc5->clk_pll.hw.init = &init;
1049 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_pll.hw);
1050 	if (ret)
1051 		goto err_clk_register;
1052 	kfree(init.name); /* clock framework made a copy of the name */
1053 
1054 	/* Register FODs */
1055 	for (n = 0; n < vc5->chip_info->clk_fod_cnt; n++) {
1056 		idx = vc5_map_index_to_output(vc5->chip_info->model, n);
1057 		memset(&init, 0, sizeof(init));
1058 		init.name = kasprintf(GFP_KERNEL, "%pOFn.fod%d",
1059 				      client->dev.of_node, idx);
1060 		init.ops = &vc5_fod_ops;
1061 		init.flags = CLK_SET_RATE_PARENT;
1062 		init.parent_names = parent_names;
1063 		parent_names[0] = clk_hw_get_name(&vc5->clk_pll.hw);
1064 		init.num_parents = 1;
1065 		vc5->clk_fod[n].num = idx;
1066 		vc5->clk_fod[n].vc5 = vc5;
1067 		vc5->clk_fod[n].hw.init = &init;
1068 		ret = devm_clk_hw_register(&client->dev, &vc5->clk_fod[n].hw);
1069 		if (ret)
1070 			goto err_clk_register;
1071 		kfree(init.name); /* clock framework made a copy of the name */
1072 	}
1073 
1074 	/* Register MUX-connected OUT0_I2C_SELB output */
1075 	memset(&init, 0, sizeof(init));
1076 	init.name = kasprintf(GFP_KERNEL, "%pOFn.out0_sel_i2cb",
1077 			      client->dev.of_node);
1078 	init.ops = &vc5_clk_out_ops;
1079 	init.flags = CLK_SET_RATE_PARENT;
1080 	init.parent_names = parent_names;
1081 	parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1082 	init.num_parents = 1;
1083 	vc5->clk_out[0].num = idx;
1084 	vc5->clk_out[0].vc5 = vc5;
1085 	vc5->clk_out[0].hw.init = &init;
1086 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[0].hw);
1087 	if (ret)
1088 		goto err_clk_register;
1089 	kfree(init.name); /* clock framework made a copy of the name */
1090 
1091 	/* Register FOD-connected OUTx outputs */
1092 	for (n = 1; n < vc5->chip_info->clk_out_cnt; n++) {
1093 		idx = vc5_map_index_to_output(vc5->chip_info->model, n - 1);
1094 		parent_names[0] = clk_hw_get_name(&vc5->clk_fod[idx].hw);
1095 		if (n == 1)
1096 			parent_names[1] = clk_hw_get_name(&vc5->clk_mux);
1097 		else
1098 			parent_names[1] =
1099 			    clk_hw_get_name(&vc5->clk_out[n - 1].hw);
1100 
1101 		memset(&init, 0, sizeof(init));
1102 		init.name = kasprintf(GFP_KERNEL, "%pOFn.out%d",
1103 				      client->dev.of_node, idx + 1);
1104 		init.ops = &vc5_clk_out_ops;
1105 		init.flags = CLK_SET_RATE_PARENT;
1106 		init.parent_names = parent_names;
1107 		init.num_parents = 2;
1108 		vc5->clk_out[n].num = idx;
1109 		vc5->clk_out[n].vc5 = vc5;
1110 		vc5->clk_out[n].hw.init = &init;
1111 		ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[n].hw);
1112 		if (ret)
1113 			goto err_clk_register;
1114 		kfree(init.name); /* clock framework made a copy of the name */
1115 
1116 		/* Fetch Clock Output configuration from DT (if specified) */
1117 		ret = vc5_get_output_config(client, &vc5->clk_out[n]);
1118 		if (ret)
1119 			goto err_clk;
1120 	}
1121 
1122 	ret = of_clk_add_hw_provider(client->dev.of_node, vc5_of_clk_get, vc5);
1123 	if (ret) {
1124 		dev_err_probe(&client->dev, ret,
1125 			      "unable to add clk provider\n");
1126 		goto err_clk;
1127 	}
1128 
1129 	return 0;
1130 
1131 err_clk_register:
1132 	dev_err_probe(&client->dev, ret,
1133 		      "unable to register %s\n", init.name);
1134 	kfree(init.name); /* clock framework made a copy of the name */
1135 err_clk:
1136 	if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1137 		clk_unregister_fixed_rate(vc5->pin_xin);
1138 	return ret;
1139 }
1140 
1141 static int vc5_remove(struct i2c_client *client)
1142 {
1143 	struct vc5_driver_data *vc5 = i2c_get_clientdata(client);
1144 
1145 	of_clk_del_provider(client->dev.of_node);
1146 
1147 	if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1148 		clk_unregister_fixed_rate(vc5->pin_xin);
1149 
1150 	return 0;
1151 }
1152 
1153 static int __maybe_unused vc5_suspend(struct device *dev)
1154 {
1155 	struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1156 
1157 	regcache_cache_only(vc5->regmap, true);
1158 	regcache_mark_dirty(vc5->regmap);
1159 
1160 	return 0;
1161 }
1162 
1163 static int __maybe_unused vc5_resume(struct device *dev)
1164 {
1165 	struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1166 	int ret;
1167 
1168 	regcache_cache_only(vc5->regmap, false);
1169 	ret = regcache_sync(vc5->regmap);
1170 	if (ret)
1171 		dev_err(dev, "Failed to restore register map: %d\n", ret);
1172 	return ret;
1173 }
1174 
1175 static const struct vc5_chip_info idt_5p49v5923_info = {
1176 	.model = IDT_VC5_5P49V5923,
1177 	.clk_fod_cnt = 2,
1178 	.clk_out_cnt = 3,
1179 	.flags = 0,
1180 };
1181 
1182 static const struct vc5_chip_info idt_5p49v5925_info = {
1183 	.model = IDT_VC5_5P49V5925,
1184 	.clk_fod_cnt = 4,
1185 	.clk_out_cnt = 5,
1186 	.flags = 0,
1187 };
1188 
1189 static const struct vc5_chip_info idt_5p49v5933_info = {
1190 	.model = IDT_VC5_5P49V5933,
1191 	.clk_fod_cnt = 2,
1192 	.clk_out_cnt = 3,
1193 	.flags = VC5_HAS_INTERNAL_XTAL,
1194 };
1195 
1196 static const struct vc5_chip_info idt_5p49v5935_info = {
1197 	.model = IDT_VC5_5P49V5935,
1198 	.clk_fod_cnt = 4,
1199 	.clk_out_cnt = 5,
1200 	.flags = VC5_HAS_INTERNAL_XTAL,
1201 };
1202 
1203 static const struct vc5_chip_info idt_5p49v6901_info = {
1204 	.model = IDT_VC6_5P49V6901,
1205 	.clk_fod_cnt = 4,
1206 	.clk_out_cnt = 5,
1207 	.flags = VC5_HAS_PFD_FREQ_DBL,
1208 };
1209 
1210 static const struct vc5_chip_info idt_5p49v6965_info = {
1211 	.model = IDT_VC6_5P49V6965,
1212 	.clk_fod_cnt = 4,
1213 	.clk_out_cnt = 5,
1214 	.flags = VC5_HAS_BYPASS_SYNC_BIT,
1215 };
1216 
1217 static const struct i2c_device_id vc5_id[] = {
1218 	{ "5p49v5923", .driver_data = IDT_VC5_5P49V5923 },
1219 	{ "5p49v5925", .driver_data = IDT_VC5_5P49V5925 },
1220 	{ "5p49v5933", .driver_data = IDT_VC5_5P49V5933 },
1221 	{ "5p49v5935", .driver_data = IDT_VC5_5P49V5935 },
1222 	{ "5p49v6901", .driver_data = IDT_VC6_5P49V6901 },
1223 	{ "5p49v6965", .driver_data = IDT_VC6_5P49V6965 },
1224 	{ }
1225 };
1226 MODULE_DEVICE_TABLE(i2c, vc5_id);
1227 
1228 static const struct of_device_id clk_vc5_of_match[] = {
1229 	{ .compatible = "idt,5p49v5923", .data = &idt_5p49v5923_info },
1230 	{ .compatible = "idt,5p49v5925", .data = &idt_5p49v5925_info },
1231 	{ .compatible = "idt,5p49v5933", .data = &idt_5p49v5933_info },
1232 	{ .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info },
1233 	{ .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info },
1234 	{ .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info },
1235 	{ },
1236 };
1237 MODULE_DEVICE_TABLE(of, clk_vc5_of_match);
1238 
1239 static SIMPLE_DEV_PM_OPS(vc5_pm_ops, vc5_suspend, vc5_resume);
1240 
1241 static struct i2c_driver vc5_driver = {
1242 	.driver = {
1243 		.name = "vc5",
1244 		.pm	= &vc5_pm_ops,
1245 		.of_match_table = clk_vc5_of_match,
1246 	},
1247 	.probe_new	= vc5_probe,
1248 	.remove		= vc5_remove,
1249 	.id_table	= vc5_id,
1250 };
1251 module_i2c_driver(vc5_driver);
1252 
1253 MODULE_AUTHOR("Marek Vasut <marek.vasut@gmail.com>");
1254 MODULE_DESCRIPTION("IDT VersaClock 5 driver");
1255 MODULE_LICENSE("GPL");
1256