xref: /openbmc/linux/drivers/clk/clk-stm32f4.c (revision e2f1cf25)
1 /*
2  * Author: Daniel Thompson <daniel.thompson@linaro.org>
3  *
4  * Inspired by clk-asm9260.c .
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/clk-provider.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 
27 #define STM32F4_RCC_PLLCFGR		0x04
28 #define STM32F4_RCC_CFGR		0x08
29 #define STM32F4_RCC_AHB1ENR		0x30
30 #define STM32F4_RCC_AHB2ENR		0x34
31 #define STM32F4_RCC_AHB3ENR		0x38
32 #define STM32F4_RCC_APB1ENR		0x40
33 #define STM32F4_RCC_APB2ENR		0x44
34 
35 struct stm32f4_gate_data {
36 	u8	offset;
37 	u8	bit_idx;
38 	const char *name;
39 	const char *parent_name;
40 	unsigned long flags;
41 };
42 
43 static const struct stm32f4_gate_data stm32f4_gates[] __initconst = {
44 	{ STM32F4_RCC_AHB1ENR,  0,	"gpioa",	"ahb_div" },
45 	{ STM32F4_RCC_AHB1ENR,  1,	"gpiob",	"ahb_div" },
46 	{ STM32F4_RCC_AHB1ENR,  2,	"gpioc",	"ahb_div" },
47 	{ STM32F4_RCC_AHB1ENR,  3,	"gpiod",	"ahb_div" },
48 	{ STM32F4_RCC_AHB1ENR,  4,	"gpioe",	"ahb_div" },
49 	{ STM32F4_RCC_AHB1ENR,  5,	"gpiof",	"ahb_div" },
50 	{ STM32F4_RCC_AHB1ENR,  6,	"gpiog",	"ahb_div" },
51 	{ STM32F4_RCC_AHB1ENR,  7,	"gpioh",	"ahb_div" },
52 	{ STM32F4_RCC_AHB1ENR,  8,	"gpioi",	"ahb_div" },
53 	{ STM32F4_RCC_AHB1ENR,  9,	"gpioj",	"ahb_div" },
54 	{ STM32F4_RCC_AHB1ENR, 10,	"gpiok",	"ahb_div" },
55 	{ STM32F4_RCC_AHB1ENR, 12,	"crc",		"ahb_div" },
56 	{ STM32F4_RCC_AHB1ENR, 18,	"bkpsra",	"ahb_div" },
57 	{ STM32F4_RCC_AHB1ENR, 20,	"ccmdatam",	"ahb_div" },
58 	{ STM32F4_RCC_AHB1ENR, 21,	"dma1",		"ahb_div" },
59 	{ STM32F4_RCC_AHB1ENR, 22,	"dma2",		"ahb_div" },
60 	{ STM32F4_RCC_AHB1ENR, 23,	"dma2d",	"ahb_div" },
61 	{ STM32F4_RCC_AHB1ENR, 25,	"ethmac",	"ahb_div" },
62 	{ STM32F4_RCC_AHB1ENR, 26,	"ethmactx",	"ahb_div" },
63 	{ STM32F4_RCC_AHB1ENR, 27,	"ethmacrx",	"ahb_div" },
64 	{ STM32F4_RCC_AHB1ENR, 28,	"ethmacptp",	"ahb_div" },
65 	{ STM32F4_RCC_AHB1ENR, 29,	"otghs",	"ahb_div" },
66 	{ STM32F4_RCC_AHB1ENR, 30,	"otghsulpi",	"ahb_div" },
67 
68 	{ STM32F4_RCC_AHB2ENR,  0,	"dcmi",		"ahb_div" },
69 	{ STM32F4_RCC_AHB2ENR,  4,	"cryp",		"ahb_div" },
70 	{ STM32F4_RCC_AHB2ENR,  5,	"hash",		"ahb_div" },
71 	{ STM32F4_RCC_AHB2ENR,  6,	"rng",		"pll48" },
72 	{ STM32F4_RCC_AHB2ENR,  7,	"otgfs",	"pll48" },
73 
74 	{ STM32F4_RCC_AHB3ENR,  0,	"fmc",		"ahb_div",
75 		CLK_IGNORE_UNUSED },
76 
77 	{ STM32F4_RCC_APB1ENR,  0,	"tim2",		"apb1_mul" },
78 	{ STM32F4_RCC_APB1ENR,  1,	"tim3",		"apb1_mul" },
79 	{ STM32F4_RCC_APB1ENR,  2,	"tim4",		"apb1_mul" },
80 	{ STM32F4_RCC_APB1ENR,  3,	"tim5",		"apb1_mul" },
81 	{ STM32F4_RCC_APB1ENR,  4,	"tim6",		"apb1_mul" },
82 	{ STM32F4_RCC_APB1ENR,  5,	"tim7",		"apb1_mul" },
83 	{ STM32F4_RCC_APB1ENR,  6,	"tim12",	"apb1_mul" },
84 	{ STM32F4_RCC_APB1ENR,  7,	"tim13",	"apb1_mul" },
85 	{ STM32F4_RCC_APB1ENR,  8,	"tim14",	"apb1_mul" },
86 	{ STM32F4_RCC_APB1ENR, 11,	"wwdg",		"apb1_div" },
87 	{ STM32F4_RCC_APB1ENR, 14,	"spi2",		"apb1_div" },
88 	{ STM32F4_RCC_APB1ENR, 15,	"spi3",		"apb1_div" },
89 	{ STM32F4_RCC_APB1ENR, 17,	"uart2",	"apb1_div" },
90 	{ STM32F4_RCC_APB1ENR, 18,	"uart3",	"apb1_div" },
91 	{ STM32F4_RCC_APB1ENR, 19,	"uart4",	"apb1_div" },
92 	{ STM32F4_RCC_APB1ENR, 20,	"uart5",	"apb1_div" },
93 	{ STM32F4_RCC_APB1ENR, 21,	"i2c1",		"apb1_div" },
94 	{ STM32F4_RCC_APB1ENR, 22,	"i2c2",		"apb1_div" },
95 	{ STM32F4_RCC_APB1ENR, 23,	"i2c3",		"apb1_div" },
96 	{ STM32F4_RCC_APB1ENR, 25,	"can1",		"apb1_div" },
97 	{ STM32F4_RCC_APB1ENR, 26,	"can2",		"apb1_div" },
98 	{ STM32F4_RCC_APB1ENR, 28,	"pwr",		"apb1_div" },
99 	{ STM32F4_RCC_APB1ENR, 29,	"dac",		"apb1_div" },
100 	{ STM32F4_RCC_APB1ENR, 30,	"uart7",	"apb1_div" },
101 	{ STM32F4_RCC_APB1ENR, 31,	"uart8",	"apb1_div" },
102 
103 	{ STM32F4_RCC_APB2ENR,  0,	"tim1",		"apb2_mul" },
104 	{ STM32F4_RCC_APB2ENR,  1,	"tim8",		"apb2_mul" },
105 	{ STM32F4_RCC_APB2ENR,  4,	"usart1",	"apb2_div" },
106 	{ STM32F4_RCC_APB2ENR,  5,	"usart6",	"apb2_div" },
107 	{ STM32F4_RCC_APB2ENR,  8,	"adc1",		"apb2_div" },
108 	{ STM32F4_RCC_APB2ENR,  9,	"adc2",		"apb2_div" },
109 	{ STM32F4_RCC_APB2ENR, 10,	"adc3",		"apb2_div" },
110 	{ STM32F4_RCC_APB2ENR, 11,	"sdio",		"pll48" },
111 	{ STM32F4_RCC_APB2ENR, 12,	"spi1",		"apb2_div" },
112 	{ STM32F4_RCC_APB2ENR, 13,	"spi4",		"apb2_div" },
113 	{ STM32F4_RCC_APB2ENR, 14,	"syscfg",	"apb2_div" },
114 	{ STM32F4_RCC_APB2ENR, 16,	"tim9",		"apb2_mul" },
115 	{ STM32F4_RCC_APB2ENR, 17,	"tim10",	"apb2_mul" },
116 	{ STM32F4_RCC_APB2ENR, 18,	"tim11",	"apb2_mul" },
117 	{ STM32F4_RCC_APB2ENR, 20,	"spi5",		"apb2_div" },
118 	{ STM32F4_RCC_APB2ENR, 21,	"spi6",		"apb2_div" },
119 	{ STM32F4_RCC_APB2ENR, 22,	"sai1",		"apb2_div" },
120 	{ STM32F4_RCC_APB2ENR, 26,	"ltdc",		"apb2_div" },
121 };
122 
123 /*
124  * MAX_CLKS is the maximum value in the enumeration below plus the combined
125  * hweight of stm32f42xx_gate_map (plus one).
126  */
127 #define MAX_CLKS 74
128 
129 enum { SYSTICK, FCLK };
130 
131 /*
132  * This bitmask tells us which bit offsets (0..192) on STM32F4[23]xxx
133  * have gate bits associated with them. Its combined hweight is 71.
134  */
135 static const u64 stm32f42xx_gate_map[] = { 0x000000f17ef417ffull,
136 					   0x0000000000000001ull,
137 					   0x04777f33f6fec9ffull };
138 
139 static struct clk *clks[MAX_CLKS];
140 static DEFINE_SPINLOCK(stm32f4_clk_lock);
141 static void __iomem *base;
142 
143 /*
144  * "Multiplier" device for APBx clocks.
145  *
146  * The APBx dividers are power-of-two dividers and, if *not* running in 1:1
147  * mode, they also tap out the one of the low order state bits to run the
148  * timers. ST datasheets represent this feature as a (conditional) clock
149  * multiplier.
150  */
151 struct clk_apb_mul {
152 	struct clk_hw hw;
153 	u8 bit_idx;
154 };
155 
156 #define to_clk_apb_mul(_hw) container_of(_hw, struct clk_apb_mul, hw)
157 
158 static unsigned long clk_apb_mul_recalc_rate(struct clk_hw *hw,
159 					     unsigned long parent_rate)
160 {
161 	struct clk_apb_mul *am = to_clk_apb_mul(hw);
162 
163 	if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
164 		return parent_rate * 2;
165 
166 	return parent_rate;
167 }
168 
169 static long clk_apb_mul_round_rate(struct clk_hw *hw, unsigned long rate,
170 				   unsigned long *prate)
171 {
172 	struct clk_apb_mul *am = to_clk_apb_mul(hw);
173 	unsigned long mult = 1;
174 
175 	if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
176 		mult = 2;
177 
178 	if (__clk_get_flags(hw->clk) & CLK_SET_RATE_PARENT) {
179 		unsigned long best_parent = rate / mult;
180 
181 		*prate =
182 		    __clk_round_rate(__clk_get_parent(hw->clk), best_parent);
183 	}
184 
185 	return *prate * mult;
186 }
187 
188 static int clk_apb_mul_set_rate(struct clk_hw *hw, unsigned long rate,
189 				unsigned long parent_rate)
190 {
191 	/*
192 	 * We must report success but we can do so unconditionally because
193 	 * clk_apb_mul_round_rate returns values that ensure this call is a
194 	 * nop.
195 	 */
196 
197 	return 0;
198 }
199 
200 static const struct clk_ops clk_apb_mul_factor_ops = {
201 	.round_rate = clk_apb_mul_round_rate,
202 	.set_rate = clk_apb_mul_set_rate,
203 	.recalc_rate = clk_apb_mul_recalc_rate,
204 };
205 
206 static struct clk *clk_register_apb_mul(struct device *dev, const char *name,
207 					const char *parent_name,
208 					unsigned long flags, u8 bit_idx)
209 {
210 	struct clk_apb_mul *am;
211 	struct clk_init_data init;
212 	struct clk *clk;
213 
214 	am = kzalloc(sizeof(*am), GFP_KERNEL);
215 	if (!am)
216 		return ERR_PTR(-ENOMEM);
217 
218 	am->bit_idx = bit_idx;
219 	am->hw.init = &init;
220 
221 	init.name = name;
222 	init.ops = &clk_apb_mul_factor_ops;
223 	init.flags = flags;
224 	init.parent_names = &parent_name;
225 	init.num_parents = 1;
226 
227 	clk = clk_register(dev, &am->hw);
228 
229 	if (IS_ERR(clk))
230 		kfree(am);
231 
232 	return clk;
233 }
234 
235 /*
236  * Decode current PLL state and (statically) model the state we inherit from
237  * the bootloader.
238  */
239 static void stm32f4_rcc_register_pll(const char *hse_clk, const char *hsi_clk)
240 {
241 	unsigned long pllcfgr = readl(base + STM32F4_RCC_PLLCFGR);
242 
243 	unsigned long pllm   = pllcfgr & 0x3f;
244 	unsigned long plln   = (pllcfgr >> 6) & 0x1ff;
245 	unsigned long pllp   = BIT(((pllcfgr >> 16) & 3) + 1);
246 	const char   *pllsrc = pllcfgr & BIT(22) ? hse_clk : hsi_clk;
247 	unsigned long pllq   = (pllcfgr >> 24) & 0xf;
248 
249 	clk_register_fixed_factor(NULL, "vco", pllsrc, 0, plln, pllm);
250 	clk_register_fixed_factor(NULL, "pll", "vco", 0, 1, pllp);
251 	clk_register_fixed_factor(NULL, "pll48", "vco", 0, 1, pllq);
252 }
253 
254 /*
255  * Converts the primary and secondary indices (as they appear in DT) to an
256  * offset into our struct clock array.
257  */
258 static int stm32f4_rcc_lookup_clk_idx(u8 primary, u8 secondary)
259 {
260 	u64 table[ARRAY_SIZE(stm32f42xx_gate_map)];
261 
262 	if (primary == 1) {
263 		if (WARN_ON(secondary > FCLK))
264 			return -EINVAL;
265 		return secondary;
266 	}
267 
268 	memcpy(table, stm32f42xx_gate_map, sizeof(table));
269 
270 	/* only bits set in table can be used as indices */
271 	if (WARN_ON(secondary >= BITS_PER_BYTE * sizeof(table) ||
272 		    0 == (table[BIT_ULL_WORD(secondary)] &
273 			  BIT_ULL_MASK(secondary))))
274 		return -EINVAL;
275 
276 	/* mask out bits above our current index */
277 	table[BIT_ULL_WORD(secondary)] &=
278 	    GENMASK_ULL(secondary % BITS_PER_LONG_LONG, 0);
279 
280 	return FCLK + hweight64(table[0]) +
281 	       (BIT_ULL_WORD(secondary) >= 1 ? hweight64(table[1]) : 0) +
282 	       (BIT_ULL_WORD(secondary) >= 2 ? hweight64(table[2]) : 0);
283 }
284 
285 static struct clk *
286 stm32f4_rcc_lookup_clk(struct of_phandle_args *clkspec, void *data)
287 {
288 	int i = stm32f4_rcc_lookup_clk_idx(clkspec->args[0], clkspec->args[1]);
289 
290 	if (i < 0)
291 		return ERR_PTR(-EINVAL);
292 
293 	return clks[i];
294 }
295 
296 static const char *sys_parents[] __initdata =   { "hsi", NULL, "pll" };
297 
298 static const struct clk_div_table ahb_div_table[] = {
299 	{ 0x0,   1 }, { 0x1,   1 }, { 0x2,   1 }, { 0x3,   1 },
300 	{ 0x4,   1 }, { 0x5,   1 }, { 0x6,   1 }, { 0x7,   1 },
301 	{ 0x8,   2 }, { 0x9,   4 }, { 0xa,   8 }, { 0xb,  16 },
302 	{ 0xc,  64 }, { 0xd, 128 }, { 0xe, 256 }, { 0xf, 512 },
303 	{ 0 },
304 };
305 
306 static const struct clk_div_table apb_div_table[] = {
307 	{ 0,  1 }, { 0,  1 }, { 0,  1 }, { 0,  1 },
308 	{ 4,  2 }, { 5,  4 }, { 6,  8 }, { 7, 16 },
309 	{ 0 },
310 };
311 
312 static void __init stm32f4_rcc_init(struct device_node *np)
313 {
314 	const char *hse_clk;
315 	int n;
316 
317 	base = of_iomap(np, 0);
318 	if (!base) {
319 		pr_err("%s: unable to map resource", np->name);
320 		return;
321 	}
322 
323 	hse_clk = of_clk_get_parent_name(np, 0);
324 
325 	clk_register_fixed_rate_with_accuracy(NULL, "hsi", NULL, 0,
326 			16000000, 160000);
327 	stm32f4_rcc_register_pll(hse_clk, "hsi");
328 
329 	sys_parents[1] = hse_clk;
330 	clk_register_mux_table(
331 	    NULL, "sys", sys_parents, ARRAY_SIZE(sys_parents), 0,
332 	    base + STM32F4_RCC_CFGR, 0, 3, 0, NULL, &stm32f4_clk_lock);
333 
334 	clk_register_divider_table(NULL, "ahb_div", "sys",
335 				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
336 				   4, 4, 0, ahb_div_table, &stm32f4_clk_lock);
337 
338 	clk_register_divider_table(NULL, "apb1_div", "ahb_div",
339 				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
340 				   10, 3, 0, apb_div_table, &stm32f4_clk_lock);
341 	clk_register_apb_mul(NULL, "apb1_mul", "apb1_div",
342 			     CLK_SET_RATE_PARENT, 12);
343 
344 	clk_register_divider_table(NULL, "apb2_div", "ahb_div",
345 				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
346 				   13, 3, 0, apb_div_table, &stm32f4_clk_lock);
347 	clk_register_apb_mul(NULL, "apb2_mul", "apb2_div",
348 			     CLK_SET_RATE_PARENT, 15);
349 
350 	clks[SYSTICK] = clk_register_fixed_factor(NULL, "systick", "ahb_div",
351 						  0, 1, 8);
352 	clks[FCLK] = clk_register_fixed_factor(NULL, "fclk", "ahb_div",
353 					       0, 1, 1);
354 
355 	for (n = 0; n < ARRAY_SIZE(stm32f4_gates); n++) {
356 		const struct stm32f4_gate_data *gd = &stm32f4_gates[n];
357 		unsigned int secondary =
358 		    8 * (gd->offset - STM32F4_RCC_AHB1ENR) + gd->bit_idx;
359 		int idx = stm32f4_rcc_lookup_clk_idx(0, secondary);
360 
361 		if (idx < 0)
362 			goto fail;
363 
364 		clks[idx] = clk_register_gate(
365 		    NULL, gd->name, gd->parent_name, gd->flags,
366 		    base + gd->offset, gd->bit_idx, 0, &stm32f4_clk_lock);
367 
368 		if (IS_ERR(clks[n])) {
369 			pr_err("%s: Unable to register leaf clock %s\n",
370 			       np->full_name, gd->name);
371 			goto fail;
372 		}
373 	}
374 
375 	of_clk_add_provider(np, stm32f4_rcc_lookup_clk, NULL);
376 	return;
377 fail:
378 	iounmap(base);
379 }
380 CLK_OF_DECLARE(stm32f4_rcc, "st,stm32f42xx-rcc", stm32f4_rcc_init);
381