xref: /openbmc/linux/drivers/clk/clk-stm32f4.c (revision d774a589)
1 /*
2  * Author: Daniel Thompson <daniel.thompson@linaro.org>
3  *
4  * Inspired by clk-asm9260.c .
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/clk-provider.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/regmap.h>
29 #include <linux/mfd/syscon.h>
30 
31 #define STM32F4_RCC_PLLCFGR		0x04
32 #define STM32F4_RCC_CFGR		0x08
33 #define STM32F4_RCC_AHB1ENR		0x30
34 #define STM32F4_RCC_AHB2ENR		0x34
35 #define STM32F4_RCC_AHB3ENR		0x38
36 #define STM32F4_RCC_APB1ENR		0x40
37 #define STM32F4_RCC_APB2ENR		0x44
38 #define STM32F4_RCC_BDCR		0x70
39 #define STM32F4_RCC_CSR			0x74
40 
41 struct stm32f4_gate_data {
42 	u8	offset;
43 	u8	bit_idx;
44 	const char *name;
45 	const char *parent_name;
46 	unsigned long flags;
47 };
48 
49 static const struct stm32f4_gate_data stm32f429_gates[] __initconst = {
50 	{ STM32F4_RCC_AHB1ENR,  0,	"gpioa",	"ahb_div" },
51 	{ STM32F4_RCC_AHB1ENR,  1,	"gpiob",	"ahb_div" },
52 	{ STM32F4_RCC_AHB1ENR,  2,	"gpioc",	"ahb_div" },
53 	{ STM32F4_RCC_AHB1ENR,  3,	"gpiod",	"ahb_div" },
54 	{ STM32F4_RCC_AHB1ENR,  4,	"gpioe",	"ahb_div" },
55 	{ STM32F4_RCC_AHB1ENR,  5,	"gpiof",	"ahb_div" },
56 	{ STM32F4_RCC_AHB1ENR,  6,	"gpiog",	"ahb_div" },
57 	{ STM32F4_RCC_AHB1ENR,  7,	"gpioh",	"ahb_div" },
58 	{ STM32F4_RCC_AHB1ENR,  8,	"gpioi",	"ahb_div" },
59 	{ STM32F4_RCC_AHB1ENR,  9,	"gpioj",	"ahb_div" },
60 	{ STM32F4_RCC_AHB1ENR, 10,	"gpiok",	"ahb_div" },
61 	{ STM32F4_RCC_AHB1ENR, 12,	"crc",		"ahb_div" },
62 	{ STM32F4_RCC_AHB1ENR, 18,	"bkpsra",	"ahb_div" },
63 	{ STM32F4_RCC_AHB1ENR, 20,	"ccmdatam",	"ahb_div" },
64 	{ STM32F4_RCC_AHB1ENR, 21,	"dma1",		"ahb_div" },
65 	{ STM32F4_RCC_AHB1ENR, 22,	"dma2",		"ahb_div" },
66 	{ STM32F4_RCC_AHB1ENR, 23,	"dma2d",	"ahb_div" },
67 	{ STM32F4_RCC_AHB1ENR, 25,	"ethmac",	"ahb_div" },
68 	{ STM32F4_RCC_AHB1ENR, 26,	"ethmactx",	"ahb_div" },
69 	{ STM32F4_RCC_AHB1ENR, 27,	"ethmacrx",	"ahb_div" },
70 	{ STM32F4_RCC_AHB1ENR, 28,	"ethmacptp",	"ahb_div" },
71 	{ STM32F4_RCC_AHB1ENR, 29,	"otghs",	"ahb_div" },
72 	{ STM32F4_RCC_AHB1ENR, 30,	"otghsulpi",	"ahb_div" },
73 
74 	{ STM32F4_RCC_AHB2ENR,  0,	"dcmi",		"ahb_div" },
75 	{ STM32F4_RCC_AHB2ENR,  4,	"cryp",		"ahb_div" },
76 	{ STM32F4_RCC_AHB2ENR,  5,	"hash",		"ahb_div" },
77 	{ STM32F4_RCC_AHB2ENR,  6,	"rng",		"pll48" },
78 	{ STM32F4_RCC_AHB2ENR,  7,	"otgfs",	"pll48" },
79 
80 	{ STM32F4_RCC_AHB3ENR,  0,	"fmc",		"ahb_div",
81 		CLK_IGNORE_UNUSED },
82 
83 	{ STM32F4_RCC_APB1ENR,  0,	"tim2",		"apb1_mul" },
84 	{ STM32F4_RCC_APB1ENR,  1,	"tim3",		"apb1_mul" },
85 	{ STM32F4_RCC_APB1ENR,  2,	"tim4",		"apb1_mul" },
86 	{ STM32F4_RCC_APB1ENR,  3,	"tim5",		"apb1_mul" },
87 	{ STM32F4_RCC_APB1ENR,  4,	"tim6",		"apb1_mul" },
88 	{ STM32F4_RCC_APB1ENR,  5,	"tim7",		"apb1_mul" },
89 	{ STM32F4_RCC_APB1ENR,  6,	"tim12",	"apb1_mul" },
90 	{ STM32F4_RCC_APB1ENR,  7,	"tim13",	"apb1_mul" },
91 	{ STM32F4_RCC_APB1ENR,  8,	"tim14",	"apb1_mul" },
92 	{ STM32F4_RCC_APB1ENR, 11,	"wwdg",		"apb1_div" },
93 	{ STM32F4_RCC_APB1ENR, 14,	"spi2",		"apb1_div" },
94 	{ STM32F4_RCC_APB1ENR, 15,	"spi3",		"apb1_div" },
95 	{ STM32F4_RCC_APB1ENR, 17,	"uart2",	"apb1_div" },
96 	{ STM32F4_RCC_APB1ENR, 18,	"uart3",	"apb1_div" },
97 	{ STM32F4_RCC_APB1ENR, 19,	"uart4",	"apb1_div" },
98 	{ STM32F4_RCC_APB1ENR, 20,	"uart5",	"apb1_div" },
99 	{ STM32F4_RCC_APB1ENR, 21,	"i2c1",		"apb1_div" },
100 	{ STM32F4_RCC_APB1ENR, 22,	"i2c2",		"apb1_div" },
101 	{ STM32F4_RCC_APB1ENR, 23,	"i2c3",		"apb1_div" },
102 	{ STM32F4_RCC_APB1ENR, 25,	"can1",		"apb1_div" },
103 	{ STM32F4_RCC_APB1ENR, 26,	"can2",		"apb1_div" },
104 	{ STM32F4_RCC_APB1ENR, 28,	"pwr",		"apb1_div" },
105 	{ STM32F4_RCC_APB1ENR, 29,	"dac",		"apb1_div" },
106 	{ STM32F4_RCC_APB1ENR, 30,	"uart7",	"apb1_div" },
107 	{ STM32F4_RCC_APB1ENR, 31,	"uart8",	"apb1_div" },
108 
109 	{ STM32F4_RCC_APB2ENR,  0,	"tim1",		"apb2_mul" },
110 	{ STM32F4_RCC_APB2ENR,  1,	"tim8",		"apb2_mul" },
111 	{ STM32F4_RCC_APB2ENR,  4,	"usart1",	"apb2_div" },
112 	{ STM32F4_RCC_APB2ENR,  5,	"usart6",	"apb2_div" },
113 	{ STM32F4_RCC_APB2ENR,  8,	"adc1",		"apb2_div" },
114 	{ STM32F4_RCC_APB2ENR,  9,	"adc2",		"apb2_div" },
115 	{ STM32F4_RCC_APB2ENR, 10,	"adc3",		"apb2_div" },
116 	{ STM32F4_RCC_APB2ENR, 11,	"sdio",		"pll48" },
117 	{ STM32F4_RCC_APB2ENR, 12,	"spi1",		"apb2_div" },
118 	{ STM32F4_RCC_APB2ENR, 13,	"spi4",		"apb2_div" },
119 	{ STM32F4_RCC_APB2ENR, 14,	"syscfg",	"apb2_div" },
120 	{ STM32F4_RCC_APB2ENR, 16,	"tim9",		"apb2_mul" },
121 	{ STM32F4_RCC_APB2ENR, 17,	"tim10",	"apb2_mul" },
122 	{ STM32F4_RCC_APB2ENR, 18,	"tim11",	"apb2_mul" },
123 	{ STM32F4_RCC_APB2ENR, 20,	"spi5",		"apb2_div" },
124 	{ STM32F4_RCC_APB2ENR, 21,	"spi6",		"apb2_div" },
125 	{ STM32F4_RCC_APB2ENR, 22,	"sai1",		"apb2_div" },
126 	{ STM32F4_RCC_APB2ENR, 26,	"ltdc",		"apb2_div" },
127 };
128 
129 static const struct stm32f4_gate_data stm32f469_gates[] __initconst = {
130 	{ STM32F4_RCC_AHB1ENR,  0,	"gpioa",	"ahb_div" },
131 	{ STM32F4_RCC_AHB1ENR,  1,	"gpiob",	"ahb_div" },
132 	{ STM32F4_RCC_AHB1ENR,  2,	"gpioc",	"ahb_div" },
133 	{ STM32F4_RCC_AHB1ENR,  3,	"gpiod",	"ahb_div" },
134 	{ STM32F4_RCC_AHB1ENR,  4,	"gpioe",	"ahb_div" },
135 	{ STM32F4_RCC_AHB1ENR,  5,	"gpiof",	"ahb_div" },
136 	{ STM32F4_RCC_AHB1ENR,  6,	"gpiog",	"ahb_div" },
137 	{ STM32F4_RCC_AHB1ENR,  7,	"gpioh",	"ahb_div" },
138 	{ STM32F4_RCC_AHB1ENR,  8,	"gpioi",	"ahb_div" },
139 	{ STM32F4_RCC_AHB1ENR,  9,	"gpioj",	"ahb_div" },
140 	{ STM32F4_RCC_AHB1ENR, 10,	"gpiok",	"ahb_div" },
141 	{ STM32F4_RCC_AHB1ENR, 12,	"crc",		"ahb_div" },
142 	{ STM32F4_RCC_AHB1ENR, 18,	"bkpsra",	"ahb_div" },
143 	{ STM32F4_RCC_AHB1ENR, 20,	"ccmdatam",	"ahb_div" },
144 	{ STM32F4_RCC_AHB1ENR, 21,	"dma1",		"ahb_div" },
145 	{ STM32F4_RCC_AHB1ENR, 22,	"dma2",		"ahb_div" },
146 	{ STM32F4_RCC_AHB1ENR, 23,	"dma2d",	"ahb_div" },
147 	{ STM32F4_RCC_AHB1ENR, 25,	"ethmac",	"ahb_div" },
148 	{ STM32F4_RCC_AHB1ENR, 26,	"ethmactx",	"ahb_div" },
149 	{ STM32F4_RCC_AHB1ENR, 27,	"ethmacrx",	"ahb_div" },
150 	{ STM32F4_RCC_AHB1ENR, 28,	"ethmacptp",	"ahb_div" },
151 	{ STM32F4_RCC_AHB1ENR, 29,	"otghs",	"ahb_div" },
152 	{ STM32F4_RCC_AHB1ENR, 30,	"otghsulpi",	"ahb_div" },
153 
154 	{ STM32F4_RCC_AHB2ENR,  0,	"dcmi",		"ahb_div" },
155 	{ STM32F4_RCC_AHB2ENR,  4,	"cryp",		"ahb_div" },
156 	{ STM32F4_RCC_AHB2ENR,  5,	"hash",		"ahb_div" },
157 	{ STM32F4_RCC_AHB2ENR,  6,	"rng",		"pll48" },
158 	{ STM32F4_RCC_AHB2ENR,  7,	"otgfs",	"pll48" },
159 
160 	{ STM32F4_RCC_AHB3ENR,  0,	"fmc",		"ahb_div",
161 		CLK_IGNORE_UNUSED },
162 	{ STM32F4_RCC_AHB3ENR,  1,	"qspi",		"ahb_div",
163 		CLK_IGNORE_UNUSED },
164 
165 	{ STM32F4_RCC_APB1ENR,  0,	"tim2",		"apb1_mul" },
166 	{ STM32F4_RCC_APB1ENR,  1,	"tim3",		"apb1_mul" },
167 	{ STM32F4_RCC_APB1ENR,  2,	"tim4",		"apb1_mul" },
168 	{ STM32F4_RCC_APB1ENR,  3,	"tim5",		"apb1_mul" },
169 	{ STM32F4_RCC_APB1ENR,  4,	"tim6",		"apb1_mul" },
170 	{ STM32F4_RCC_APB1ENR,  5,	"tim7",		"apb1_mul" },
171 	{ STM32F4_RCC_APB1ENR,  6,	"tim12",	"apb1_mul" },
172 	{ STM32F4_RCC_APB1ENR,  7,	"tim13",	"apb1_mul" },
173 	{ STM32F4_RCC_APB1ENR,  8,	"tim14",	"apb1_mul" },
174 	{ STM32F4_RCC_APB1ENR, 11,	"wwdg",		"apb1_div" },
175 	{ STM32F4_RCC_APB1ENR, 14,	"spi2",		"apb1_div" },
176 	{ STM32F4_RCC_APB1ENR, 15,	"spi3",		"apb1_div" },
177 	{ STM32F4_RCC_APB1ENR, 17,	"uart2",	"apb1_div" },
178 	{ STM32F4_RCC_APB1ENR, 18,	"uart3",	"apb1_div" },
179 	{ STM32F4_RCC_APB1ENR, 19,	"uart4",	"apb1_div" },
180 	{ STM32F4_RCC_APB1ENR, 20,	"uart5",	"apb1_div" },
181 	{ STM32F4_RCC_APB1ENR, 21,	"i2c1",		"apb1_div" },
182 	{ STM32F4_RCC_APB1ENR, 22,	"i2c2",		"apb1_div" },
183 	{ STM32F4_RCC_APB1ENR, 23,	"i2c3",		"apb1_div" },
184 	{ STM32F4_RCC_APB1ENR, 25,	"can1",		"apb1_div" },
185 	{ STM32F4_RCC_APB1ENR, 26,	"can2",		"apb1_div" },
186 	{ STM32F4_RCC_APB1ENR, 28,	"pwr",		"apb1_div" },
187 	{ STM32F4_RCC_APB1ENR, 29,	"dac",		"apb1_div" },
188 	{ STM32F4_RCC_APB1ENR, 30,	"uart7",	"apb1_div" },
189 	{ STM32F4_RCC_APB1ENR, 31,	"uart8",	"apb1_div" },
190 
191 	{ STM32F4_RCC_APB2ENR,  0,	"tim1",		"apb2_mul" },
192 	{ STM32F4_RCC_APB2ENR,  1,	"tim8",		"apb2_mul" },
193 	{ STM32F4_RCC_APB2ENR,  4,	"usart1",	"apb2_div" },
194 	{ STM32F4_RCC_APB2ENR,  5,	"usart6",	"apb2_div" },
195 	{ STM32F4_RCC_APB2ENR,  8,	"adc1",		"apb2_div" },
196 	{ STM32F4_RCC_APB2ENR,  9,	"adc2",		"apb2_div" },
197 	{ STM32F4_RCC_APB2ENR, 10,	"adc3",		"apb2_div" },
198 	{ STM32F4_RCC_APB2ENR, 11,	"sdio",		"pll48" },
199 	{ STM32F4_RCC_APB2ENR, 12,	"spi1",		"apb2_div" },
200 	{ STM32F4_RCC_APB2ENR, 13,	"spi4",		"apb2_div" },
201 	{ STM32F4_RCC_APB2ENR, 14,	"syscfg",	"apb2_div" },
202 	{ STM32F4_RCC_APB2ENR, 16,	"tim9",		"apb2_mul" },
203 	{ STM32F4_RCC_APB2ENR, 17,	"tim10",	"apb2_mul" },
204 	{ STM32F4_RCC_APB2ENR, 18,	"tim11",	"apb2_mul" },
205 	{ STM32F4_RCC_APB2ENR, 20,	"spi5",		"apb2_div" },
206 	{ STM32F4_RCC_APB2ENR, 21,	"spi6",		"apb2_div" },
207 	{ STM32F4_RCC_APB2ENR, 22,	"sai1",		"apb2_div" },
208 	{ STM32F4_RCC_APB2ENR, 26,	"ltdc",		"apb2_div" },
209 };
210 
211 enum { SYSTICK, FCLK, CLK_LSI, CLK_LSE, CLK_HSE_RTC, CLK_RTC, END_PRIMARY_CLK };
212 
213 /*
214  * This bitmask tells us which bit offsets (0..192) on STM32F4[23]xxx
215  * have gate bits associated with them. Its combined hweight is 71.
216  */
217 #define MAX_GATE_MAP 3
218 
219 static const u64 stm32f42xx_gate_map[MAX_GATE_MAP] = { 0x000000f17ef417ffull,
220 						       0x0000000000000001ull,
221 						       0x04777f33f6fec9ffull };
222 
223 static const u64 stm32f46xx_gate_map[MAX_GATE_MAP] = { 0x000000f17ef417ffull,
224 						       0x0000000000000003ull,
225 						       0x0c777f33f6fec9ffull };
226 
227 static const u64 *stm32f4_gate_map;
228 
229 static struct clk_hw **clks;
230 
231 static DEFINE_SPINLOCK(stm32f4_clk_lock);
232 static void __iomem *base;
233 
234 static struct regmap *pdrm;
235 
236 /*
237  * "Multiplier" device for APBx clocks.
238  *
239  * The APBx dividers are power-of-two dividers and, if *not* running in 1:1
240  * mode, they also tap out the one of the low order state bits to run the
241  * timers. ST datasheets represent this feature as a (conditional) clock
242  * multiplier.
243  */
244 struct clk_apb_mul {
245 	struct clk_hw hw;
246 	u8 bit_idx;
247 };
248 
249 #define to_clk_apb_mul(_hw) container_of(_hw, struct clk_apb_mul, hw)
250 
251 static unsigned long clk_apb_mul_recalc_rate(struct clk_hw *hw,
252 					     unsigned long parent_rate)
253 {
254 	struct clk_apb_mul *am = to_clk_apb_mul(hw);
255 
256 	if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
257 		return parent_rate * 2;
258 
259 	return parent_rate;
260 }
261 
262 static long clk_apb_mul_round_rate(struct clk_hw *hw, unsigned long rate,
263 				   unsigned long *prate)
264 {
265 	struct clk_apb_mul *am = to_clk_apb_mul(hw);
266 	unsigned long mult = 1;
267 
268 	if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
269 		mult = 2;
270 
271 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
272 		unsigned long best_parent = rate / mult;
273 
274 		*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
275 	}
276 
277 	return *prate * mult;
278 }
279 
280 static int clk_apb_mul_set_rate(struct clk_hw *hw, unsigned long rate,
281 				unsigned long parent_rate)
282 {
283 	/*
284 	 * We must report success but we can do so unconditionally because
285 	 * clk_apb_mul_round_rate returns values that ensure this call is a
286 	 * nop.
287 	 */
288 
289 	return 0;
290 }
291 
292 static const struct clk_ops clk_apb_mul_factor_ops = {
293 	.round_rate = clk_apb_mul_round_rate,
294 	.set_rate = clk_apb_mul_set_rate,
295 	.recalc_rate = clk_apb_mul_recalc_rate,
296 };
297 
298 static struct clk *clk_register_apb_mul(struct device *dev, const char *name,
299 					const char *parent_name,
300 					unsigned long flags, u8 bit_idx)
301 {
302 	struct clk_apb_mul *am;
303 	struct clk_init_data init;
304 	struct clk *clk;
305 
306 	am = kzalloc(sizeof(*am), GFP_KERNEL);
307 	if (!am)
308 		return ERR_PTR(-ENOMEM);
309 
310 	am->bit_idx = bit_idx;
311 	am->hw.init = &init;
312 
313 	init.name = name;
314 	init.ops = &clk_apb_mul_factor_ops;
315 	init.flags = flags;
316 	init.parent_names = &parent_name;
317 	init.num_parents = 1;
318 
319 	clk = clk_register(dev, &am->hw);
320 
321 	if (IS_ERR(clk))
322 		kfree(am);
323 
324 	return clk;
325 }
326 
327 /*
328  * Decode current PLL state and (statically) model the state we inherit from
329  * the bootloader.
330  */
331 static void stm32f4_rcc_register_pll(const char *hse_clk, const char *hsi_clk)
332 {
333 	unsigned long pllcfgr = readl(base + STM32F4_RCC_PLLCFGR);
334 
335 	unsigned long pllm   = pllcfgr & 0x3f;
336 	unsigned long plln   = (pllcfgr >> 6) & 0x1ff;
337 	unsigned long pllp   = BIT(((pllcfgr >> 16) & 3) + 1);
338 	const char   *pllsrc = pllcfgr & BIT(22) ? hse_clk : hsi_clk;
339 	unsigned long pllq   = (pllcfgr >> 24) & 0xf;
340 
341 	clk_register_fixed_factor(NULL, "vco", pllsrc, 0, plln, pllm);
342 	clk_register_fixed_factor(NULL, "pll", "vco", 0, 1, pllp);
343 	clk_register_fixed_factor(NULL, "pll48", "vco", 0, 1, pllq);
344 }
345 
346 /*
347  * Converts the primary and secondary indices (as they appear in DT) to an
348  * offset into our struct clock array.
349  */
350 static int stm32f4_rcc_lookup_clk_idx(u8 primary, u8 secondary)
351 {
352 	u64 table[MAX_GATE_MAP];
353 
354 	if (primary == 1) {
355 		if (WARN_ON(secondary >= END_PRIMARY_CLK))
356 			return -EINVAL;
357 		return secondary;
358 	}
359 
360 	memcpy(table, stm32f4_gate_map, sizeof(table));
361 
362 	/* only bits set in table can be used as indices */
363 	if (WARN_ON(secondary >= BITS_PER_BYTE * sizeof(table) ||
364 		    0 == (table[BIT_ULL_WORD(secondary)] &
365 			  BIT_ULL_MASK(secondary))))
366 		return -EINVAL;
367 
368 	/* mask out bits above our current index */
369 	table[BIT_ULL_WORD(secondary)] &=
370 	    GENMASK_ULL(secondary % BITS_PER_LONG_LONG, 0);
371 
372 	return END_PRIMARY_CLK - 1 + hweight64(table[0]) +
373 	       (BIT_ULL_WORD(secondary) >= 1 ? hweight64(table[1]) : 0) +
374 	       (BIT_ULL_WORD(secondary) >= 2 ? hweight64(table[2]) : 0);
375 }
376 
377 static struct clk_hw *
378 stm32f4_rcc_lookup_clk(struct of_phandle_args *clkspec, void *data)
379 {
380 	int i = stm32f4_rcc_lookup_clk_idx(clkspec->args[0], clkspec->args[1]);
381 
382 	if (i < 0)
383 		return ERR_PTR(-EINVAL);
384 
385 	return clks[i];
386 }
387 
388 #define to_rgclk(_rgate) container_of(_rgate, struct stm32_rgate, gate)
389 
390 static inline void disable_power_domain_write_protection(void)
391 {
392 	if (pdrm)
393 		regmap_update_bits(pdrm, 0x00, (1 << 8), (1 << 8));
394 }
395 
396 static inline void enable_power_domain_write_protection(void)
397 {
398 	if (pdrm)
399 		regmap_update_bits(pdrm, 0x00, (1 << 8), (0 << 8));
400 }
401 
402 static inline void sofware_reset_backup_domain(void)
403 {
404 	unsigned long val;
405 
406 	val = readl(base + STM32F4_RCC_BDCR);
407 	writel(val | BIT(16), base + STM32F4_RCC_BDCR);
408 	writel(val & ~BIT(16), base + STM32F4_RCC_BDCR);
409 }
410 
411 struct stm32_rgate {
412 	struct	clk_gate gate;
413 	u8	bit_rdy_idx;
414 };
415 
416 #define RTC_TIMEOUT 1000000
417 
418 static int rgclk_enable(struct clk_hw *hw)
419 {
420 	struct clk_gate *gate = to_clk_gate(hw);
421 	struct stm32_rgate *rgate = to_rgclk(gate);
422 	u32 reg;
423 	int ret;
424 
425 	disable_power_domain_write_protection();
426 
427 	clk_gate_ops.enable(hw);
428 
429 	ret = readl_relaxed_poll_timeout_atomic(gate->reg, reg,
430 			reg & rgate->bit_rdy_idx, 1000, RTC_TIMEOUT);
431 
432 	enable_power_domain_write_protection();
433 	return ret;
434 }
435 
436 static void rgclk_disable(struct clk_hw *hw)
437 {
438 	clk_gate_ops.disable(hw);
439 }
440 
441 static int rgclk_is_enabled(struct clk_hw *hw)
442 {
443 	return clk_gate_ops.is_enabled(hw);
444 }
445 
446 static const struct clk_ops rgclk_ops = {
447 	.enable = rgclk_enable,
448 	.disable = rgclk_disable,
449 	.is_enabled = rgclk_is_enabled,
450 };
451 
452 static struct clk_hw *clk_register_rgate(struct device *dev, const char *name,
453 		const char *parent_name, unsigned long flags,
454 		void __iomem *reg, u8 bit_idx, u8 bit_rdy_idx,
455 		u8 clk_gate_flags, spinlock_t *lock)
456 {
457 	struct stm32_rgate *rgate;
458 	struct clk_init_data init = { NULL };
459 	struct clk_hw *hw;
460 	int ret;
461 
462 	rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
463 	if (!rgate)
464 		return ERR_PTR(-ENOMEM);
465 
466 	init.name = name;
467 	init.ops = &rgclk_ops;
468 	init.flags = flags;
469 	init.parent_names = &parent_name;
470 	init.num_parents = 1;
471 
472 	rgate->bit_rdy_idx = bit_rdy_idx;
473 
474 	rgate->gate.lock = lock;
475 	rgate->gate.reg = reg;
476 	rgate->gate.bit_idx = bit_idx;
477 	rgate->gate.hw.init = &init;
478 
479 	hw = &rgate->gate.hw;
480 	ret = clk_hw_register(dev, hw);
481 	if (ret) {
482 		kfree(rgate);
483 		hw = ERR_PTR(ret);
484 	}
485 
486 	return hw;
487 }
488 
489 static int cclk_gate_enable(struct clk_hw *hw)
490 {
491 	int ret;
492 
493 	disable_power_domain_write_protection();
494 
495 	ret = clk_gate_ops.enable(hw);
496 
497 	enable_power_domain_write_protection();
498 
499 	return ret;
500 }
501 
502 static void cclk_gate_disable(struct clk_hw *hw)
503 {
504 	disable_power_domain_write_protection();
505 
506 	clk_gate_ops.disable(hw);
507 
508 	enable_power_domain_write_protection();
509 }
510 
511 static int cclk_gate_is_enabled(struct clk_hw *hw)
512 {
513 	return clk_gate_ops.is_enabled(hw);
514 }
515 
516 static const struct clk_ops cclk_gate_ops = {
517 	.enable		= cclk_gate_enable,
518 	.disable	= cclk_gate_disable,
519 	.is_enabled	= cclk_gate_is_enabled,
520 };
521 
522 static u8 cclk_mux_get_parent(struct clk_hw *hw)
523 {
524 	return clk_mux_ops.get_parent(hw);
525 }
526 
527 static int cclk_mux_set_parent(struct clk_hw *hw, u8 index)
528 {
529 	int ret;
530 
531 	disable_power_domain_write_protection();
532 
533 	sofware_reset_backup_domain();
534 
535 	ret = clk_mux_ops.set_parent(hw, index);
536 
537 	enable_power_domain_write_protection();
538 
539 	return ret;
540 }
541 
542 static const struct clk_ops cclk_mux_ops = {
543 	.get_parent = cclk_mux_get_parent,
544 	.set_parent = cclk_mux_set_parent,
545 };
546 
547 static struct clk_hw *stm32_register_cclk(struct device *dev, const char *name,
548 		const char * const *parent_names, int num_parents,
549 		void __iomem *reg, u8 bit_idx, u8 shift, unsigned long flags,
550 		spinlock_t *lock)
551 {
552 	struct clk_hw *hw;
553 	struct clk_gate *gate;
554 	struct clk_mux *mux;
555 
556 	gate = kzalloc(sizeof(*gate), GFP_KERNEL);
557 	if (!gate) {
558 		hw = ERR_PTR(-EINVAL);
559 		goto fail;
560 	}
561 
562 	mux = kzalloc(sizeof(*mux), GFP_KERNEL);
563 	if (!mux) {
564 		kfree(gate);
565 		hw = ERR_PTR(-EINVAL);
566 		goto fail;
567 	}
568 
569 	gate->reg = reg;
570 	gate->bit_idx = bit_idx;
571 	gate->flags = 0;
572 	gate->lock = lock;
573 
574 	mux->reg = reg;
575 	mux->shift = shift;
576 	mux->mask = 3;
577 	mux->flags = 0;
578 
579 	hw = clk_hw_register_composite(dev, name, parent_names, num_parents,
580 			&mux->hw, &cclk_mux_ops,
581 			NULL, NULL,
582 			&gate->hw, &cclk_gate_ops,
583 			flags);
584 
585 	if (IS_ERR(hw)) {
586 		kfree(gate);
587 		kfree(mux);
588 	}
589 
590 fail:
591 	return hw;
592 }
593 
594 static const char *sys_parents[] __initdata =   { "hsi", NULL, "pll" };
595 
596 static const struct clk_div_table ahb_div_table[] = {
597 	{ 0x0,   1 }, { 0x1,   1 }, { 0x2,   1 }, { 0x3,   1 },
598 	{ 0x4,   1 }, { 0x5,   1 }, { 0x6,   1 }, { 0x7,   1 },
599 	{ 0x8,   2 }, { 0x9,   4 }, { 0xa,   8 }, { 0xb,  16 },
600 	{ 0xc,  64 }, { 0xd, 128 }, { 0xe, 256 }, { 0xf, 512 },
601 	{ 0 },
602 };
603 
604 static const struct clk_div_table apb_div_table[] = {
605 	{ 0,  1 }, { 0,  1 }, { 0,  1 }, { 0,  1 },
606 	{ 4,  2 }, { 5,  4 }, { 6,  8 }, { 7, 16 },
607 	{ 0 },
608 };
609 
610 static const char *rtc_parents[4] = {
611 	"no-clock", "lse", "lsi", "hse-rtc"
612 };
613 
614 struct stm32f4_clk_data {
615 	const struct stm32f4_gate_data *gates_data;
616 	const u64 *gates_map;
617 	int gates_num;
618 };
619 
620 static const struct stm32f4_clk_data stm32f429_clk_data = {
621 	.gates_data	= stm32f429_gates,
622 	.gates_map	= stm32f42xx_gate_map,
623 	.gates_num	= ARRAY_SIZE(stm32f429_gates),
624 };
625 
626 static const struct stm32f4_clk_data stm32f469_clk_data = {
627 	.gates_data	= stm32f469_gates,
628 	.gates_map	= stm32f46xx_gate_map,
629 	.gates_num	= ARRAY_SIZE(stm32f469_gates),
630 };
631 
632 static const struct of_device_id stm32f4_of_match[] = {
633 	{
634 		.compatible = "st,stm32f42xx-rcc",
635 		.data = &stm32f429_clk_data
636 	},
637 	{
638 		.compatible = "st,stm32f469-rcc",
639 		.data = &stm32f469_clk_data
640 	},
641 	{}
642 };
643 
644 static void __init stm32f4_rcc_init(struct device_node *np)
645 {
646 	const char *hse_clk;
647 	int n;
648 	const struct of_device_id *match;
649 	const struct stm32f4_clk_data *data;
650 
651 	base = of_iomap(np, 0);
652 	if (!base) {
653 		pr_err("%s: unable to map resource", np->name);
654 		return;
655 	}
656 
657 	pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
658 	if (IS_ERR(pdrm)) {
659 		pdrm = NULL;
660 		pr_warn("%s: Unable to get syscfg\n", __func__);
661 	}
662 
663 	match = of_match_node(stm32f4_of_match, np);
664 	if (WARN_ON(!match))
665 		return;
666 
667 	data = match->data;
668 
669 	clks = kmalloc_array(data->gates_num + END_PRIMARY_CLK,
670 			sizeof(*clks), GFP_KERNEL);
671 	if (!clks)
672 		goto fail;
673 
674 	stm32f4_gate_map = data->gates_map;
675 
676 	hse_clk = of_clk_get_parent_name(np, 0);
677 
678 	clk_register_fixed_rate_with_accuracy(NULL, "hsi", NULL, 0,
679 			16000000, 160000);
680 	stm32f4_rcc_register_pll(hse_clk, "hsi");
681 
682 	sys_parents[1] = hse_clk;
683 	clk_register_mux_table(
684 	    NULL, "sys", sys_parents, ARRAY_SIZE(sys_parents), 0,
685 	    base + STM32F4_RCC_CFGR, 0, 3, 0, NULL, &stm32f4_clk_lock);
686 
687 	clk_register_divider_table(NULL, "ahb_div", "sys",
688 				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
689 				   4, 4, 0, ahb_div_table, &stm32f4_clk_lock);
690 
691 	clk_register_divider_table(NULL, "apb1_div", "ahb_div",
692 				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
693 				   10, 3, 0, apb_div_table, &stm32f4_clk_lock);
694 	clk_register_apb_mul(NULL, "apb1_mul", "apb1_div",
695 			     CLK_SET_RATE_PARENT, 12);
696 
697 	clk_register_divider_table(NULL, "apb2_div", "ahb_div",
698 				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
699 				   13, 3, 0, apb_div_table, &stm32f4_clk_lock);
700 	clk_register_apb_mul(NULL, "apb2_mul", "apb2_div",
701 			     CLK_SET_RATE_PARENT, 15);
702 
703 	clks[SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick", "ahb_div",
704 						  0, 1, 8);
705 	clks[FCLK] = clk_hw_register_fixed_factor(NULL, "fclk", "ahb_div",
706 					       0, 1, 1);
707 
708 	for (n = 0; n < data->gates_num; n++) {
709 		const struct stm32f4_gate_data *gd;
710 		unsigned int secondary;
711 		int idx;
712 
713 		gd = &data->gates_data[n];
714 		secondary = 8 * (gd->offset - STM32F4_RCC_AHB1ENR) +
715 			gd->bit_idx;
716 		idx = stm32f4_rcc_lookup_clk_idx(0, secondary);
717 
718 		if (idx < 0)
719 			goto fail;
720 
721 		clks[idx] = clk_hw_register_gate(
722 		    NULL, gd->name, gd->parent_name, gd->flags,
723 		    base + gd->offset, gd->bit_idx, 0, &stm32f4_clk_lock);
724 
725 		if (IS_ERR(clks[idx])) {
726 			pr_err("%s: Unable to register leaf clock %s\n",
727 			       np->full_name, gd->name);
728 			goto fail;
729 		}
730 	}
731 
732 	clks[CLK_LSI] = clk_register_rgate(NULL, "lsi", "clk-lsi", 0,
733 			base + STM32F4_RCC_CSR, 0, 2, 0, &stm32f4_clk_lock);
734 
735 	if (IS_ERR(clks[CLK_LSI])) {
736 		pr_err("Unable to register lsi clock\n");
737 		goto fail;
738 	}
739 
740 	clks[CLK_LSE] = clk_register_rgate(NULL, "lse", "clk-lse", 0,
741 			base + STM32F4_RCC_BDCR, 0, 2, 0, &stm32f4_clk_lock);
742 
743 	if (IS_ERR(clks[CLK_LSE])) {
744 		pr_err("Unable to register lse clock\n");
745 		goto fail;
746 	}
747 
748 	clks[CLK_HSE_RTC] = clk_hw_register_divider(NULL, "hse-rtc", "clk-hse",
749 			0, base + STM32F4_RCC_CFGR, 16, 5, 0,
750 			&stm32f4_clk_lock);
751 
752 	if (IS_ERR(clks[CLK_HSE_RTC])) {
753 		pr_err("Unable to register hse-rtc clock\n");
754 		goto fail;
755 	}
756 
757 	clks[CLK_RTC] = stm32_register_cclk(NULL, "rtc", rtc_parents, 4,
758 			base + STM32F4_RCC_BDCR, 15, 8, 0, &stm32f4_clk_lock);
759 
760 	if (IS_ERR(clks[CLK_RTC])) {
761 		pr_err("Unable to register rtc clock\n");
762 		goto fail;
763 	}
764 
765 	of_clk_add_hw_provider(np, stm32f4_rcc_lookup_clk, NULL);
766 	return;
767 fail:
768 	kfree(clks);
769 	iounmap(base);
770 }
771 CLK_OF_DECLARE(stm32f42xx_rcc, "st,stm32f42xx-rcc", stm32f4_rcc_init);
772 CLK_OF_DECLARE(stm32f46xx_rcc, "st,stm32f469-rcc", stm32f4_rcc_init);
773