xref: /openbmc/linux/drivers/clk/clk-stm32f4.c (revision a8fe58ce)
1 /*
2  * Author: Daniel Thompson <daniel.thompson@linaro.org>
3  *
4  * Inspired by clk-asm9260.c .
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/clk-provider.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 
27 #define STM32F4_RCC_PLLCFGR		0x04
28 #define STM32F4_RCC_CFGR		0x08
29 #define STM32F4_RCC_AHB1ENR		0x30
30 #define STM32F4_RCC_AHB2ENR		0x34
31 #define STM32F4_RCC_AHB3ENR		0x38
32 #define STM32F4_RCC_APB1ENR		0x40
33 #define STM32F4_RCC_APB2ENR		0x44
34 
35 struct stm32f4_gate_data {
36 	u8	offset;
37 	u8	bit_idx;
38 	const char *name;
39 	const char *parent_name;
40 	unsigned long flags;
41 };
42 
43 static const struct stm32f4_gate_data stm32f4_gates[] __initconst = {
44 	{ STM32F4_RCC_AHB1ENR,  0,	"gpioa",	"ahb_div" },
45 	{ STM32F4_RCC_AHB1ENR,  1,	"gpiob",	"ahb_div" },
46 	{ STM32F4_RCC_AHB1ENR,  2,	"gpioc",	"ahb_div" },
47 	{ STM32F4_RCC_AHB1ENR,  3,	"gpiod",	"ahb_div" },
48 	{ STM32F4_RCC_AHB1ENR,  4,	"gpioe",	"ahb_div" },
49 	{ STM32F4_RCC_AHB1ENR,  5,	"gpiof",	"ahb_div" },
50 	{ STM32F4_RCC_AHB1ENR,  6,	"gpiog",	"ahb_div" },
51 	{ STM32F4_RCC_AHB1ENR,  7,	"gpioh",	"ahb_div" },
52 	{ STM32F4_RCC_AHB1ENR,  8,	"gpioi",	"ahb_div" },
53 	{ STM32F4_RCC_AHB1ENR,  9,	"gpioj",	"ahb_div" },
54 	{ STM32F4_RCC_AHB1ENR, 10,	"gpiok",	"ahb_div" },
55 	{ STM32F4_RCC_AHB1ENR, 12,	"crc",		"ahb_div" },
56 	{ STM32F4_RCC_AHB1ENR, 18,	"bkpsra",	"ahb_div" },
57 	{ STM32F4_RCC_AHB1ENR, 20,	"ccmdatam",	"ahb_div" },
58 	{ STM32F4_RCC_AHB1ENR, 21,	"dma1",		"ahb_div" },
59 	{ STM32F4_RCC_AHB1ENR, 22,	"dma2",		"ahb_div" },
60 	{ STM32F4_RCC_AHB1ENR, 23,	"dma2d",	"ahb_div" },
61 	{ STM32F4_RCC_AHB1ENR, 25,	"ethmac",	"ahb_div" },
62 	{ STM32F4_RCC_AHB1ENR, 26,	"ethmactx",	"ahb_div" },
63 	{ STM32F4_RCC_AHB1ENR, 27,	"ethmacrx",	"ahb_div" },
64 	{ STM32F4_RCC_AHB1ENR, 28,	"ethmacptp",	"ahb_div" },
65 	{ STM32F4_RCC_AHB1ENR, 29,	"otghs",	"ahb_div" },
66 	{ STM32F4_RCC_AHB1ENR, 30,	"otghsulpi",	"ahb_div" },
67 
68 	{ STM32F4_RCC_AHB2ENR,  0,	"dcmi",		"ahb_div" },
69 	{ STM32F4_RCC_AHB2ENR,  4,	"cryp",		"ahb_div" },
70 	{ STM32F4_RCC_AHB2ENR,  5,	"hash",		"ahb_div" },
71 	{ STM32F4_RCC_AHB2ENR,  6,	"rng",		"pll48" },
72 	{ STM32F4_RCC_AHB2ENR,  7,	"otgfs",	"pll48" },
73 
74 	{ STM32F4_RCC_AHB3ENR,  0,	"fmc",		"ahb_div",
75 		CLK_IGNORE_UNUSED },
76 
77 	{ STM32F4_RCC_APB1ENR,  0,	"tim2",		"apb1_mul" },
78 	{ STM32F4_RCC_APB1ENR,  1,	"tim3",		"apb1_mul" },
79 	{ STM32F4_RCC_APB1ENR,  2,	"tim4",		"apb1_mul" },
80 	{ STM32F4_RCC_APB1ENR,  3,	"tim5",		"apb1_mul" },
81 	{ STM32F4_RCC_APB1ENR,  4,	"tim6",		"apb1_mul" },
82 	{ STM32F4_RCC_APB1ENR,  5,	"tim7",		"apb1_mul" },
83 	{ STM32F4_RCC_APB1ENR,  6,	"tim12",	"apb1_mul" },
84 	{ STM32F4_RCC_APB1ENR,  7,	"tim13",	"apb1_mul" },
85 	{ STM32F4_RCC_APB1ENR,  8,	"tim14",	"apb1_mul" },
86 	{ STM32F4_RCC_APB1ENR, 11,	"wwdg",		"apb1_div" },
87 	{ STM32F4_RCC_APB1ENR, 14,	"spi2",		"apb1_div" },
88 	{ STM32F4_RCC_APB1ENR, 15,	"spi3",		"apb1_div" },
89 	{ STM32F4_RCC_APB1ENR, 17,	"uart2",	"apb1_div" },
90 	{ STM32F4_RCC_APB1ENR, 18,	"uart3",	"apb1_div" },
91 	{ STM32F4_RCC_APB1ENR, 19,	"uart4",	"apb1_div" },
92 	{ STM32F4_RCC_APB1ENR, 20,	"uart5",	"apb1_div" },
93 	{ STM32F4_RCC_APB1ENR, 21,	"i2c1",		"apb1_div" },
94 	{ STM32F4_RCC_APB1ENR, 22,	"i2c2",		"apb1_div" },
95 	{ STM32F4_RCC_APB1ENR, 23,	"i2c3",		"apb1_div" },
96 	{ STM32F4_RCC_APB1ENR, 25,	"can1",		"apb1_div" },
97 	{ STM32F4_RCC_APB1ENR, 26,	"can2",		"apb1_div" },
98 	{ STM32F4_RCC_APB1ENR, 28,	"pwr",		"apb1_div" },
99 	{ STM32F4_RCC_APB1ENR, 29,	"dac",		"apb1_div" },
100 	{ STM32F4_RCC_APB1ENR, 30,	"uart7",	"apb1_div" },
101 	{ STM32F4_RCC_APB1ENR, 31,	"uart8",	"apb1_div" },
102 
103 	{ STM32F4_RCC_APB2ENR,  0,	"tim1",		"apb2_mul" },
104 	{ STM32F4_RCC_APB2ENR,  1,	"tim8",		"apb2_mul" },
105 	{ STM32F4_RCC_APB2ENR,  4,	"usart1",	"apb2_div" },
106 	{ STM32F4_RCC_APB2ENR,  5,	"usart6",	"apb2_div" },
107 	{ STM32F4_RCC_APB2ENR,  8,	"adc1",		"apb2_div" },
108 	{ STM32F4_RCC_APB2ENR,  9,	"adc2",		"apb2_div" },
109 	{ STM32F4_RCC_APB2ENR, 10,	"adc3",		"apb2_div" },
110 	{ STM32F4_RCC_APB2ENR, 11,	"sdio",		"pll48" },
111 	{ STM32F4_RCC_APB2ENR, 12,	"spi1",		"apb2_div" },
112 	{ STM32F4_RCC_APB2ENR, 13,	"spi4",		"apb2_div" },
113 	{ STM32F4_RCC_APB2ENR, 14,	"syscfg",	"apb2_div" },
114 	{ STM32F4_RCC_APB2ENR, 16,	"tim9",		"apb2_mul" },
115 	{ STM32F4_RCC_APB2ENR, 17,	"tim10",	"apb2_mul" },
116 	{ STM32F4_RCC_APB2ENR, 18,	"tim11",	"apb2_mul" },
117 	{ STM32F4_RCC_APB2ENR, 20,	"spi5",		"apb2_div" },
118 	{ STM32F4_RCC_APB2ENR, 21,	"spi6",		"apb2_div" },
119 	{ STM32F4_RCC_APB2ENR, 22,	"sai1",		"apb2_div" },
120 	{ STM32F4_RCC_APB2ENR, 26,	"ltdc",		"apb2_div" },
121 };
122 
123 /*
124  * MAX_CLKS is the maximum value in the enumeration below plus the combined
125  * hweight of stm32f42xx_gate_map (plus one).
126  */
127 #define MAX_CLKS 74
128 
129 enum { SYSTICK, FCLK };
130 
131 /*
132  * This bitmask tells us which bit offsets (0..192) on STM32F4[23]xxx
133  * have gate bits associated with them. Its combined hweight is 71.
134  */
135 static const u64 stm32f42xx_gate_map[] = { 0x000000f17ef417ffull,
136 					   0x0000000000000001ull,
137 					   0x04777f33f6fec9ffull };
138 
139 static struct clk *clks[MAX_CLKS];
140 static DEFINE_SPINLOCK(stm32f4_clk_lock);
141 static void __iomem *base;
142 
143 /*
144  * "Multiplier" device for APBx clocks.
145  *
146  * The APBx dividers are power-of-two dividers and, if *not* running in 1:1
147  * mode, they also tap out the one of the low order state bits to run the
148  * timers. ST datasheets represent this feature as a (conditional) clock
149  * multiplier.
150  */
151 struct clk_apb_mul {
152 	struct clk_hw hw;
153 	u8 bit_idx;
154 };
155 
156 #define to_clk_apb_mul(_hw) container_of(_hw, struct clk_apb_mul, hw)
157 
158 static unsigned long clk_apb_mul_recalc_rate(struct clk_hw *hw,
159 					     unsigned long parent_rate)
160 {
161 	struct clk_apb_mul *am = to_clk_apb_mul(hw);
162 
163 	if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
164 		return parent_rate * 2;
165 
166 	return parent_rate;
167 }
168 
169 static long clk_apb_mul_round_rate(struct clk_hw *hw, unsigned long rate,
170 				   unsigned long *prate)
171 {
172 	struct clk_apb_mul *am = to_clk_apb_mul(hw);
173 	unsigned long mult = 1;
174 
175 	if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
176 		mult = 2;
177 
178 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
179 		unsigned long best_parent = rate / mult;
180 
181 		*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
182 	}
183 
184 	return *prate * mult;
185 }
186 
187 static int clk_apb_mul_set_rate(struct clk_hw *hw, unsigned long rate,
188 				unsigned long parent_rate)
189 {
190 	/*
191 	 * We must report success but we can do so unconditionally because
192 	 * clk_apb_mul_round_rate returns values that ensure this call is a
193 	 * nop.
194 	 */
195 
196 	return 0;
197 }
198 
199 static const struct clk_ops clk_apb_mul_factor_ops = {
200 	.round_rate = clk_apb_mul_round_rate,
201 	.set_rate = clk_apb_mul_set_rate,
202 	.recalc_rate = clk_apb_mul_recalc_rate,
203 };
204 
205 static struct clk *clk_register_apb_mul(struct device *dev, const char *name,
206 					const char *parent_name,
207 					unsigned long flags, u8 bit_idx)
208 {
209 	struct clk_apb_mul *am;
210 	struct clk_init_data init;
211 	struct clk *clk;
212 
213 	am = kzalloc(sizeof(*am), GFP_KERNEL);
214 	if (!am)
215 		return ERR_PTR(-ENOMEM);
216 
217 	am->bit_idx = bit_idx;
218 	am->hw.init = &init;
219 
220 	init.name = name;
221 	init.ops = &clk_apb_mul_factor_ops;
222 	init.flags = flags;
223 	init.parent_names = &parent_name;
224 	init.num_parents = 1;
225 
226 	clk = clk_register(dev, &am->hw);
227 
228 	if (IS_ERR(clk))
229 		kfree(am);
230 
231 	return clk;
232 }
233 
234 /*
235  * Decode current PLL state and (statically) model the state we inherit from
236  * the bootloader.
237  */
238 static void stm32f4_rcc_register_pll(const char *hse_clk, const char *hsi_clk)
239 {
240 	unsigned long pllcfgr = readl(base + STM32F4_RCC_PLLCFGR);
241 
242 	unsigned long pllm   = pllcfgr & 0x3f;
243 	unsigned long plln   = (pllcfgr >> 6) & 0x1ff;
244 	unsigned long pllp   = BIT(((pllcfgr >> 16) & 3) + 1);
245 	const char   *pllsrc = pllcfgr & BIT(22) ? hse_clk : hsi_clk;
246 	unsigned long pllq   = (pllcfgr >> 24) & 0xf;
247 
248 	clk_register_fixed_factor(NULL, "vco", pllsrc, 0, plln, pllm);
249 	clk_register_fixed_factor(NULL, "pll", "vco", 0, 1, pllp);
250 	clk_register_fixed_factor(NULL, "pll48", "vco", 0, 1, pllq);
251 }
252 
253 /*
254  * Converts the primary and secondary indices (as they appear in DT) to an
255  * offset into our struct clock array.
256  */
257 static int stm32f4_rcc_lookup_clk_idx(u8 primary, u8 secondary)
258 {
259 	u64 table[ARRAY_SIZE(stm32f42xx_gate_map)];
260 
261 	if (primary == 1) {
262 		if (WARN_ON(secondary > FCLK))
263 			return -EINVAL;
264 		return secondary;
265 	}
266 
267 	memcpy(table, stm32f42xx_gate_map, sizeof(table));
268 
269 	/* only bits set in table can be used as indices */
270 	if (WARN_ON(secondary >= BITS_PER_BYTE * sizeof(table) ||
271 		    0 == (table[BIT_ULL_WORD(secondary)] &
272 			  BIT_ULL_MASK(secondary))))
273 		return -EINVAL;
274 
275 	/* mask out bits above our current index */
276 	table[BIT_ULL_WORD(secondary)] &=
277 	    GENMASK_ULL(secondary % BITS_PER_LONG_LONG, 0);
278 
279 	return FCLK + hweight64(table[0]) +
280 	       (BIT_ULL_WORD(secondary) >= 1 ? hweight64(table[1]) : 0) +
281 	       (BIT_ULL_WORD(secondary) >= 2 ? hweight64(table[2]) : 0);
282 }
283 
284 static struct clk *
285 stm32f4_rcc_lookup_clk(struct of_phandle_args *clkspec, void *data)
286 {
287 	int i = stm32f4_rcc_lookup_clk_idx(clkspec->args[0], clkspec->args[1]);
288 
289 	if (i < 0)
290 		return ERR_PTR(-EINVAL);
291 
292 	return clks[i];
293 }
294 
295 static const char *sys_parents[] __initdata =   { "hsi", NULL, "pll" };
296 
297 static const struct clk_div_table ahb_div_table[] = {
298 	{ 0x0,   1 }, { 0x1,   1 }, { 0x2,   1 }, { 0x3,   1 },
299 	{ 0x4,   1 }, { 0x5,   1 }, { 0x6,   1 }, { 0x7,   1 },
300 	{ 0x8,   2 }, { 0x9,   4 }, { 0xa,   8 }, { 0xb,  16 },
301 	{ 0xc,  64 }, { 0xd, 128 }, { 0xe, 256 }, { 0xf, 512 },
302 	{ 0 },
303 };
304 
305 static const struct clk_div_table apb_div_table[] = {
306 	{ 0,  1 }, { 0,  1 }, { 0,  1 }, { 0,  1 },
307 	{ 4,  2 }, { 5,  4 }, { 6,  8 }, { 7, 16 },
308 	{ 0 },
309 };
310 
311 static void __init stm32f4_rcc_init(struct device_node *np)
312 {
313 	const char *hse_clk;
314 	int n;
315 
316 	base = of_iomap(np, 0);
317 	if (!base) {
318 		pr_err("%s: unable to map resource", np->name);
319 		return;
320 	}
321 
322 	hse_clk = of_clk_get_parent_name(np, 0);
323 
324 	clk_register_fixed_rate_with_accuracy(NULL, "hsi", NULL, 0,
325 			16000000, 160000);
326 	stm32f4_rcc_register_pll(hse_clk, "hsi");
327 
328 	sys_parents[1] = hse_clk;
329 	clk_register_mux_table(
330 	    NULL, "sys", sys_parents, ARRAY_SIZE(sys_parents), 0,
331 	    base + STM32F4_RCC_CFGR, 0, 3, 0, NULL, &stm32f4_clk_lock);
332 
333 	clk_register_divider_table(NULL, "ahb_div", "sys",
334 				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
335 				   4, 4, 0, ahb_div_table, &stm32f4_clk_lock);
336 
337 	clk_register_divider_table(NULL, "apb1_div", "ahb_div",
338 				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
339 				   10, 3, 0, apb_div_table, &stm32f4_clk_lock);
340 	clk_register_apb_mul(NULL, "apb1_mul", "apb1_div",
341 			     CLK_SET_RATE_PARENT, 12);
342 
343 	clk_register_divider_table(NULL, "apb2_div", "ahb_div",
344 				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
345 				   13, 3, 0, apb_div_table, &stm32f4_clk_lock);
346 	clk_register_apb_mul(NULL, "apb2_mul", "apb2_div",
347 			     CLK_SET_RATE_PARENT, 15);
348 
349 	clks[SYSTICK] = clk_register_fixed_factor(NULL, "systick", "ahb_div",
350 						  0, 1, 8);
351 	clks[FCLK] = clk_register_fixed_factor(NULL, "fclk", "ahb_div",
352 					       0, 1, 1);
353 
354 	for (n = 0; n < ARRAY_SIZE(stm32f4_gates); n++) {
355 		const struct stm32f4_gate_data *gd = &stm32f4_gates[n];
356 		unsigned int secondary =
357 		    8 * (gd->offset - STM32F4_RCC_AHB1ENR) + gd->bit_idx;
358 		int idx = stm32f4_rcc_lookup_clk_idx(0, secondary);
359 
360 		if (idx < 0)
361 			goto fail;
362 
363 		clks[idx] = clk_register_gate(
364 		    NULL, gd->name, gd->parent_name, gd->flags,
365 		    base + gd->offset, gd->bit_idx, 0, &stm32f4_clk_lock);
366 
367 		if (IS_ERR(clks[n])) {
368 			pr_err("%s: Unable to register leaf clock %s\n",
369 			       np->full_name, gd->name);
370 			goto fail;
371 		}
372 	}
373 
374 	of_clk_add_provider(np, stm32f4_rcc_lookup_clk, NULL);
375 	return;
376 fail:
377 	iounmap(base);
378 }
379 CLK_OF_DECLARE(stm32f4_rcc, "st,stm32f42xx-rcc", stm32f4_rcc_init);
380