1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345 4 * Copyright (C) 2019 Topic Embedded Products 5 * Author: Mike Looijmans <mike.looijmans@topic.nl> 6 * 7 * The Si5341 has 10 outputs and 5 synthesizers. 8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs. 9 * The Si5345 is similar to the Si5341, with the addition of fractional input 10 * dividers and automatic input selection. 11 * The Si5342 and Si5344 are smaller versions of the Si5345. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/clk-provider.h> 16 #include <linux/delay.h> 17 #include <linux/gcd.h> 18 #include <linux/math64.h> 19 #include <linux/i2c.h> 20 #include <linux/module.h> 21 #include <linux/regmap.h> 22 #include <linux/slab.h> 23 #include <asm/unaligned.h> 24 25 #define SI5341_NUM_INPUTS 4 26 27 #define SI5340_MAX_NUM_OUTPUTS 4 28 #define SI5341_MAX_NUM_OUTPUTS 10 29 #define SI5342_MAX_NUM_OUTPUTS 2 30 #define SI5344_MAX_NUM_OUTPUTS 4 31 #define SI5345_MAX_NUM_OUTPUTS 10 32 33 #define SI5340_NUM_SYNTH 4 34 #define SI5341_NUM_SYNTH 5 35 #define SI5342_NUM_SYNTH 2 36 #define SI5344_NUM_SYNTH 4 37 #define SI5345_NUM_SYNTH 5 38 39 /* Range of the synthesizer fractional divider */ 40 #define SI5341_SYNTH_N_MIN 10 41 #define SI5341_SYNTH_N_MAX 4095 42 43 /* The chip can get its input clock from 3 input pins or an XTAL */ 44 45 /* There is one PLL running at 13500–14256 MHz */ 46 #define SI5341_PLL_VCO_MIN 13500000000ull 47 #define SI5341_PLL_VCO_MAX 14256000000ull 48 49 /* The 5 frequency synthesizers obtain their input from the PLL */ 50 struct clk_si5341_synth { 51 struct clk_hw hw; 52 struct clk_si5341 *data; 53 u8 index; 54 }; 55 #define to_clk_si5341_synth(_hw) \ 56 container_of(_hw, struct clk_si5341_synth, hw) 57 58 /* The output stages can be connected to any synth (full mux) */ 59 struct clk_si5341_output { 60 struct clk_hw hw; 61 struct clk_si5341 *data; 62 u8 index; 63 }; 64 #define to_clk_si5341_output(_hw) \ 65 container_of(_hw, struct clk_si5341_output, hw) 66 67 struct clk_si5341 { 68 struct clk_hw hw; 69 struct regmap *regmap; 70 struct i2c_client *i2c_client; 71 struct clk_si5341_synth synth[SI5341_NUM_SYNTH]; 72 struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS]; 73 struct clk *input_clk[SI5341_NUM_INPUTS]; 74 const char *input_clk_name[SI5341_NUM_INPUTS]; 75 const u16 *reg_output_offset; 76 const u16 *reg_rdiv_offset; 77 u64 freq_vco; /* 13500–14256 MHz */ 78 u8 num_outputs; 79 u8 num_synth; 80 u16 chip_id; 81 }; 82 #define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw) 83 84 struct clk_si5341_output_config { 85 u8 out_format_drv_bits; 86 u8 out_cm_ampl_bits; 87 bool synth_master; 88 bool always_on; 89 }; 90 91 #define SI5341_PAGE 0x0001 92 #define SI5341_PN_BASE 0x0002 93 #define SI5341_DEVICE_REV 0x0005 94 #define SI5341_STATUS 0x000C 95 #define SI5341_SOFT_RST 0x001C 96 #define SI5341_IN_SEL 0x0021 97 #define SI5341_XAXB_CFG 0x090E 98 #define SI5341_IN_EN 0x0949 99 #define SI5341_INX_TO_PFD_EN 0x094A 100 101 /* Input selection */ 102 #define SI5341_IN_SEL_MASK 0x06 103 #define SI5341_IN_SEL_SHIFT 1 104 #define SI5341_IN_SEL_REGCTRL 0x01 105 #define SI5341_INX_TO_PFD_SHIFT 4 106 107 /* XTAL config bits */ 108 #define SI5341_XAXB_CFG_EXTCLK_EN BIT(0) 109 #define SI5341_XAXB_CFG_PDNB BIT(1) 110 111 /* Input dividers (48-bit) */ 112 #define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10)) 113 #define SI5341_IN_PSET(x) (0x020E + ((x) * 10)) 114 #define SI5341_PX_UPD 0x0230 115 116 /* PLL configuration */ 117 #define SI5341_PLL_M_NUM 0x0235 118 #define SI5341_PLL_M_DEN 0x023B 119 120 /* Output configuration */ 121 #define SI5341_OUT_CONFIG(output) \ 122 ((output)->data->reg_output_offset[(output)->index]) 123 #define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1) 124 #define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2) 125 #define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3) 126 #define SI5341_OUT_R_REG(output) \ 127 ((output)->data->reg_rdiv_offset[(output)->index]) 128 129 /* Synthesize N divider */ 130 #define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11)) 131 #define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11)) 132 #define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11)) 133 134 /* Synthesizer output enable, phase bypass, power mode */ 135 #define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03 136 #define SI5341_SYNTH_N_PIBYP 0x0A04 137 #define SI5341_SYNTH_N_PDNB 0x0A05 138 #define SI5341_SYNTH_N_CLK_DIS 0x0B4A 139 140 #define SI5341_REGISTER_MAX 0xBFF 141 142 /* SI5341_OUT_CONFIG bits */ 143 #define SI5341_OUT_CFG_PDN BIT(0) 144 #define SI5341_OUT_CFG_OE BIT(1) 145 #define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2) 146 147 /* Static configuration (to be moved to firmware) */ 148 struct si5341_reg_default { 149 u16 address; 150 u8 value; 151 }; 152 153 static const char * const si5341_input_clock_names[] = { 154 "in0", "in1", "in2", "xtal" 155 }; 156 157 /* Output configuration registers 0..9 are not quite logically organized */ 158 /* Also for si5345 */ 159 static const u16 si5341_reg_output_offset[] = { 160 0x0108, 161 0x010D, 162 0x0112, 163 0x0117, 164 0x011C, 165 0x0121, 166 0x0126, 167 0x012B, 168 0x0130, 169 0x013A, 170 }; 171 172 /* for si5340, si5342 and si5344 */ 173 static const u16 si5340_reg_output_offset[] = { 174 0x0112, 175 0x0117, 176 0x0126, 177 0x012B, 178 }; 179 180 /* The location of the R divider registers */ 181 static const u16 si5341_reg_rdiv_offset[] = { 182 0x024A, 183 0x024D, 184 0x0250, 185 0x0253, 186 0x0256, 187 0x0259, 188 0x025C, 189 0x025F, 190 0x0262, 191 0x0268, 192 }; 193 static const u16 si5340_reg_rdiv_offset[] = { 194 0x0250, 195 0x0253, 196 0x025C, 197 0x025F, 198 }; 199 200 /* 201 * Programming sequence from ClockBuilder, settings to initialize the system 202 * using only the XTAL input, without pre-divider. 203 * This also contains settings that aren't mentioned anywhere in the datasheet. 204 * The "known" settings like synth and output configuration are done later. 205 */ 206 static const struct si5341_reg_default si5341_reg_defaults[] = { 207 { 0x0017, 0x3A }, /* INT mask (disable interrupts) */ 208 { 0x0018, 0xFF }, /* INT mask */ 209 { 0x0021, 0x0F }, /* Select XTAL as input */ 210 { 0x0022, 0x00 }, /* Not in datasheet */ 211 { 0x002B, 0x02 }, /* SPI config */ 212 { 0x002C, 0x20 }, /* LOS enable for XTAL */ 213 { 0x002D, 0x00 }, /* LOS timing */ 214 { 0x002E, 0x00 }, 215 { 0x002F, 0x00 }, 216 { 0x0030, 0x00 }, 217 { 0x0031, 0x00 }, 218 { 0x0032, 0x00 }, 219 { 0x0033, 0x00 }, 220 { 0x0034, 0x00 }, 221 { 0x0035, 0x00 }, 222 { 0x0036, 0x00 }, 223 { 0x0037, 0x00 }, 224 { 0x0038, 0x00 }, /* LOS setting (thresholds) */ 225 { 0x0039, 0x00 }, 226 { 0x003A, 0x00 }, 227 { 0x003B, 0x00 }, 228 { 0x003C, 0x00 }, 229 { 0x003D, 0x00 }, /* LOS setting (thresholds) end */ 230 { 0x0041, 0x00 }, /* LOS0_DIV_SEL */ 231 { 0x0042, 0x00 }, /* LOS1_DIV_SEL */ 232 { 0x0043, 0x00 }, /* LOS2_DIV_SEL */ 233 { 0x0044, 0x00 }, /* LOS3_DIV_SEL */ 234 { 0x009E, 0x00 }, /* Not in datasheet */ 235 { 0x0102, 0x01 }, /* Enable outputs */ 236 { 0x013F, 0x00 }, /* Not in datasheet */ 237 { 0x0140, 0x00 }, /* Not in datasheet */ 238 { 0x0141, 0x40 }, /* OUT LOS */ 239 { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/ 240 { 0x0203, 0x00 }, 241 { 0x0204, 0x00 }, 242 { 0x0205, 0x00 }, 243 { 0x0206, 0x00 }, /* PXAXB (2^x) */ 244 { 0x0208, 0x00 }, /* Px divider setting (usually 0) */ 245 { 0x0209, 0x00 }, 246 { 0x020A, 0x00 }, 247 { 0x020B, 0x00 }, 248 { 0x020C, 0x00 }, 249 { 0x020D, 0x00 }, 250 { 0x020E, 0x00 }, 251 { 0x020F, 0x00 }, 252 { 0x0210, 0x00 }, 253 { 0x0211, 0x00 }, 254 { 0x0212, 0x00 }, 255 { 0x0213, 0x00 }, 256 { 0x0214, 0x00 }, 257 { 0x0215, 0x00 }, 258 { 0x0216, 0x00 }, 259 { 0x0217, 0x00 }, 260 { 0x0218, 0x00 }, 261 { 0x0219, 0x00 }, 262 { 0x021A, 0x00 }, 263 { 0x021B, 0x00 }, 264 { 0x021C, 0x00 }, 265 { 0x021D, 0x00 }, 266 { 0x021E, 0x00 }, 267 { 0x021F, 0x00 }, 268 { 0x0220, 0x00 }, 269 { 0x0221, 0x00 }, 270 { 0x0222, 0x00 }, 271 { 0x0223, 0x00 }, 272 { 0x0224, 0x00 }, 273 { 0x0225, 0x00 }, 274 { 0x0226, 0x00 }, 275 { 0x0227, 0x00 }, 276 { 0x0228, 0x00 }, 277 { 0x0229, 0x00 }, 278 { 0x022A, 0x00 }, 279 { 0x022B, 0x00 }, 280 { 0x022C, 0x00 }, 281 { 0x022D, 0x00 }, 282 { 0x022E, 0x00 }, 283 { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */ 284 { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */ 285 { 0x026C, 0x00 }, 286 { 0x026D, 0x00 }, 287 { 0x026E, 0x00 }, 288 { 0x026F, 0x00 }, 289 { 0x0270, 0x00 }, 290 { 0x0271, 0x00 }, 291 { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */ 292 { 0x0339, 0x1F }, /* N_FSTEP_MSK */ 293 { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */ 294 { 0x033C, 0x00 }, 295 { 0x033D, 0x00 }, 296 { 0x033E, 0x00 }, 297 { 0x033F, 0x00 }, 298 { 0x0340, 0x00 }, 299 { 0x0341, 0x00 }, 300 { 0x0342, 0x00 }, 301 { 0x0343, 0x00 }, 302 { 0x0344, 0x00 }, 303 { 0x0345, 0x00 }, 304 { 0x0346, 0x00 }, 305 { 0x0347, 0x00 }, 306 { 0x0348, 0x00 }, 307 { 0x0349, 0x00 }, 308 { 0x034A, 0x00 }, 309 { 0x034B, 0x00 }, 310 { 0x034C, 0x00 }, 311 { 0x034D, 0x00 }, 312 { 0x034E, 0x00 }, 313 { 0x034F, 0x00 }, 314 { 0x0350, 0x00 }, 315 { 0x0351, 0x00 }, 316 { 0x0352, 0x00 }, 317 { 0x0353, 0x00 }, 318 { 0x0354, 0x00 }, 319 { 0x0355, 0x00 }, 320 { 0x0356, 0x00 }, 321 { 0x0357, 0x00 }, 322 { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */ 323 { 0x0359, 0x00 }, /* Nx_DELAY */ 324 { 0x035A, 0x00 }, 325 { 0x035B, 0x00 }, 326 { 0x035C, 0x00 }, 327 { 0x035D, 0x00 }, 328 { 0x035E, 0x00 }, 329 { 0x035F, 0x00 }, 330 { 0x0360, 0x00 }, 331 { 0x0361, 0x00 }, 332 { 0x0362, 0x00 }, /* Nx_DELAY end */ 333 { 0x0802, 0x00 }, /* Not in datasheet */ 334 { 0x0803, 0x00 }, /* Not in datasheet */ 335 { 0x0804, 0x00 }, /* Not in datasheet */ 336 { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */ 337 { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */ 338 { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */ 339 { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */ 340 { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */ 341 { 0x0A02, 0x00 }, /* Not in datasheet */ 342 { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */ 343 }; 344 345 /* Read and interpret a 44-bit followed by a 32-bit value in the regmap */ 346 static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg, 347 u64 *val1, u32 *val2) 348 { 349 int err; 350 u8 r[10]; 351 352 err = regmap_bulk_read(regmap, reg, r, 10); 353 if (err < 0) 354 return err; 355 356 *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) | 357 (get_unaligned_le32(r)); 358 *val2 = get_unaligned_le32(&r[6]); 359 360 return 0; 361 } 362 363 static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg, 364 u64 n_num, u32 n_den) 365 { 366 u8 r[10]; 367 368 /* Shift left as far as possible without overflowing */ 369 while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) { 370 n_num <<= 1; 371 n_den <<= 1; 372 } 373 374 /* 44 bits (6 bytes) numerator */ 375 put_unaligned_le32(n_num, r); 376 r[4] = (n_num >> 32) & 0xff; 377 r[5] = (n_num >> 40) & 0x0f; 378 /* 32 bits denominator */ 379 put_unaligned_le32(n_den, &r[6]); 380 381 /* Program the fraction */ 382 return regmap_bulk_write(regmap, reg, r, sizeof(r)); 383 } 384 385 /* VCO, we assume it runs at a constant frequency */ 386 static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw, 387 unsigned long parent_rate) 388 { 389 struct clk_si5341 *data = to_clk_si5341(hw); 390 int err; 391 u64 res; 392 u64 m_num; 393 u32 m_den; 394 unsigned int shift; 395 396 /* Assume that PDIV is not being used, just read the PLL setting */ 397 err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM, 398 &m_num, &m_den); 399 if (err < 0) 400 return 0; 401 402 if (!m_num || !m_den) 403 return 0; 404 405 /* 406 * Though m_num is 64-bit, only the upper bits are actually used. While 407 * calculating m_num and m_den, they are shifted as far as possible to 408 * the left. To avoid 96-bit division here, we just shift them back so 409 * we can do with just 64 bits. 410 */ 411 shift = 0; 412 res = m_num; 413 while (res & 0xffff00000000ULL) { 414 ++shift; 415 res >>= 1; 416 } 417 res *= parent_rate; 418 do_div(res, (m_den >> shift)); 419 420 /* We cannot return the actual frequency in 32 bit, store it locally */ 421 data->freq_vco = res; 422 423 /* Report kHz since the value is out of range */ 424 do_div(res, 1000); 425 426 return (unsigned long)res; 427 } 428 429 static int si5341_clk_get_selected_input(struct clk_si5341 *data) 430 { 431 int err; 432 u32 val; 433 434 err = regmap_read(data->regmap, SI5341_IN_SEL, &val); 435 if (err < 0) 436 return err; 437 438 return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT; 439 } 440 441 static u8 si5341_clk_get_parent(struct clk_hw *hw) 442 { 443 struct clk_si5341 *data = to_clk_si5341(hw); 444 int res = si5341_clk_get_selected_input(data); 445 446 if (res < 0) 447 return 0; /* Apparently we cannot report errors */ 448 449 return res; 450 } 451 452 static int si5341_clk_reparent(struct clk_si5341 *data, u8 index) 453 { 454 int err; 455 u8 val; 456 457 val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK; 458 /* Enable register-based input selection */ 459 val |= SI5341_IN_SEL_REGCTRL; 460 461 err = regmap_update_bits(data->regmap, 462 SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val); 463 if (err < 0) 464 return err; 465 466 if (index < 3) { 467 /* Enable input buffer for selected input */ 468 err = regmap_update_bits(data->regmap, 469 SI5341_IN_EN, 0x07, BIT(index)); 470 if (err < 0) 471 return err; 472 473 /* Enables the input to phase detector */ 474 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN, 475 0x7 << SI5341_INX_TO_PFD_SHIFT, 476 BIT(index + SI5341_INX_TO_PFD_SHIFT)); 477 if (err < 0) 478 return err; 479 480 /* Power down XTAL oscillator and buffer */ 481 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG, 482 SI5341_XAXB_CFG_PDNB, 0); 483 if (err < 0) 484 return err; 485 486 /* 487 * Set the P divider to "1". There's no explanation in the 488 * datasheet of these registers, but the clockbuilder software 489 * programs a "1" when the input is being used. 490 */ 491 err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1); 492 if (err < 0) 493 return err; 494 495 err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1); 496 if (err < 0) 497 return err; 498 499 /* Set update PDIV bit */ 500 err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index)); 501 if (err < 0) 502 return err; 503 } else { 504 /* Disable all input buffers */ 505 err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0); 506 if (err < 0) 507 return err; 508 509 /* Disable input to phase detector */ 510 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN, 511 0x7 << SI5341_INX_TO_PFD_SHIFT, 0); 512 if (err < 0) 513 return err; 514 515 /* Power up XTAL oscillator and buffer */ 516 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG, 517 SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB); 518 if (err < 0) 519 return err; 520 } 521 522 return 0; 523 } 524 525 static int si5341_clk_set_parent(struct clk_hw *hw, u8 index) 526 { 527 struct clk_si5341 *data = to_clk_si5341(hw); 528 529 return si5341_clk_reparent(data, index); 530 } 531 532 static const struct clk_ops si5341_clk_ops = { 533 .set_parent = si5341_clk_set_parent, 534 .get_parent = si5341_clk_get_parent, 535 .recalc_rate = si5341_clk_recalc_rate, 536 }; 537 538 /* Synthesizers, there are 5 synthesizers that connect to any of the outputs */ 539 540 /* The synthesizer is on if all power and enable bits are set */ 541 static int si5341_synth_clk_is_on(struct clk_hw *hw) 542 { 543 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 544 int err; 545 u32 val; 546 u8 index = synth->index; 547 548 err = regmap_read(synth->data->regmap, 549 SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val); 550 if (err < 0) 551 return 0; 552 553 if (!(val & BIT(index))) 554 return 0; 555 556 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val); 557 if (err < 0) 558 return 0; 559 560 if (!(val & BIT(index))) 561 return 0; 562 563 /* This bit must be 0 for the synthesizer to receive clock input */ 564 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val); 565 if (err < 0) 566 return 0; 567 568 return !(val & BIT(index)); 569 } 570 571 static void si5341_synth_clk_unprepare(struct clk_hw *hw) 572 { 573 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 574 u8 index = synth->index; /* In range 0..5 */ 575 u8 mask = BIT(index); 576 577 /* Disable output */ 578 regmap_update_bits(synth->data->regmap, 579 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0); 580 /* Power down */ 581 regmap_update_bits(synth->data->regmap, 582 SI5341_SYNTH_N_PDNB, mask, 0); 583 /* Disable clock input to synth (set to 1 to disable) */ 584 regmap_update_bits(synth->data->regmap, 585 SI5341_SYNTH_N_CLK_DIS, mask, mask); 586 } 587 588 static int si5341_synth_clk_prepare(struct clk_hw *hw) 589 { 590 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 591 int err; 592 u8 index = synth->index; 593 u8 mask = BIT(index); 594 595 /* Power up */ 596 err = regmap_update_bits(synth->data->regmap, 597 SI5341_SYNTH_N_PDNB, mask, mask); 598 if (err < 0) 599 return err; 600 601 /* Enable clock input to synth (set bit to 0 to enable) */ 602 err = regmap_update_bits(synth->data->regmap, 603 SI5341_SYNTH_N_CLK_DIS, mask, 0); 604 if (err < 0) 605 return err; 606 607 /* Enable output */ 608 return regmap_update_bits(synth->data->regmap, 609 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask); 610 } 611 612 /* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */ 613 static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw, 614 unsigned long parent_rate) 615 { 616 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 617 u64 f; 618 u64 n_num; 619 u32 n_den; 620 int err; 621 622 err = si5341_decode_44_32(synth->data->regmap, 623 SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den); 624 if (err < 0) 625 return err; 626 627 /* 628 * n_num and n_den are shifted left as much as possible, so to prevent 629 * overflow in 64-bit math, we shift n_den 4 bits to the right 630 */ 631 f = synth->data->freq_vco; 632 f *= n_den >> 4; 633 634 /* Now we need to to 64-bit division: f/n_num */ 635 /* And compensate for the 4 bits we dropped */ 636 f = div64_u64(f, (n_num >> 4)); 637 638 return f; 639 } 640 641 static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate, 642 unsigned long *parent_rate) 643 { 644 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 645 u64 f; 646 647 /* The synthesizer accuracy is such that anything in range will work */ 648 f = synth->data->freq_vco; 649 do_div(f, SI5341_SYNTH_N_MAX); 650 if (rate < f) 651 return f; 652 653 f = synth->data->freq_vco; 654 do_div(f, SI5341_SYNTH_N_MIN); 655 if (rate > f) 656 return f; 657 658 return rate; 659 } 660 661 static int si5341_synth_program(struct clk_si5341_synth *synth, 662 u64 n_num, u32 n_den, bool is_integer) 663 { 664 int err; 665 u8 index = synth->index; 666 667 err = si5341_encode_44_32(synth->data->regmap, 668 SI5341_SYNTH_N_NUM(index), n_num, n_den); 669 670 err = regmap_update_bits(synth->data->regmap, 671 SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0); 672 if (err < 0) 673 return err; 674 675 return regmap_write(synth->data->regmap, 676 SI5341_SYNTH_N_UPD(index), 0x01); 677 } 678 679 680 static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate, 681 unsigned long parent_rate) 682 { 683 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); 684 u64 n_num; 685 u32 n_den; 686 u32 r; 687 u32 g; 688 bool is_integer; 689 690 n_num = synth->data->freq_vco; 691 692 /* see if there's an integer solution */ 693 r = do_div(n_num, rate); 694 is_integer = (r == 0); 695 if (is_integer) { 696 /* Integer divider equal to n_num */ 697 n_den = 1; 698 } else { 699 /* Calculate a fractional solution */ 700 g = gcd(r, rate); 701 n_den = rate / g; 702 n_num *= n_den; 703 n_num += r / g; 704 } 705 706 dev_dbg(&synth->data->i2c_client->dev, 707 "%s(%u): n=0x%llx d=0x%x %s\n", __func__, 708 synth->index, n_num, n_den, 709 is_integer ? "int" : "frac"); 710 711 return si5341_synth_program(synth, n_num, n_den, is_integer); 712 } 713 714 static const struct clk_ops si5341_synth_clk_ops = { 715 .is_prepared = si5341_synth_clk_is_on, 716 .prepare = si5341_synth_clk_prepare, 717 .unprepare = si5341_synth_clk_unprepare, 718 .recalc_rate = si5341_synth_clk_recalc_rate, 719 .round_rate = si5341_synth_clk_round_rate, 720 .set_rate = si5341_synth_clk_set_rate, 721 }; 722 723 static int si5341_output_clk_is_on(struct clk_hw *hw) 724 { 725 struct clk_si5341_output *output = to_clk_si5341_output(hw); 726 int err; 727 u32 val; 728 729 err = regmap_read(output->data->regmap, 730 SI5341_OUT_CONFIG(output), &val); 731 if (err < 0) 732 return err; 733 734 /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */ 735 return (val & 0x03) == SI5341_OUT_CFG_OE; 736 } 737 738 /* Disables and then powers down the output */ 739 static void si5341_output_clk_unprepare(struct clk_hw *hw) 740 { 741 struct clk_si5341_output *output = to_clk_si5341_output(hw); 742 743 regmap_update_bits(output->data->regmap, 744 SI5341_OUT_CONFIG(output), 745 SI5341_OUT_CFG_OE, 0); 746 regmap_update_bits(output->data->regmap, 747 SI5341_OUT_CONFIG(output), 748 SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN); 749 } 750 751 /* Powers up and then enables the output */ 752 static int si5341_output_clk_prepare(struct clk_hw *hw) 753 { 754 struct clk_si5341_output *output = to_clk_si5341_output(hw); 755 int err; 756 757 err = regmap_update_bits(output->data->regmap, 758 SI5341_OUT_CONFIG(output), 759 SI5341_OUT_CFG_PDN, 0); 760 if (err < 0) 761 return err; 762 763 return regmap_update_bits(output->data->regmap, 764 SI5341_OUT_CONFIG(output), 765 SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE); 766 } 767 768 static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw, 769 unsigned long parent_rate) 770 { 771 struct clk_si5341_output *output = to_clk_si5341_output(hw); 772 int err; 773 u32 val; 774 u32 r_divider; 775 u8 r[3]; 776 777 err = regmap_bulk_read(output->data->regmap, 778 SI5341_OUT_R_REG(output), r, 3); 779 if (err < 0) 780 return err; 781 782 /* Calculate value as 24-bit integer*/ 783 r_divider = r[2] << 16 | r[1] << 8 | r[0]; 784 785 /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */ 786 if (!r_divider) 787 return 0; 788 789 /* Divider is 2*(Rx_REG+1) */ 790 r_divider += 1; 791 r_divider <<= 1; 792 793 err = regmap_read(output->data->regmap, 794 SI5341_OUT_CONFIG(output), &val); 795 if (err < 0) 796 return err; 797 798 if (val & SI5341_OUT_CFG_RDIV_FORCE2) 799 r_divider = 2; 800 801 return parent_rate / r_divider; 802 } 803 804 static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate, 805 unsigned long *parent_rate) 806 { 807 unsigned long r; 808 809 r = *parent_rate >> 1; 810 811 /* If rate is an even divisor, no changes to parent required */ 812 if (r && !(r % rate)) 813 return (long)rate; 814 815 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) { 816 if (rate > 200000000) { 817 /* minimum r-divider is 2 */ 818 r = 2; 819 } else { 820 /* Take a parent frequency near 400 MHz */ 821 r = (400000000u / rate) & ~1; 822 } 823 *parent_rate = r * rate; 824 } else { 825 /* We cannot change our parent's rate, report what we can do */ 826 r /= rate; 827 rate = *parent_rate / (r << 1); 828 } 829 830 return rate; 831 } 832 833 static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate, 834 unsigned long parent_rate) 835 { 836 struct clk_si5341_output *output = to_clk_si5341_output(hw); 837 /* Frequency divider is (r_div + 1) * 2 */ 838 u32 r_div = (parent_rate / rate) >> 1; 839 int err; 840 u8 r[3]; 841 842 if (r_div <= 1) 843 r_div = 0; 844 else if (r_div >= BIT(24)) 845 r_div = BIT(24) - 1; 846 else 847 --r_div; 848 849 /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */ 850 err = regmap_update_bits(output->data->regmap, 851 SI5341_OUT_CONFIG(output), 852 SI5341_OUT_CFG_RDIV_FORCE2, 853 (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0); 854 if (err < 0) 855 return err; 856 857 /* Always write Rx_REG, because a zero value disables the divider */ 858 r[0] = r_div ? (r_div & 0xff) : 1; 859 r[1] = (r_div >> 8) & 0xff; 860 r[2] = (r_div >> 16) & 0xff; 861 err = regmap_bulk_write(output->data->regmap, 862 SI5341_OUT_R_REG(output), r, 3); 863 864 return 0; 865 } 866 867 static int si5341_output_reparent(struct clk_si5341_output *output, u8 index) 868 { 869 return regmap_update_bits(output->data->regmap, 870 SI5341_OUT_MUX_SEL(output), 0x07, index); 871 } 872 873 static int si5341_output_set_parent(struct clk_hw *hw, u8 index) 874 { 875 struct clk_si5341_output *output = to_clk_si5341_output(hw); 876 877 if (index >= output->data->num_synth) 878 return -EINVAL; 879 880 return si5341_output_reparent(output, index); 881 } 882 883 static u8 si5341_output_get_parent(struct clk_hw *hw) 884 { 885 struct clk_si5341_output *output = to_clk_si5341_output(hw); 886 int err; 887 u32 val; 888 889 err = regmap_read(output->data->regmap, 890 SI5341_OUT_MUX_SEL(output), &val); 891 892 return val & 0x7; 893 } 894 895 static const struct clk_ops si5341_output_clk_ops = { 896 .is_prepared = si5341_output_clk_is_on, 897 .prepare = si5341_output_clk_prepare, 898 .unprepare = si5341_output_clk_unprepare, 899 .recalc_rate = si5341_output_clk_recalc_rate, 900 .round_rate = si5341_output_clk_round_rate, 901 .set_rate = si5341_output_clk_set_rate, 902 .set_parent = si5341_output_set_parent, 903 .get_parent = si5341_output_get_parent, 904 }; 905 906 /* 907 * The chip can be bought in a pre-programmed version, or one can program the 908 * NVM in the chip to boot up in a preset mode. This routine tries to determine 909 * if that's the case, or if we need to reset and program everything from 910 * scratch. Returns negative error, or true/false. 911 */ 912 static int si5341_is_programmed_already(struct clk_si5341 *data) 913 { 914 int err; 915 u8 r[4]; 916 917 /* Read the PLL divider value, it must have a non-zero value */ 918 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN, 919 r, ARRAY_SIZE(r)); 920 if (err < 0) 921 return err; 922 923 return !!get_unaligned_le32(r); 924 } 925 926 static struct clk_hw * 927 of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data) 928 { 929 struct clk_si5341 *data = _data; 930 unsigned int idx = clkspec->args[1]; 931 unsigned int group = clkspec->args[0]; 932 933 switch (group) { 934 case 0: 935 if (idx >= data->num_outputs) { 936 dev_err(&data->i2c_client->dev, 937 "invalid output index %u\n", idx); 938 return ERR_PTR(-EINVAL); 939 } 940 return &data->clk[idx].hw; 941 case 1: 942 if (idx >= data->num_synth) { 943 dev_err(&data->i2c_client->dev, 944 "invalid synthesizer index %u\n", idx); 945 return ERR_PTR(-EINVAL); 946 } 947 return &data->synth[idx].hw; 948 case 2: 949 if (idx > 0) { 950 dev_err(&data->i2c_client->dev, 951 "invalid PLL index %u\n", idx); 952 return ERR_PTR(-EINVAL); 953 } 954 return &data->hw; 955 default: 956 dev_err(&data->i2c_client->dev, "invalid group %u\n", group); 957 return ERR_PTR(-EINVAL); 958 } 959 } 960 961 static int si5341_probe_chip_id(struct clk_si5341 *data) 962 { 963 int err; 964 u8 reg[4]; 965 u16 model; 966 967 err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg, 968 ARRAY_SIZE(reg)); 969 if (err < 0) { 970 dev_err(&data->i2c_client->dev, "Failed to read chip ID\n"); 971 return err; 972 } 973 974 model = get_unaligned_le16(reg); 975 976 dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n", 977 model, reg[2], reg[3]); 978 979 switch (model) { 980 case 0x5340: 981 data->num_outputs = SI5340_MAX_NUM_OUTPUTS; 982 data->num_synth = SI5340_NUM_SYNTH; 983 data->reg_output_offset = si5340_reg_output_offset; 984 data->reg_rdiv_offset = si5340_reg_rdiv_offset; 985 break; 986 case 0x5341: 987 data->num_outputs = SI5341_MAX_NUM_OUTPUTS; 988 data->num_synth = SI5341_NUM_SYNTH; 989 data->reg_output_offset = si5341_reg_output_offset; 990 data->reg_rdiv_offset = si5341_reg_rdiv_offset; 991 break; 992 case 0x5342: 993 data->num_outputs = SI5342_MAX_NUM_OUTPUTS; 994 data->num_synth = SI5342_NUM_SYNTH; 995 data->reg_output_offset = si5340_reg_output_offset; 996 data->reg_rdiv_offset = si5340_reg_rdiv_offset; 997 break; 998 case 0x5344: 999 data->num_outputs = SI5344_MAX_NUM_OUTPUTS; 1000 data->num_synth = SI5344_NUM_SYNTH; 1001 data->reg_output_offset = si5340_reg_output_offset; 1002 data->reg_rdiv_offset = si5340_reg_rdiv_offset; 1003 break; 1004 case 0x5345: 1005 data->num_outputs = SI5345_MAX_NUM_OUTPUTS; 1006 data->num_synth = SI5345_NUM_SYNTH; 1007 data->reg_output_offset = si5341_reg_output_offset; 1008 data->reg_rdiv_offset = si5341_reg_rdiv_offset; 1009 break; 1010 default: 1011 dev_err(&data->i2c_client->dev, "Model '%x' not supported\n", 1012 model); 1013 return -EINVAL; 1014 } 1015 1016 data->chip_id = model; 1017 1018 return 0; 1019 } 1020 1021 /* Read active settings into the regmap cache for later reference */ 1022 static int si5341_read_settings(struct clk_si5341 *data) 1023 { 1024 int err; 1025 u8 i; 1026 u8 r[10]; 1027 1028 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10); 1029 if (err < 0) 1030 return err; 1031 1032 err = regmap_bulk_read(data->regmap, 1033 SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3); 1034 if (err < 0) 1035 return err; 1036 1037 err = regmap_bulk_read(data->regmap, 1038 SI5341_SYNTH_N_CLK_DIS, r, 1); 1039 if (err < 0) 1040 return err; 1041 1042 for (i = 0; i < data->num_synth; ++i) { 1043 err = regmap_bulk_read(data->regmap, 1044 SI5341_SYNTH_N_NUM(i), r, 10); 1045 if (err < 0) 1046 return err; 1047 } 1048 1049 for (i = 0; i < data->num_outputs; ++i) { 1050 err = regmap_bulk_read(data->regmap, 1051 data->reg_output_offset[i], r, 4); 1052 if (err < 0) 1053 return err; 1054 1055 err = regmap_bulk_read(data->regmap, 1056 data->reg_rdiv_offset[i], r, 3); 1057 if (err < 0) 1058 return err; 1059 } 1060 1061 return 0; 1062 } 1063 1064 static int si5341_write_multiple(struct clk_si5341 *data, 1065 const struct si5341_reg_default *values, unsigned int num_values) 1066 { 1067 unsigned int i; 1068 int res; 1069 1070 for (i = 0; i < num_values; ++i) { 1071 res = regmap_write(data->regmap, 1072 values[i].address, values[i].value); 1073 if (res < 0) { 1074 dev_err(&data->i2c_client->dev, 1075 "Failed to write %#x:%#x\n", 1076 values[i].address, values[i].value); 1077 return res; 1078 } 1079 } 1080 1081 return 0; 1082 } 1083 1084 static const struct si5341_reg_default si5341_preamble[] = { 1085 { 0x0B25, 0x00 }, 1086 { 0x0502, 0x01 }, 1087 { 0x0505, 0x03 }, 1088 { 0x0957, 0x1F }, 1089 { 0x0B4E, 0x1A }, 1090 }; 1091 1092 static const struct si5341_reg_default si5345_preamble[] = { 1093 { 0x0B25, 0x00 }, 1094 { 0x0540, 0x01 }, 1095 }; 1096 1097 static int si5341_send_preamble(struct clk_si5341 *data) 1098 { 1099 int res; 1100 u32 revision; 1101 1102 /* For revision 2 and up, the values are slightly different */ 1103 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); 1104 if (res < 0) 1105 return res; 1106 1107 /* Write "preamble" as specified by datasheet */ 1108 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0); 1109 if (res < 0) 1110 return res; 1111 1112 /* The si5342..si5345 require a different preamble */ 1113 if (data->chip_id > 0x5341) 1114 res = si5341_write_multiple(data, 1115 si5345_preamble, ARRAY_SIZE(si5345_preamble)); 1116 else 1117 res = si5341_write_multiple(data, 1118 si5341_preamble, ARRAY_SIZE(si5341_preamble)); 1119 if (res < 0) 1120 return res; 1121 1122 /* Datasheet specifies a 300ms wait after sending the preamble */ 1123 msleep(300); 1124 1125 return 0; 1126 } 1127 1128 /* Perform a soft reset and write post-amble */ 1129 static int si5341_finalize_defaults(struct clk_si5341 *data) 1130 { 1131 int res; 1132 u32 revision; 1133 1134 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); 1135 if (res < 0) 1136 return res; 1137 1138 dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision); 1139 1140 res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01); 1141 if (res < 0) 1142 return res; 1143 1144 /* The si5342..si5345 have an additional post-amble */ 1145 if (data->chip_id > 0x5341) { 1146 res = regmap_write(data->regmap, 0x540, 0x0); 1147 if (res < 0) 1148 return res; 1149 } 1150 1151 /* Datasheet does not explain these nameless registers */ 1152 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3); 1153 if (res < 0) 1154 return res; 1155 res = regmap_write(data->regmap, 0x0B25, 0x02); 1156 if (res < 0) 1157 return res; 1158 1159 return 0; 1160 } 1161 1162 1163 static const struct regmap_range si5341_regmap_volatile_range[] = { 1164 regmap_reg_range(0x000C, 0x0012), /* Status */ 1165 regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */ 1166 regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */ 1167 /* Update bits for P divider and synth config */ 1168 regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD), 1169 regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)), 1170 regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)), 1171 regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)), 1172 regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)), 1173 regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)), 1174 }; 1175 1176 static const struct regmap_access_table si5341_regmap_volatile = { 1177 .yes_ranges = si5341_regmap_volatile_range, 1178 .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range), 1179 }; 1180 1181 /* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */ 1182 static const struct regmap_range_cfg si5341_regmap_ranges[] = { 1183 { 1184 .range_min = 0, 1185 .range_max = SI5341_REGISTER_MAX, 1186 .selector_reg = SI5341_PAGE, 1187 .selector_mask = 0xff, 1188 .selector_shift = 0, 1189 .window_start = 0, 1190 .window_len = 256, 1191 }, 1192 }; 1193 1194 static const struct regmap_config si5341_regmap_config = { 1195 .reg_bits = 8, 1196 .val_bits = 8, 1197 .cache_type = REGCACHE_RBTREE, 1198 .ranges = si5341_regmap_ranges, 1199 .num_ranges = ARRAY_SIZE(si5341_regmap_ranges), 1200 .max_register = SI5341_REGISTER_MAX, 1201 .volatile_table = &si5341_regmap_volatile, 1202 }; 1203 1204 static int si5341_dt_parse_dt(struct i2c_client *client, 1205 struct clk_si5341_output_config *config) 1206 { 1207 struct device_node *child; 1208 struct device_node *np = client->dev.of_node; 1209 u32 num; 1210 u32 val; 1211 1212 memset(config, 0, sizeof(struct clk_si5341_output_config) * 1213 SI5341_MAX_NUM_OUTPUTS); 1214 1215 for_each_child_of_node(np, child) { 1216 if (of_property_read_u32(child, "reg", &num)) { 1217 dev_err(&client->dev, "missing reg property of %s\n", 1218 child->name); 1219 goto put_child; 1220 } 1221 1222 if (num >= SI5341_MAX_NUM_OUTPUTS) { 1223 dev_err(&client->dev, "invalid clkout %d\n", num); 1224 goto put_child; 1225 } 1226 1227 if (!of_property_read_u32(child, "silabs,format", &val)) { 1228 /* Set cm and ampl conservatively to 3v3 settings */ 1229 switch (val) { 1230 case 1: /* normal differential */ 1231 config[num].out_cm_ampl_bits = 0x33; 1232 break; 1233 case 2: /* low-power differential */ 1234 config[num].out_cm_ampl_bits = 0x13; 1235 break; 1236 case 4: /* LVCMOS */ 1237 config[num].out_cm_ampl_bits = 0x33; 1238 /* Set SI recommended impedance for LVCMOS */ 1239 config[num].out_format_drv_bits |= 0xc0; 1240 break; 1241 default: 1242 dev_err(&client->dev, 1243 "invalid silabs,format %u for %u\n", 1244 val, num); 1245 goto put_child; 1246 } 1247 config[num].out_format_drv_bits &= ~0x07; 1248 config[num].out_format_drv_bits |= val & 0x07; 1249 /* Always enable the SYNC feature */ 1250 config[num].out_format_drv_bits |= 0x08; 1251 } 1252 1253 if (!of_property_read_u32(child, "silabs,common-mode", &val)) { 1254 if (val > 0xf) { 1255 dev_err(&client->dev, 1256 "invalid silabs,common-mode %u\n", 1257 val); 1258 goto put_child; 1259 } 1260 config[num].out_cm_ampl_bits &= 0xf0; 1261 config[num].out_cm_ampl_bits |= val & 0x0f; 1262 } 1263 1264 if (!of_property_read_u32(child, "silabs,amplitude", &val)) { 1265 if (val > 0xf) { 1266 dev_err(&client->dev, 1267 "invalid silabs,amplitude %u\n", 1268 val); 1269 goto put_child; 1270 } 1271 config[num].out_cm_ampl_bits &= 0x0f; 1272 config[num].out_cm_ampl_bits |= (val << 4) & 0xf0; 1273 } 1274 1275 if (of_property_read_bool(child, "silabs,disable-high")) 1276 config[num].out_format_drv_bits |= 0x10; 1277 1278 config[num].synth_master = 1279 of_property_read_bool(child, "silabs,synth-master"); 1280 1281 config[num].always_on = 1282 of_property_read_bool(child, "always-on"); 1283 } 1284 1285 return 0; 1286 1287 put_child: 1288 of_node_put(child); 1289 return -EINVAL; 1290 } 1291 1292 /* 1293 * If not pre-configured, calculate and set the PLL configuration manually. 1294 * For low-jitter performance, the PLL should be set such that the synthesizers 1295 * only need integer division. 1296 * Without any user guidance, we'll set the PLL to 14GHz, which still allows 1297 * the chip to generate any frequency on its outputs, but jitter performance 1298 * may be sub-optimal. 1299 */ 1300 static int si5341_initialize_pll(struct clk_si5341 *data) 1301 { 1302 struct device_node *np = data->i2c_client->dev.of_node; 1303 u32 m_num = 0; 1304 u32 m_den = 0; 1305 int sel; 1306 1307 if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) { 1308 dev_err(&data->i2c_client->dev, 1309 "PLL configuration requires silabs,pll-m-num\n"); 1310 } 1311 if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) { 1312 dev_err(&data->i2c_client->dev, 1313 "PLL configuration requires silabs,pll-m-den\n"); 1314 } 1315 1316 if (!m_num || !m_den) { 1317 dev_err(&data->i2c_client->dev, 1318 "PLL configuration invalid, assume 14GHz\n"); 1319 sel = si5341_clk_get_selected_input(data); 1320 if (sel < 0) 1321 return sel; 1322 1323 m_den = clk_get_rate(data->input_clk[sel]) / 10; 1324 m_num = 1400000000; 1325 } 1326 1327 return si5341_encode_44_32(data->regmap, 1328 SI5341_PLL_M_NUM, m_num, m_den); 1329 } 1330 1331 static int si5341_clk_select_active_input(struct clk_si5341 *data) 1332 { 1333 int res; 1334 int err; 1335 int i; 1336 1337 res = si5341_clk_get_selected_input(data); 1338 if (res < 0) 1339 return res; 1340 1341 /* If the current register setting is invalid, pick the first input */ 1342 if (!data->input_clk[res]) { 1343 dev_dbg(&data->i2c_client->dev, 1344 "Input %d not connected, rerouting\n", res); 1345 res = -ENODEV; 1346 for (i = 0; i < SI5341_NUM_INPUTS; ++i) { 1347 if (data->input_clk[i]) { 1348 res = i; 1349 break; 1350 } 1351 } 1352 if (res < 0) { 1353 dev_err(&data->i2c_client->dev, 1354 "No clock input available\n"); 1355 return res; 1356 } 1357 } 1358 1359 /* Make sure the selected clock is also enabled and routed */ 1360 err = si5341_clk_reparent(data, res); 1361 if (err < 0) 1362 return err; 1363 1364 err = clk_prepare_enable(data->input_clk[res]); 1365 if (err < 0) 1366 return err; 1367 1368 return res; 1369 } 1370 1371 static int si5341_probe(struct i2c_client *client, 1372 const struct i2c_device_id *id) 1373 { 1374 struct clk_si5341 *data; 1375 struct clk_init_data init; 1376 struct clk *input; 1377 const char *root_clock_name; 1378 const char *synth_clock_names[SI5341_NUM_SYNTH]; 1379 int err; 1380 unsigned int i; 1381 struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS]; 1382 bool initialization_required; 1383 1384 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); 1385 if (!data) 1386 return -ENOMEM; 1387 1388 data->i2c_client = client; 1389 1390 for (i = 0; i < SI5341_NUM_INPUTS; ++i) { 1391 input = devm_clk_get(&client->dev, si5341_input_clock_names[i]); 1392 if (IS_ERR(input)) { 1393 if (PTR_ERR(input) == -EPROBE_DEFER) 1394 return -EPROBE_DEFER; 1395 data->input_clk_name[i] = si5341_input_clock_names[i]; 1396 } else { 1397 data->input_clk[i] = input; 1398 data->input_clk_name[i] = __clk_get_name(input); 1399 } 1400 } 1401 1402 err = si5341_dt_parse_dt(client, config); 1403 if (err) 1404 return err; 1405 1406 if (of_property_read_string(client->dev.of_node, "clock-output-names", 1407 &init.name)) 1408 init.name = client->dev.of_node->name; 1409 root_clock_name = init.name; 1410 1411 data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config); 1412 if (IS_ERR(data->regmap)) 1413 return PTR_ERR(data->regmap); 1414 1415 i2c_set_clientdata(client, data); 1416 1417 err = si5341_probe_chip_id(data); 1418 if (err < 0) 1419 return err; 1420 1421 if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) { 1422 initialization_required = true; 1423 } else { 1424 err = si5341_is_programmed_already(data); 1425 if (err < 0) 1426 return err; 1427 1428 initialization_required = !err; 1429 } 1430 1431 if (initialization_required) { 1432 /* Populate the regmap cache in preparation for "cache only" */ 1433 err = si5341_read_settings(data); 1434 if (err < 0) 1435 return err; 1436 1437 err = si5341_send_preamble(data); 1438 if (err < 0) 1439 return err; 1440 1441 /* 1442 * We intend to send all 'final' register values in a single 1443 * transaction. So cache all register writes until we're done 1444 * configuring. 1445 */ 1446 regcache_cache_only(data->regmap, true); 1447 1448 /* Write the configuration pairs from the firmware blob */ 1449 err = si5341_write_multiple(data, si5341_reg_defaults, 1450 ARRAY_SIZE(si5341_reg_defaults)); 1451 if (err < 0) 1452 return err; 1453 } 1454 1455 /* Input must be up and running at this point */ 1456 err = si5341_clk_select_active_input(data); 1457 if (err < 0) 1458 return err; 1459 1460 if (initialization_required) { 1461 /* PLL configuration is required */ 1462 err = si5341_initialize_pll(data); 1463 if (err < 0) 1464 return err; 1465 } 1466 1467 /* Register the PLL */ 1468 init.parent_names = data->input_clk_name; 1469 init.num_parents = SI5341_NUM_INPUTS; 1470 init.ops = &si5341_clk_ops; 1471 init.flags = 0; 1472 data->hw.init = &init; 1473 1474 err = devm_clk_hw_register(&client->dev, &data->hw); 1475 if (err) { 1476 dev_err(&client->dev, "clock registration failed\n"); 1477 return err; 1478 } 1479 1480 init.num_parents = 1; 1481 init.parent_names = &root_clock_name; 1482 init.ops = &si5341_synth_clk_ops; 1483 for (i = 0; i < data->num_synth; ++i) { 1484 synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL, 1485 "%s.N%u", client->dev.of_node->name, i); 1486 init.name = synth_clock_names[i]; 1487 data->synth[i].index = i; 1488 data->synth[i].data = data; 1489 data->synth[i].hw.init = &init; 1490 err = devm_clk_hw_register(&client->dev, &data->synth[i].hw); 1491 if (err) { 1492 dev_err(&client->dev, 1493 "synth N%u registration failed\n", i); 1494 } 1495 } 1496 1497 init.num_parents = data->num_synth; 1498 init.parent_names = synth_clock_names; 1499 init.ops = &si5341_output_clk_ops; 1500 for (i = 0; i < data->num_outputs; ++i) { 1501 init.name = kasprintf(GFP_KERNEL, "%s.%d", 1502 client->dev.of_node->name, i); 1503 init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0; 1504 data->clk[i].index = i; 1505 data->clk[i].data = data; 1506 data->clk[i].hw.init = &init; 1507 if (config[i].out_format_drv_bits & 0x07) { 1508 regmap_write(data->regmap, 1509 SI5341_OUT_FORMAT(&data->clk[i]), 1510 config[i].out_format_drv_bits); 1511 regmap_write(data->regmap, 1512 SI5341_OUT_CM(&data->clk[i]), 1513 config[i].out_cm_ampl_bits); 1514 } 1515 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw); 1516 kfree(init.name); /* clock framework made a copy of the name */ 1517 if (err) { 1518 dev_err(&client->dev, 1519 "output %u registration failed\n", i); 1520 return err; 1521 } 1522 if (config[i].always_on) 1523 clk_prepare(data->clk[i].hw.clk); 1524 } 1525 1526 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get, 1527 data); 1528 if (err) { 1529 dev_err(&client->dev, "unable to add clk provider\n"); 1530 return err; 1531 } 1532 1533 if (initialization_required) { 1534 /* Synchronize */ 1535 regcache_cache_only(data->regmap, false); 1536 err = regcache_sync(data->regmap); 1537 if (err < 0) 1538 return err; 1539 1540 err = si5341_finalize_defaults(data); 1541 if (err < 0) 1542 return err; 1543 } 1544 1545 /* Free the names, clk framework makes copies */ 1546 for (i = 0; i < data->num_synth; ++i) 1547 devm_kfree(&client->dev, (void *)synth_clock_names[i]); 1548 1549 return 0; 1550 } 1551 1552 static const struct i2c_device_id si5341_id[] = { 1553 { "si5340", 0 }, 1554 { "si5341", 1 }, 1555 { "si5342", 2 }, 1556 { "si5344", 4 }, 1557 { "si5345", 5 }, 1558 { } 1559 }; 1560 MODULE_DEVICE_TABLE(i2c, si5341_id); 1561 1562 static const struct of_device_id clk_si5341_of_match[] = { 1563 { .compatible = "silabs,si5340" }, 1564 { .compatible = "silabs,si5341" }, 1565 { .compatible = "silabs,si5342" }, 1566 { .compatible = "silabs,si5344" }, 1567 { .compatible = "silabs,si5345" }, 1568 { } 1569 }; 1570 MODULE_DEVICE_TABLE(of, clk_si5341_of_match); 1571 1572 static struct i2c_driver si5341_driver = { 1573 .driver = { 1574 .name = "si5341", 1575 .of_match_table = clk_si5341_of_match, 1576 }, 1577 .probe = si5341_probe, 1578 .id_table = si5341_id, 1579 }; 1580 module_i2c_driver(si5341_driver); 1581 1582 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>"); 1583 MODULE_DESCRIPTION("Si5341 driver"); 1584 MODULE_LICENSE("GPL"); 1585