1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * LMK04832 Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner 4 * Pin compatible with the LMK0482x family 5 * 6 * Datasheet: https://www.ti.com/lit/ds/symlink/lmk04832.pdf 7 * 8 * Copyright (c) 2020, Xiphos Systems Corp. 9 * 10 */ 11 12 #include <linux/bitfield.h> 13 #include <linux/clk.h> 14 #include <linux/clk-provider.h> 15 #include <linux/debugfs.h> 16 #include <linux/device.h> 17 #include <linux/gcd.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/module.h> 20 #include <linux/uaccess.h> 21 #include <linux/regmap.h> 22 #include <linux/spi/spi.h> 23 24 /* 0x000 - 0x00d System Functions */ 25 #define LMK04832_REG_RST3W 0x000 26 #define LMK04832_BIT_RESET BIT(7) 27 #define LMK04832_BIT_SPI_3WIRE_DIS BIT(4) 28 #define LMK04832_REG_POWERDOWN 0x002 29 #define LMK04832_REG_ID_DEV_TYPE 0x003 30 #define LMK04832_REG_ID_PROD_MSB 0x004 31 #define LMK04832_REG_ID_PROD_LSB 0x005 32 #define LMK04832_REG_ID_MASKREV 0x006 33 #define LMK04832_REG_ID_VNDR_MSB 0x00c 34 #define LMK04832_REG_ID_VNDR_LSB 0x00d 35 36 /* 0x100 - 0x137 Device Clock and SYSREF Clock Output Control */ 37 #define LMK04832_REG_CLKOUT_CTRL0(ch) (0x100 + (ch >> 1) * 8) 38 #define LMK04832_BIT_DCLK_DIV_LSB GENMASK(7, 0) 39 #define LMK04832_REG_CLKOUT_CTRL1(ch) (0x101 + (ch >> 1) * 8) 40 #define LMK04832_BIT_DCLKX_Y_DDLY_LSB GENMASK(7, 0) 41 #define LMK04832_REG_CLKOUT_CTRL2(ch) (0x102 + (ch >> 1) * 8) 42 #define LMK04832_BIT_CLKOUTX_Y_PD BIT(7) 43 #define LMK04832_BIT_DCLKX_Y_DDLY_PD BIT(4) 44 #define LMK04832_BIT_DCLKX_Y_DDLY_MSB GENMASK(3, 2) 45 #define LMK04832_BIT_DCLK_DIV_MSB GENMASK(1, 0) 46 #define LMK04832_REG_CLKOUT_SRC_MUX(ch) (0x103 + (ch % 2) + (ch >> 1) * 8) 47 #define LMK04832_BIT_CLKOUT_SRC_MUX BIT(5) 48 #define LMK04832_REG_CLKOUT_CTRL3(ch) (0x103 + (ch >> 1) * 8) 49 #define LMK04832_BIT_DCLKX_Y_PD BIT(4) 50 #define LMK04832_BIT_DCLKX_Y_DCC BIT(2) 51 #define LMK04832_BIT_DCLKX_Y_HS BIT(0) 52 #define LMK04832_REG_CLKOUT_CTRL4(ch) (0x104 + (ch >> 1) * 8) 53 #define LMK04832_BIT_SCLK_PD BIT(4) 54 #define LMK04832_BIT_SCLKX_Y_DIS_MODE GENMASK(3, 2) 55 #define LMK04832_REG_SCLKX_Y_ADLY(ch) (0x105 + (ch >> 1) * 8) 56 #define LMK04832_REG_SCLKX_Y_DDLY(ch) (0x106 + (ch >> 1) * 8) 57 #define LMK04832_BIT_SCLKX_Y_DDLY GENMASK(3, 0) 58 #define LMK04832_REG_CLKOUT_FMT(ch) (0x107 + (ch >> 1) * 8) 59 #define LMK04832_BIT_CLKOUT_FMT(ch) (ch % 2 ? 0xf0 : 0x0f) 60 #define LMK04832_VAL_CLKOUT_FMT_POWERDOWN 0x00 61 #define LMK04832_VAL_CLKOUT_FMT_LVDS 0x01 62 #define LMK04832_VAL_CLKOUT_FMT_HSDS6 0x02 63 #define LMK04832_VAL_CLKOUT_FMT_HSDS8 0x03 64 #define LMK04832_VAL_CLKOUT_FMT_LVPECL1600 0x04 65 #define LMK04832_VAL_CLKOUT_FMT_LVPECL2000 0x05 66 #define LMK04832_VAL_CLKOUT_FMT_LCPECL 0x06 67 #define LMK04832_VAL_CLKOUT_FMT_CML16 0x07 68 #define LMK04832_VAL_CLKOUT_FMT_CML24 0x08 69 #define LMK04832_VAL_CLKOUT_FMT_CML32 0x09 70 #define LMK04832_VAL_CLKOUT_FMT_CMOS_OFF_INV 0x0a 71 #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_OFF 0x0b 72 #define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_INV 0x0c 73 #define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_NOR 0x0d 74 #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_INV 0x0e 75 #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_NOR 0x0f 76 77 /* 0x138 - 0x145 SYSREF, SYNC, and Device Config */ 78 #define LMK04832_REG_VCO_OSCOUT 0x138 79 #define LMK04832_BIT_VCO_MUX GENMASK(6, 5) 80 #define LMK04832_VAL_VCO_MUX_VCO0 0x00 81 #define LMK04832_VAL_VCO_MUX_VCO1 0x01 82 #define LMK04832_VAL_VCO_MUX_EXT 0x02 83 #define LMK04832_REG_SYSREF_OUT 0x139 84 #define LMK04832_BIT_SYSREF_REQ_EN BIT(6) 85 #define LMK04832_BIT_SYSREF_MUX GENMASK(1, 0) 86 #define LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC 0x00 87 #define LMK04832_VAL_SYSREF_MUX_RECLK 0x01 88 #define LMK04832_VAL_SYSREF_MUX_PULSER 0x02 89 #define LMK04832_VAL_SYSREF_MUX_CONTINUOUS 0x03 90 #define LMK04832_REG_SYSREF_DIV_MSB 0x13a 91 #define LMK04832_BIT_SYSREF_DIV_MSB GENMASK(4, 0) 92 #define LMK04832_REG_SYSREF_DIV_LSB 0x13b 93 #define LMK04832_REG_SYSREF_DDLY_MSB 0x13c 94 #define LMK04832_BIT_SYSREF_DDLY_MSB GENMASK(4, 0) 95 #define LMK04832_REG_SYSREF_DDLY_LSB 0x13d 96 #define LMK04832_REG_SYSREF_PULSE_CNT 0x13e 97 #define LMK04832_REG_FB_CTRL 0x13f 98 #define LMK04832_BIT_PLL2_RCLK_MUX BIT(7) 99 #define LMK04832_VAL_PLL2_RCLK_MUX_OSCIN 0x00 100 #define LMK04832_VAL_PLL2_RCLK_MUX_CLKIN 0x01 101 #define LMK04832_BIT_PLL2_NCLK_MUX BIT(5) 102 #define LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P 0x00 103 #define LMK04832_VAL_PLL2_NCLK_MUX_FB_MUX 0x01 104 #define LMK04832_BIT_FB_MUX_EN BIT(0) 105 #define LMK04832_REG_MAIN_PD 0x140 106 #define LMK04832_BIT_PLL1_PD BIT(7) 107 #define LMK04832_BIT_VCO_LDO_PD BIT(6) 108 #define LMK04832_BIT_VCO_PD BIT(5) 109 #define LMK04832_BIT_OSCIN_PD BIT(4) 110 #define LMK04832_BIT_SYSREF_GBL_PD BIT(3) 111 #define LMK04832_BIT_SYSREF_PD BIT(2) 112 #define LMK04832_BIT_SYSREF_DDLY_PD BIT(1) 113 #define LMK04832_BIT_SYSREF_PLSR_PD BIT(0) 114 #define LMK04832_REG_SYNC 0x143 115 #define LMK04832_BIT_SYNC_CLR BIT(7) 116 #define LMK04832_BIT_SYNC_1SHOT_EN BIT(6) 117 #define LMK04832_BIT_SYNC_POL BIT(5) 118 #define LMK04832_BIT_SYNC_EN BIT(4) 119 #define LMK04832_BIT_SYNC_MODE GENMASK(1, 0) 120 #define LMK04832_VAL_SYNC_MODE_OFF 0x00 121 #define LMK04832_VAL_SYNC_MODE_ON 0x01 122 #define LMK04832_VAL_SYNC_MODE_PULSER_PIN 0x02 123 #define LMK04832_VAL_SYNC_MODE_PULSER_SPI 0x03 124 #define LMK04832_REG_SYNC_DIS 0x144 125 126 /* 0x146 - 0x14a CLKin Control */ 127 #define LMK04832_REG_CLKIN_SEL0 0x148 128 #define LMK04832_REG_CLKIN_SEL1 0x149 129 #define LMK04832_REG_CLKIN_RST 0x14a 130 #define LMK04832_BIT_SDIO_RDBK_TYPE BIT(6) 131 #define LMK04832_BIT_CLKIN_SEL_MUX GENMASK(5, 3) 132 #define LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK 0x06 133 #define LMK04832_BIT_CLKIN_SEL_TYPE GENMASK(2, 0) 134 #define LMK04832_VAL_CLKIN_SEL_TYPE_OUT 0x03 135 136 /* 0x14b - 0x152 Holdover */ 137 138 /* 0x153 - 0x15f PLL1 Configuration */ 139 140 /* 0x160 - 0x16e PLL2 Configuration */ 141 #define LMK04832_REG_PLL2_R_MSB 0x160 142 #define LMK04832_BIT_PLL2_R_MSB GENMASK(3, 0) 143 #define LMK04832_REG_PLL2_R_LSB 0x161 144 #define LMK04832_REG_PLL2_MISC 0x162 145 #define LMK04832_BIT_PLL2_MISC_P GENMASK(7, 5) 146 #define LMK04832_BIT_PLL2_MISC_REF_2X_EN BIT(0) 147 #define LMK04832_REG_PLL2_N_CAL_0 0x163 148 #define LMK04832_BIT_PLL2_N_CAL_0 GENMASK(1, 0) 149 #define LMK04832_REG_PLL2_N_CAL_1 0x164 150 #define LMK04832_REG_PLL2_N_CAL_2 0x165 151 #define LMK04832_REG_PLL2_N_0 0x166 152 #define LMK04832_BIT_PLL2_N_0 GENMASK(1, 0) 153 #define LMK04832_REG_PLL2_N_1 0x167 154 #define LMK04832_REG_PLL2_N_2 0x168 155 #define LMK04832_REG_PLL2_DLD_CNT_MSB 0x16a 156 #define LMK04832_REG_PLL2_DLD_CNT_LSB 0x16b 157 #define LMK04832_REG_PLL2_LD 0x16e 158 #define LMK04832_BIT_PLL2_LD_MUX GENMASK(7, 3) 159 #define LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD 0x02 160 #define LMK04832_BIT_PLL2_LD_TYPE GENMASK(2, 0) 161 #define LMK04832_VAL_PLL2_LD_TYPE_OUT_PP 0x03 162 163 /* 0x16F - 0x555 Misc Registers */ 164 #define LMK04832_REG_PLL2_PD 0x173 165 #define LMK04832_BIT_PLL2_PRE_PD BIT(6) 166 #define LMK04832_BIT_PLL2_PD BIT(5) 167 #define LMK04832_REG_PLL1R_RST 0x177 168 #define LMK04832_REG_CLR_PLL_LOST 0x182 169 #define LMK04832_REG_RB_PLL_LD 0x183 170 #define LMK04832_REG_RB_CLK_DAC_VAL_MSB 0x184 171 #define LMK04832_REG_RB_DAC_VAL_LSB 0x185 172 #define LMK04832_REG_RB_HOLDOVER 0x188 173 #define LMK04832_REG_SPI_LOCK 0x555 174 175 enum lmk04832_device_types { 176 LMK04832, 177 }; 178 179 /** 180 * lmk04832_device_info - Holds static device information that is specific to 181 * the chip revision 182 * 183 * pid: Product Identifier 184 * maskrev: IC version identifier 185 * num_channels: Number of available output channels (clkout count) 186 * vco0_range: {min, max} of the VCO0 operating range (in MHz) 187 * vco1_range: {min, max} of the VCO1 operating range (in MHz) 188 */ 189 struct lmk04832_device_info { 190 u16 pid; 191 u8 maskrev; 192 size_t num_channels; 193 unsigned int vco0_range[2]; 194 unsigned int vco1_range[2]; 195 }; 196 197 static const struct lmk04832_device_info lmk04832_device_info[] = { 198 [LMK04832] = { 199 .pid = 0x63d1, /* WARNING PROD_ID is inverted in the datasheet */ 200 .maskrev = 0x70, 201 .num_channels = 14, 202 .vco0_range = { 2440, 2580 }, 203 .vco1_range = { 2945, 3255 }, 204 }, 205 }; 206 207 enum lmk04832_rdbk_type { 208 RDBK_CLKIN_SEL0, 209 RDBK_CLKIN_SEL1, 210 RDBK_RESET, 211 }; 212 213 struct lmk_dclk { 214 struct lmk04832 *lmk; 215 struct clk_hw hw; 216 u8 id; 217 }; 218 219 struct lmk_clkout { 220 struct lmk04832 *lmk; 221 struct clk_hw hw; 222 bool sysref; 223 u32 format; 224 u8 id; 225 }; 226 227 /** 228 * struct lmk04832 - The LMK04832 device structure 229 * 230 * @dev: reference to a struct device, linked to the spi_device 231 * @regmap: struct regmap instance use to access the chip 232 * @sync_mode: operational mode for SYNC signal 233 * @sysref_mux: select SYSREF source 234 * @sysref_pulse_cnt: number of SYSREF pulses generated while not in continuous 235 * mode. 236 * @sysref_ddly: SYSREF digital delay value 237 * @oscin: PLL2 input clock 238 * @vco: reference to the internal VCO clock 239 * @sclk: reference to the internal sysref clock (SCLK) 240 * @vco_rate: user provided VCO rate 241 * @reset_gpio: reference to the reset GPIO 242 * @dclk: list of internal device clock references. 243 * Each pair of clkout clocks share a single device clock (DCLKX_Y) 244 * @clkout: list of output clock references 245 * @clk_data: holds clkout related data like clk_hw* and number of clocks 246 */ 247 struct lmk04832 { 248 struct device *dev; 249 struct regmap *regmap; 250 251 unsigned int sync_mode; 252 unsigned int sysref_mux; 253 unsigned int sysref_pulse_cnt; 254 unsigned int sysref_ddly; 255 256 struct clk *oscin; 257 struct clk_hw vco; 258 struct clk_hw sclk; 259 unsigned int vco_rate; 260 261 struct gpio_desc *reset_gpio; 262 263 struct lmk_dclk *dclk; 264 struct lmk_clkout *clkout; 265 struct clk_hw_onecell_data *clk_data; 266 }; 267 268 static bool lmk04832_regmap_rd_regs(struct device *dev, unsigned int reg) 269 { 270 switch (reg) { 271 case LMK04832_REG_RST3W ... LMK04832_REG_ID_MASKREV: 272 case LMK04832_REG_ID_VNDR_MSB: 273 case LMK04832_REG_ID_VNDR_LSB: 274 case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB: 275 case LMK04832_REG_PLL2_LD: 276 case LMK04832_REG_PLL2_PD: 277 case LMK04832_REG_PLL1R_RST: 278 case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB: 279 case LMK04832_REG_RB_HOLDOVER: 280 case LMK04832_REG_SPI_LOCK: 281 return true; 282 default: 283 return false; 284 }; 285 }; 286 287 static bool lmk04832_regmap_wr_regs(struct device *dev, unsigned int reg) 288 { 289 switch (reg) { 290 case LMK04832_REG_RST3W: 291 case LMK04832_REG_POWERDOWN: 292 return true; 293 case LMK04832_REG_ID_DEV_TYPE ... LMK04832_REG_ID_MASKREV: 294 case LMK04832_REG_ID_VNDR_MSB: 295 case LMK04832_REG_ID_VNDR_LSB: 296 return false; 297 case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB: 298 case LMK04832_REG_PLL2_LD: 299 case LMK04832_REG_PLL2_PD: 300 case LMK04832_REG_PLL1R_RST: 301 case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB: 302 case LMK04832_REG_RB_HOLDOVER: 303 case LMK04832_REG_SPI_LOCK: 304 return true; 305 default: 306 return false; 307 }; 308 }; 309 310 static const struct regmap_config regmap_config = { 311 .name = "lmk04832", 312 .reg_bits = 16, 313 .val_bits = 8, 314 .use_single_read = 1, 315 .use_single_write = 1, 316 .read_flag_mask = 0x80, 317 .write_flag_mask = 0x00, 318 .readable_reg = lmk04832_regmap_rd_regs, 319 .writeable_reg = lmk04832_regmap_wr_regs, 320 .cache_type = REGCACHE_NONE, 321 .max_register = LMK04832_REG_SPI_LOCK, 322 }; 323 324 static int lmk04832_vco_is_enabled(struct clk_hw *hw) 325 { 326 struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); 327 unsigned int tmp; 328 int ret; 329 330 ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp); 331 if (ret) 332 return ret; 333 334 return !(FIELD_GET(LMK04832_BIT_OSCIN_PD, tmp) | 335 FIELD_GET(LMK04832_BIT_VCO_PD, tmp) | 336 FIELD_GET(LMK04832_BIT_VCO_LDO_PD, tmp)); 337 } 338 339 static int lmk04832_vco_prepare(struct clk_hw *hw) 340 { 341 struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); 342 int ret; 343 344 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD, 345 LMK04832_BIT_PLL2_PRE_PD | 346 LMK04832_BIT_PLL2_PD, 347 0x00); 348 if (ret) 349 return ret; 350 351 return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, 352 LMK04832_BIT_VCO_LDO_PD | 353 LMK04832_BIT_VCO_PD | 354 LMK04832_BIT_OSCIN_PD, 0x00); 355 } 356 357 static void lmk04832_vco_unprepare(struct clk_hw *hw) 358 { 359 struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); 360 361 regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD, 362 LMK04832_BIT_PLL2_PRE_PD | LMK04832_BIT_PLL2_PD, 363 0xff); 364 365 /* Don't set LMK04832_BIT_OSCIN_PD since other clocks depend on it */ 366 regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, 367 LMK04832_BIT_VCO_LDO_PD | LMK04832_BIT_VCO_PD, 0xff); 368 } 369 370 static unsigned long lmk04832_vco_recalc_rate(struct clk_hw *hw, 371 unsigned long prate) 372 { 373 struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); 374 unsigned int pll2_p[] = {8, 2, 2, 3, 4, 5, 6, 7}; 375 unsigned int pll2_n, p, pll2_r; 376 unsigned int pll2_misc; 377 unsigned long vco_rate; 378 u8 tmp[3]; 379 int ret; 380 381 ret = regmap_read(lmk->regmap, LMK04832_REG_PLL2_MISC, &pll2_misc); 382 if (ret) 383 return ret; 384 385 p = FIELD_GET(LMK04832_BIT_PLL2_MISC_P, pll2_misc); 386 387 ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_N_0, &tmp, 3); 388 if (ret) 389 return ret; 390 391 pll2_n = FIELD_PREP(0x030000, tmp[0]) | 392 FIELD_PREP(0x00ff00, tmp[1]) | 393 FIELD_PREP(0x0000ff, tmp[2]); 394 395 ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_R_MSB, &tmp, 2); 396 if (ret) 397 return ret; 398 399 pll2_r = FIELD_PREP(0x0f00, tmp[0]) | 400 FIELD_PREP(0x00ff, tmp[1]); 401 402 vco_rate = (prate << FIELD_GET(LMK04832_BIT_PLL2_MISC_REF_2X_EN, 403 pll2_misc)) * pll2_n * pll2_p[p] / pll2_r; 404 405 return vco_rate; 406 }; 407 408 /** 409 * lmk04832_check_vco_ranges - Check requested VCO frequency against VCO ranges 410 * 411 * @lmk: Reference to the lmk device 412 * @rate: Desired output rate for the VCO 413 * 414 * The LMK04832 has 2 internal VCO, each with independent operating ranges. 415 * Use the device_info structure to determine which VCO to use based on rate. 416 * 417 * Returns VCO_MUX value or negative errno. 418 */ 419 static int lmk04832_check_vco_ranges(struct lmk04832 *lmk, unsigned long rate) 420 { 421 struct spi_device *spi = to_spi_device(lmk->dev); 422 const struct lmk04832_device_info *info; 423 unsigned long mhz = rate / 1000000; 424 425 info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data]; 426 427 if (mhz >= info->vco0_range[0] && mhz <= info->vco0_range[1]) 428 return LMK04832_VAL_VCO_MUX_VCO0; 429 430 if (mhz >= info->vco1_range[0] && mhz <= info->vco1_range[1]) 431 return LMK04832_VAL_VCO_MUX_VCO1; 432 433 dev_err(lmk->dev, "%lu Hz is out of VCO ranges\n", rate); 434 return -ERANGE; 435 } 436 437 /** 438 * lmk04832_calc_pll2_params - Get PLL2 parameters used to set the VCO frequency 439 * 440 * @prate: parent rate to the PLL2, usually OSCin 441 * @rate: Desired output rate for the VCO 442 * @n: reference to PLL2_N 443 * @p: reference to PLL2_P 444 * @r: reference to PLL2_R 445 * 446 * This functions assumes LMK04832_BIT_PLL2_MISC_REF_2X_EN is set since it is 447 * recommended in the datasheet because a higher phase detector frequencies 448 * makes the design of wider loop bandwidth filters possible. 449 * 450 * the VCO rate can be calculated using the following expression: 451 * 452 * VCO = OSCin * 2 * PLL2_N * PLL2_P / PLL2_R 453 * 454 * Returns vco rate or negative errno. 455 */ 456 static long lmk04832_calc_pll2_params(unsigned long prate, unsigned long rate, 457 unsigned int *n, unsigned int *p, 458 unsigned int *r) 459 { 460 unsigned int pll2_n, pll2_p, pll2_r; 461 unsigned long num, div; 462 463 /* Set PLL2_P to a fixed value to simplify optimizations */ 464 pll2_p = 2; 465 466 div = gcd(rate, prate); 467 468 num = DIV_ROUND_CLOSEST(rate, div); 469 pll2_r = DIV_ROUND_CLOSEST(prate, div); 470 471 if (num > 4) { 472 pll2_n = num >> 2; 473 } else { 474 pll2_r = pll2_r << 2; 475 pll2_n = num; 476 } 477 478 if (pll2_n < 1 || pll2_n > 0x03ffff) 479 return -EINVAL; 480 if (pll2_r < 1 || pll2_r > 0xfff) 481 return -EINVAL; 482 483 *n = pll2_n; 484 *p = pll2_p; 485 *r = pll2_r; 486 487 return DIV_ROUND_CLOSEST(prate * 2 * pll2_p * pll2_n, pll2_r); 488 } 489 490 static long lmk04832_vco_round_rate(struct clk_hw *hw, unsigned long rate, 491 unsigned long *prate) 492 { 493 struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); 494 unsigned int n, p, r; 495 long vco_rate; 496 int ret; 497 498 ret = lmk04832_check_vco_ranges(lmk, rate); 499 if (ret < 0) 500 return ret; 501 502 vco_rate = lmk04832_calc_pll2_params(*prate, rate, &n, &p, &r); 503 if (vco_rate < 0) { 504 dev_err(lmk->dev, "PLL2 parameters out of range\n"); 505 return vco_rate; 506 } 507 508 if (rate != vco_rate) 509 return -EINVAL; 510 511 return vco_rate; 512 }; 513 514 static int lmk04832_vco_set_rate(struct clk_hw *hw, unsigned long rate, 515 unsigned long prate) 516 { 517 struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); 518 unsigned int n, p, r; 519 long vco_rate; 520 int vco_mux; 521 int ret; 522 523 vco_mux = lmk04832_check_vco_ranges(lmk, rate); 524 if (vco_mux < 0) 525 return vco_mux; 526 527 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT, 528 LMK04832_BIT_VCO_MUX, 529 FIELD_PREP(LMK04832_BIT_VCO_MUX, vco_mux)); 530 if (ret) 531 return ret; 532 533 vco_rate = lmk04832_calc_pll2_params(prate, rate, &n, &p, &r); 534 if (vco_rate < 0) { 535 dev_err(lmk->dev, "failed to determine PLL2 parameters\n"); 536 return vco_rate; 537 } 538 539 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_R_MSB, 540 LMK04832_BIT_PLL2_R_MSB, 541 FIELD_GET(0x000700, r)); 542 if (ret) 543 return ret; 544 545 ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_R_LSB, 546 FIELD_GET(0x0000ff, r)); 547 if (ret) 548 return ret; 549 550 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC, 551 LMK04832_BIT_PLL2_MISC_P, 552 FIELD_PREP(LMK04832_BIT_PLL2_MISC_P, p)); 553 if (ret) 554 return ret; 555 556 /* 557 * PLL2_N registers must be programmed after other PLL2 dividers are 558 * programmed to ensure proper VCO frequency calibration 559 */ 560 ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_0, 561 FIELD_GET(0x030000, n)); 562 if (ret) 563 return ret; 564 ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_1, 565 FIELD_GET(0x00ff00, n)); 566 if (ret) 567 return ret; 568 569 return regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_2, 570 FIELD_GET(0x0000ff, n)); 571 }; 572 573 static const struct clk_ops lmk04832_vco_ops = { 574 .is_enabled = lmk04832_vco_is_enabled, 575 .prepare = lmk04832_vco_prepare, 576 .unprepare = lmk04832_vco_unprepare, 577 .recalc_rate = lmk04832_vco_recalc_rate, 578 .round_rate = lmk04832_vco_round_rate, 579 .set_rate = lmk04832_vco_set_rate, 580 }; 581 582 /* 583 * lmk04832_register_vco - Initialize the internal VCO and clock distribution 584 * path in PLL2 single loop mode. 585 */ 586 static int lmk04832_register_vco(struct lmk04832 *lmk) 587 { 588 const char *parent_names[1]; 589 struct clk_init_data init; 590 int ret; 591 592 init.name = "lmk-vco"; 593 parent_names[0] = __clk_get_name(lmk->oscin); 594 init.parent_names = parent_names; 595 596 init.ops = &lmk04832_vco_ops; 597 init.num_parents = 1; 598 599 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT, 600 LMK04832_BIT_VCO_MUX, 601 FIELD_PREP(LMK04832_BIT_VCO_MUX, 602 LMK04832_VAL_VCO_MUX_VCO1)); 603 if (ret) 604 return ret; 605 606 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_FB_CTRL, 607 LMK04832_BIT_PLL2_RCLK_MUX | 608 LMK04832_BIT_PLL2_NCLK_MUX, 609 FIELD_PREP(LMK04832_BIT_PLL2_RCLK_MUX, 610 LMK04832_VAL_PLL2_RCLK_MUX_OSCIN)| 611 FIELD_PREP(LMK04832_BIT_PLL2_NCLK_MUX, 612 LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P)); 613 if (ret) 614 return ret; 615 616 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC, 617 LMK04832_BIT_PLL2_MISC_REF_2X_EN, 618 LMK04832_BIT_PLL2_MISC_REF_2X_EN); 619 if (ret) 620 return ret; 621 622 ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_LD, 623 FIELD_PREP(LMK04832_BIT_PLL2_LD_MUX, 624 LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD) | 625 FIELD_PREP(LMK04832_BIT_PLL2_LD_TYPE, 626 LMK04832_VAL_PLL2_LD_TYPE_OUT_PP)); 627 if (ret) 628 return ret; 629 630 lmk->vco.init = &init; 631 return devm_clk_hw_register(lmk->dev, &lmk->vco); 632 } 633 634 static int lmk04832_clkout_set_ddly(struct lmk04832 *lmk, int id) 635 { 636 int dclk_div_adj[] = {0, 0, -2, -2, 0, 3, -1, 0}; 637 unsigned int sclkx_y_ddly = 10; 638 unsigned int dclkx_y_ddly; 639 unsigned int dclkx_y_div; 640 unsigned int sysref_ddly; 641 unsigned int dclkx_y_hs; 642 unsigned int lsb, msb; 643 int ret; 644 645 ret = regmap_update_bits(lmk->regmap, 646 LMK04832_REG_CLKOUT_CTRL2(id), 647 LMK04832_BIT_DCLKX_Y_DDLY_PD, 648 FIELD_PREP(LMK04832_BIT_DCLKX_Y_DDLY_PD, 0)); 649 if (ret) 650 return ret; 651 652 ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB, &lsb); 653 if (ret) 654 return ret; 655 656 ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB, &msb); 657 if (ret) 658 return ret; 659 660 sysref_ddly = FIELD_GET(LMK04832_BIT_SYSREF_DDLY_MSB, msb) << 8 | lsb; 661 662 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(id), &lsb); 663 if (ret) 664 return ret; 665 666 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id), &msb); 667 if (ret) 668 return ret; 669 670 dclkx_y_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb; 671 672 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(id), &lsb); 673 if (ret) 674 return ret; 675 676 dclkx_y_hs = FIELD_GET(LMK04832_BIT_DCLKX_Y_HS, lsb); 677 678 dclkx_y_ddly = sysref_ddly + 1 - 679 dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7] - 680 dclkx_y_hs + sclkx_y_ddly; 681 682 if (dclkx_y_ddly < 7 || dclkx_y_ddly > 0x3fff) { 683 dev_err(lmk->dev, "DCLKX_Y_DDLY out of range (%d)\n", 684 dclkx_y_ddly); 685 return -EINVAL; 686 } 687 688 ret = regmap_write(lmk->regmap, 689 LMK04832_REG_SCLKX_Y_DDLY(id), 690 FIELD_GET(LMK04832_BIT_SCLKX_Y_DDLY, sclkx_y_ddly)); 691 if (ret) 692 return ret; 693 694 ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL1(id), 695 FIELD_GET(0x00ff, dclkx_y_ddly)); 696 if (ret) 697 return ret; 698 699 dev_dbg(lmk->dev, "clkout%02u: sysref_ddly=%u, dclkx_y_ddly=%u, " 700 "dclk_div_adj=%+d, dclkx_y_hs=%u, sclkx_y_ddly=%u\n", 701 id, sysref_ddly, dclkx_y_ddly, 702 dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7], 703 dclkx_y_hs, sclkx_y_ddly); 704 705 return regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id), 706 LMK04832_BIT_DCLKX_Y_DDLY_MSB, 707 FIELD_GET(0x0300, dclkx_y_ddly)); 708 } 709 710 /** lmk04832_sclk_sync - Establish deterministic phase relationship between sclk 711 * and dclk 712 * 713 * @lmk: Reference to the lmk device 714 * 715 * The synchronization sequence: 716 * - in the datasheet https://www.ti.com/lit/ds/symlink/lmk04832.pdf, p.31 717 * (8.3.3.1 How to enable SYSREF) 718 * - Ti forum: https://e2e.ti.com/support/clock-and-timing/f/48/t/970972 719 * 720 * Returns 0 or negative errno. 721 */ 722 static int lmk04832_sclk_sync_sequence(struct lmk04832 *lmk) 723 { 724 int ret; 725 int i; 726 727 /* 1. (optional) mute all sysref_outputs during synchronization */ 728 /* 2. Enable and write device clock digital delay to applicable clocks */ 729 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, 730 LMK04832_BIT_SYSREF_DDLY_PD, 731 FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0)); 732 if (ret) 733 return ret; 734 735 for (i = 0; i < lmk->clk_data->num; i += 2) { 736 ret = lmk04832_clkout_set_ddly(lmk, i); 737 if (ret) 738 return ret; 739 } 740 741 /* 742 * 3. Configure SYNC_MODE to SYNC_PIN and SYSREF_MUX to Normal SYNC, 743 * and clear SYSREF_REQ_EN (see 6.) 744 */ 745 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT, 746 LMK04832_BIT_SYSREF_REQ_EN | 747 LMK04832_BIT_SYSREF_MUX, 748 FIELD_PREP(LMK04832_BIT_SYSREF_REQ_EN, 0) | 749 FIELD_PREP(LMK04832_BIT_SYSREF_MUX, 750 LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC)); 751 if (ret) 752 return ret; 753 754 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, 755 LMK04832_BIT_SYNC_MODE, 756 FIELD_PREP(LMK04832_BIT_SYNC_MODE, 757 LMK04832_VAL_SYNC_MODE_ON)); 758 if (ret) 759 return ret; 760 761 /* 4. Clear SYNXC_DISx or applicable clocks and clear SYNC_DISSYSREF */ 762 ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0x00); 763 if (ret) 764 return ret; 765 766 /* 767 * 5. If SCLKX_Y_DDLY != 0, Set SYSREF_CLR=1 for at least 15 clock 768 * distribution path cycles (VCO cycles), then back to 0. In 769 * PLL2-only use case, this will be complete in less than one SPI 770 * transaction. If SYSREF local digital delay is not used, this step 771 * can be skipped. 772 */ 773 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, 774 LMK04832_BIT_SYNC_CLR, 775 FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x01)); 776 if (ret) 777 return ret; 778 779 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, 780 LMK04832_BIT_SYNC_CLR, 781 FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x00)); 782 if (ret) 783 return ret; 784 785 /* 786 * 6. Toggle SYNC_POL state between inverted and not inverted. 787 * If you use an external signal on the SYNC pin instead of toggling 788 * SYNC_POL, make sure that SYSREF_REQ_EN=0 so that the SYSREF_MUX 789 * does not shift into continuous SYSREF mode. 790 */ 791 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, 792 LMK04832_BIT_SYNC_POL, 793 FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x01)); 794 if (ret) 795 return ret; 796 797 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, 798 LMK04832_BIT_SYNC_POL, 799 FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x00)); 800 if (ret) 801 return ret; 802 803 /* 7. Set all SYNC_DISx=1, including SYNC_DISSYSREF */ 804 ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff); 805 if (ret) 806 return ret; 807 808 /* 8. Restore state of SYNC_MODE and SYSREF_MUX to desired values */ 809 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT, 810 LMK04832_BIT_SYSREF_MUX, 811 FIELD_PREP(LMK04832_BIT_SYSREF_MUX, 812 lmk->sysref_mux)); 813 if (ret) 814 return ret; 815 816 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, 817 LMK04832_BIT_SYNC_MODE, 818 FIELD_PREP(LMK04832_BIT_SYNC_MODE, 819 lmk->sync_mode)); 820 if (ret) 821 return ret; 822 823 /* 824 * 9. (optional) if SCLKx_y_DIS_MODE was used to mute SYSREF outputs 825 * during the SYNC event, restore SCLKx_y_DIS_MODE=0 for active state, 826 * or set SYSREF_GBL_PD=0 if SCLKx_y_DIS_MODE is set to a conditional 827 * option. 828 */ 829 830 /* 831 * 10. (optional) To reduce power consumption, after the synchronization 832 * event is complete, DCLKx_y_DDLY_PD=1 and SYSREF_DDLY_PD=1 disable the 833 * digital delay counters (which are only used immediately after the 834 * SYNC pulse to delay the output by some number of VCO counts). 835 */ 836 837 return ret; 838 } 839 840 static int lmk04832_sclk_is_enabled(struct clk_hw *hw) 841 { 842 struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); 843 unsigned int tmp; 844 int ret; 845 846 ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp); 847 if (ret) 848 return ret; 849 850 return FIELD_GET(LMK04832_BIT_SYSREF_PD, tmp); 851 } 852 853 static int lmk04832_sclk_prepare(struct clk_hw *hw) 854 { 855 struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); 856 857 return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, 858 LMK04832_BIT_SYSREF_PD, 0x00); 859 } 860 861 static void lmk04832_sclk_unprepare(struct clk_hw *hw) 862 { 863 struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); 864 865 regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, 866 LMK04832_BIT_SYSREF_PD, LMK04832_BIT_SYSREF_PD); 867 } 868 869 static unsigned long lmk04832_sclk_recalc_rate(struct clk_hw *hw, 870 unsigned long prate) 871 { 872 struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); 873 unsigned int sysref_div; 874 u8 tmp[2]; 875 int ret; 876 877 ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB, &tmp, 2); 878 if (ret) 879 return ret; 880 881 sysref_div = FIELD_GET(LMK04832_BIT_SYSREF_DIV_MSB, tmp[0]) << 8 | 882 tmp[1]; 883 884 return DIV_ROUND_CLOSEST(prate, sysref_div); 885 } 886 887 static long lmk04832_sclk_round_rate(struct clk_hw *hw, unsigned long rate, 888 unsigned long *prate) 889 { 890 struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); 891 unsigned long sclk_rate; 892 unsigned int sysref_div; 893 894 sysref_div = DIV_ROUND_CLOSEST(*prate, rate); 895 sclk_rate = DIV_ROUND_CLOSEST(*prate, sysref_div); 896 897 if (sysref_div < 0x07 || sysref_div > 0x1fff) { 898 dev_err(lmk->dev, "SYSREF divider out of range\n"); 899 return -EINVAL; 900 } 901 902 if (rate != sclk_rate) 903 return -EINVAL; 904 905 return sclk_rate; 906 } 907 908 static int lmk04832_sclk_set_rate(struct clk_hw *hw, unsigned long rate, 909 unsigned long prate) 910 { 911 struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); 912 unsigned int sysref_div; 913 int ret; 914 915 sysref_div = DIV_ROUND_CLOSEST(prate, rate); 916 917 if (sysref_div < 0x07 || sysref_div > 0x1fff) { 918 dev_err(lmk->dev, "SYSREF divider out of range\n"); 919 return -EINVAL; 920 } 921 922 ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB, 923 FIELD_GET(0x1f00, sysref_div)); 924 if (ret) 925 return ret; 926 927 ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_LSB, 928 FIELD_GET(0x00ff, sysref_div)); 929 if (ret) 930 return ret; 931 932 ret = lmk04832_sclk_sync_sequence(lmk); 933 if (ret) 934 dev_err(lmk->dev, "SYNC sequence failed\n"); 935 936 return ret; 937 } 938 939 static const struct clk_ops lmk04832_sclk_ops = { 940 .is_enabled = lmk04832_sclk_is_enabled, 941 .prepare = lmk04832_sclk_prepare, 942 .unprepare = lmk04832_sclk_unprepare, 943 .recalc_rate = lmk04832_sclk_recalc_rate, 944 .round_rate = lmk04832_sclk_round_rate, 945 .set_rate = lmk04832_sclk_set_rate, 946 }; 947 948 static int lmk04832_register_sclk(struct lmk04832 *lmk) 949 { 950 const char *parent_names[1]; 951 struct clk_init_data init; 952 int ret; 953 954 init.name = "lmk-sclk"; 955 parent_names[0] = clk_hw_get_name(&lmk->vco); 956 init.parent_names = parent_names; 957 958 init.ops = &lmk04832_sclk_ops; 959 init.flags = CLK_SET_RATE_PARENT; 960 init.num_parents = 1; 961 962 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT, 963 LMK04832_BIT_SYSREF_MUX, 964 FIELD_PREP(LMK04832_BIT_SYSREF_MUX, 965 lmk->sysref_mux)); 966 if (ret) 967 return ret; 968 969 ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB, 970 FIELD_GET(0x00ff, lmk->sysref_ddly)); 971 if (ret) 972 return ret; 973 974 ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB, 975 FIELD_GET(0x1f00, lmk->sysref_ddly)); 976 if (ret) 977 return ret; 978 979 ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_PULSE_CNT, 980 ilog2(lmk->sysref_pulse_cnt)); 981 if (ret) 982 return ret; 983 984 ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, 985 LMK04832_BIT_SYSREF_DDLY_PD | 986 LMK04832_BIT_SYSREF_PLSR_PD, 987 FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0) | 988 FIELD_PREP(LMK04832_BIT_SYSREF_PLSR_PD, 0)); 989 if (ret) 990 return ret; 991 992 ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC, 993 FIELD_PREP(LMK04832_BIT_SYNC_POL, 0) | 994 FIELD_PREP(LMK04832_BIT_SYNC_EN, 1) | 995 FIELD_PREP(LMK04832_BIT_SYNC_MODE, lmk->sync_mode)); 996 if (ret) 997 return ret; 998 999 ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff); 1000 if (ret) 1001 return ret; 1002 1003 lmk->sclk.init = &init; 1004 return devm_clk_hw_register(lmk->dev, &lmk->sclk); 1005 } 1006 1007 static int lmk04832_dclk_is_enabled(struct clk_hw *hw) 1008 { 1009 struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); 1010 struct lmk04832 *lmk = dclk->lmk; 1011 unsigned int tmp; 1012 int ret; 1013 1014 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(dclk->id), 1015 &tmp); 1016 if (ret) 1017 return ret; 1018 1019 return !FIELD_GET(LMK04832_BIT_DCLKX_Y_PD, tmp); 1020 } 1021 1022 static int lmk04832_dclk_prepare(struct clk_hw *hw) 1023 { 1024 struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); 1025 struct lmk04832 *lmk = dclk->lmk; 1026 1027 return regmap_update_bits(lmk->regmap, 1028 LMK04832_REG_CLKOUT_CTRL3(dclk->id), 1029 LMK04832_BIT_DCLKX_Y_PD, 0x00); 1030 } 1031 1032 static void lmk04832_dclk_unprepare(struct clk_hw *hw) 1033 { 1034 struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); 1035 struct lmk04832 *lmk = dclk->lmk; 1036 1037 regmap_update_bits(lmk->regmap, 1038 LMK04832_REG_CLKOUT_CTRL3(dclk->id), 1039 LMK04832_BIT_DCLKX_Y_PD, 0xff); 1040 } 1041 1042 static unsigned long lmk04832_dclk_recalc_rate(struct clk_hw *hw, 1043 unsigned long prate) 1044 { 1045 struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); 1046 struct lmk04832 *lmk = dclk->lmk; 1047 unsigned int dclk_div; 1048 unsigned int lsb, msb; 1049 unsigned long rate; 1050 int ret; 1051 1052 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id), 1053 &lsb); 1054 if (ret) 1055 return ret; 1056 1057 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(dclk->id), 1058 &msb); 1059 if (ret) 1060 return ret; 1061 1062 dclk_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb; 1063 rate = DIV_ROUND_CLOSEST(prate, dclk_div); 1064 1065 return rate; 1066 }; 1067 1068 static long lmk04832_dclk_round_rate(struct clk_hw *hw, unsigned long rate, 1069 unsigned long *prate) 1070 { 1071 struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); 1072 struct lmk04832 *lmk = dclk->lmk; 1073 unsigned long dclk_rate; 1074 unsigned int dclk_div; 1075 1076 dclk_div = DIV_ROUND_CLOSEST(*prate, rate); 1077 dclk_rate = DIV_ROUND_CLOSEST(*prate, dclk_div); 1078 1079 if (dclk_div < 1 || dclk_div > 0x3ff) { 1080 dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw)); 1081 return -EINVAL; 1082 } 1083 1084 if (rate != dclk_rate) 1085 return -EINVAL; 1086 1087 return dclk_rate; 1088 }; 1089 1090 static int lmk04832_dclk_set_rate(struct clk_hw *hw, unsigned long rate, 1091 unsigned long prate) 1092 { 1093 struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); 1094 struct lmk04832 *lmk = dclk->lmk; 1095 unsigned int dclk_div; 1096 int ret; 1097 1098 dclk_div = DIV_ROUND_CLOSEST(prate, rate); 1099 1100 if (dclk_div > 0x3ff) { 1101 dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw)); 1102 return -EINVAL; 1103 } 1104 1105 /* Enable Duty Cycle Correction */ 1106 if (dclk_div == 1) { 1107 ret = regmap_update_bits(lmk->regmap, 1108 LMK04832_REG_CLKOUT_CTRL3(dclk->id), 1109 LMK04832_BIT_DCLKX_Y_DCC, 1110 FIELD_PREP(LMK04832_BIT_DCLKX_Y_DCC, 1)); 1111 if (ret) 1112 return ret; 1113 } 1114 1115 /* 1116 * While using Divide-by-2 or Divide-by-3 for DCLK_X_Y_DIV, SYNC 1117 * procedure requires to first program Divide-by-4 and then back to 1118 * Divide-by-2 or Divide-by-3 before doing SYNC. 1119 */ 1120 if (dclk_div == 2 || dclk_div == 3) { 1121 ret = regmap_update_bits(lmk->regmap, 1122 LMK04832_REG_CLKOUT_CTRL2(dclk->id), 1123 LMK04832_BIT_DCLK_DIV_MSB, 0x00); 1124 if (ret) 1125 return ret; 1126 1127 ret = regmap_write(lmk->regmap, 1128 LMK04832_REG_CLKOUT_CTRL0(dclk->id), 0x04); 1129 if (ret) 1130 return ret; 1131 } 1132 1133 ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id), 1134 FIELD_GET(0x0ff, dclk_div)); 1135 if (ret) 1136 return ret; 1137 1138 ret = regmap_update_bits(lmk->regmap, 1139 LMK04832_REG_CLKOUT_CTRL2(dclk->id), 1140 LMK04832_BIT_DCLK_DIV_MSB, 1141 FIELD_GET(0x300, dclk_div)); 1142 if (ret) 1143 return ret; 1144 1145 ret = lmk04832_sclk_sync_sequence(lmk); 1146 if (ret) 1147 dev_err(lmk->dev, "SYNC sequence failed\n"); 1148 1149 return ret; 1150 }; 1151 1152 static const struct clk_ops lmk04832_dclk_ops = { 1153 .is_enabled = lmk04832_dclk_is_enabled, 1154 .prepare = lmk04832_dclk_prepare, 1155 .unprepare = lmk04832_dclk_unprepare, 1156 .recalc_rate = lmk04832_dclk_recalc_rate, 1157 .round_rate = lmk04832_dclk_round_rate, 1158 .set_rate = lmk04832_dclk_set_rate, 1159 }; 1160 1161 static int lmk04832_clkout_is_enabled(struct clk_hw *hw) 1162 { 1163 struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); 1164 struct lmk04832 *lmk = clkout->lmk; 1165 unsigned int clkoutx_y_pd; 1166 unsigned int sclkx_y_pd; 1167 unsigned int tmp; 1168 u32 enabled; 1169 int ret; 1170 u8 fmt; 1171 1172 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(clkout->id), 1173 &clkoutx_y_pd); 1174 if (ret) 1175 return ret; 1176 1177 enabled = !FIELD_GET(LMK04832_BIT_CLKOUTX_Y_PD, clkoutx_y_pd); 1178 1179 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id), 1180 &tmp); 1181 if (ret) 1182 return ret; 1183 1184 if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) { 1185 ret = regmap_read(lmk->regmap, 1186 LMK04832_REG_CLKOUT_CTRL4(clkout->id), 1187 &sclkx_y_pd); 1188 if (ret) 1189 return ret; 1190 1191 enabled = enabled && !FIELD_GET(LMK04832_BIT_SCLK_PD, sclkx_y_pd); 1192 } 1193 1194 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id), 1195 &tmp); 1196 if (ret) 1197 return ret; 1198 1199 if (clkout->id % 2) 1200 fmt = FIELD_GET(0xf0, tmp); 1201 else 1202 fmt = FIELD_GET(0x0f, tmp); 1203 1204 return enabled && !fmt; 1205 } 1206 1207 static int lmk04832_clkout_prepare(struct clk_hw *hw) 1208 { 1209 struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); 1210 struct lmk04832 *lmk = clkout->lmk; 1211 unsigned int tmp; 1212 int ret; 1213 1214 if (clkout->format == LMK04832_VAL_CLKOUT_FMT_POWERDOWN) 1215 dev_err(lmk->dev, "prepared %s but format is powerdown\n", 1216 clk_hw_get_name(hw)); 1217 1218 ret = regmap_update_bits(lmk->regmap, 1219 LMK04832_REG_CLKOUT_CTRL2(clkout->id), 1220 LMK04832_BIT_CLKOUTX_Y_PD, 0x00); 1221 if (ret) 1222 return ret; 1223 1224 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id), 1225 &tmp); 1226 if (ret) 1227 return ret; 1228 1229 if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) { 1230 ret = regmap_update_bits(lmk->regmap, 1231 LMK04832_REG_CLKOUT_CTRL4(clkout->id), 1232 LMK04832_BIT_SCLK_PD, 0x00); 1233 if (ret) 1234 return ret; 1235 } 1236 1237 return regmap_update_bits(lmk->regmap, 1238 LMK04832_REG_CLKOUT_FMT(clkout->id), 1239 LMK04832_BIT_CLKOUT_FMT(clkout->id), 1240 clkout->format << 4 * (clkout->id % 2)); 1241 } 1242 1243 static void lmk04832_clkout_unprepare(struct clk_hw *hw) 1244 { 1245 struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); 1246 struct lmk04832 *lmk = clkout->lmk; 1247 1248 regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id), 1249 LMK04832_BIT_CLKOUT_FMT(clkout->id), 1250 0x00); 1251 } 1252 1253 static int lmk04832_clkout_set_parent(struct clk_hw *hw, uint8_t index) 1254 { 1255 struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); 1256 struct lmk04832 *lmk = clkout->lmk; 1257 1258 return regmap_update_bits(lmk->regmap, 1259 LMK04832_REG_CLKOUT_SRC_MUX(clkout->id), 1260 LMK04832_BIT_CLKOUT_SRC_MUX, 1261 FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX, 1262 index)); 1263 } 1264 1265 static uint8_t lmk04832_clkout_get_parent(struct clk_hw *hw) 1266 { 1267 struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); 1268 struct lmk04832 *lmk = clkout->lmk; 1269 unsigned int tmp; 1270 int ret; 1271 1272 ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id), 1273 &tmp); 1274 if (ret) 1275 return ret; 1276 1277 return FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp); 1278 } 1279 1280 static const struct clk_ops lmk04832_clkout_ops = { 1281 .is_enabled = lmk04832_clkout_is_enabled, 1282 .prepare = lmk04832_clkout_prepare, 1283 .unprepare = lmk04832_clkout_unprepare, 1284 .set_parent = lmk04832_clkout_set_parent, 1285 .get_parent = lmk04832_clkout_get_parent, 1286 }; 1287 1288 static int lmk04832_register_clkout(struct lmk04832 *lmk, const int num) 1289 { 1290 char name[] = "lmk-clkoutXX"; 1291 char dclk_name[] = "lmk-dclkXX_YY"; 1292 const char *parent_names[2]; 1293 struct clk_init_data init; 1294 int dclk_num = num / 2; 1295 int ret; 1296 1297 if (num % 2 == 0) { 1298 sprintf(dclk_name, "lmk-dclk%02d_%02d", num, num + 1); 1299 init.name = dclk_name; 1300 parent_names[0] = clk_hw_get_name(&lmk->vco); 1301 init.ops = &lmk04832_dclk_ops; 1302 init.flags = CLK_SET_RATE_PARENT; 1303 init.num_parents = 1; 1304 1305 lmk->dclk[dclk_num].id = num; 1306 lmk->dclk[dclk_num].lmk = lmk; 1307 lmk->dclk[dclk_num].hw.init = &init; 1308 1309 ret = devm_clk_hw_register(lmk->dev, &lmk->dclk[dclk_num].hw); 1310 if (ret) 1311 return ret; 1312 } else { 1313 sprintf(dclk_name, "lmk-dclk%02d_%02d", num - 1, num); 1314 } 1315 1316 if (of_property_read_string_index(lmk->dev->of_node, 1317 "clock-output-names", 1318 num, &init.name)) { 1319 sprintf(name, "lmk-clkout%02d", num); 1320 init.name = name; 1321 } 1322 1323 parent_names[0] = dclk_name; 1324 parent_names[1] = clk_hw_get_name(&lmk->sclk); 1325 init.parent_names = parent_names; 1326 init.ops = &lmk04832_clkout_ops; 1327 init.flags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT; 1328 init.num_parents = ARRAY_SIZE(parent_names); 1329 1330 lmk->clkout[num].id = num; 1331 lmk->clkout[num].lmk = lmk; 1332 lmk->clkout[num].hw.init = &init; 1333 lmk->clk_data->hws[num] = &lmk->clkout[num].hw; 1334 1335 /* Set initial parent */ 1336 regmap_update_bits(lmk->regmap, 1337 LMK04832_REG_CLKOUT_SRC_MUX(num), 1338 LMK04832_BIT_CLKOUT_SRC_MUX, 1339 FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX, 1340 lmk->clkout[num].sysref)); 1341 1342 return devm_clk_hw_register(lmk->dev, &lmk->clkout[num].hw); 1343 } 1344 1345 static int lmk04832_set_spi_rdbk(const struct lmk04832 *lmk, const int rdbk_pin) 1346 { 1347 int reg; 1348 int ret; 1349 1350 dev_info(lmk->dev, "setting up 4-wire mode\n"); 1351 ret = regmap_write(lmk->regmap, LMK04832_REG_RST3W, 1352 LMK04832_BIT_SPI_3WIRE_DIS); 1353 if (ret) 1354 return ret; 1355 1356 switch (rdbk_pin) { 1357 case RDBK_CLKIN_SEL0: 1358 reg = LMK04832_REG_CLKIN_SEL0; 1359 break; 1360 case RDBK_CLKIN_SEL1: 1361 reg = LMK04832_REG_CLKIN_SEL1; 1362 break; 1363 case RDBK_RESET: 1364 reg = LMK04832_REG_CLKIN_RST; 1365 break; 1366 default: 1367 return -EINVAL; 1368 } 1369 1370 return regmap_write(lmk->regmap, reg, 1371 FIELD_PREP(LMK04832_BIT_CLKIN_SEL_MUX, 1372 LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK) | 1373 FIELD_PREP(LMK04832_BIT_CLKIN_SEL_TYPE, 1374 LMK04832_VAL_CLKIN_SEL_TYPE_OUT)); 1375 } 1376 1377 static int lmk04832_probe(struct spi_device *spi) 1378 { 1379 const struct lmk04832_device_info *info; 1380 int rdbk_pin = RDBK_CLKIN_SEL1; 1381 struct device_node *child; 1382 struct lmk04832 *lmk; 1383 u8 tmp[3]; 1384 int ret; 1385 int i; 1386 1387 info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data]; 1388 1389 lmk = devm_kzalloc(&spi->dev, sizeof(struct lmk04832), GFP_KERNEL); 1390 if (!lmk) 1391 return -ENOMEM; 1392 1393 lmk->dev = &spi->dev; 1394 1395 lmk->oscin = devm_clk_get(lmk->dev, "oscin"); 1396 if (IS_ERR(lmk->oscin)) { 1397 dev_err(lmk->dev, "failed to get oscin clock\n"); 1398 return PTR_ERR(lmk->oscin); 1399 } 1400 1401 ret = clk_prepare_enable(lmk->oscin); 1402 if (ret) 1403 return ret; 1404 1405 lmk->reset_gpio = devm_gpiod_get_optional(&spi->dev, "reset", 1406 GPIOD_OUT_LOW); 1407 1408 lmk->dclk = devm_kcalloc(lmk->dev, info->num_channels >> 1, 1409 sizeof(struct lmk_dclk), GFP_KERNEL); 1410 if (!lmk->dclk) { 1411 ret = -ENOMEM; 1412 goto err_disable_oscin; 1413 } 1414 1415 lmk->clkout = devm_kcalloc(lmk->dev, info->num_channels, 1416 sizeof(*lmk->clkout), GFP_KERNEL); 1417 if (!lmk->clkout) { 1418 ret = -ENOMEM; 1419 goto err_disable_oscin; 1420 } 1421 1422 lmk->clk_data = devm_kzalloc(lmk->dev, struct_size(lmk->clk_data, hws, 1423 info->num_channels), 1424 GFP_KERNEL); 1425 if (!lmk->clk_data) { 1426 ret = -ENOMEM; 1427 goto err_disable_oscin; 1428 } 1429 1430 device_property_read_u32(lmk->dev, "ti,vco-hz", &lmk->vco_rate); 1431 1432 lmk->sysref_ddly = 8; 1433 device_property_read_u32(lmk->dev, "ti,sysref-ddly", &lmk->sysref_ddly); 1434 1435 lmk->sysref_mux = LMK04832_VAL_SYSREF_MUX_CONTINUOUS; 1436 device_property_read_u32(lmk->dev, "ti,sysref-mux", 1437 &lmk->sysref_mux); 1438 1439 lmk->sync_mode = LMK04832_VAL_SYNC_MODE_OFF; 1440 device_property_read_u32(lmk->dev, "ti,sync-mode", 1441 &lmk->sync_mode); 1442 1443 lmk->sysref_pulse_cnt = 4; 1444 device_property_read_u32(lmk->dev, "ti,sysref-pulse-count", 1445 &lmk->sysref_pulse_cnt); 1446 1447 for_each_child_of_node(lmk->dev->of_node, child) { 1448 int reg; 1449 1450 ret = of_property_read_u32(child, "reg", ®); 1451 if (ret) { 1452 dev_err(lmk->dev, "missing reg property in child: %s\n", 1453 child->full_name); 1454 of_node_put(child); 1455 goto err_disable_oscin; 1456 } 1457 1458 of_property_read_u32(child, "ti,clkout-fmt", 1459 &lmk->clkout[reg].format); 1460 1461 if (lmk->clkout[reg].format >= 0x0a && reg % 2 == 0 1462 && reg != 8 && reg != 10) 1463 dev_err(lmk->dev, "invalid format for clkout%02d\n", 1464 reg); 1465 1466 lmk->clkout[reg].sysref = 1467 of_property_read_bool(child, "ti,clkout-sysref"); 1468 } 1469 1470 lmk->regmap = devm_regmap_init_spi(spi, ®map_config); 1471 if (IS_ERR(lmk->regmap)) { 1472 dev_err(lmk->dev, "%s: regmap allocation failed: %ld\n", 1473 1474 __func__, PTR_ERR(lmk->regmap)); 1475 ret = PTR_ERR(lmk->regmap); 1476 goto err_disable_oscin; 1477 } 1478 1479 regmap_write(lmk->regmap, LMK04832_REG_RST3W, LMK04832_BIT_RESET); 1480 1481 if (!(spi->mode & SPI_3WIRE)) { 1482 device_property_read_u32(lmk->dev, "ti,spi-4wire-rdbk", 1483 &rdbk_pin); 1484 ret = lmk04832_set_spi_rdbk(lmk, rdbk_pin); 1485 if (ret) 1486 goto err_disable_oscin; 1487 } 1488 1489 regmap_bulk_read(lmk->regmap, LMK04832_REG_ID_PROD_MSB, &tmp, 3); 1490 if ((tmp[0] << 8 | tmp[1]) != info->pid || tmp[2] != info->maskrev) { 1491 dev_err(lmk->dev, "unsupported device type: pid 0x%04x, maskrev 0x%02x\n", 1492 tmp[0] << 8 | tmp[1], tmp[2]); 1493 ret = -EINVAL; 1494 goto err_disable_oscin; 1495 } 1496 1497 ret = lmk04832_register_vco(lmk); 1498 if (ret) { 1499 dev_err(lmk->dev, "failed to init device clock path\n"); 1500 goto err_disable_oscin; 1501 } 1502 1503 if (lmk->vco_rate) { 1504 dev_info(lmk->dev, "setting VCO rate to %u Hz\n", lmk->vco_rate); 1505 ret = clk_set_rate(lmk->vco.clk, lmk->vco_rate); 1506 if (ret) { 1507 dev_err(lmk->dev, "failed to set VCO rate\n"); 1508 goto err_disable_vco; 1509 } 1510 } 1511 1512 ret = lmk04832_register_sclk(lmk); 1513 if (ret) { 1514 dev_err(lmk->dev, "failed to init SYNC/SYSREF clock path\n"); 1515 goto err_disable_vco; 1516 } 1517 1518 for (i = 0; i < info->num_channels; i++) { 1519 ret = lmk04832_register_clkout(lmk, i); 1520 if (ret) { 1521 dev_err(lmk->dev, "failed to register clk %d\n", i); 1522 goto err_disable_vco; 1523 } 1524 } 1525 1526 lmk->clk_data->num = info->num_channels; 1527 ret = of_clk_add_hw_provider(lmk->dev->of_node, of_clk_hw_onecell_get, 1528 lmk->clk_data); 1529 if (ret) { 1530 dev_err(lmk->dev, "failed to add provider (%d)\n", ret); 1531 goto err_disable_vco; 1532 } 1533 1534 spi_set_drvdata(spi, lmk); 1535 1536 return 0; 1537 1538 err_disable_vco: 1539 clk_disable_unprepare(lmk->vco.clk); 1540 1541 err_disable_oscin: 1542 clk_disable_unprepare(lmk->oscin); 1543 1544 return ret; 1545 } 1546 1547 static void lmk04832_remove(struct spi_device *spi) 1548 { 1549 struct lmk04832 *lmk = spi_get_drvdata(spi); 1550 1551 clk_disable_unprepare(lmk->oscin); 1552 of_clk_del_provider(spi->dev.of_node); 1553 } 1554 static const struct spi_device_id lmk04832_id[] = { 1555 { "lmk04832", LMK04832 }, 1556 {} 1557 }; 1558 MODULE_DEVICE_TABLE(spi, lmk04832_id); 1559 1560 static const struct of_device_id lmk04832_of_id[] = { 1561 { .compatible = "ti,lmk04832" }, 1562 {} 1563 }; 1564 MODULE_DEVICE_TABLE(of, lmk04832_of_id); 1565 1566 static struct spi_driver lmk04832_driver = { 1567 .driver = { 1568 .name = "lmk04832", 1569 .of_match_table = lmk04832_of_id, 1570 }, 1571 .probe = lmk04832_probe, 1572 .remove = lmk04832_remove, 1573 .id_table = lmk04832_id, 1574 }; 1575 module_spi_driver(lmk04832_driver); 1576 1577 MODULE_AUTHOR("Liam Beguin <lvb@xiphos.com>"); 1578 MODULE_DESCRIPTION("Texas Instruments LMK04832"); 1579 MODULE_LICENSE("GPL v2"); 1580