xref: /openbmc/linux/drivers/clk/clk-cdce925.c (revision de2bdb3d)
1 /*
2  * Driver for TI Dual PLL CDCE925 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
5  * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/gcd.h>
21 
22 /* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
23  * Model this as 2 PLL clocks which are parents to the outputs.
24  */
25 #define NUMBER_OF_PLLS	2
26 #define NUMBER_OF_OUTPUTS	5
27 
28 #define CDCE925_REG_GLOBAL1	0x01
29 #define CDCE925_REG_Y1SPIPDIVH	0x02
30 #define CDCE925_REG_PDIVL	0x03
31 #define CDCE925_REG_XCSEL	0x05
32 /* PLL parameters start at 0x10, steps of 0x10 */
33 #define CDCE925_OFFSET_PLL	0x10
34 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
35 #define CDCE925_PLL_MUX_OUTPUTS	0x14
36 #define CDCE925_PLL_MULDIV	0x18
37 
38 #define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
39 #define CDCE925_PLL_FREQUENCY_MAX	230000000ul
40 struct clk_cdce925_chip;
41 
42 struct clk_cdce925_output {
43 	struct clk_hw hw;
44 	struct clk_cdce925_chip *chip;
45 	u8 index;
46 	u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
47 };
48 #define to_clk_cdce925_output(_hw) \
49 	container_of(_hw, struct clk_cdce925_output, hw)
50 
51 struct clk_cdce925_pll {
52 	struct clk_hw hw;
53 	struct clk_cdce925_chip *chip;
54 	u8 index;
55 	u16 m;   /* 1..511 */
56 	u16 n;   /* 1..4095 */
57 };
58 #define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
59 
60 struct clk_cdce925_chip {
61 	struct regmap *regmap;
62 	struct i2c_client *i2c_client;
63 	struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
64 	struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
65 };
66 
67 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
68 
69 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
70 	u16 n, u16 m)
71 {
72 	if ((!m || !n) || (m == n))
73 		return parent_rate; /* In bypass mode runs at same frequency */
74 	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
75 }
76 
77 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
78 		unsigned long parent_rate)
79 {
80 	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
81 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
82 
83 	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
84 }
85 
86 static void cdce925_pll_find_rate(unsigned long rate,
87 		unsigned long parent_rate, u16 *n, u16 *m)
88 {
89 	unsigned long un;
90 	unsigned long um;
91 	unsigned long g;
92 
93 	if (rate <= parent_rate) {
94 		/* Can always deliver parent_rate in bypass mode */
95 		rate = parent_rate;
96 		*n = 0;
97 		*m = 0;
98 	} else {
99 		/* In PLL mode, need to apply min/max range */
100 		if (rate < CDCE925_PLL_FREQUENCY_MIN)
101 			rate = CDCE925_PLL_FREQUENCY_MIN;
102 		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
103 			rate = CDCE925_PLL_FREQUENCY_MAX;
104 
105 		g = gcd(rate, parent_rate);
106 		um = parent_rate / g;
107 		un = rate / g;
108 		/* When outside hw range, reduce to fit (rounding errors) */
109 		while ((un > 4095) || (um > 511)) {
110 			un >>= 1;
111 			um >>= 1;
112 		}
113 		if (un == 0)
114 			un = 1;
115 		if (um == 0)
116 			um = 1;
117 
118 		*n = un;
119 		*m = um;
120 	}
121 }
122 
123 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
124 		unsigned long *parent_rate)
125 {
126 	u16 n, m;
127 
128 	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
129 	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
130 }
131 
132 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
133 		unsigned long parent_rate)
134 {
135 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
136 
137 	if (!rate || (rate == parent_rate)) {
138 		data->m = 0; /* Bypass mode */
139 		data->n = 0;
140 		return 0;
141 	}
142 
143 	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
144 		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
145 		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
146 		return -EINVAL;
147 	}
148 
149 	if (rate < parent_rate) {
150 		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
151 			rate, parent_rate);
152 		return -EINVAL;
153 	}
154 
155 	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
156 	return 0;
157 }
158 
159 
160 /* calculate p = max(0, 4 - int(log2 (n/m))) */
161 static u8 cdce925_pll_calc_p(u16 n, u16 m)
162 {
163 	u8 p;
164 	u16 r = n / m;
165 
166 	if (r >= 16)
167 		return 0;
168 	p = 4;
169 	while (r > 1) {
170 		r >>= 1;
171 		--p;
172 	}
173 	return p;
174 }
175 
176 /* Returns VCO range bits for VCO1_0_RANGE */
177 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
178 {
179 	struct clk *parent = clk_get_parent(hw->clk);
180 	unsigned long rate = clk_get_rate(parent);
181 
182 	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
183 	if (rate >= 175000000)
184 		return 0x3;
185 	if (rate >= 150000000)
186 		return 0x02;
187 	if (rate >= 125000000)
188 		return 0x01;
189 	return 0x00;
190 }
191 
192 /* I2C clock, hence everything must happen in (un)prepare because this
193  * may sleep */
194 static int cdce925_pll_prepare(struct clk_hw *hw)
195 {
196 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
197 	u16 n = data->n;
198 	u16 m = data->m;
199 	u16 r;
200 	u8 q;
201 	u8 p;
202 	u16 nn;
203 	u8 pll[4]; /* Bits are spread out over 4 byte registers */
204 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
205 	unsigned i;
206 
207 	if ((!m || !n) || (m == n)) {
208 		/* Set PLL mux to bypass mode, leave the rest as is */
209 		regmap_update_bits(data->chip->regmap,
210 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
211 	} else {
212 		/* According to data sheet: */
213 		/* p = max(0, 4 - int(log2 (n/m))) */
214 		p = cdce925_pll_calc_p(n, m);
215 		/* nn = n * 2^p */
216 		nn = n * BIT(p);
217 		/* q = int(nn/m) */
218 		q = nn / m;
219 		if ((q < 16) || (1 > 64)) {
220 			pr_debug("%s invalid q=%d\n", __func__, q);
221 			return -EINVAL;
222 		}
223 		r = nn - (m*q);
224 		if (r > 511) {
225 			pr_debug("%s invalid r=%d\n", __func__, r);
226 			return -EINVAL;
227 		}
228 		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
229 			n, m, p, q, r);
230 		/* encode into register bits */
231 		pll[0] = n >> 4;
232 		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
233 		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
234 		pll[3] = ((q & 0x07) << 5) | (p << 2) |
235 				cdce925_pll_calc_range_bits(hw, n, m);
236 		/* Write to registers */
237 		for (i = 0; i < ARRAY_SIZE(pll); ++i)
238 			regmap_write(data->chip->regmap,
239 				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
240 		/* Enable PLL */
241 		regmap_update_bits(data->chip->regmap,
242 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
243 	}
244 
245 	return 0;
246 }
247 
248 static void cdce925_pll_unprepare(struct clk_hw *hw)
249 {
250 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
251 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
252 
253 	regmap_update_bits(data->chip->regmap,
254 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
255 }
256 
257 static const struct clk_ops cdce925_pll_ops = {
258 	.prepare = cdce925_pll_prepare,
259 	.unprepare = cdce925_pll_unprepare,
260 	.recalc_rate = cdce925_pll_recalc_rate,
261 	.round_rate = cdce925_pll_round_rate,
262 	.set_rate = cdce925_pll_set_rate,
263 };
264 
265 
266 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
267 {
268 	switch (data->index) {
269 	case 0:
270 		regmap_update_bits(data->chip->regmap,
271 			CDCE925_REG_Y1SPIPDIVH,
272 			0x03, (pdiv >> 8) & 0x03);
273 		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
274 		break;
275 	case 1:
276 		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
277 		break;
278 	case 2:
279 		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
280 		break;
281 	case 3:
282 		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
283 		break;
284 	case 4:
285 		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
286 		break;
287 	}
288 }
289 
290 static void cdce925_clk_activate(struct clk_cdce925_output *data)
291 {
292 	switch (data->index) {
293 	case 0:
294 		regmap_update_bits(data->chip->regmap,
295 			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
296 		break;
297 	case 1:
298 	case 2:
299 		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
300 		break;
301 	case 3:
302 	case 4:
303 		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
304 		break;
305 	}
306 }
307 
308 static int cdce925_clk_prepare(struct clk_hw *hw)
309 {
310 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
311 
312 	cdce925_clk_set_pdiv(data, data->pdiv);
313 	cdce925_clk_activate(data);
314 	return 0;
315 }
316 
317 static void cdce925_clk_unprepare(struct clk_hw *hw)
318 {
319 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
320 
321 	/* Disable clock by setting divider to "0" */
322 	cdce925_clk_set_pdiv(data, 0);
323 }
324 
325 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
326 		unsigned long parent_rate)
327 {
328 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
329 
330 	if (data->pdiv)
331 		return parent_rate / data->pdiv;
332 	return 0;
333 }
334 
335 static u16 cdce925_calc_divider(unsigned long rate,
336 		unsigned long parent_rate)
337 {
338 	unsigned long divider;
339 
340 	if (!rate)
341 		return 0;
342 	if (rate >= parent_rate)
343 		return 1;
344 
345 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
346 	if (divider > 0x7F)
347 		divider = 0x7F;
348 
349 	return (u16)divider;
350 }
351 
352 static unsigned long cdce925_clk_best_parent_rate(
353 	struct clk_hw *hw, unsigned long rate)
354 {
355 	struct clk *pll = clk_get_parent(hw->clk);
356 	struct clk *root = clk_get_parent(pll);
357 	unsigned long root_rate = clk_get_rate(root);
358 	unsigned long best_rate_error = rate;
359 	u16 pdiv_min;
360 	u16 pdiv_max;
361 	u16 pdiv_best;
362 	u16 pdiv_now;
363 
364 	if (root_rate % rate == 0)
365 		return root_rate; /* Don't need the PLL, use bypass */
366 
367 	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
368 	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
369 
370 	if (pdiv_min > pdiv_max)
371 		return 0; /* No can do? */
372 
373 	pdiv_best = pdiv_min;
374 	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
375 		unsigned long target_rate = rate * pdiv_now;
376 		long pll_rate = clk_round_rate(pll, target_rate);
377 		unsigned long actual_rate;
378 		unsigned long rate_error;
379 
380 		if (pll_rate <= 0)
381 			continue;
382 		actual_rate = pll_rate / pdiv_now;
383 		rate_error = abs((long)actual_rate - (long)rate);
384 		if (rate_error < best_rate_error) {
385 			pdiv_best = pdiv_now;
386 			best_rate_error = rate_error;
387 		}
388 		/* TODO: Consider PLL frequency based on smaller n/m values
389 		 * and pick the better one if the error is equal */
390 	}
391 
392 	return rate * pdiv_best;
393 }
394 
395 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
396 		unsigned long *parent_rate)
397 {
398 	unsigned long l_parent_rate = *parent_rate;
399 	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
400 
401 	if (l_parent_rate / divider != rate) {
402 		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
403 		divider = cdce925_calc_divider(rate, l_parent_rate);
404 		*parent_rate = l_parent_rate;
405 	}
406 
407 	if (divider)
408 		return (long)(l_parent_rate / divider);
409 	return 0;
410 }
411 
412 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
413 		unsigned long parent_rate)
414 {
415 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
416 
417 	data->pdiv = cdce925_calc_divider(rate, parent_rate);
418 
419 	return 0;
420 }
421 
422 static const struct clk_ops cdce925_clk_ops = {
423 	.prepare = cdce925_clk_prepare,
424 	.unprepare = cdce925_clk_unprepare,
425 	.recalc_rate = cdce925_clk_recalc_rate,
426 	.round_rate = cdce925_clk_round_rate,
427 	.set_rate = cdce925_clk_set_rate,
428 };
429 
430 
431 static u16 cdce925_y1_calc_divider(unsigned long rate,
432 		unsigned long parent_rate)
433 {
434 	unsigned long divider;
435 
436 	if (!rate)
437 		return 0;
438 	if (rate >= parent_rate)
439 		return 1;
440 
441 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
442 	if (divider > 0x3FF) /* Y1 has 10-bit divider */
443 		divider = 0x3FF;
444 
445 	return (u16)divider;
446 }
447 
448 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
449 		unsigned long *parent_rate)
450 {
451 	unsigned long l_parent_rate = *parent_rate;
452 	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
453 
454 	if (divider)
455 		return (long)(l_parent_rate / divider);
456 	return 0;
457 }
458 
459 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
460 		unsigned long parent_rate)
461 {
462 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
463 
464 	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
465 
466 	return 0;
467 }
468 
469 static const struct clk_ops cdce925_clk_y1_ops = {
470 	.prepare = cdce925_clk_prepare,
471 	.unprepare = cdce925_clk_unprepare,
472 	.recalc_rate = cdce925_clk_recalc_rate,
473 	.round_rate = cdce925_clk_y1_round_rate,
474 	.set_rate = cdce925_clk_y1_set_rate,
475 };
476 
477 
478 static struct regmap_config cdce925_regmap_config = {
479 	.name = "configuration0",
480 	.reg_bits = 8,
481 	.val_bits = 8,
482 	.cache_type = REGCACHE_RBTREE,
483 	.max_register = 0x2F,
484 };
485 
486 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
487 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
488 
489 static int cdce925_regmap_i2c_write(
490 	void *context, const void *data, size_t count)
491 {
492 	struct device *dev = context;
493 	struct i2c_client *i2c = to_i2c_client(dev);
494 	int ret;
495 	u8 reg_data[2];
496 
497 	if (count != 2)
498 		return -ENOTSUPP;
499 
500 	/* First byte is command code */
501 	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
502 	reg_data[1] = ((u8 *)data)[1];
503 
504 	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
505 			reg_data[0], reg_data[1]);
506 
507 	ret = i2c_master_send(i2c, reg_data, count);
508 	if (likely(ret == count))
509 		return 0;
510 	else if (ret < 0)
511 		return ret;
512 	else
513 		return -EIO;
514 }
515 
516 static int cdce925_regmap_i2c_read(void *context,
517 	   const void *reg, size_t reg_size, void *val, size_t val_size)
518 {
519 	struct device *dev = context;
520 	struct i2c_client *i2c = to_i2c_client(dev);
521 	struct i2c_msg xfer[2];
522 	int ret;
523 	u8 reg_data[2];
524 
525 	if (reg_size != 1)
526 		return -ENOTSUPP;
527 
528 	xfer[0].addr = i2c->addr;
529 	xfer[0].flags = 0;
530 	xfer[0].buf = reg_data;
531 	if (val_size == 1) {
532 		reg_data[0] =
533 			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
534 		xfer[0].len = 1;
535 	} else {
536 		reg_data[0] =
537 			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
538 		reg_data[1] = val_size;
539 		xfer[0].len = 2;
540 	}
541 
542 	xfer[1].addr = i2c->addr;
543 	xfer[1].flags = I2C_M_RD;
544 	xfer[1].len = val_size;
545 	xfer[1].buf = val;
546 
547 	ret = i2c_transfer(i2c->adapter, xfer, 2);
548 	if (likely(ret == 2)) {
549 		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
550 				reg_size, val_size, reg_data[0], *((u8 *)val));
551 		return 0;
552 	} else if (ret < 0)
553 		return ret;
554 	else
555 		return -EIO;
556 }
557 
558 static struct clk_hw *
559 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
560 {
561 	struct clk_cdce925_chip *data = _data;
562 	unsigned int idx = clkspec->args[0];
563 
564 	if (idx >= ARRAY_SIZE(data->clk)) {
565 		pr_err("%s: invalid index %u\n", __func__, idx);
566 		return ERR_PTR(-EINVAL);
567 	}
568 
569 	return &data->clk[idx].hw;
570 }
571 
572 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
573  * just weird, so just use the single byte mode exclusively. */
574 static struct regmap_bus regmap_cdce925_bus = {
575 	.write = cdce925_regmap_i2c_write,
576 	.read = cdce925_regmap_i2c_read,
577 };
578 
579 static int cdce925_probe(struct i2c_client *client,
580 		const struct i2c_device_id *id)
581 {
582 	struct clk_cdce925_chip *data;
583 	struct device_node *node = client->dev.of_node;
584 	const char *parent_name;
585 	const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
586 	struct clk_init_data init;
587 	u32 value;
588 	int i;
589 	int err;
590 	struct device_node *np_output;
591 	char child_name[6];
592 
593 	dev_dbg(&client->dev, "%s\n", __func__);
594 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
595 	if (!data)
596 		return -ENOMEM;
597 
598 	data->i2c_client = client;
599 	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
600 			&client->dev, &cdce925_regmap_config);
601 	if (IS_ERR(data->regmap)) {
602 		dev_err(&client->dev, "failed to allocate register map\n");
603 		return PTR_ERR(data->regmap);
604 	}
605 	i2c_set_clientdata(client, data);
606 
607 	parent_name = of_clk_get_parent_name(node, 0);
608 	if (!parent_name) {
609 		dev_err(&client->dev, "missing parent clock\n");
610 		return -ENODEV;
611 	}
612 	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
613 
614 	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
615 		regmap_write(data->regmap,
616 			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
617 	/* PWDN bit */
618 	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
619 
620 	/* Set input source for Y1 to be the XTAL */
621 	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
622 
623 	init.ops = &cdce925_pll_ops;
624 	init.flags = 0;
625 	init.parent_names = &parent_name;
626 	init.num_parents = parent_name ? 1 : 0;
627 
628 	/* Register PLL clocks */
629 	for (i = 0; i < NUMBER_OF_PLLS; ++i) {
630 		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
631 			client->dev.of_node->name, i);
632 		init.name = pll_clk_name[i];
633 		data->pll[i].chip = data;
634 		data->pll[i].hw.init = &init;
635 		data->pll[i].index = i;
636 		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
637 		if (err) {
638 			dev_err(&client->dev, "Failed register PLL %d\n", i);
639 			goto error;
640 		}
641 		sprintf(child_name, "PLL%d", i+1);
642 		np_output = of_get_child_by_name(node, child_name);
643 		if (!np_output)
644 			continue;
645 		if (!of_property_read_u32(np_output,
646 			"clock-frequency", &value)) {
647 			err = clk_set_rate(data->pll[i].hw.clk, value);
648 			if (err)
649 				dev_err(&client->dev,
650 					"unable to set PLL frequency %ud\n",
651 					value);
652 		}
653 		if (!of_property_read_u32(np_output,
654 			"spread-spectrum", &value)) {
655 			u8 flag = of_property_read_bool(np_output,
656 				"spread-spectrum-center") ? 0x80 : 0x00;
657 			regmap_update_bits(data->regmap,
658 				0x16 + (i*CDCE925_OFFSET_PLL),
659 				0x80, flag);
660 			regmap_update_bits(data->regmap,
661 				0x12 + (i*CDCE925_OFFSET_PLL),
662 				0x07, value & 0x07);
663 		}
664 	}
665 
666 	/* Register output clock Y1 */
667 	init.ops = &cdce925_clk_y1_ops;
668 	init.flags = 0;
669 	init.num_parents = 1;
670 	init.parent_names = &parent_name; /* Mux Y1 to input */
671 	init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
672 	data->clk[0].chip = data;
673 	data->clk[0].hw.init = &init;
674 	data->clk[0].index = 0;
675 	data->clk[0].pdiv = 1;
676 	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
677 	kfree(init.name); /* clock framework made a copy of the name */
678 	if (err) {
679 		dev_err(&client->dev, "clock registration Y1 failed\n");
680 		goto error;
681 	}
682 
683 	/* Register output clocks Y2 .. Y5*/
684 	init.ops = &cdce925_clk_ops;
685 	init.flags = CLK_SET_RATE_PARENT;
686 	init.num_parents = 1;
687 	for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
688 		init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
689 			client->dev.of_node->name, i+1);
690 		data->clk[i].chip = data;
691 		data->clk[i].hw.init = &init;
692 		data->clk[i].index = i;
693 		data->clk[i].pdiv = 1;
694 		switch (i) {
695 		case 1:
696 		case 2:
697 			/* Mux Y2/3 to PLL1 */
698 			init.parent_names = &pll_clk_name[0];
699 			break;
700 		case 3:
701 		case 4:
702 			/* Mux Y4/5 to PLL2 */
703 			init.parent_names = &pll_clk_name[1];
704 			break;
705 		}
706 		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
707 		kfree(init.name); /* clock framework made a copy of the name */
708 		if (err) {
709 			dev_err(&client->dev, "clock registration failed\n");
710 			goto error;
711 		}
712 	}
713 
714 	/* Register the output clocks */
715 	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
716 				  data);
717 	if (err)
718 		dev_err(&client->dev, "unable to add OF clock provider\n");
719 
720 	err = 0;
721 
722 error:
723 	for (i = 0; i < NUMBER_OF_PLLS; ++i)
724 		/* clock framework made a copy of the name */
725 		kfree(pll_clk_name[i]);
726 
727 	return err;
728 }
729 
730 static const struct i2c_device_id cdce925_id[] = {
731 	{ "cdce925", 0 },
732 	{ }
733 };
734 MODULE_DEVICE_TABLE(i2c, cdce925_id);
735 
736 static const struct of_device_id clk_cdce925_of_match[] = {
737 	{ .compatible = "ti,cdce925" },
738 	{ },
739 };
740 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
741 
742 static struct i2c_driver cdce925_driver = {
743 	.driver = {
744 		.name = "cdce925",
745 		.of_match_table = of_match_ptr(clk_cdce925_of_match),
746 	},
747 	.probe		= cdce925_probe,
748 	.id_table	= cdce925_id,
749 };
750 module_i2c_driver(cdce925_driver);
751 
752 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
753 MODULE_DESCRIPTION("cdce925 driver");
754 MODULE_LICENSE("GPL");
755