xref: /openbmc/linux/drivers/clk/clk-cdce925.c (revision cc8bbe1a)
1 /*
2  * Driver for TI Dual PLL CDCE925 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
5  * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/gcd.h>
21 
22 /* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
23  * Model this as 2 PLL clocks which are parents to the outputs.
24  */
25 #define NUMBER_OF_PLLS	2
26 #define NUMBER_OF_OUTPUTS	5
27 
28 #define CDCE925_REG_GLOBAL1	0x01
29 #define CDCE925_REG_Y1SPIPDIVH	0x02
30 #define CDCE925_REG_PDIVL	0x03
31 #define CDCE925_REG_XCSEL	0x05
32 /* PLL parameters start at 0x10, steps of 0x10 */
33 #define CDCE925_OFFSET_PLL	0x10
34 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
35 #define CDCE925_PLL_MUX_OUTPUTS	0x14
36 #define CDCE925_PLL_MULDIV	0x18
37 
38 #define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
39 #define CDCE925_PLL_FREQUENCY_MAX	230000000ul
40 struct clk_cdce925_chip;
41 
42 struct clk_cdce925_output {
43 	struct clk_hw hw;
44 	struct clk_cdce925_chip *chip;
45 	u8 index;
46 	u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
47 };
48 #define to_clk_cdce925_output(_hw) \
49 	container_of(_hw, struct clk_cdce925_output, hw)
50 
51 struct clk_cdce925_pll {
52 	struct clk_hw hw;
53 	struct clk_cdce925_chip *chip;
54 	u8 index;
55 	u16 m;   /* 1..511 */
56 	u16 n;   /* 1..4095 */
57 };
58 #define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
59 
60 struct clk_cdce925_chip {
61 	struct regmap *regmap;
62 	struct i2c_client *i2c_client;
63 	struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
64 	struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
65 	struct clk *dt_clk[NUMBER_OF_OUTPUTS];
66 	struct clk_onecell_data onecell;
67 };
68 
69 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
70 
71 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
72 	u16 n, u16 m)
73 {
74 	if ((!m || !n) || (m == n))
75 		return parent_rate; /* In bypass mode runs at same frequency */
76 	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
77 }
78 
79 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
80 		unsigned long parent_rate)
81 {
82 	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
83 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
84 
85 	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
86 }
87 
88 static void cdce925_pll_find_rate(unsigned long rate,
89 		unsigned long parent_rate, u16 *n, u16 *m)
90 {
91 	unsigned long un;
92 	unsigned long um;
93 	unsigned long g;
94 
95 	if (rate <= parent_rate) {
96 		/* Can always deliver parent_rate in bypass mode */
97 		rate = parent_rate;
98 		*n = 0;
99 		*m = 0;
100 	} else {
101 		/* In PLL mode, need to apply min/max range */
102 		if (rate < CDCE925_PLL_FREQUENCY_MIN)
103 			rate = CDCE925_PLL_FREQUENCY_MIN;
104 		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
105 			rate = CDCE925_PLL_FREQUENCY_MAX;
106 
107 		g = gcd(rate, parent_rate);
108 		um = parent_rate / g;
109 		un = rate / g;
110 		/* When outside hw range, reduce to fit (rounding errors) */
111 		while ((un > 4095) || (um > 511)) {
112 			un >>= 1;
113 			um >>= 1;
114 		}
115 		if (un == 0)
116 			un = 1;
117 		if (um == 0)
118 			um = 1;
119 
120 		*n = un;
121 		*m = um;
122 	}
123 }
124 
125 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
126 		unsigned long *parent_rate)
127 {
128 	u16 n, m;
129 
130 	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
131 	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
132 }
133 
134 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
135 		unsigned long parent_rate)
136 {
137 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
138 
139 	if (!rate || (rate == parent_rate)) {
140 		data->m = 0; /* Bypass mode */
141 		data->n = 0;
142 		return 0;
143 	}
144 
145 	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
146 		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
147 		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
148 		return -EINVAL;
149 	}
150 
151 	if (rate < parent_rate) {
152 		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
153 			rate, parent_rate);
154 		return -EINVAL;
155 	}
156 
157 	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
158 	return 0;
159 }
160 
161 
162 /* calculate p = max(0, 4 - int(log2 (n/m))) */
163 static u8 cdce925_pll_calc_p(u16 n, u16 m)
164 {
165 	u8 p;
166 	u16 r = n / m;
167 
168 	if (r >= 16)
169 		return 0;
170 	p = 4;
171 	while (r > 1) {
172 		r >>= 1;
173 		--p;
174 	}
175 	return p;
176 }
177 
178 /* Returns VCO range bits for VCO1_0_RANGE */
179 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
180 {
181 	struct clk *parent = clk_get_parent(hw->clk);
182 	unsigned long rate = clk_get_rate(parent);
183 
184 	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
185 	if (rate >= 175000000)
186 		return 0x3;
187 	if (rate >= 150000000)
188 		return 0x02;
189 	if (rate >= 125000000)
190 		return 0x01;
191 	return 0x00;
192 }
193 
194 /* I2C clock, hence everything must happen in (un)prepare because this
195  * may sleep */
196 static int cdce925_pll_prepare(struct clk_hw *hw)
197 {
198 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
199 	u16 n = data->n;
200 	u16 m = data->m;
201 	u16 r;
202 	u8 q;
203 	u8 p;
204 	u16 nn;
205 	u8 pll[4]; /* Bits are spread out over 4 byte registers */
206 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
207 	unsigned i;
208 
209 	if ((!m || !n) || (m == n)) {
210 		/* Set PLL mux to bypass mode, leave the rest as is */
211 		regmap_update_bits(data->chip->regmap,
212 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
213 	} else {
214 		/* According to data sheet: */
215 		/* p = max(0, 4 - int(log2 (n/m))) */
216 		p = cdce925_pll_calc_p(n, m);
217 		/* nn = n * 2^p */
218 		nn = n * BIT(p);
219 		/* q = int(nn/m) */
220 		q = nn / m;
221 		if ((q < 16) || (1 > 64)) {
222 			pr_debug("%s invalid q=%d\n", __func__, q);
223 			return -EINVAL;
224 		}
225 		r = nn - (m*q);
226 		if (r > 511) {
227 			pr_debug("%s invalid r=%d\n", __func__, r);
228 			return -EINVAL;
229 		}
230 		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
231 			n, m, p, q, r);
232 		/* encode into register bits */
233 		pll[0] = n >> 4;
234 		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
235 		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
236 		pll[3] = ((q & 0x07) << 5) | (p << 2) |
237 				cdce925_pll_calc_range_bits(hw, n, m);
238 		/* Write to registers */
239 		for (i = 0; i < ARRAY_SIZE(pll); ++i)
240 			regmap_write(data->chip->regmap,
241 				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
242 		/* Enable PLL */
243 		regmap_update_bits(data->chip->regmap,
244 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
245 	}
246 
247 	return 0;
248 }
249 
250 static void cdce925_pll_unprepare(struct clk_hw *hw)
251 {
252 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
253 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
254 
255 	regmap_update_bits(data->chip->regmap,
256 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
257 }
258 
259 static const struct clk_ops cdce925_pll_ops = {
260 	.prepare = cdce925_pll_prepare,
261 	.unprepare = cdce925_pll_unprepare,
262 	.recalc_rate = cdce925_pll_recalc_rate,
263 	.round_rate = cdce925_pll_round_rate,
264 	.set_rate = cdce925_pll_set_rate,
265 };
266 
267 
268 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
269 {
270 	switch (data->index) {
271 	case 0:
272 		regmap_update_bits(data->chip->regmap,
273 			CDCE925_REG_Y1SPIPDIVH,
274 			0x03, (pdiv >> 8) & 0x03);
275 		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
276 		break;
277 	case 1:
278 		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
279 		break;
280 	case 2:
281 		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
282 		break;
283 	case 3:
284 		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
285 		break;
286 	case 4:
287 		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
288 		break;
289 	}
290 }
291 
292 static void cdce925_clk_activate(struct clk_cdce925_output *data)
293 {
294 	switch (data->index) {
295 	case 0:
296 		regmap_update_bits(data->chip->regmap,
297 			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
298 		break;
299 	case 1:
300 	case 2:
301 		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
302 		break;
303 	case 3:
304 	case 4:
305 		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
306 		break;
307 	}
308 }
309 
310 static int cdce925_clk_prepare(struct clk_hw *hw)
311 {
312 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
313 
314 	cdce925_clk_set_pdiv(data, data->pdiv);
315 	cdce925_clk_activate(data);
316 	return 0;
317 }
318 
319 static void cdce925_clk_unprepare(struct clk_hw *hw)
320 {
321 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
322 
323 	/* Disable clock by setting divider to "0" */
324 	cdce925_clk_set_pdiv(data, 0);
325 }
326 
327 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
328 		unsigned long parent_rate)
329 {
330 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
331 
332 	if (data->pdiv)
333 		return parent_rate / data->pdiv;
334 	return 0;
335 }
336 
337 static u16 cdce925_calc_divider(unsigned long rate,
338 		unsigned long parent_rate)
339 {
340 	unsigned long divider;
341 
342 	if (!rate)
343 		return 0;
344 	if (rate >= parent_rate)
345 		return 1;
346 
347 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
348 	if (divider > 0x7F)
349 		divider = 0x7F;
350 
351 	return (u16)divider;
352 }
353 
354 static unsigned long cdce925_clk_best_parent_rate(
355 	struct clk_hw *hw, unsigned long rate)
356 {
357 	struct clk *pll = clk_get_parent(hw->clk);
358 	struct clk *root = clk_get_parent(pll);
359 	unsigned long root_rate = clk_get_rate(root);
360 	unsigned long best_rate_error = rate;
361 	u16 pdiv_min;
362 	u16 pdiv_max;
363 	u16 pdiv_best;
364 	u16 pdiv_now;
365 
366 	if (root_rate % rate == 0)
367 		return root_rate; /* Don't need the PLL, use bypass */
368 
369 	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
370 	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
371 
372 	if (pdiv_min > pdiv_max)
373 		return 0; /* No can do? */
374 
375 	pdiv_best = pdiv_min;
376 	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
377 		unsigned long target_rate = rate * pdiv_now;
378 		long pll_rate = clk_round_rate(pll, target_rate);
379 		unsigned long actual_rate;
380 		unsigned long rate_error;
381 
382 		if (pll_rate <= 0)
383 			continue;
384 		actual_rate = pll_rate / pdiv_now;
385 		rate_error = abs((long)actual_rate - (long)rate);
386 		if (rate_error < best_rate_error) {
387 			pdiv_best = pdiv_now;
388 			best_rate_error = rate_error;
389 		}
390 		/* TODO: Consider PLL frequency based on smaller n/m values
391 		 * and pick the better one if the error is equal */
392 	}
393 
394 	return rate * pdiv_best;
395 }
396 
397 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
398 		unsigned long *parent_rate)
399 {
400 	unsigned long l_parent_rate = *parent_rate;
401 	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
402 
403 	if (l_parent_rate / divider != rate) {
404 		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
405 		divider = cdce925_calc_divider(rate, l_parent_rate);
406 		*parent_rate = l_parent_rate;
407 	}
408 
409 	if (divider)
410 		return (long)(l_parent_rate / divider);
411 	return 0;
412 }
413 
414 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
415 		unsigned long parent_rate)
416 {
417 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
418 
419 	data->pdiv = cdce925_calc_divider(rate, parent_rate);
420 
421 	return 0;
422 }
423 
424 static const struct clk_ops cdce925_clk_ops = {
425 	.prepare = cdce925_clk_prepare,
426 	.unprepare = cdce925_clk_unprepare,
427 	.recalc_rate = cdce925_clk_recalc_rate,
428 	.round_rate = cdce925_clk_round_rate,
429 	.set_rate = cdce925_clk_set_rate,
430 };
431 
432 
433 static u16 cdce925_y1_calc_divider(unsigned long rate,
434 		unsigned long parent_rate)
435 {
436 	unsigned long divider;
437 
438 	if (!rate)
439 		return 0;
440 	if (rate >= parent_rate)
441 		return 1;
442 
443 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
444 	if (divider > 0x3FF) /* Y1 has 10-bit divider */
445 		divider = 0x3FF;
446 
447 	return (u16)divider;
448 }
449 
450 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
451 		unsigned long *parent_rate)
452 {
453 	unsigned long l_parent_rate = *parent_rate;
454 	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
455 
456 	if (divider)
457 		return (long)(l_parent_rate / divider);
458 	return 0;
459 }
460 
461 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
462 		unsigned long parent_rate)
463 {
464 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
465 
466 	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
467 
468 	return 0;
469 }
470 
471 static const struct clk_ops cdce925_clk_y1_ops = {
472 	.prepare = cdce925_clk_prepare,
473 	.unprepare = cdce925_clk_unprepare,
474 	.recalc_rate = cdce925_clk_recalc_rate,
475 	.round_rate = cdce925_clk_y1_round_rate,
476 	.set_rate = cdce925_clk_y1_set_rate,
477 };
478 
479 
480 static struct regmap_config cdce925_regmap_config = {
481 	.name = "configuration0",
482 	.reg_bits = 8,
483 	.val_bits = 8,
484 	.cache_type = REGCACHE_RBTREE,
485 	.max_register = 0x2F,
486 };
487 
488 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
489 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
490 
491 static int cdce925_regmap_i2c_write(
492 	void *context, const void *data, size_t count)
493 {
494 	struct device *dev = context;
495 	struct i2c_client *i2c = to_i2c_client(dev);
496 	int ret;
497 	u8 reg_data[2];
498 
499 	if (count != 2)
500 		return -ENOTSUPP;
501 
502 	/* First byte is command code */
503 	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
504 	reg_data[1] = ((u8 *)data)[1];
505 
506 	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
507 			reg_data[0], reg_data[1]);
508 
509 	ret = i2c_master_send(i2c, reg_data, count);
510 	if (likely(ret == count))
511 		return 0;
512 	else if (ret < 0)
513 		return ret;
514 	else
515 		return -EIO;
516 }
517 
518 static int cdce925_regmap_i2c_read(void *context,
519 	   const void *reg, size_t reg_size, void *val, size_t val_size)
520 {
521 	struct device *dev = context;
522 	struct i2c_client *i2c = to_i2c_client(dev);
523 	struct i2c_msg xfer[2];
524 	int ret;
525 	u8 reg_data[2];
526 
527 	if (reg_size != 1)
528 		return -ENOTSUPP;
529 
530 	xfer[0].addr = i2c->addr;
531 	xfer[0].flags = 0;
532 	xfer[0].buf = reg_data;
533 	if (val_size == 1) {
534 		reg_data[0] =
535 			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
536 		xfer[0].len = 1;
537 	} else {
538 		reg_data[0] =
539 			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
540 		reg_data[1] = val_size;
541 		xfer[0].len = 2;
542 	}
543 
544 	xfer[1].addr = i2c->addr;
545 	xfer[1].flags = I2C_M_RD;
546 	xfer[1].len = val_size;
547 	xfer[1].buf = val;
548 
549 	ret = i2c_transfer(i2c->adapter, xfer, 2);
550 	if (likely(ret == 2)) {
551 		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
552 				reg_size, val_size, reg_data[0], *((u8 *)val));
553 		return 0;
554 	} else if (ret < 0)
555 		return ret;
556 	else
557 		return -EIO;
558 }
559 
560 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
561  * just weird, so just use the single byte mode exclusively. */
562 static struct regmap_bus regmap_cdce925_bus = {
563 	.write = cdce925_regmap_i2c_write,
564 	.read = cdce925_regmap_i2c_read,
565 };
566 
567 static int cdce925_probe(struct i2c_client *client,
568 		const struct i2c_device_id *id)
569 {
570 	struct clk_cdce925_chip *data;
571 	struct device_node *node = client->dev.of_node;
572 	const char *parent_name;
573 	const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
574 	struct clk_init_data init;
575 	struct clk *clk;
576 	u32 value;
577 	int i;
578 	int err;
579 	struct device_node *np_output;
580 	char child_name[6];
581 
582 	dev_dbg(&client->dev, "%s\n", __func__);
583 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
584 	if (!data)
585 		return -ENOMEM;
586 
587 	data->i2c_client = client;
588 	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
589 			&client->dev, &cdce925_regmap_config);
590 	if (IS_ERR(data->regmap)) {
591 		dev_err(&client->dev, "failed to allocate register map\n");
592 		return PTR_ERR(data->regmap);
593 	}
594 	i2c_set_clientdata(client, data);
595 
596 	parent_name = of_clk_get_parent_name(node, 0);
597 	if (!parent_name) {
598 		dev_err(&client->dev, "missing parent clock\n");
599 		return -ENODEV;
600 	}
601 	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
602 
603 	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
604 		regmap_write(data->regmap,
605 			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
606 	/* PWDN bit */
607 	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
608 
609 	/* Set input source for Y1 to be the XTAL */
610 	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
611 
612 	init.ops = &cdce925_pll_ops;
613 	init.flags = 0;
614 	init.parent_names = &parent_name;
615 	init.num_parents = parent_name ? 1 : 0;
616 
617 	/* Register PLL clocks */
618 	for (i = 0; i < NUMBER_OF_PLLS; ++i) {
619 		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
620 			client->dev.of_node->name, i);
621 		init.name = pll_clk_name[i];
622 		data->pll[i].chip = data;
623 		data->pll[i].hw.init = &init;
624 		data->pll[i].index = i;
625 		clk = devm_clk_register(&client->dev, &data->pll[i].hw);
626 		if (IS_ERR(clk)) {
627 			dev_err(&client->dev, "Failed register PLL %d\n", i);
628 			err = PTR_ERR(clk);
629 			goto error;
630 		}
631 		sprintf(child_name, "PLL%d", i+1);
632 		np_output = of_get_child_by_name(node, child_name);
633 		if (!np_output)
634 			continue;
635 		if (!of_property_read_u32(np_output,
636 			"clock-frequency", &value)) {
637 			err = clk_set_rate(clk, value);
638 			if (err)
639 				dev_err(&client->dev,
640 					"unable to set PLL frequency %ud\n",
641 					value);
642 		}
643 		if (!of_property_read_u32(np_output,
644 			"spread-spectrum", &value)) {
645 			u8 flag = of_property_read_bool(np_output,
646 				"spread-spectrum-center") ? 0x80 : 0x00;
647 			regmap_update_bits(data->regmap,
648 				0x16 + (i*CDCE925_OFFSET_PLL),
649 				0x80, flag);
650 			regmap_update_bits(data->regmap,
651 				0x12 + (i*CDCE925_OFFSET_PLL),
652 				0x07, value & 0x07);
653 		}
654 	}
655 
656 	/* Register output clock Y1 */
657 	init.ops = &cdce925_clk_y1_ops;
658 	init.flags = 0;
659 	init.num_parents = 1;
660 	init.parent_names = &parent_name; /* Mux Y1 to input */
661 	init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
662 	data->clk[0].chip = data;
663 	data->clk[0].hw.init = &init;
664 	data->clk[0].index = 0;
665 	data->clk[0].pdiv = 1;
666 	clk = devm_clk_register(&client->dev, &data->clk[0].hw);
667 	kfree(init.name); /* clock framework made a copy of the name */
668 	if (IS_ERR(clk)) {
669 		dev_err(&client->dev, "clock registration Y1 failed\n");
670 		err = PTR_ERR(clk);
671 		goto error;
672 	}
673 	data->dt_clk[0] = clk;
674 
675 	/* Register output clocks Y2 .. Y5*/
676 	init.ops = &cdce925_clk_ops;
677 	init.flags = CLK_SET_RATE_PARENT;
678 	init.num_parents = 1;
679 	for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
680 		init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
681 			client->dev.of_node->name, i+1);
682 		data->clk[i].chip = data;
683 		data->clk[i].hw.init = &init;
684 		data->clk[i].index = i;
685 		data->clk[i].pdiv = 1;
686 		switch (i) {
687 		case 1:
688 		case 2:
689 			/* Mux Y2/3 to PLL1 */
690 			init.parent_names = &pll_clk_name[0];
691 			break;
692 		case 3:
693 		case 4:
694 			/* Mux Y4/5 to PLL2 */
695 			init.parent_names = &pll_clk_name[1];
696 			break;
697 		}
698 		clk = devm_clk_register(&client->dev, &data->clk[i].hw);
699 		kfree(init.name); /* clock framework made a copy of the name */
700 		if (IS_ERR(clk)) {
701 			dev_err(&client->dev, "clock registration failed\n");
702 			err = PTR_ERR(clk);
703 			goto error;
704 		}
705 		data->dt_clk[i] = clk;
706 	}
707 
708 	/* Register the output clocks */
709 	data->onecell.clk_num = NUMBER_OF_OUTPUTS;
710 	data->onecell.clks = data->dt_clk;
711 	err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get,
712 		&data->onecell);
713 	if (err)
714 		dev_err(&client->dev, "unable to add OF clock provider\n");
715 
716 	err = 0;
717 
718 error:
719 	for (i = 0; i < NUMBER_OF_PLLS; ++i)
720 		/* clock framework made a copy of the name */
721 		kfree(pll_clk_name[i]);
722 
723 	return err;
724 }
725 
726 static const struct i2c_device_id cdce925_id[] = {
727 	{ "cdce925", 0 },
728 	{ }
729 };
730 MODULE_DEVICE_TABLE(i2c, cdce925_id);
731 
732 static const struct of_device_id clk_cdce925_of_match[] = {
733 	{ .compatible = "ti,cdce925" },
734 	{ },
735 };
736 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
737 
738 static struct i2c_driver cdce925_driver = {
739 	.driver = {
740 		.name = "cdce925",
741 		.of_match_table = of_match_ptr(clk_cdce925_of_match),
742 	},
743 	.probe		= cdce925_probe,
744 	.id_table	= cdce925_id,
745 };
746 module_i2c_driver(cdce925_driver);
747 
748 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
749 MODULE_DESCRIPTION("cdce925 driver");
750 MODULE_LICENSE("GPL");
751