xref: /openbmc/linux/drivers/clk/clk-cdce925.c (revision be709d48)
1 /*
2  * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5  * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/gcd.h>
21 
22 /* Each chip has different number of PLLs and outputs, for example:
23  * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
24  * Model this as 2 PLL clocks which are parents to the outputs.
25  */
26 
27 enum {
28 	CDCE913,
29 	CDCE925,
30 	CDCE937,
31 	CDCE949,
32 };
33 
34 struct clk_cdce925_chip_info {
35 	int num_plls;
36 	int num_outputs;
37 };
38 
39 static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
40 	[CDCE913] = { .num_plls = 1, .num_outputs = 3 },
41 	[CDCE925] = { .num_plls = 2, .num_outputs = 5 },
42 	[CDCE937] = { .num_plls = 3, .num_outputs = 7 },
43 	[CDCE949] = { .num_plls = 4, .num_outputs = 9 },
44 };
45 
46 #define MAX_NUMBER_OF_PLLS	4
47 #define MAX_NUMBER_OF_OUTPUTS	9
48 
49 #define CDCE925_REG_GLOBAL1	0x01
50 #define CDCE925_REG_Y1SPIPDIVH	0x02
51 #define CDCE925_REG_PDIVL	0x03
52 #define CDCE925_REG_XCSEL	0x05
53 /* PLL parameters start at 0x10, steps of 0x10 */
54 #define CDCE925_OFFSET_PLL	0x10
55 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
56 #define CDCE925_PLL_MUX_OUTPUTS	0x14
57 #define CDCE925_PLL_MULDIV	0x18
58 
59 #define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
60 #define CDCE925_PLL_FREQUENCY_MAX	230000000ul
61 struct clk_cdce925_chip;
62 
63 struct clk_cdce925_output {
64 	struct clk_hw hw;
65 	struct clk_cdce925_chip *chip;
66 	u8 index;
67 	u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
68 };
69 #define to_clk_cdce925_output(_hw) \
70 	container_of(_hw, struct clk_cdce925_output, hw)
71 
72 struct clk_cdce925_pll {
73 	struct clk_hw hw;
74 	struct clk_cdce925_chip *chip;
75 	u8 index;
76 	u16 m;   /* 1..511 */
77 	u16 n;   /* 1..4095 */
78 };
79 #define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
80 
81 struct clk_cdce925_chip {
82 	struct regmap *regmap;
83 	struct i2c_client *i2c_client;
84 	const struct clk_cdce925_chip_info *chip_info;
85 	struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
86 	struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
87 };
88 
89 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
90 
91 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
92 	u16 n, u16 m)
93 {
94 	if ((!m || !n) || (m == n))
95 		return parent_rate; /* In bypass mode runs at same frequency */
96 	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
97 }
98 
99 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
100 		unsigned long parent_rate)
101 {
102 	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
103 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
104 
105 	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
106 }
107 
108 static void cdce925_pll_find_rate(unsigned long rate,
109 		unsigned long parent_rate, u16 *n, u16 *m)
110 {
111 	unsigned long un;
112 	unsigned long um;
113 	unsigned long g;
114 
115 	if (rate <= parent_rate) {
116 		/* Can always deliver parent_rate in bypass mode */
117 		rate = parent_rate;
118 		*n = 0;
119 		*m = 0;
120 	} else {
121 		/* In PLL mode, need to apply min/max range */
122 		if (rate < CDCE925_PLL_FREQUENCY_MIN)
123 			rate = CDCE925_PLL_FREQUENCY_MIN;
124 		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
125 			rate = CDCE925_PLL_FREQUENCY_MAX;
126 
127 		g = gcd(rate, parent_rate);
128 		um = parent_rate / g;
129 		un = rate / g;
130 		/* When outside hw range, reduce to fit (rounding errors) */
131 		while ((un > 4095) || (um > 511)) {
132 			un >>= 1;
133 			um >>= 1;
134 		}
135 		if (un == 0)
136 			un = 1;
137 		if (um == 0)
138 			um = 1;
139 
140 		*n = un;
141 		*m = um;
142 	}
143 }
144 
145 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
146 		unsigned long *parent_rate)
147 {
148 	u16 n, m;
149 
150 	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
151 	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
152 }
153 
154 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
155 		unsigned long parent_rate)
156 {
157 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
158 
159 	if (!rate || (rate == parent_rate)) {
160 		data->m = 0; /* Bypass mode */
161 		data->n = 0;
162 		return 0;
163 	}
164 
165 	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
166 		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
167 		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
168 		return -EINVAL;
169 	}
170 
171 	if (rate < parent_rate) {
172 		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
173 			rate, parent_rate);
174 		return -EINVAL;
175 	}
176 
177 	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
178 	return 0;
179 }
180 
181 
182 /* calculate p = max(0, 4 - int(log2 (n/m))) */
183 static u8 cdce925_pll_calc_p(u16 n, u16 m)
184 {
185 	u8 p;
186 	u16 r = n / m;
187 
188 	if (r >= 16)
189 		return 0;
190 	p = 4;
191 	while (r > 1) {
192 		r >>= 1;
193 		--p;
194 	}
195 	return p;
196 }
197 
198 /* Returns VCO range bits for VCO1_0_RANGE */
199 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
200 {
201 	struct clk *parent = clk_get_parent(hw->clk);
202 	unsigned long rate = clk_get_rate(parent);
203 
204 	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
205 	if (rate >= 175000000)
206 		return 0x3;
207 	if (rate >= 150000000)
208 		return 0x02;
209 	if (rate >= 125000000)
210 		return 0x01;
211 	return 0x00;
212 }
213 
214 /* I2C clock, hence everything must happen in (un)prepare because this
215  * may sleep */
216 static int cdce925_pll_prepare(struct clk_hw *hw)
217 {
218 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
219 	u16 n = data->n;
220 	u16 m = data->m;
221 	u16 r;
222 	u8 q;
223 	u8 p;
224 	u16 nn;
225 	u8 pll[4]; /* Bits are spread out over 4 byte registers */
226 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
227 	unsigned i;
228 
229 	if ((!m || !n) || (m == n)) {
230 		/* Set PLL mux to bypass mode, leave the rest as is */
231 		regmap_update_bits(data->chip->regmap,
232 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
233 	} else {
234 		/* According to data sheet: */
235 		/* p = max(0, 4 - int(log2 (n/m))) */
236 		p = cdce925_pll_calc_p(n, m);
237 		/* nn = n * 2^p */
238 		nn = n * BIT(p);
239 		/* q = int(nn/m) */
240 		q = nn / m;
241 		if ((q < 16) || (q > 63)) {
242 			pr_debug("%s invalid q=%d\n", __func__, q);
243 			return -EINVAL;
244 		}
245 		r = nn - (m*q);
246 		if (r > 511) {
247 			pr_debug("%s invalid r=%d\n", __func__, r);
248 			return -EINVAL;
249 		}
250 		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
251 			n, m, p, q, r);
252 		/* encode into register bits */
253 		pll[0] = n >> 4;
254 		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
255 		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
256 		pll[3] = ((q & 0x07) << 5) | (p << 2) |
257 				cdce925_pll_calc_range_bits(hw, n, m);
258 		/* Write to registers */
259 		for (i = 0; i < ARRAY_SIZE(pll); ++i)
260 			regmap_write(data->chip->regmap,
261 				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
262 		/* Enable PLL */
263 		regmap_update_bits(data->chip->regmap,
264 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
265 	}
266 
267 	return 0;
268 }
269 
270 static void cdce925_pll_unprepare(struct clk_hw *hw)
271 {
272 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
273 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
274 
275 	regmap_update_bits(data->chip->regmap,
276 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
277 }
278 
279 static const struct clk_ops cdce925_pll_ops = {
280 	.prepare = cdce925_pll_prepare,
281 	.unprepare = cdce925_pll_unprepare,
282 	.recalc_rate = cdce925_pll_recalc_rate,
283 	.round_rate = cdce925_pll_round_rate,
284 	.set_rate = cdce925_pll_set_rate,
285 };
286 
287 
288 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
289 {
290 	switch (data->index) {
291 	case 0:
292 		regmap_update_bits(data->chip->regmap,
293 			CDCE925_REG_Y1SPIPDIVH,
294 			0x03, (pdiv >> 8) & 0x03);
295 		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
296 		break;
297 	case 1:
298 		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
299 		break;
300 	case 2:
301 		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
302 		break;
303 	case 3:
304 		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
305 		break;
306 	case 4:
307 		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
308 		break;
309 	case 5:
310 		regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
311 		break;
312 	case 6:
313 		regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
314 		break;
315 	case 7:
316 		regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
317 		break;
318 	case 8:
319 		regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
320 		break;
321 	}
322 }
323 
324 static void cdce925_clk_activate(struct clk_cdce925_output *data)
325 {
326 	switch (data->index) {
327 	case 0:
328 		regmap_update_bits(data->chip->regmap,
329 			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
330 		break;
331 	case 1:
332 	case 2:
333 		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
334 		break;
335 	case 3:
336 	case 4:
337 		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
338 		break;
339 	case 5:
340 	case 6:
341 		regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
342 		break;
343 	case 7:
344 	case 8:
345 		regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
346 		break;
347 	}
348 }
349 
350 static int cdce925_clk_prepare(struct clk_hw *hw)
351 {
352 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
353 
354 	cdce925_clk_set_pdiv(data, data->pdiv);
355 	cdce925_clk_activate(data);
356 	return 0;
357 }
358 
359 static void cdce925_clk_unprepare(struct clk_hw *hw)
360 {
361 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
362 
363 	/* Disable clock by setting divider to "0" */
364 	cdce925_clk_set_pdiv(data, 0);
365 }
366 
367 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
368 		unsigned long parent_rate)
369 {
370 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
371 
372 	if (data->pdiv)
373 		return parent_rate / data->pdiv;
374 	return 0;
375 }
376 
377 static u16 cdce925_calc_divider(unsigned long rate,
378 		unsigned long parent_rate)
379 {
380 	unsigned long divider;
381 
382 	if (!rate)
383 		return 0;
384 	if (rate >= parent_rate)
385 		return 1;
386 
387 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
388 	if (divider > 0x7F)
389 		divider = 0x7F;
390 
391 	return (u16)divider;
392 }
393 
394 static unsigned long cdce925_clk_best_parent_rate(
395 	struct clk_hw *hw, unsigned long rate)
396 {
397 	struct clk *pll = clk_get_parent(hw->clk);
398 	struct clk *root = clk_get_parent(pll);
399 	unsigned long root_rate = clk_get_rate(root);
400 	unsigned long best_rate_error = rate;
401 	u16 pdiv_min;
402 	u16 pdiv_max;
403 	u16 pdiv_best;
404 	u16 pdiv_now;
405 
406 	if (root_rate % rate == 0)
407 		return root_rate; /* Don't need the PLL, use bypass */
408 
409 	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
410 	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
411 
412 	if (pdiv_min > pdiv_max)
413 		return 0; /* No can do? */
414 
415 	pdiv_best = pdiv_min;
416 	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
417 		unsigned long target_rate = rate * pdiv_now;
418 		long pll_rate = clk_round_rate(pll, target_rate);
419 		unsigned long actual_rate;
420 		unsigned long rate_error;
421 
422 		if (pll_rate <= 0)
423 			continue;
424 		actual_rate = pll_rate / pdiv_now;
425 		rate_error = abs((long)actual_rate - (long)rate);
426 		if (rate_error < best_rate_error) {
427 			pdiv_best = pdiv_now;
428 			best_rate_error = rate_error;
429 		}
430 		/* TODO: Consider PLL frequency based on smaller n/m values
431 		 * and pick the better one if the error is equal */
432 	}
433 
434 	return rate * pdiv_best;
435 }
436 
437 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
438 		unsigned long *parent_rate)
439 {
440 	unsigned long l_parent_rate = *parent_rate;
441 	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
442 
443 	if (l_parent_rate / divider != rate) {
444 		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
445 		divider = cdce925_calc_divider(rate, l_parent_rate);
446 		*parent_rate = l_parent_rate;
447 	}
448 
449 	if (divider)
450 		return (long)(l_parent_rate / divider);
451 	return 0;
452 }
453 
454 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
455 		unsigned long parent_rate)
456 {
457 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
458 
459 	data->pdiv = cdce925_calc_divider(rate, parent_rate);
460 
461 	return 0;
462 }
463 
464 static const struct clk_ops cdce925_clk_ops = {
465 	.prepare = cdce925_clk_prepare,
466 	.unprepare = cdce925_clk_unprepare,
467 	.recalc_rate = cdce925_clk_recalc_rate,
468 	.round_rate = cdce925_clk_round_rate,
469 	.set_rate = cdce925_clk_set_rate,
470 };
471 
472 
473 static u16 cdce925_y1_calc_divider(unsigned long rate,
474 		unsigned long parent_rate)
475 {
476 	unsigned long divider;
477 
478 	if (!rate)
479 		return 0;
480 	if (rate >= parent_rate)
481 		return 1;
482 
483 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
484 	if (divider > 0x3FF) /* Y1 has 10-bit divider */
485 		divider = 0x3FF;
486 
487 	return (u16)divider;
488 }
489 
490 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
491 		unsigned long *parent_rate)
492 {
493 	unsigned long l_parent_rate = *parent_rate;
494 	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
495 
496 	if (divider)
497 		return (long)(l_parent_rate / divider);
498 	return 0;
499 }
500 
501 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
502 		unsigned long parent_rate)
503 {
504 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
505 
506 	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
507 
508 	return 0;
509 }
510 
511 static const struct clk_ops cdce925_clk_y1_ops = {
512 	.prepare = cdce925_clk_prepare,
513 	.unprepare = cdce925_clk_unprepare,
514 	.recalc_rate = cdce925_clk_recalc_rate,
515 	.round_rate = cdce925_clk_y1_round_rate,
516 	.set_rate = cdce925_clk_y1_set_rate,
517 };
518 
519 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
520 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
521 
522 static int cdce925_regmap_i2c_write(
523 	void *context, const void *data, size_t count)
524 {
525 	struct device *dev = context;
526 	struct i2c_client *i2c = to_i2c_client(dev);
527 	int ret;
528 	u8 reg_data[2];
529 
530 	if (count != 2)
531 		return -ENOTSUPP;
532 
533 	/* First byte is command code */
534 	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
535 	reg_data[1] = ((u8 *)data)[1];
536 
537 	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
538 			reg_data[0], reg_data[1]);
539 
540 	ret = i2c_master_send(i2c, reg_data, count);
541 	if (likely(ret == count))
542 		return 0;
543 	else if (ret < 0)
544 		return ret;
545 	else
546 		return -EIO;
547 }
548 
549 static int cdce925_regmap_i2c_read(void *context,
550 	   const void *reg, size_t reg_size, void *val, size_t val_size)
551 {
552 	struct device *dev = context;
553 	struct i2c_client *i2c = to_i2c_client(dev);
554 	struct i2c_msg xfer[2];
555 	int ret;
556 	u8 reg_data[2];
557 
558 	if (reg_size != 1)
559 		return -ENOTSUPP;
560 
561 	xfer[0].addr = i2c->addr;
562 	xfer[0].flags = 0;
563 	xfer[0].buf = reg_data;
564 	if (val_size == 1) {
565 		reg_data[0] =
566 			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
567 		xfer[0].len = 1;
568 	} else {
569 		reg_data[0] =
570 			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
571 		reg_data[1] = val_size;
572 		xfer[0].len = 2;
573 	}
574 
575 	xfer[1].addr = i2c->addr;
576 	xfer[1].flags = I2C_M_RD;
577 	xfer[1].len = val_size;
578 	xfer[1].buf = val;
579 
580 	ret = i2c_transfer(i2c->adapter, xfer, 2);
581 	if (likely(ret == 2)) {
582 		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
583 				reg_size, val_size, reg_data[0], *((u8 *)val));
584 		return 0;
585 	} else if (ret < 0)
586 		return ret;
587 	else
588 		return -EIO;
589 }
590 
591 static struct clk_hw *
592 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
593 {
594 	struct clk_cdce925_chip *data = _data;
595 	unsigned int idx = clkspec->args[0];
596 
597 	if (idx >= ARRAY_SIZE(data->clk)) {
598 		pr_err("%s: invalid index %u\n", __func__, idx);
599 		return ERR_PTR(-EINVAL);
600 	}
601 
602 	return &data->clk[idx].hw;
603 }
604 
605 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
606  * just weird, so just use the single byte mode exclusively. */
607 static struct regmap_bus regmap_cdce925_bus = {
608 	.write = cdce925_regmap_i2c_write,
609 	.read = cdce925_regmap_i2c_read,
610 };
611 
612 static int cdce925_probe(struct i2c_client *client,
613 		const struct i2c_device_id *id)
614 {
615 	struct clk_cdce925_chip *data;
616 	struct device_node *node = client->dev.of_node;
617 	const char *parent_name;
618 	const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
619 	struct clk_init_data init;
620 	u32 value;
621 	int i;
622 	int err;
623 	struct device_node *np_output;
624 	char child_name[6];
625 	struct regmap_config config = {
626 		.name = "configuration0",
627 		.reg_bits = 8,
628 		.val_bits = 8,
629 		.cache_type = REGCACHE_RBTREE,
630 	};
631 
632 	dev_dbg(&client->dev, "%s\n", __func__);
633 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
634 	if (!data)
635 		return -ENOMEM;
636 
637 	data->i2c_client = client;
638 	data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
639 	config.max_register = CDCE925_OFFSET_PLL +
640 		data->chip_info->num_plls * 0x10 - 1;
641 	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
642 			&client->dev, &config);
643 	if (IS_ERR(data->regmap)) {
644 		dev_err(&client->dev, "failed to allocate register map\n");
645 		return PTR_ERR(data->regmap);
646 	}
647 	i2c_set_clientdata(client, data);
648 
649 	parent_name = of_clk_get_parent_name(node, 0);
650 	if (!parent_name) {
651 		dev_err(&client->dev, "missing parent clock\n");
652 		return -ENODEV;
653 	}
654 	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
655 
656 	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
657 		regmap_write(data->regmap,
658 			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
659 	/* PWDN bit */
660 	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
661 
662 	/* Set input source for Y1 to be the XTAL */
663 	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
664 
665 	init.ops = &cdce925_pll_ops;
666 	init.flags = 0;
667 	init.parent_names = &parent_name;
668 	init.num_parents = 1;
669 
670 	/* Register PLL clocks */
671 	for (i = 0; i < data->chip_info->num_plls; ++i) {
672 		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
673 			client->dev.of_node, i);
674 		init.name = pll_clk_name[i];
675 		data->pll[i].chip = data;
676 		data->pll[i].hw.init = &init;
677 		data->pll[i].index = i;
678 		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
679 		if (err) {
680 			dev_err(&client->dev, "Failed register PLL %d\n", i);
681 			goto error;
682 		}
683 		sprintf(child_name, "PLL%d", i+1);
684 		np_output = of_get_child_by_name(node, child_name);
685 		if (!np_output)
686 			continue;
687 		if (!of_property_read_u32(np_output,
688 			"clock-frequency", &value)) {
689 			err = clk_set_rate(data->pll[i].hw.clk, value);
690 			if (err)
691 				dev_err(&client->dev,
692 					"unable to set PLL frequency %ud\n",
693 					value);
694 		}
695 		if (!of_property_read_u32(np_output,
696 			"spread-spectrum", &value)) {
697 			u8 flag = of_property_read_bool(np_output,
698 				"spread-spectrum-center") ? 0x80 : 0x00;
699 			regmap_update_bits(data->regmap,
700 				0x16 + (i*CDCE925_OFFSET_PLL),
701 				0x80, flag);
702 			regmap_update_bits(data->regmap,
703 				0x12 + (i*CDCE925_OFFSET_PLL),
704 				0x07, value & 0x07);
705 		}
706 		of_node_put(np_output);
707 	}
708 
709 	/* Register output clock Y1 */
710 	init.ops = &cdce925_clk_y1_ops;
711 	init.flags = 0;
712 	init.num_parents = 1;
713 	init.parent_names = &parent_name; /* Mux Y1 to input */
714 	init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
715 	data->clk[0].chip = data;
716 	data->clk[0].hw.init = &init;
717 	data->clk[0].index = 0;
718 	data->clk[0].pdiv = 1;
719 	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
720 	kfree(init.name); /* clock framework made a copy of the name */
721 	if (err) {
722 		dev_err(&client->dev, "clock registration Y1 failed\n");
723 		goto error;
724 	}
725 
726 	/* Register output clocks Y2 .. Y5*/
727 	init.ops = &cdce925_clk_ops;
728 	init.flags = CLK_SET_RATE_PARENT;
729 	init.num_parents = 1;
730 	for (i = 1; i < data->chip_info->num_outputs; ++i) {
731 		init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
732 			client->dev.of_node, i+1);
733 		data->clk[i].chip = data;
734 		data->clk[i].hw.init = &init;
735 		data->clk[i].index = i;
736 		data->clk[i].pdiv = 1;
737 		switch (i) {
738 		case 1:
739 		case 2:
740 			/* Mux Y2/3 to PLL1 */
741 			init.parent_names = &pll_clk_name[0];
742 			break;
743 		case 3:
744 		case 4:
745 			/* Mux Y4/5 to PLL2 */
746 			init.parent_names = &pll_clk_name[1];
747 			break;
748 		case 5:
749 		case 6:
750 			/* Mux Y6/7 to PLL3 */
751 			init.parent_names = &pll_clk_name[2];
752 			break;
753 		case 7:
754 		case 8:
755 			/* Mux Y8/9 to PLL4 */
756 			init.parent_names = &pll_clk_name[3];
757 			break;
758 		}
759 		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
760 		kfree(init.name); /* clock framework made a copy of the name */
761 		if (err) {
762 			dev_err(&client->dev, "clock registration failed\n");
763 			goto error;
764 		}
765 	}
766 
767 	/* Register the output clocks */
768 	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
769 				  data);
770 	if (err)
771 		dev_err(&client->dev, "unable to add OF clock provider\n");
772 
773 	err = 0;
774 
775 error:
776 	for (i = 0; i < data->chip_info->num_plls; ++i)
777 		/* clock framework made a copy of the name */
778 		kfree(pll_clk_name[i]);
779 
780 	return err;
781 }
782 
783 static const struct i2c_device_id cdce925_id[] = {
784 	{ "cdce913", CDCE913 },
785 	{ "cdce925", CDCE925 },
786 	{ "cdce937", CDCE937 },
787 	{ "cdce949", CDCE949 },
788 	{ }
789 };
790 MODULE_DEVICE_TABLE(i2c, cdce925_id);
791 
792 static const struct of_device_id clk_cdce925_of_match[] = {
793 	{ .compatible = "ti,cdce913" },
794 	{ .compatible = "ti,cdce925" },
795 	{ .compatible = "ti,cdce937" },
796 	{ .compatible = "ti,cdce949" },
797 	{ },
798 };
799 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
800 
801 static struct i2c_driver cdce925_driver = {
802 	.driver = {
803 		.name = "cdce925",
804 		.of_match_table = of_match_ptr(clk_cdce925_of_match),
805 	},
806 	.probe		= cdce925_probe,
807 	.id_table	= cdce925_id,
808 };
809 module_i2c_driver(cdce925_driver);
810 
811 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
812 MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
813 MODULE_LICENSE("GPL");
814