xref: /openbmc/linux/drivers/clk/clk-cdce925.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 /*
2  * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5  * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/gcd.h>
22 
23 /* Each chip has different number of PLLs and outputs, for example:
24  * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25  * Model this as 2 PLL clocks which are parents to the outputs.
26  */
27 
28 enum {
29 	CDCE913,
30 	CDCE925,
31 	CDCE937,
32 	CDCE949,
33 };
34 
35 struct clk_cdce925_chip_info {
36 	int num_plls;
37 	int num_outputs;
38 };
39 
40 static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
41 	[CDCE913] = { .num_plls = 1, .num_outputs = 3 },
42 	[CDCE925] = { .num_plls = 2, .num_outputs = 5 },
43 	[CDCE937] = { .num_plls = 3, .num_outputs = 7 },
44 	[CDCE949] = { .num_plls = 4, .num_outputs = 9 },
45 };
46 
47 #define MAX_NUMBER_OF_PLLS	4
48 #define MAX_NUMBER_OF_OUTPUTS	9
49 
50 #define CDCE925_REG_GLOBAL1	0x01
51 #define CDCE925_REG_Y1SPIPDIVH	0x02
52 #define CDCE925_REG_PDIVL	0x03
53 #define CDCE925_REG_XCSEL	0x05
54 /* PLL parameters start at 0x10, steps of 0x10 */
55 #define CDCE925_OFFSET_PLL	0x10
56 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
57 #define CDCE925_PLL_MUX_OUTPUTS	0x14
58 #define CDCE925_PLL_MULDIV	0x18
59 
60 #define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
61 #define CDCE925_PLL_FREQUENCY_MAX	230000000ul
62 struct clk_cdce925_chip;
63 
64 struct clk_cdce925_output {
65 	struct clk_hw hw;
66 	struct clk_cdce925_chip *chip;
67 	u8 index;
68 	u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
69 };
70 #define to_clk_cdce925_output(_hw) \
71 	container_of(_hw, struct clk_cdce925_output, hw)
72 
73 struct clk_cdce925_pll {
74 	struct clk_hw hw;
75 	struct clk_cdce925_chip *chip;
76 	u8 index;
77 	u16 m;   /* 1..511 */
78 	u16 n;   /* 1..4095 */
79 };
80 #define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
81 
82 struct clk_cdce925_chip {
83 	struct regmap *regmap;
84 	struct i2c_client *i2c_client;
85 	const struct clk_cdce925_chip_info *chip_info;
86 	struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
87 	struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
88 };
89 
90 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
91 
92 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
93 	u16 n, u16 m)
94 {
95 	if ((!m || !n) || (m == n))
96 		return parent_rate; /* In bypass mode runs at same frequency */
97 	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
98 }
99 
100 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
101 		unsigned long parent_rate)
102 {
103 	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
104 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
105 
106 	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
107 }
108 
109 static void cdce925_pll_find_rate(unsigned long rate,
110 		unsigned long parent_rate, u16 *n, u16 *m)
111 {
112 	unsigned long un;
113 	unsigned long um;
114 	unsigned long g;
115 
116 	if (rate <= parent_rate) {
117 		/* Can always deliver parent_rate in bypass mode */
118 		rate = parent_rate;
119 		*n = 0;
120 		*m = 0;
121 	} else {
122 		/* In PLL mode, need to apply min/max range */
123 		if (rate < CDCE925_PLL_FREQUENCY_MIN)
124 			rate = CDCE925_PLL_FREQUENCY_MIN;
125 		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
126 			rate = CDCE925_PLL_FREQUENCY_MAX;
127 
128 		g = gcd(rate, parent_rate);
129 		um = parent_rate / g;
130 		un = rate / g;
131 		/* When outside hw range, reduce to fit (rounding errors) */
132 		while ((un > 4095) || (um > 511)) {
133 			un >>= 1;
134 			um >>= 1;
135 		}
136 		if (un == 0)
137 			un = 1;
138 		if (um == 0)
139 			um = 1;
140 
141 		*n = un;
142 		*m = um;
143 	}
144 }
145 
146 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
147 		unsigned long *parent_rate)
148 {
149 	u16 n, m;
150 
151 	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
152 	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
153 }
154 
155 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
156 		unsigned long parent_rate)
157 {
158 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
159 
160 	if (!rate || (rate == parent_rate)) {
161 		data->m = 0; /* Bypass mode */
162 		data->n = 0;
163 		return 0;
164 	}
165 
166 	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
167 		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
168 		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
169 		return -EINVAL;
170 	}
171 
172 	if (rate < parent_rate) {
173 		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
174 			rate, parent_rate);
175 		return -EINVAL;
176 	}
177 
178 	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
179 	return 0;
180 }
181 
182 
183 /* calculate p = max(0, 4 - int(log2 (n/m))) */
184 static u8 cdce925_pll_calc_p(u16 n, u16 m)
185 {
186 	u8 p;
187 	u16 r = n / m;
188 
189 	if (r >= 16)
190 		return 0;
191 	p = 4;
192 	while (r > 1) {
193 		r >>= 1;
194 		--p;
195 	}
196 	return p;
197 }
198 
199 /* Returns VCO range bits for VCO1_0_RANGE */
200 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
201 {
202 	struct clk *parent = clk_get_parent(hw->clk);
203 	unsigned long rate = clk_get_rate(parent);
204 
205 	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
206 	if (rate >= 175000000)
207 		return 0x3;
208 	if (rate >= 150000000)
209 		return 0x02;
210 	if (rate >= 125000000)
211 		return 0x01;
212 	return 0x00;
213 }
214 
215 /* I2C clock, hence everything must happen in (un)prepare because this
216  * may sleep */
217 static int cdce925_pll_prepare(struct clk_hw *hw)
218 {
219 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
220 	u16 n = data->n;
221 	u16 m = data->m;
222 	u16 r;
223 	u8 q;
224 	u8 p;
225 	u16 nn;
226 	u8 pll[4]; /* Bits are spread out over 4 byte registers */
227 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
228 	unsigned i;
229 
230 	if ((!m || !n) || (m == n)) {
231 		/* Set PLL mux to bypass mode, leave the rest as is */
232 		regmap_update_bits(data->chip->regmap,
233 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
234 	} else {
235 		/* According to data sheet: */
236 		/* p = max(0, 4 - int(log2 (n/m))) */
237 		p = cdce925_pll_calc_p(n, m);
238 		/* nn = n * 2^p */
239 		nn = n * BIT(p);
240 		/* q = int(nn/m) */
241 		q = nn / m;
242 		if ((q < 16) || (q > 63)) {
243 			pr_debug("%s invalid q=%d\n", __func__, q);
244 			return -EINVAL;
245 		}
246 		r = nn - (m*q);
247 		if (r > 511) {
248 			pr_debug("%s invalid r=%d\n", __func__, r);
249 			return -EINVAL;
250 		}
251 		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
252 			n, m, p, q, r);
253 		/* encode into register bits */
254 		pll[0] = n >> 4;
255 		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
256 		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
257 		pll[3] = ((q & 0x07) << 5) | (p << 2) |
258 				cdce925_pll_calc_range_bits(hw, n, m);
259 		/* Write to registers */
260 		for (i = 0; i < ARRAY_SIZE(pll); ++i)
261 			regmap_write(data->chip->regmap,
262 				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
263 		/* Enable PLL */
264 		regmap_update_bits(data->chip->regmap,
265 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
266 	}
267 
268 	return 0;
269 }
270 
271 static void cdce925_pll_unprepare(struct clk_hw *hw)
272 {
273 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
274 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
275 
276 	regmap_update_bits(data->chip->regmap,
277 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
278 }
279 
280 static const struct clk_ops cdce925_pll_ops = {
281 	.prepare = cdce925_pll_prepare,
282 	.unprepare = cdce925_pll_unprepare,
283 	.recalc_rate = cdce925_pll_recalc_rate,
284 	.round_rate = cdce925_pll_round_rate,
285 	.set_rate = cdce925_pll_set_rate,
286 };
287 
288 
289 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
290 {
291 	switch (data->index) {
292 	case 0:
293 		regmap_update_bits(data->chip->regmap,
294 			CDCE925_REG_Y1SPIPDIVH,
295 			0x03, (pdiv >> 8) & 0x03);
296 		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
297 		break;
298 	case 1:
299 		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
300 		break;
301 	case 2:
302 		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
303 		break;
304 	case 3:
305 		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
306 		break;
307 	case 4:
308 		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
309 		break;
310 	case 5:
311 		regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
312 		break;
313 	case 6:
314 		regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
315 		break;
316 	case 7:
317 		regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
318 		break;
319 	case 8:
320 		regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
321 		break;
322 	}
323 }
324 
325 static void cdce925_clk_activate(struct clk_cdce925_output *data)
326 {
327 	switch (data->index) {
328 	case 0:
329 		regmap_update_bits(data->chip->regmap,
330 			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
331 		break;
332 	case 1:
333 	case 2:
334 		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
335 		break;
336 	case 3:
337 	case 4:
338 		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
339 		break;
340 	case 5:
341 	case 6:
342 		regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
343 		break;
344 	case 7:
345 	case 8:
346 		regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
347 		break;
348 	}
349 }
350 
351 static int cdce925_clk_prepare(struct clk_hw *hw)
352 {
353 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
354 
355 	cdce925_clk_set_pdiv(data, data->pdiv);
356 	cdce925_clk_activate(data);
357 	return 0;
358 }
359 
360 static void cdce925_clk_unprepare(struct clk_hw *hw)
361 {
362 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
363 
364 	/* Disable clock by setting divider to "0" */
365 	cdce925_clk_set_pdiv(data, 0);
366 }
367 
368 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
369 		unsigned long parent_rate)
370 {
371 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
372 
373 	if (data->pdiv)
374 		return parent_rate / data->pdiv;
375 	return 0;
376 }
377 
378 static u16 cdce925_calc_divider(unsigned long rate,
379 		unsigned long parent_rate)
380 {
381 	unsigned long divider;
382 
383 	if (!rate)
384 		return 0;
385 	if (rate >= parent_rate)
386 		return 1;
387 
388 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
389 	if (divider > 0x7F)
390 		divider = 0x7F;
391 
392 	return (u16)divider;
393 }
394 
395 static unsigned long cdce925_clk_best_parent_rate(
396 	struct clk_hw *hw, unsigned long rate)
397 {
398 	struct clk *pll = clk_get_parent(hw->clk);
399 	struct clk *root = clk_get_parent(pll);
400 	unsigned long root_rate = clk_get_rate(root);
401 	unsigned long best_rate_error = rate;
402 	u16 pdiv_min;
403 	u16 pdiv_max;
404 	u16 pdiv_best;
405 	u16 pdiv_now;
406 
407 	if (root_rate % rate == 0)
408 		return root_rate; /* Don't need the PLL, use bypass */
409 
410 	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
411 	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
412 
413 	if (pdiv_min > pdiv_max)
414 		return 0; /* No can do? */
415 
416 	pdiv_best = pdiv_min;
417 	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
418 		unsigned long target_rate = rate * pdiv_now;
419 		long pll_rate = clk_round_rate(pll, target_rate);
420 		unsigned long actual_rate;
421 		unsigned long rate_error;
422 
423 		if (pll_rate <= 0)
424 			continue;
425 		actual_rate = pll_rate / pdiv_now;
426 		rate_error = abs((long)actual_rate - (long)rate);
427 		if (rate_error < best_rate_error) {
428 			pdiv_best = pdiv_now;
429 			best_rate_error = rate_error;
430 		}
431 		/* TODO: Consider PLL frequency based on smaller n/m values
432 		 * and pick the better one if the error is equal */
433 	}
434 
435 	return rate * pdiv_best;
436 }
437 
438 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
439 		unsigned long *parent_rate)
440 {
441 	unsigned long l_parent_rate = *parent_rate;
442 	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
443 
444 	if (l_parent_rate / divider != rate) {
445 		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
446 		divider = cdce925_calc_divider(rate, l_parent_rate);
447 		*parent_rate = l_parent_rate;
448 	}
449 
450 	if (divider)
451 		return (long)(l_parent_rate / divider);
452 	return 0;
453 }
454 
455 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
456 		unsigned long parent_rate)
457 {
458 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
459 
460 	data->pdiv = cdce925_calc_divider(rate, parent_rate);
461 
462 	return 0;
463 }
464 
465 static const struct clk_ops cdce925_clk_ops = {
466 	.prepare = cdce925_clk_prepare,
467 	.unprepare = cdce925_clk_unprepare,
468 	.recalc_rate = cdce925_clk_recalc_rate,
469 	.round_rate = cdce925_clk_round_rate,
470 	.set_rate = cdce925_clk_set_rate,
471 };
472 
473 
474 static u16 cdce925_y1_calc_divider(unsigned long rate,
475 		unsigned long parent_rate)
476 {
477 	unsigned long divider;
478 
479 	if (!rate)
480 		return 0;
481 	if (rate >= parent_rate)
482 		return 1;
483 
484 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
485 	if (divider > 0x3FF) /* Y1 has 10-bit divider */
486 		divider = 0x3FF;
487 
488 	return (u16)divider;
489 }
490 
491 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
492 		unsigned long *parent_rate)
493 {
494 	unsigned long l_parent_rate = *parent_rate;
495 	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
496 
497 	if (divider)
498 		return (long)(l_parent_rate / divider);
499 	return 0;
500 }
501 
502 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
503 		unsigned long parent_rate)
504 {
505 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
506 
507 	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
508 
509 	return 0;
510 }
511 
512 static const struct clk_ops cdce925_clk_y1_ops = {
513 	.prepare = cdce925_clk_prepare,
514 	.unprepare = cdce925_clk_unprepare,
515 	.recalc_rate = cdce925_clk_recalc_rate,
516 	.round_rate = cdce925_clk_y1_round_rate,
517 	.set_rate = cdce925_clk_y1_set_rate,
518 };
519 
520 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
521 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
522 
523 static int cdce925_regmap_i2c_write(
524 	void *context, const void *data, size_t count)
525 {
526 	struct device *dev = context;
527 	struct i2c_client *i2c = to_i2c_client(dev);
528 	int ret;
529 	u8 reg_data[2];
530 
531 	if (count != 2)
532 		return -ENOTSUPP;
533 
534 	/* First byte is command code */
535 	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
536 	reg_data[1] = ((u8 *)data)[1];
537 
538 	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
539 			reg_data[0], reg_data[1]);
540 
541 	ret = i2c_master_send(i2c, reg_data, count);
542 	if (likely(ret == count))
543 		return 0;
544 	else if (ret < 0)
545 		return ret;
546 	else
547 		return -EIO;
548 }
549 
550 static int cdce925_regmap_i2c_read(void *context,
551 	   const void *reg, size_t reg_size, void *val, size_t val_size)
552 {
553 	struct device *dev = context;
554 	struct i2c_client *i2c = to_i2c_client(dev);
555 	struct i2c_msg xfer[2];
556 	int ret;
557 	u8 reg_data[2];
558 
559 	if (reg_size != 1)
560 		return -ENOTSUPP;
561 
562 	xfer[0].addr = i2c->addr;
563 	xfer[0].flags = 0;
564 	xfer[0].buf = reg_data;
565 	if (val_size == 1) {
566 		reg_data[0] =
567 			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
568 		xfer[0].len = 1;
569 	} else {
570 		reg_data[0] =
571 			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
572 		reg_data[1] = val_size;
573 		xfer[0].len = 2;
574 	}
575 
576 	xfer[1].addr = i2c->addr;
577 	xfer[1].flags = I2C_M_RD;
578 	xfer[1].len = val_size;
579 	xfer[1].buf = val;
580 
581 	ret = i2c_transfer(i2c->adapter, xfer, 2);
582 	if (likely(ret == 2)) {
583 		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
584 				reg_size, val_size, reg_data[0], *((u8 *)val));
585 		return 0;
586 	} else if (ret < 0)
587 		return ret;
588 	else
589 		return -EIO;
590 }
591 
592 static struct clk_hw *
593 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
594 {
595 	struct clk_cdce925_chip *data = _data;
596 	unsigned int idx = clkspec->args[0];
597 
598 	if (idx >= ARRAY_SIZE(data->clk)) {
599 		pr_err("%s: invalid index %u\n", __func__, idx);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	return &data->clk[idx].hw;
604 }
605 
606 static int cdce925_regulator_enable(struct device *dev, const char *name)
607 {
608 	int err;
609 
610 	err = devm_regulator_get_enable(dev, name);
611 	if (err)
612 		dev_err_probe(dev, err, "Failed to enable %s:\n", name);
613 
614 	return err;
615 }
616 
617 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
618  * just weird, so just use the single byte mode exclusively. */
619 static struct regmap_bus regmap_cdce925_bus = {
620 	.write = cdce925_regmap_i2c_write,
621 	.read = cdce925_regmap_i2c_read,
622 };
623 
624 static const struct i2c_device_id cdce925_id[] = {
625 	{ "cdce913", CDCE913 },
626 	{ "cdce925", CDCE925 },
627 	{ "cdce937", CDCE937 },
628 	{ "cdce949", CDCE949 },
629 	{ }
630 };
631 MODULE_DEVICE_TABLE(i2c, cdce925_id);
632 
633 static int cdce925_probe(struct i2c_client *client)
634 {
635 	struct clk_cdce925_chip *data;
636 	struct device_node *node = client->dev.of_node;
637 	const struct i2c_device_id *id = i2c_match_id(cdce925_id, client);
638 	const char *parent_name;
639 	const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
640 	struct clk_init_data init;
641 	u32 value;
642 	int i;
643 	int err;
644 	struct device_node *np_output;
645 	char child_name[6];
646 	struct regmap_config config = {
647 		.name = "configuration0",
648 		.reg_bits = 8,
649 		.val_bits = 8,
650 		.cache_type = REGCACHE_RBTREE,
651 	};
652 
653 	dev_dbg(&client->dev, "%s\n", __func__);
654 
655 	err = cdce925_regulator_enable(&client->dev, "vdd");
656 	if (err)
657 		return err;
658 
659 	err = cdce925_regulator_enable(&client->dev, "vddout");
660 	if (err)
661 		return err;
662 
663 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
664 	if (!data)
665 		return -ENOMEM;
666 
667 	data->i2c_client = client;
668 	data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
669 	config.max_register = CDCE925_OFFSET_PLL +
670 		data->chip_info->num_plls * 0x10 - 1;
671 	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
672 			&client->dev, &config);
673 	if (IS_ERR(data->regmap)) {
674 		dev_err(&client->dev, "failed to allocate register map\n");
675 		return PTR_ERR(data->regmap);
676 	}
677 	i2c_set_clientdata(client, data);
678 
679 	parent_name = of_clk_get_parent_name(node, 0);
680 	if (!parent_name) {
681 		dev_err(&client->dev, "missing parent clock\n");
682 		return -ENODEV;
683 	}
684 	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
685 
686 	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
687 		regmap_write(data->regmap,
688 			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
689 	/* PWDN bit */
690 	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
691 
692 	/* Set input source for Y1 to be the XTAL */
693 	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
694 
695 	init.ops = &cdce925_pll_ops;
696 	init.flags = 0;
697 	init.parent_names = &parent_name;
698 	init.num_parents = 1;
699 
700 	/* Register PLL clocks */
701 	for (i = 0; i < data->chip_info->num_plls; ++i) {
702 		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
703 			client->dev.of_node, i);
704 		if (!pll_clk_name[i]) {
705 			err = -ENOMEM;
706 			goto error;
707 		}
708 		init.name = pll_clk_name[i];
709 		data->pll[i].chip = data;
710 		data->pll[i].hw.init = &init;
711 		data->pll[i].index = i;
712 		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
713 		if (err) {
714 			dev_err(&client->dev, "Failed register PLL %d\n", i);
715 			goto error;
716 		}
717 		sprintf(child_name, "PLL%d", i+1);
718 		np_output = of_get_child_by_name(node, child_name);
719 		if (!np_output)
720 			continue;
721 		if (!of_property_read_u32(np_output,
722 			"clock-frequency", &value)) {
723 			err = clk_set_rate(data->pll[i].hw.clk, value);
724 			if (err)
725 				dev_err(&client->dev,
726 					"unable to set PLL frequency %ud\n",
727 					value);
728 		}
729 		if (!of_property_read_u32(np_output,
730 			"spread-spectrum", &value)) {
731 			u8 flag = of_property_read_bool(np_output,
732 				"spread-spectrum-center") ? 0x80 : 0x00;
733 			regmap_update_bits(data->regmap,
734 				0x16 + (i*CDCE925_OFFSET_PLL),
735 				0x80, flag);
736 			regmap_update_bits(data->regmap,
737 				0x12 + (i*CDCE925_OFFSET_PLL),
738 				0x07, value & 0x07);
739 		}
740 		of_node_put(np_output);
741 	}
742 
743 	/* Register output clock Y1 */
744 	init.ops = &cdce925_clk_y1_ops;
745 	init.flags = 0;
746 	init.num_parents = 1;
747 	init.parent_names = &parent_name; /* Mux Y1 to input */
748 	init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
749 	if (!init.name) {
750 		err = -ENOMEM;
751 		goto error;
752 	}
753 	data->clk[0].chip = data;
754 	data->clk[0].hw.init = &init;
755 	data->clk[0].index = 0;
756 	data->clk[0].pdiv = 1;
757 	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
758 	kfree(init.name); /* clock framework made a copy of the name */
759 	if (err) {
760 		dev_err(&client->dev, "clock registration Y1 failed\n");
761 		goto error;
762 	}
763 
764 	/* Register output clocks Y2 .. Y5*/
765 	init.ops = &cdce925_clk_ops;
766 	init.flags = CLK_SET_RATE_PARENT;
767 	init.num_parents = 1;
768 	for (i = 1; i < data->chip_info->num_outputs; ++i) {
769 		init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
770 			client->dev.of_node, i+1);
771 		if (!init.name) {
772 			err = -ENOMEM;
773 			goto error;
774 		}
775 		data->clk[i].chip = data;
776 		data->clk[i].hw.init = &init;
777 		data->clk[i].index = i;
778 		data->clk[i].pdiv = 1;
779 		switch (i) {
780 		case 1:
781 		case 2:
782 			/* Mux Y2/3 to PLL1 */
783 			init.parent_names = &pll_clk_name[0];
784 			break;
785 		case 3:
786 		case 4:
787 			/* Mux Y4/5 to PLL2 */
788 			init.parent_names = &pll_clk_name[1];
789 			break;
790 		case 5:
791 		case 6:
792 			/* Mux Y6/7 to PLL3 */
793 			init.parent_names = &pll_clk_name[2];
794 			break;
795 		case 7:
796 		case 8:
797 			/* Mux Y8/9 to PLL4 */
798 			init.parent_names = &pll_clk_name[3];
799 			break;
800 		}
801 		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
802 		kfree(init.name); /* clock framework made a copy of the name */
803 		if (err) {
804 			dev_err(&client->dev, "clock registration failed\n");
805 			goto error;
806 		}
807 	}
808 
809 	/* Register the output clocks */
810 	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
811 				  data);
812 	if (err)
813 		dev_err(&client->dev, "unable to add OF clock provider\n");
814 
815 	err = 0;
816 
817 error:
818 	for (i = 0; i < data->chip_info->num_plls; ++i)
819 		/* clock framework made a copy of the name */
820 		kfree(pll_clk_name[i]);
821 
822 	return err;
823 }
824 
825 static const struct of_device_id clk_cdce925_of_match[] = {
826 	{ .compatible = "ti,cdce913" },
827 	{ .compatible = "ti,cdce925" },
828 	{ .compatible = "ti,cdce937" },
829 	{ .compatible = "ti,cdce949" },
830 	{ },
831 };
832 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
833 
834 static struct i2c_driver cdce925_driver = {
835 	.driver = {
836 		.name = "cdce925",
837 		.of_match_table = clk_cdce925_of_match,
838 	},
839 	.probe		= cdce925_probe,
840 	.id_table	= cdce925_id,
841 };
842 module_i2c_driver(cdce925_driver);
843 
844 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
845 MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
846 MODULE_LICENSE("GPL");
847