1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright IBM Corp 3 4 #define pr_fmt(fmt) "clk-aspeed: " fmt 5 6 #include <linux/mfd/syscon.h> 7 #include <linux/of.h> 8 #include <linux/of_address.h> 9 #include <linux/platform_device.h> 10 #include <linux/regmap.h> 11 #include <linux/slab.h> 12 13 #include <dt-bindings/clock/aspeed-clock.h> 14 15 #include "clk-aspeed.h" 16 17 #define ASPEED_NUM_CLKS 38 18 19 #define ASPEED_RESET2_OFFSET 32 20 21 #define ASPEED_RESET_CTRL 0x04 22 #define ASPEED_CLK_SELECTION 0x08 23 #define ASPEED_CLK_STOP_CTRL 0x0c 24 #define ASPEED_MPLL_PARAM 0x20 25 #define ASPEED_HPLL_PARAM 0x24 26 #define AST2500_HPLL_BYPASS_EN BIT(20) 27 #define AST2400_HPLL_PROGRAMMED BIT(18) 28 #define AST2400_HPLL_BYPASS_EN BIT(17) 29 #define ASPEED_MISC_CTRL 0x2c 30 #define UART_DIV13_EN BIT(12) 31 #define ASPEED_MAC_CLK_DLY 0x48 32 #define ASPEED_STRAP 0x70 33 #define CLKIN_25MHZ_EN BIT(23) 34 #define AST2400_CLK_SOURCE_SEL BIT(18) 35 #define ASPEED_CLK_SELECTION_2 0xd8 36 #define ASPEED_RESET_CTRL2 0xd4 37 38 /* Globally visible clocks */ 39 static DEFINE_SPINLOCK(aspeed_clk_lock); 40 41 /* Keeps track of all clocks */ 42 static struct clk_hw_onecell_data *aspeed_clk_data; 43 44 static void __iomem *scu_base; 45 46 /* TODO: ask Aspeed about the actual parent data */ 47 static const struct aspeed_gate_data aspeed_gates[] = { 48 /* clk rst name parent flags */ 49 [ASPEED_CLK_GATE_ECLK] = { 0, 6, "eclk-gate", "eclk", 0 }, /* Video Engine */ 50 [ASPEED_CLK_GATE_GCLK] = { 1, 7, "gclk-gate", NULL, 0 }, /* 2D engine */ 51 [ASPEED_CLK_GATE_MCLK] = { 2, -1, "mclk-gate", "mpll", CLK_IS_CRITICAL }, /* SDRAM */ 52 [ASPEED_CLK_GATE_VCLK] = { 3, -1, "vclk-gate", NULL, 0 }, /* Video Capture */ 53 [ASPEED_CLK_GATE_BCLK] = { 4, 8, "bclk-gate", "bclk", CLK_IS_CRITICAL }, /* PCIe/PCI */ 54 [ASPEED_CLK_GATE_DCLK] = { 5, -1, "dclk-gate", NULL, CLK_IS_CRITICAL }, /* DAC */ 55 [ASPEED_CLK_GATE_REFCLK] = { 6, -1, "refclk-gate", "clkin", CLK_IS_CRITICAL }, 56 [ASPEED_CLK_GATE_USBPORT2CLK] = { 7, 3, "usb-port2-gate", NULL, 0 }, /* USB2.0 Host port 2 */ 57 [ASPEED_CLK_GATE_LCLK] = { 8, 5, "lclk-gate", NULL, 0 }, /* LPC */ 58 [ASPEED_CLK_GATE_USBUHCICLK] = { 9, 15, "usb-uhci-gate", NULL, 0 }, /* USB1.1 (requires port 2 enabled) */ 59 [ASPEED_CLK_GATE_D1CLK] = { 10, 13, "d1clk-gate", NULL, 0 }, /* GFX CRT */ 60 [ASPEED_CLK_GATE_YCLK] = { 13, 4, "yclk-gate", NULL, 0 }, /* HAC */ 61 [ASPEED_CLK_GATE_USBPORT1CLK] = { 14, 14, "usb-port1-gate", NULL, 0 }, /* USB2 hub/USB2 host port 1/USB1.1 dev */ 62 [ASPEED_CLK_GATE_UART1CLK] = { 15, -1, "uart1clk-gate", "uart", 0 }, /* UART1 */ 63 [ASPEED_CLK_GATE_UART2CLK] = { 16, -1, "uart2clk-gate", "uart", 0 }, /* UART2 */ 64 [ASPEED_CLK_GATE_UART5CLK] = { 17, -1, "uart5clk-gate", "uart", 0 }, /* UART5 */ 65 [ASPEED_CLK_GATE_ESPICLK] = { 19, -1, "espiclk-gate", NULL, 0 }, /* eSPI */ 66 [ASPEED_CLK_GATE_MAC1CLK] = { 20, 11, "mac1clk-gate", "mac", 0 }, /* MAC1 */ 67 [ASPEED_CLK_GATE_MAC2CLK] = { 21, 12, "mac2clk-gate", "mac", 0 }, /* MAC2 */ 68 [ASPEED_CLK_GATE_RSACLK] = { 24, -1, "rsaclk-gate", NULL, 0 }, /* RSA */ 69 [ASPEED_CLK_GATE_UART3CLK] = { 25, -1, "uart3clk-gate", "uart", 0 }, /* UART3 */ 70 [ASPEED_CLK_GATE_UART4CLK] = { 26, -1, "uart4clk-gate", "uart", 0 }, /* UART4 */ 71 [ASPEED_CLK_GATE_SDCLK] = { 27, 16, "sdclk-gate", NULL, 0 }, /* SDIO/SD */ 72 [ASPEED_CLK_GATE_LHCCLK] = { 28, -1, "lhclk-gate", "lhclk", 0 }, /* LPC master/LPC+ */ 73 }; 74 75 static const char * const eclk_parent_names[] = { 76 "mpll", 77 "hpll", 78 "dpll", 79 }; 80 81 static const struct clk_div_table ast2500_eclk_div_table[] = { 82 { 0x0, 2 }, 83 { 0x1, 2 }, 84 { 0x2, 3 }, 85 { 0x3, 4 }, 86 { 0x4, 5 }, 87 { 0x5, 6 }, 88 { 0x6, 7 }, 89 { 0x7, 8 }, 90 { 0 } 91 }; 92 93 static const struct clk_div_table ast2500_mac_div_table[] = { 94 { 0x0, 4 }, /* Yep, really. Aspeed confirmed this is correct */ 95 { 0x1, 4 }, 96 { 0x2, 6 }, 97 { 0x3, 8 }, 98 { 0x4, 10 }, 99 { 0x5, 12 }, 100 { 0x6, 14 }, 101 { 0x7, 16 }, 102 { 0 } 103 }; 104 105 static const struct clk_div_table ast2400_div_table[] = { 106 { 0x0, 2 }, 107 { 0x1, 4 }, 108 { 0x2, 6 }, 109 { 0x3, 8 }, 110 { 0x4, 10 }, 111 { 0x5, 12 }, 112 { 0x6, 14 }, 113 { 0x7, 16 }, 114 { 0 } 115 }; 116 117 static const struct clk_div_table ast2500_div_table[] = { 118 { 0x0, 4 }, 119 { 0x1, 8 }, 120 { 0x2, 12 }, 121 { 0x3, 16 }, 122 { 0x4, 20 }, 123 { 0x5, 24 }, 124 { 0x6, 28 }, 125 { 0x7, 32 }, 126 { 0 } 127 }; 128 129 static struct clk_hw *aspeed_ast2400_calc_pll(const char *name, u32 val) 130 { 131 unsigned int mult, div; 132 133 if (val & AST2400_HPLL_BYPASS_EN) { 134 /* Pass through mode */ 135 mult = div = 1; 136 } else { 137 /* F = 24Mhz * (2-OD) * [(N + 2) / (D + 1)] */ 138 u32 n = (val >> 5) & 0x3f; 139 u32 od = (val >> 4) & 0x1; 140 u32 d = val & 0xf; 141 142 mult = (2 - od) * (n + 2); 143 div = d + 1; 144 } 145 return clk_hw_register_fixed_factor(NULL, name, "clkin", 0, 146 mult, div); 147 }; 148 149 static struct clk_hw *aspeed_ast2500_calc_pll(const char *name, u32 val) 150 { 151 unsigned int mult, div; 152 153 if (val & AST2500_HPLL_BYPASS_EN) { 154 /* Pass through mode */ 155 mult = div = 1; 156 } else { 157 /* F = clkin * [(M+1) / (N+1)] / (P + 1) */ 158 u32 p = (val >> 13) & 0x3f; 159 u32 m = (val >> 5) & 0xff; 160 u32 n = val & 0x1f; 161 162 mult = (m + 1) / (n + 1); 163 div = p + 1; 164 } 165 166 return clk_hw_register_fixed_factor(NULL, name, "clkin", 0, 167 mult, div); 168 } 169 170 static const struct aspeed_clk_soc_data ast2500_data = { 171 .div_table = ast2500_div_table, 172 .eclk_div_table = ast2500_eclk_div_table, 173 .mac_div_table = ast2500_mac_div_table, 174 .calc_pll = aspeed_ast2500_calc_pll, 175 }; 176 177 static const struct aspeed_clk_soc_data ast2400_data = { 178 .div_table = ast2400_div_table, 179 .eclk_div_table = ast2400_div_table, 180 .mac_div_table = ast2400_div_table, 181 .calc_pll = aspeed_ast2400_calc_pll, 182 }; 183 184 static int aspeed_clk_is_enabled(struct clk_hw *hw) 185 { 186 struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw); 187 u32 clk = BIT(gate->clock_idx); 188 u32 rst = BIT(gate->reset_idx); 189 u32 enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk; 190 u32 reg; 191 192 /* 193 * If the IP is in reset, treat the clock as not enabled, 194 * this happens with some clocks such as the USB one when 195 * coming from cold reset. Without this, aspeed_clk_enable() 196 * will fail to lift the reset. 197 */ 198 if (gate->reset_idx >= 0) { 199 regmap_read(gate->map, ASPEED_RESET_CTRL, ®); 200 if (reg & rst) 201 return 0; 202 } 203 204 regmap_read(gate->map, ASPEED_CLK_STOP_CTRL, ®); 205 206 return ((reg & clk) == enval) ? 1 : 0; 207 } 208 209 static int aspeed_clk_enable(struct clk_hw *hw) 210 { 211 struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw); 212 unsigned long flags; 213 u32 clk = BIT(gate->clock_idx); 214 u32 rst = BIT(gate->reset_idx); 215 u32 enval; 216 217 spin_lock_irqsave(gate->lock, flags); 218 219 if (aspeed_clk_is_enabled(hw)) { 220 spin_unlock_irqrestore(gate->lock, flags); 221 return 0; 222 } 223 224 if (gate->reset_idx >= 0) { 225 /* Put IP in reset */ 226 regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, rst); 227 228 /* Delay 100us */ 229 udelay(100); 230 } 231 232 /* Enable clock */ 233 enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk; 234 regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval); 235 236 if (gate->reset_idx >= 0) { 237 /* A delay of 10ms is specified by the ASPEED docs */ 238 mdelay(10); 239 240 /* Take IP out of reset */ 241 regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, 0); 242 } 243 244 spin_unlock_irqrestore(gate->lock, flags); 245 246 return 0; 247 } 248 249 static void aspeed_clk_disable(struct clk_hw *hw) 250 { 251 struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw); 252 unsigned long flags; 253 u32 clk = BIT(gate->clock_idx); 254 u32 enval; 255 256 spin_lock_irqsave(gate->lock, flags); 257 258 enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? clk : 0; 259 regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval); 260 261 spin_unlock_irqrestore(gate->lock, flags); 262 } 263 264 static const struct clk_ops aspeed_clk_gate_ops = { 265 .enable = aspeed_clk_enable, 266 .disable = aspeed_clk_disable, 267 .is_enabled = aspeed_clk_is_enabled, 268 }; 269 270 static const u8 aspeed_resets[] = { 271 /* SCU04 resets */ 272 [ASPEED_RESET_XDMA] = 25, 273 [ASPEED_RESET_MCTP] = 24, 274 [ASPEED_RESET_ADC] = 23, 275 [ASPEED_RESET_JTAG_MASTER] = 22, 276 [ASPEED_RESET_MIC] = 18, 277 [ASPEED_RESET_PWM] = 9, 278 [ASPEED_RESET_PECI] = 10, 279 [ASPEED_RESET_I2C] = 2, 280 [ASPEED_RESET_AHB] = 1, 281 282 /* 283 * SCUD4 resets start at an offset to separate them from 284 * the SCU04 resets. 285 */ 286 [ASPEED_RESET_CRT1] = ASPEED_RESET2_OFFSET + 5, 287 }; 288 289 static int aspeed_reset_deassert(struct reset_controller_dev *rcdev, 290 unsigned long id) 291 { 292 struct aspeed_reset *ar = to_aspeed_reset(rcdev); 293 u32 reg = ASPEED_RESET_CTRL; 294 u32 bit = aspeed_resets[id]; 295 296 if (bit >= ASPEED_RESET2_OFFSET) { 297 bit -= ASPEED_RESET2_OFFSET; 298 reg = ASPEED_RESET_CTRL2; 299 } 300 301 return regmap_update_bits(ar->map, reg, BIT(bit), 0); 302 } 303 304 static int aspeed_reset_assert(struct reset_controller_dev *rcdev, 305 unsigned long id) 306 { 307 struct aspeed_reset *ar = to_aspeed_reset(rcdev); 308 u32 reg = ASPEED_RESET_CTRL; 309 u32 bit = aspeed_resets[id]; 310 311 if (bit >= ASPEED_RESET2_OFFSET) { 312 bit -= ASPEED_RESET2_OFFSET; 313 reg = ASPEED_RESET_CTRL2; 314 } 315 316 return regmap_update_bits(ar->map, reg, BIT(bit), BIT(bit)); 317 } 318 319 static int aspeed_reset_status(struct reset_controller_dev *rcdev, 320 unsigned long id) 321 { 322 struct aspeed_reset *ar = to_aspeed_reset(rcdev); 323 u32 reg = ASPEED_RESET_CTRL; 324 u32 bit = aspeed_resets[id]; 325 int ret, val; 326 327 if (bit >= ASPEED_RESET2_OFFSET) { 328 bit -= ASPEED_RESET2_OFFSET; 329 reg = ASPEED_RESET_CTRL2; 330 } 331 332 ret = regmap_read(ar->map, reg, &val); 333 if (ret) 334 return ret; 335 336 return !!(val & BIT(bit)); 337 } 338 339 static const struct reset_control_ops aspeed_reset_ops = { 340 .assert = aspeed_reset_assert, 341 .deassert = aspeed_reset_deassert, 342 .status = aspeed_reset_status, 343 }; 344 345 static struct clk_hw *aspeed_clk_hw_register_gate(struct device *dev, 346 const char *name, const char *parent_name, unsigned long flags, 347 struct regmap *map, u8 clock_idx, u8 reset_idx, 348 u8 clk_gate_flags, spinlock_t *lock) 349 { 350 struct aspeed_clk_gate *gate; 351 struct clk_init_data init; 352 struct clk_hw *hw; 353 int ret; 354 355 gate = kzalloc(sizeof(*gate), GFP_KERNEL); 356 if (!gate) 357 return ERR_PTR(-ENOMEM); 358 359 init.name = name; 360 init.ops = &aspeed_clk_gate_ops; 361 init.flags = flags; 362 init.parent_names = parent_name ? &parent_name : NULL; 363 init.num_parents = parent_name ? 1 : 0; 364 365 gate->map = map; 366 gate->clock_idx = clock_idx; 367 gate->reset_idx = reset_idx; 368 gate->flags = clk_gate_flags; 369 gate->lock = lock; 370 gate->hw.init = &init; 371 372 hw = &gate->hw; 373 ret = clk_hw_register(dev, hw); 374 if (ret) { 375 kfree(gate); 376 hw = ERR_PTR(ret); 377 } 378 379 return hw; 380 } 381 382 static int aspeed_clk_probe(struct platform_device *pdev) 383 { 384 const struct aspeed_clk_soc_data *soc_data; 385 struct device *dev = &pdev->dev; 386 struct aspeed_reset *ar; 387 struct regmap *map; 388 struct clk_hw *hw; 389 u32 val, rate; 390 int i, ret; 391 392 map = syscon_node_to_regmap(dev->of_node); 393 if (IS_ERR(map)) { 394 dev_err(dev, "no syscon regmap\n"); 395 return PTR_ERR(map); 396 } 397 398 ar = devm_kzalloc(dev, sizeof(*ar), GFP_KERNEL); 399 if (!ar) 400 return -ENOMEM; 401 402 ar->map = map; 403 ar->rcdev.owner = THIS_MODULE; 404 ar->rcdev.nr_resets = ARRAY_SIZE(aspeed_resets); 405 ar->rcdev.ops = &aspeed_reset_ops; 406 ar->rcdev.of_node = dev->of_node; 407 408 ret = devm_reset_controller_register(dev, &ar->rcdev); 409 if (ret) { 410 dev_err(dev, "could not register reset controller\n"); 411 return ret; 412 } 413 414 /* SoC generations share common layouts but have different divisors */ 415 soc_data = of_device_get_match_data(dev); 416 if (!soc_data) { 417 dev_err(dev, "no match data for platform\n"); 418 return -EINVAL; 419 } 420 421 /* UART clock div13 setting */ 422 regmap_read(map, ASPEED_MISC_CTRL, &val); 423 if (val & UART_DIV13_EN) 424 rate = 24000000 / 13; 425 else 426 rate = 24000000; 427 /* TODO: Find the parent data for the uart clock */ 428 hw = clk_hw_register_fixed_rate(dev, "uart", NULL, 0, rate); 429 if (IS_ERR(hw)) 430 return PTR_ERR(hw); 431 aspeed_clk_data->hws[ASPEED_CLK_UART] = hw; 432 433 /* 434 * Memory controller (M-PLL) PLL. This clock is configured by the 435 * bootloader, and is exposed to Linux as a read-only clock rate. 436 */ 437 regmap_read(map, ASPEED_MPLL_PARAM, &val); 438 hw = soc_data->calc_pll("mpll", val); 439 if (IS_ERR(hw)) 440 return PTR_ERR(hw); 441 aspeed_clk_data->hws[ASPEED_CLK_MPLL] = hw; 442 443 /* SD/SDIO clock divider and gate */ 444 hw = clk_hw_register_gate(dev, "sd_extclk_gate", "hpll", 0, 445 scu_base + ASPEED_CLK_SELECTION, 15, 0, 446 &aspeed_clk_lock); 447 if (IS_ERR(hw)) 448 return PTR_ERR(hw); 449 hw = clk_hw_register_divider_table(dev, "sd_extclk", "sd_extclk_gate", 450 0, scu_base + ASPEED_CLK_SELECTION, 12, 3, 0, 451 soc_data->div_table, 452 &aspeed_clk_lock); 453 if (IS_ERR(hw)) 454 return PTR_ERR(hw); 455 aspeed_clk_data->hws[ASPEED_CLK_SDIO] = hw; 456 457 /* MAC AHB bus clock divider */ 458 hw = clk_hw_register_divider_table(dev, "mac", "hpll", 0, 459 scu_base + ASPEED_CLK_SELECTION, 16, 3, 0, 460 soc_data->mac_div_table, 461 &aspeed_clk_lock); 462 if (IS_ERR(hw)) 463 return PTR_ERR(hw); 464 aspeed_clk_data->hws[ASPEED_CLK_MAC] = hw; 465 466 if (of_device_is_compatible(pdev->dev.of_node, "aspeed,ast2500-scu")) { 467 /* RMII 50MHz RCLK */ 468 hw = clk_hw_register_fixed_rate(dev, "mac12rclk", "hpll", 0, 469 50000000); 470 if (IS_ERR(hw)) 471 return PTR_ERR(hw); 472 473 /* RMII1 50MHz (RCLK) output enable */ 474 hw = clk_hw_register_gate(dev, "mac1rclk", "mac12rclk", 0, 475 scu_base + ASPEED_MAC_CLK_DLY, 29, 0, 476 &aspeed_clk_lock); 477 if (IS_ERR(hw)) 478 return PTR_ERR(hw); 479 aspeed_clk_data->hws[ASPEED_CLK_MAC1RCLK] = hw; 480 481 /* RMII2 50MHz (RCLK) output enable */ 482 hw = clk_hw_register_gate(dev, "mac2rclk", "mac12rclk", 0, 483 scu_base + ASPEED_MAC_CLK_DLY, 30, 0, 484 &aspeed_clk_lock); 485 if (IS_ERR(hw)) 486 return PTR_ERR(hw); 487 aspeed_clk_data->hws[ASPEED_CLK_MAC2RCLK] = hw; 488 } 489 490 /* LPC Host (LHCLK) clock divider */ 491 hw = clk_hw_register_divider_table(dev, "lhclk", "hpll", 0, 492 scu_base + ASPEED_CLK_SELECTION, 20, 3, 0, 493 soc_data->div_table, 494 &aspeed_clk_lock); 495 if (IS_ERR(hw)) 496 return PTR_ERR(hw); 497 aspeed_clk_data->hws[ASPEED_CLK_LHCLK] = hw; 498 499 /* P-Bus (BCLK) clock divider */ 500 hw = clk_hw_register_divider_table(dev, "bclk", "hpll", 0, 501 scu_base + ASPEED_CLK_SELECTION_2, 0, 2, 0, 502 soc_data->div_table, 503 &aspeed_clk_lock); 504 if (IS_ERR(hw)) 505 return PTR_ERR(hw); 506 aspeed_clk_data->hws[ASPEED_CLK_BCLK] = hw; 507 508 /* Fixed 24MHz clock */ 509 hw = clk_hw_register_fixed_rate(NULL, "fixed-24m", "clkin", 510 0, 24000000); 511 if (IS_ERR(hw)) 512 return PTR_ERR(hw); 513 aspeed_clk_data->hws[ASPEED_CLK_24M] = hw; 514 515 hw = clk_hw_register_mux(dev, "eclk-mux", eclk_parent_names, 516 ARRAY_SIZE(eclk_parent_names), 0, 517 scu_base + ASPEED_CLK_SELECTION, 2, 0x3, 0, 518 &aspeed_clk_lock); 519 if (IS_ERR(hw)) 520 return PTR_ERR(hw); 521 aspeed_clk_data->hws[ASPEED_CLK_ECLK_MUX] = hw; 522 523 hw = clk_hw_register_divider_table(dev, "eclk", "eclk-mux", 0, 524 scu_base + ASPEED_CLK_SELECTION, 28, 525 3, 0, soc_data->eclk_div_table, 526 &aspeed_clk_lock); 527 if (IS_ERR(hw)) 528 return PTR_ERR(hw); 529 aspeed_clk_data->hws[ASPEED_CLK_ECLK] = hw; 530 531 /* 532 * TODO: There are a number of clocks that not included in this driver 533 * as more information is required: 534 * D2-PLL 535 * D-PLL 536 * YCLK 537 * RGMII 538 * RMII 539 * UART[1..5] clock source mux 540 */ 541 542 for (i = 0; i < ARRAY_SIZE(aspeed_gates); i++) { 543 const struct aspeed_gate_data *gd = &aspeed_gates[i]; 544 u32 gate_flags; 545 546 /* Special case: the USB port 1 clock (bit 14) is always 547 * working the opposite way from the other ones. 548 */ 549 gate_flags = (gd->clock_idx == 14) ? 0 : CLK_GATE_SET_TO_DISABLE; 550 hw = aspeed_clk_hw_register_gate(dev, 551 gd->name, 552 gd->parent_name, 553 gd->flags, 554 map, 555 gd->clock_idx, 556 gd->reset_idx, 557 gate_flags, 558 &aspeed_clk_lock); 559 if (IS_ERR(hw)) 560 return PTR_ERR(hw); 561 aspeed_clk_data->hws[i] = hw; 562 } 563 564 return 0; 565 }; 566 567 static const struct of_device_id aspeed_clk_dt_ids[] = { 568 { .compatible = "aspeed,ast2400-scu", .data = &ast2400_data }, 569 { .compatible = "aspeed,ast2500-scu", .data = &ast2500_data }, 570 { } 571 }; 572 573 static struct platform_driver aspeed_clk_driver = { 574 .probe = aspeed_clk_probe, 575 .driver = { 576 .name = "aspeed-clk", 577 .of_match_table = aspeed_clk_dt_ids, 578 .suppress_bind_attrs = true, 579 }, 580 }; 581 builtin_platform_driver(aspeed_clk_driver); 582 583 static void __init aspeed_ast2400_cc(struct regmap *map) 584 { 585 struct clk_hw *hw; 586 u32 val, div, clkin, hpll; 587 const u16 hpll_rates[][4] = { 588 {384, 360, 336, 408}, 589 {400, 375, 350, 425}, 590 }; 591 int rate; 592 593 /* 594 * CLKIN is the crystal oscillator, 24, 48 or 25MHz selected by 595 * strapping 596 */ 597 regmap_read(map, ASPEED_STRAP, &val); 598 rate = (val >> 8) & 3; 599 if (val & CLKIN_25MHZ_EN) { 600 clkin = 25000000; 601 hpll = hpll_rates[1][rate]; 602 } else if (val & AST2400_CLK_SOURCE_SEL) { 603 clkin = 48000000; 604 hpll = hpll_rates[0][rate]; 605 } else { 606 clkin = 24000000; 607 hpll = hpll_rates[0][rate]; 608 } 609 hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, clkin); 610 pr_debug("clkin @%u MHz\n", clkin / 1000000); 611 612 /* 613 * High-speed PLL clock derived from the crystal. This the CPU clock, 614 * and we assume that it is enabled. It can be configured through the 615 * HPLL_PARAM register, or set to a specified frequency by strapping. 616 */ 617 regmap_read(map, ASPEED_HPLL_PARAM, &val); 618 if (val & AST2400_HPLL_PROGRAMMED) 619 hw = aspeed_ast2400_calc_pll("hpll", val); 620 else 621 hw = clk_hw_register_fixed_rate(NULL, "hpll", "clkin", 0, 622 hpll * 1000000); 623 624 aspeed_clk_data->hws[ASPEED_CLK_HPLL] = hw; 625 626 /* 627 * Strap bits 11:10 define the CPU/AHB clock frequency ratio (aka HCLK) 628 * 00: Select CPU:AHB = 1:1 629 * 01: Select CPU:AHB = 2:1 630 * 10: Select CPU:AHB = 4:1 631 * 11: Select CPU:AHB = 3:1 632 */ 633 regmap_read(map, ASPEED_STRAP, &val); 634 val = (val >> 10) & 0x3; 635 div = val + 1; 636 if (div == 3) 637 div = 4; 638 else if (div == 4) 639 div = 3; 640 hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div); 641 aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw; 642 643 /* APB clock clock selection register SCU08 (aka PCLK) */ 644 hw = clk_hw_register_divider_table(NULL, "apb", "hpll", 0, 645 scu_base + ASPEED_CLK_SELECTION, 23, 3, 0, 646 ast2400_div_table, 647 &aspeed_clk_lock); 648 aspeed_clk_data->hws[ASPEED_CLK_APB] = hw; 649 } 650 651 static void __init aspeed_ast2500_cc(struct regmap *map) 652 { 653 struct clk_hw *hw; 654 u32 val, freq, div; 655 656 /* CLKIN is the crystal oscillator, 24 or 25MHz selected by strapping */ 657 regmap_read(map, ASPEED_STRAP, &val); 658 if (val & CLKIN_25MHZ_EN) 659 freq = 25000000; 660 else 661 freq = 24000000; 662 hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, freq); 663 pr_debug("clkin @%u MHz\n", freq / 1000000); 664 665 /* 666 * High-speed PLL clock derived from the crystal. This the CPU clock, 667 * and we assume that it is enabled 668 */ 669 regmap_read(map, ASPEED_HPLL_PARAM, &val); 670 aspeed_clk_data->hws[ASPEED_CLK_HPLL] = aspeed_ast2500_calc_pll("hpll", val); 671 672 /* Strap bits 11:9 define the AXI/AHB clock frequency ratio (aka HCLK)*/ 673 regmap_read(map, ASPEED_STRAP, &val); 674 val = (val >> 9) & 0x7; 675 WARN(val == 0, "strapping is zero: cannot determine ahb clock"); 676 div = 2 * (val + 1); 677 hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div); 678 aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw; 679 680 /* APB clock clock selection register SCU08 (aka PCLK) */ 681 regmap_read(map, ASPEED_CLK_SELECTION, &val); 682 val = (val >> 23) & 0x7; 683 div = 4 * (val + 1); 684 hw = clk_hw_register_fixed_factor(NULL, "apb", "hpll", 0, 1, div); 685 aspeed_clk_data->hws[ASPEED_CLK_APB] = hw; 686 }; 687 688 static void __init aspeed_cc_init(struct device_node *np) 689 { 690 struct regmap *map; 691 u32 val; 692 int ret; 693 int i; 694 695 scu_base = of_iomap(np, 0); 696 if (!scu_base) 697 return; 698 699 aspeed_clk_data = kzalloc(struct_size(aspeed_clk_data, hws, 700 ASPEED_NUM_CLKS), 701 GFP_KERNEL); 702 if (!aspeed_clk_data) 703 return; 704 aspeed_clk_data->num = ASPEED_NUM_CLKS; 705 706 /* 707 * This way all clocks fetched before the platform device probes, 708 * except those we assign here for early use, will be deferred. 709 */ 710 for (i = 0; i < ASPEED_NUM_CLKS; i++) 711 aspeed_clk_data->hws[i] = ERR_PTR(-EPROBE_DEFER); 712 713 map = syscon_node_to_regmap(np); 714 if (IS_ERR(map)) { 715 pr_err("no syscon regmap\n"); 716 return; 717 } 718 /* 719 * We check that the regmap works on this very first access, 720 * but as this is an MMIO-backed regmap, subsequent regmap 721 * access is not going to fail and we skip error checks from 722 * this point. 723 */ 724 ret = regmap_read(map, ASPEED_STRAP, &val); 725 if (ret) { 726 pr_err("failed to read strapping register\n"); 727 return; 728 } 729 730 if (of_device_is_compatible(np, "aspeed,ast2400-scu")) 731 aspeed_ast2400_cc(map); 732 else if (of_device_is_compatible(np, "aspeed,ast2500-scu")) 733 aspeed_ast2500_cc(map); 734 else 735 pr_err("unknown platform, failed to add clocks\n"); 736 ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, aspeed_clk_data); 737 if (ret) 738 pr_err("failed to add DT provider: %d\n", ret); 739 }; 740 CLK_OF_DECLARE_DRIVER(aspeed_cc_g5, "aspeed,ast2500-scu", aspeed_cc_init); 741 CLK_OF_DECLARE_DRIVER(aspeed_cc_g4, "aspeed,ast2400-scu", aspeed_cc_init); 742