xref: /openbmc/linux/drivers/clk/clk-aspeed.c (revision 4e95bc26)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #define pr_fmt(fmt) "clk-aspeed: " fmt
4 
5 #include <linux/clk-provider.h>
6 #include <linux/mfd/syscon.h>
7 #include <linux/of_address.h>
8 #include <linux/of_device.h>
9 #include <linux/platform_device.h>
10 #include <linux/regmap.h>
11 #include <linux/reset-controller.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 
15 #include <dt-bindings/clock/aspeed-clock.h>
16 
17 #define ASPEED_NUM_CLKS		36
18 
19 #define ASPEED_RESET2_OFFSET	32
20 
21 #define ASPEED_RESET_CTRL	0x04
22 #define ASPEED_CLK_SELECTION	0x08
23 #define ASPEED_CLK_STOP_CTRL	0x0c
24 #define ASPEED_MPLL_PARAM	0x20
25 #define ASPEED_HPLL_PARAM	0x24
26 #define  AST2500_HPLL_BYPASS_EN	BIT(20)
27 #define  AST2400_HPLL_PROGRAMMED BIT(18)
28 #define  AST2400_HPLL_BYPASS_EN	BIT(17)
29 #define ASPEED_MISC_CTRL	0x2c
30 #define  UART_DIV13_EN		BIT(12)
31 #define ASPEED_STRAP		0x70
32 #define  CLKIN_25MHZ_EN		BIT(23)
33 #define  AST2400_CLK_SOURCE_SEL	BIT(18)
34 #define ASPEED_CLK_SELECTION_2	0xd8
35 #define ASPEED_RESET_CTRL2	0xd4
36 
37 /* Globally visible clocks */
38 static DEFINE_SPINLOCK(aspeed_clk_lock);
39 
40 /* Keeps track of all clocks */
41 static struct clk_hw_onecell_data *aspeed_clk_data;
42 
43 static void __iomem *scu_base;
44 
45 /**
46  * struct aspeed_gate_data - Aspeed gated clocks
47  * @clock_idx: bit used to gate this clock in the clock register
48  * @reset_idx: bit used to reset this IP in the reset register. -1 if no
49  *             reset is required when enabling the clock
50  * @name: the clock name
51  * @parent_name: the name of the parent clock
52  * @flags: standard clock framework flags
53  */
54 struct aspeed_gate_data {
55 	u8		clock_idx;
56 	s8		reset_idx;
57 	const char	*name;
58 	const char	*parent_name;
59 	unsigned long	flags;
60 };
61 
62 /**
63  * struct aspeed_clk_gate - Aspeed specific clk_gate structure
64  * @hw:		handle between common and hardware-specific interfaces
65  * @reg:	register controlling gate
66  * @clock_idx:	bit used to gate this clock in the clock register
67  * @reset_idx:	bit used to reset this IP in the reset register. -1 if no
68  *		reset is required when enabling the clock
69  * @flags:	hardware-specific flags
70  * @lock:	register lock
71  *
72  * Some of the clocks in the Aspeed SoC must be put in reset before enabling.
73  * This modified version of clk_gate allows an optional reset bit to be
74  * specified.
75  */
76 struct aspeed_clk_gate {
77 	struct clk_hw	hw;
78 	struct regmap	*map;
79 	u8		clock_idx;
80 	s8		reset_idx;
81 	u8		flags;
82 	spinlock_t	*lock;
83 };
84 
85 #define to_aspeed_clk_gate(_hw) container_of(_hw, struct aspeed_clk_gate, hw)
86 
87 /* TODO: ask Aspeed about the actual parent data */
88 static const struct aspeed_gate_data aspeed_gates[] = {
89 	/*				 clk rst   name			parent	flags */
90 	[ASPEED_CLK_GATE_ECLK] =	{  0,  6, "eclk-gate",		"eclk",	0 }, /* Video Engine */
91 	[ASPEED_CLK_GATE_GCLK] =	{  1,  7, "gclk-gate",		NULL,	0 }, /* 2D engine */
92 	[ASPEED_CLK_GATE_MCLK] =	{  2, -1, "mclk-gate",		"mpll",	CLK_IS_CRITICAL }, /* SDRAM */
93 	[ASPEED_CLK_GATE_VCLK] =	{  3, -1, "vclk-gate",		NULL,	0 }, /* Video Capture */
94 	[ASPEED_CLK_GATE_BCLK] =	{  4,  8, "bclk-gate",		"bclk",	CLK_IS_CRITICAL }, /* PCIe/PCI */
95 	[ASPEED_CLK_GATE_DCLK] =	{  5, -1, "dclk-gate",		NULL,	CLK_IS_CRITICAL }, /* DAC */
96 	[ASPEED_CLK_GATE_REFCLK] =	{  6, -1, "refclk-gate",	"clkin", CLK_IS_CRITICAL },
97 	[ASPEED_CLK_GATE_USBPORT2CLK] =	{  7,  3, "usb-port2-gate",	NULL,	0 }, /* USB2.0 Host port 2 */
98 	[ASPEED_CLK_GATE_LCLK] =	{  8,  5, "lclk-gate",		NULL,	0 }, /* LPC */
99 	[ASPEED_CLK_GATE_USBUHCICLK] =	{  9, 15, "usb-uhci-gate",	NULL,	0 }, /* USB1.1 (requires port 2 enabled) */
100 	[ASPEED_CLK_GATE_D1CLK] =	{ 10, 13, "d1clk-gate",		NULL,	0 }, /* GFX CRT */
101 	[ASPEED_CLK_GATE_YCLK] =	{ 13,  4, "yclk-gate",		NULL,	0 }, /* HAC */
102 	[ASPEED_CLK_GATE_USBPORT1CLK] = { 14, 14, "usb-port1-gate",	NULL,	0 }, /* USB2 hub/USB2 host port 1/USB1.1 dev */
103 	[ASPEED_CLK_GATE_UART1CLK] =	{ 15, -1, "uart1clk-gate",	"uart",	0 }, /* UART1 */
104 	[ASPEED_CLK_GATE_UART2CLK] =	{ 16, -1, "uart2clk-gate",	"uart",	0 }, /* UART2 */
105 	[ASPEED_CLK_GATE_UART5CLK] =	{ 17, -1, "uart5clk-gate",	"uart",	0 }, /* UART5 */
106 	[ASPEED_CLK_GATE_ESPICLK] =	{ 19, -1, "espiclk-gate",	NULL,	0 }, /* eSPI */
107 	[ASPEED_CLK_GATE_MAC1CLK] =	{ 20, 11, "mac1clk-gate",	"mac",	0 }, /* MAC1 */
108 	[ASPEED_CLK_GATE_MAC2CLK] =	{ 21, 12, "mac2clk-gate",	"mac",	0 }, /* MAC2 */
109 	[ASPEED_CLK_GATE_RSACLK] =	{ 24, -1, "rsaclk-gate",	NULL,	0 }, /* RSA */
110 	[ASPEED_CLK_GATE_UART3CLK] =	{ 25, -1, "uart3clk-gate",	"uart",	0 }, /* UART3 */
111 	[ASPEED_CLK_GATE_UART4CLK] =	{ 26, -1, "uart4clk-gate",	"uart",	0 }, /* UART4 */
112 	[ASPEED_CLK_GATE_SDCLK] =	{ 27, 16, "sdclk-gate",		NULL,	0 }, /* SDIO/SD */
113 	[ASPEED_CLK_GATE_LHCCLK] =	{ 28, -1, "lhclk-gate",		"lhclk", 0 }, /* LPC master/LPC+ */
114 };
115 
116 static const char * const eclk_parent_names[] = {
117 	"mpll",
118 	"hpll",
119 	"dpll",
120 };
121 
122 static const struct clk_div_table ast2500_eclk_div_table[] = {
123 	{ 0x0, 2 },
124 	{ 0x1, 2 },
125 	{ 0x2, 3 },
126 	{ 0x3, 4 },
127 	{ 0x4, 5 },
128 	{ 0x5, 6 },
129 	{ 0x6, 7 },
130 	{ 0x7, 8 },
131 	{ 0 }
132 };
133 
134 static const struct clk_div_table ast2500_mac_div_table[] = {
135 	{ 0x0, 4 }, /* Yep, really. Aspeed confirmed this is correct */
136 	{ 0x1, 4 },
137 	{ 0x2, 6 },
138 	{ 0x3, 8 },
139 	{ 0x4, 10 },
140 	{ 0x5, 12 },
141 	{ 0x6, 14 },
142 	{ 0x7, 16 },
143 	{ 0 }
144 };
145 
146 static const struct clk_div_table ast2400_div_table[] = {
147 	{ 0x0, 2 },
148 	{ 0x1, 4 },
149 	{ 0x2, 6 },
150 	{ 0x3, 8 },
151 	{ 0x4, 10 },
152 	{ 0x5, 12 },
153 	{ 0x6, 14 },
154 	{ 0x7, 16 },
155 	{ 0 }
156 };
157 
158 static const struct clk_div_table ast2500_div_table[] = {
159 	{ 0x0, 4 },
160 	{ 0x1, 8 },
161 	{ 0x2, 12 },
162 	{ 0x3, 16 },
163 	{ 0x4, 20 },
164 	{ 0x5, 24 },
165 	{ 0x6, 28 },
166 	{ 0x7, 32 },
167 	{ 0 }
168 };
169 
170 static struct clk_hw *aspeed_ast2400_calc_pll(const char *name, u32 val)
171 {
172 	unsigned int mult, div;
173 
174 	if (val & AST2400_HPLL_BYPASS_EN) {
175 		/* Pass through mode */
176 		mult = div = 1;
177 	} else {
178 		/* F = 24Mhz * (2-OD) * [(N + 2) / (D + 1)] */
179 		u32 n = (val >> 5) & 0x3f;
180 		u32 od = (val >> 4) & 0x1;
181 		u32 d = val & 0xf;
182 
183 		mult = (2 - od) * (n + 2);
184 		div = d + 1;
185 	}
186 	return clk_hw_register_fixed_factor(NULL, name, "clkin", 0,
187 			mult, div);
188 };
189 
190 static struct clk_hw *aspeed_ast2500_calc_pll(const char *name, u32 val)
191 {
192 	unsigned int mult, div;
193 
194 	if (val & AST2500_HPLL_BYPASS_EN) {
195 		/* Pass through mode */
196 		mult = div = 1;
197 	} else {
198 		/* F = clkin * [(M+1) / (N+1)] / (P + 1) */
199 		u32 p = (val >> 13) & 0x3f;
200 		u32 m = (val >> 5) & 0xff;
201 		u32 n = val & 0x1f;
202 
203 		mult = (m + 1) / (n + 1);
204 		div = p + 1;
205 	}
206 
207 	return clk_hw_register_fixed_factor(NULL, name, "clkin", 0,
208 			mult, div);
209 }
210 
211 struct aspeed_clk_soc_data {
212 	const struct clk_div_table *div_table;
213 	const struct clk_div_table *eclk_div_table;
214 	const struct clk_div_table *mac_div_table;
215 	struct clk_hw *(*calc_pll)(const char *name, u32 val);
216 };
217 
218 static const struct aspeed_clk_soc_data ast2500_data = {
219 	.div_table = ast2500_div_table,
220 	.eclk_div_table = ast2500_eclk_div_table,
221 	.mac_div_table = ast2500_mac_div_table,
222 	.calc_pll = aspeed_ast2500_calc_pll,
223 };
224 
225 static const struct aspeed_clk_soc_data ast2400_data = {
226 	.div_table = ast2400_div_table,
227 	.eclk_div_table = ast2400_div_table,
228 	.mac_div_table = ast2400_div_table,
229 	.calc_pll = aspeed_ast2400_calc_pll,
230 };
231 
232 static int aspeed_clk_is_enabled(struct clk_hw *hw)
233 {
234 	struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
235 	u32 clk = BIT(gate->clock_idx);
236 	u32 rst = BIT(gate->reset_idx);
237 	u32 enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk;
238 	u32 reg;
239 
240 	/*
241 	 * If the IP is in reset, treat the clock as not enabled,
242 	 * this happens with some clocks such as the USB one when
243 	 * coming from cold reset. Without this, aspeed_clk_enable()
244 	 * will fail to lift the reset.
245 	 */
246 	if (gate->reset_idx >= 0) {
247 		regmap_read(gate->map, ASPEED_RESET_CTRL, &reg);
248 		if (reg & rst)
249 			return 0;
250 	}
251 
252 	regmap_read(gate->map, ASPEED_CLK_STOP_CTRL, &reg);
253 
254 	return ((reg & clk) == enval) ? 1 : 0;
255 }
256 
257 static int aspeed_clk_enable(struct clk_hw *hw)
258 {
259 	struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
260 	unsigned long flags;
261 	u32 clk = BIT(gate->clock_idx);
262 	u32 rst = BIT(gate->reset_idx);
263 	u32 enval;
264 
265 	spin_lock_irqsave(gate->lock, flags);
266 
267 	if (aspeed_clk_is_enabled(hw)) {
268 		spin_unlock_irqrestore(gate->lock, flags);
269 		return 0;
270 	}
271 
272 	if (gate->reset_idx >= 0) {
273 		/* Put IP in reset */
274 		regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, rst);
275 
276 		/* Delay 100us */
277 		udelay(100);
278 	}
279 
280 	/* Enable clock */
281 	enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk;
282 	regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval);
283 
284 	if (gate->reset_idx >= 0) {
285 		/* A delay of 10ms is specified by the ASPEED docs */
286 		mdelay(10);
287 
288 		/* Take IP out of reset */
289 		regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, 0);
290 	}
291 
292 	spin_unlock_irqrestore(gate->lock, flags);
293 
294 	return 0;
295 }
296 
297 static void aspeed_clk_disable(struct clk_hw *hw)
298 {
299 	struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
300 	unsigned long flags;
301 	u32 clk = BIT(gate->clock_idx);
302 	u32 enval;
303 
304 	spin_lock_irqsave(gate->lock, flags);
305 
306 	enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? clk : 0;
307 	regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval);
308 
309 	spin_unlock_irqrestore(gate->lock, flags);
310 }
311 
312 static const struct clk_ops aspeed_clk_gate_ops = {
313 	.enable = aspeed_clk_enable,
314 	.disable = aspeed_clk_disable,
315 	.is_enabled = aspeed_clk_is_enabled,
316 };
317 
318 /**
319  * struct aspeed_reset - Aspeed reset controller
320  * @map: regmap to access the containing system controller
321  * @rcdev: reset controller device
322  */
323 struct aspeed_reset {
324 	struct regmap			*map;
325 	struct reset_controller_dev	rcdev;
326 };
327 
328 #define to_aspeed_reset(p) container_of((p), struct aspeed_reset, rcdev)
329 
330 static const u8 aspeed_resets[] = {
331 	/* SCU04 resets */
332 	[ASPEED_RESET_XDMA]	= 25,
333 	[ASPEED_RESET_MCTP]	= 24,
334 	[ASPEED_RESET_ADC]	= 23,
335 	[ASPEED_RESET_JTAG_MASTER] = 22,
336 	[ASPEED_RESET_MIC]	= 18,
337 	[ASPEED_RESET_PWM]	=  9,
338 	[ASPEED_RESET_PECI]	= 10,
339 	[ASPEED_RESET_I2C]	=  2,
340 	[ASPEED_RESET_AHB]	=  1,
341 
342 	/*
343 	 * SCUD4 resets start at an offset to separate them from
344 	 * the SCU04 resets.
345 	 */
346 	[ASPEED_RESET_CRT1]	= ASPEED_RESET2_OFFSET + 5,
347 };
348 
349 static int aspeed_reset_deassert(struct reset_controller_dev *rcdev,
350 				 unsigned long id)
351 {
352 	struct aspeed_reset *ar = to_aspeed_reset(rcdev);
353 	u32 reg = ASPEED_RESET_CTRL;
354 	u32 bit = aspeed_resets[id];
355 
356 	if (bit >= ASPEED_RESET2_OFFSET) {
357 		bit -= ASPEED_RESET2_OFFSET;
358 		reg = ASPEED_RESET_CTRL2;
359 	}
360 
361 	return regmap_update_bits(ar->map, reg, BIT(bit), 0);
362 }
363 
364 static int aspeed_reset_assert(struct reset_controller_dev *rcdev,
365 			       unsigned long id)
366 {
367 	struct aspeed_reset *ar = to_aspeed_reset(rcdev);
368 	u32 reg = ASPEED_RESET_CTRL;
369 	u32 bit = aspeed_resets[id];
370 
371 	if (bit >= ASPEED_RESET2_OFFSET) {
372 		bit -= ASPEED_RESET2_OFFSET;
373 		reg = ASPEED_RESET_CTRL2;
374 	}
375 
376 	return regmap_update_bits(ar->map, reg, BIT(bit), BIT(bit));
377 }
378 
379 static int aspeed_reset_status(struct reset_controller_dev *rcdev,
380 			       unsigned long id)
381 {
382 	struct aspeed_reset *ar = to_aspeed_reset(rcdev);
383 	u32 reg = ASPEED_RESET_CTRL;
384 	u32 bit = aspeed_resets[id];
385 	int ret, val;
386 
387 	if (bit >= ASPEED_RESET2_OFFSET) {
388 		bit -= ASPEED_RESET2_OFFSET;
389 		reg = ASPEED_RESET_CTRL2;
390 	}
391 
392 	ret = regmap_read(ar->map, reg, &val);
393 	if (ret)
394 		return ret;
395 
396 	return !!(val & BIT(bit));
397 }
398 
399 static const struct reset_control_ops aspeed_reset_ops = {
400 	.assert = aspeed_reset_assert,
401 	.deassert = aspeed_reset_deassert,
402 	.status = aspeed_reset_status,
403 };
404 
405 static struct clk_hw *aspeed_clk_hw_register_gate(struct device *dev,
406 		const char *name, const char *parent_name, unsigned long flags,
407 		struct regmap *map, u8 clock_idx, u8 reset_idx,
408 		u8 clk_gate_flags, spinlock_t *lock)
409 {
410 	struct aspeed_clk_gate *gate;
411 	struct clk_init_data init;
412 	struct clk_hw *hw;
413 	int ret;
414 
415 	gate = kzalloc(sizeof(*gate), GFP_KERNEL);
416 	if (!gate)
417 		return ERR_PTR(-ENOMEM);
418 
419 	init.name = name;
420 	init.ops = &aspeed_clk_gate_ops;
421 	init.flags = flags;
422 	init.parent_names = parent_name ? &parent_name : NULL;
423 	init.num_parents = parent_name ? 1 : 0;
424 
425 	gate->map = map;
426 	gate->clock_idx = clock_idx;
427 	gate->reset_idx = reset_idx;
428 	gate->flags = clk_gate_flags;
429 	gate->lock = lock;
430 	gate->hw.init = &init;
431 
432 	hw = &gate->hw;
433 	ret = clk_hw_register(dev, hw);
434 	if (ret) {
435 		kfree(gate);
436 		hw = ERR_PTR(ret);
437 	}
438 
439 	return hw;
440 }
441 
442 static int aspeed_clk_probe(struct platform_device *pdev)
443 {
444 	const struct aspeed_clk_soc_data *soc_data;
445 	struct device *dev = &pdev->dev;
446 	struct aspeed_reset *ar;
447 	struct regmap *map;
448 	struct clk_hw *hw;
449 	u32 val, rate;
450 	int i, ret;
451 
452 	map = syscon_node_to_regmap(dev->of_node);
453 	if (IS_ERR(map)) {
454 		dev_err(dev, "no syscon regmap\n");
455 		return PTR_ERR(map);
456 	}
457 
458 	ar = devm_kzalloc(dev, sizeof(*ar), GFP_KERNEL);
459 	if (!ar)
460 		return -ENOMEM;
461 
462 	ar->map = map;
463 	ar->rcdev.owner = THIS_MODULE;
464 	ar->rcdev.nr_resets = ARRAY_SIZE(aspeed_resets);
465 	ar->rcdev.ops = &aspeed_reset_ops;
466 	ar->rcdev.of_node = dev->of_node;
467 
468 	ret = devm_reset_controller_register(dev, &ar->rcdev);
469 	if (ret) {
470 		dev_err(dev, "could not register reset controller\n");
471 		return ret;
472 	}
473 
474 	/* SoC generations share common layouts but have different divisors */
475 	soc_data = of_device_get_match_data(dev);
476 	if (!soc_data) {
477 		dev_err(dev, "no match data for platform\n");
478 		return -EINVAL;
479 	}
480 
481 	/* UART clock div13 setting */
482 	regmap_read(map, ASPEED_MISC_CTRL, &val);
483 	if (val & UART_DIV13_EN)
484 		rate = 24000000 / 13;
485 	else
486 		rate = 24000000;
487 	/* TODO: Find the parent data for the uart clock */
488 	hw = clk_hw_register_fixed_rate(dev, "uart", NULL, 0, rate);
489 	if (IS_ERR(hw))
490 		return PTR_ERR(hw);
491 	aspeed_clk_data->hws[ASPEED_CLK_UART] = hw;
492 
493 	/*
494 	 * Memory controller (M-PLL) PLL. This clock is configured by the
495 	 * bootloader, and is exposed to Linux as a read-only clock rate.
496 	 */
497 	regmap_read(map, ASPEED_MPLL_PARAM, &val);
498 	hw = soc_data->calc_pll("mpll", val);
499 	if (IS_ERR(hw))
500 		return PTR_ERR(hw);
501 	aspeed_clk_data->hws[ASPEED_CLK_MPLL] =	hw;
502 
503 	/* SD/SDIO clock divider (TODO: There's a gate too) */
504 	hw = clk_hw_register_divider_table(dev, "sdio", "hpll", 0,
505 			scu_base + ASPEED_CLK_SELECTION, 12, 3, 0,
506 			soc_data->div_table,
507 			&aspeed_clk_lock);
508 	if (IS_ERR(hw))
509 		return PTR_ERR(hw);
510 	aspeed_clk_data->hws[ASPEED_CLK_SDIO] = hw;
511 
512 	/* MAC AHB bus clock divider */
513 	hw = clk_hw_register_divider_table(dev, "mac", "hpll", 0,
514 			scu_base + ASPEED_CLK_SELECTION, 16, 3, 0,
515 			soc_data->mac_div_table,
516 			&aspeed_clk_lock);
517 	if (IS_ERR(hw))
518 		return PTR_ERR(hw);
519 	aspeed_clk_data->hws[ASPEED_CLK_MAC] = hw;
520 
521 	/* LPC Host (LHCLK) clock divider */
522 	hw = clk_hw_register_divider_table(dev, "lhclk", "hpll", 0,
523 			scu_base + ASPEED_CLK_SELECTION, 20, 3, 0,
524 			soc_data->div_table,
525 			&aspeed_clk_lock);
526 	if (IS_ERR(hw))
527 		return PTR_ERR(hw);
528 	aspeed_clk_data->hws[ASPEED_CLK_LHCLK] = hw;
529 
530 	/* P-Bus (BCLK) clock divider */
531 	hw = clk_hw_register_divider_table(dev, "bclk", "hpll", 0,
532 			scu_base + ASPEED_CLK_SELECTION_2, 0, 2, 0,
533 			soc_data->div_table,
534 			&aspeed_clk_lock);
535 	if (IS_ERR(hw))
536 		return PTR_ERR(hw);
537 	aspeed_clk_data->hws[ASPEED_CLK_BCLK] = hw;
538 
539 	/* Fixed 24MHz clock */
540 	hw = clk_hw_register_fixed_rate(NULL, "fixed-24m", "clkin",
541 					0, 24000000);
542 	if (IS_ERR(hw))
543 		return PTR_ERR(hw);
544 	aspeed_clk_data->hws[ASPEED_CLK_24M] = hw;
545 
546 	hw = clk_hw_register_mux(dev, "eclk-mux", eclk_parent_names,
547 				 ARRAY_SIZE(eclk_parent_names), 0,
548 				 scu_base + ASPEED_CLK_SELECTION, 2, 0x3, 0,
549 				 &aspeed_clk_lock);
550 	if (IS_ERR(hw))
551 		return PTR_ERR(hw);
552 	aspeed_clk_data->hws[ASPEED_CLK_ECLK_MUX] = hw;
553 
554 	hw = clk_hw_register_divider_table(dev, "eclk", "eclk-mux", 0,
555 					   scu_base + ASPEED_CLK_SELECTION, 28,
556 					   3, 0, soc_data->eclk_div_table,
557 					   &aspeed_clk_lock);
558 	if (IS_ERR(hw))
559 		return PTR_ERR(hw);
560 	aspeed_clk_data->hws[ASPEED_CLK_ECLK] = hw;
561 
562 	/*
563 	 * TODO: There are a number of clocks that not included in this driver
564 	 * as more information is required:
565 	 *   D2-PLL
566 	 *   D-PLL
567 	 *   YCLK
568 	 *   RGMII
569 	 *   RMII
570 	 *   UART[1..5] clock source mux
571 	 */
572 
573 	for (i = 0; i < ARRAY_SIZE(aspeed_gates); i++) {
574 		const struct aspeed_gate_data *gd = &aspeed_gates[i];
575 		u32 gate_flags;
576 
577 		/* Special case: the USB port 1 clock (bit 14) is always
578 		 * working the opposite way from the other ones.
579 		 */
580 		gate_flags = (gd->clock_idx == 14) ? 0 : CLK_GATE_SET_TO_DISABLE;
581 		hw = aspeed_clk_hw_register_gate(dev,
582 				gd->name,
583 				gd->parent_name,
584 				gd->flags,
585 				map,
586 				gd->clock_idx,
587 				gd->reset_idx,
588 				gate_flags,
589 				&aspeed_clk_lock);
590 		if (IS_ERR(hw))
591 			return PTR_ERR(hw);
592 		aspeed_clk_data->hws[i] = hw;
593 	}
594 
595 	return 0;
596 };
597 
598 static const struct of_device_id aspeed_clk_dt_ids[] = {
599 	{ .compatible = "aspeed,ast2400-scu", .data = &ast2400_data },
600 	{ .compatible = "aspeed,ast2500-scu", .data = &ast2500_data },
601 	{ }
602 };
603 
604 static struct platform_driver aspeed_clk_driver = {
605 	.probe  = aspeed_clk_probe,
606 	.driver = {
607 		.name = "aspeed-clk",
608 		.of_match_table = aspeed_clk_dt_ids,
609 		.suppress_bind_attrs = true,
610 	},
611 };
612 builtin_platform_driver(aspeed_clk_driver);
613 
614 static void __init aspeed_ast2400_cc(struct regmap *map)
615 {
616 	struct clk_hw *hw;
617 	u32 val, div, clkin, hpll;
618 	const u16 hpll_rates[][4] = {
619 		{384, 360, 336, 408},
620 		{400, 375, 350, 425},
621 	};
622 	int rate;
623 
624 	/*
625 	 * CLKIN is the crystal oscillator, 24, 48 or 25MHz selected by
626 	 * strapping
627 	 */
628 	regmap_read(map, ASPEED_STRAP, &val);
629 	rate = (val >> 8) & 3;
630 	if (val & CLKIN_25MHZ_EN) {
631 		clkin = 25000000;
632 		hpll = hpll_rates[1][rate];
633 	} else if (val & AST2400_CLK_SOURCE_SEL) {
634 		clkin = 48000000;
635 		hpll = hpll_rates[0][rate];
636 	} else {
637 		clkin = 24000000;
638 		hpll = hpll_rates[0][rate];
639 	}
640 	hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, clkin);
641 	pr_debug("clkin @%u MHz\n", clkin / 1000000);
642 
643 	/*
644 	 * High-speed PLL clock derived from the crystal. This the CPU clock,
645 	 * and we assume that it is enabled. It can be configured through the
646 	 * HPLL_PARAM register, or set to a specified frequency by strapping.
647 	 */
648 	regmap_read(map, ASPEED_HPLL_PARAM, &val);
649 	if (val & AST2400_HPLL_PROGRAMMED)
650 		hw = aspeed_ast2400_calc_pll("hpll", val);
651 	else
652 		hw = clk_hw_register_fixed_rate(NULL, "hpll", "clkin", 0,
653 				hpll * 1000000);
654 
655 	aspeed_clk_data->hws[ASPEED_CLK_HPLL] = hw;
656 
657 	/*
658 	 * Strap bits 11:10 define the CPU/AHB clock frequency ratio (aka HCLK)
659 	 *   00: Select CPU:AHB = 1:1
660 	 *   01: Select CPU:AHB = 2:1
661 	 *   10: Select CPU:AHB = 4:1
662 	 *   11: Select CPU:AHB = 3:1
663 	 */
664 	regmap_read(map, ASPEED_STRAP, &val);
665 	val = (val >> 10) & 0x3;
666 	div = val + 1;
667 	if (div == 3)
668 		div = 4;
669 	else if (div == 4)
670 		div = 3;
671 	hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div);
672 	aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw;
673 
674 	/* APB clock clock selection register SCU08 (aka PCLK) */
675 	hw = clk_hw_register_divider_table(NULL, "apb", "hpll", 0,
676 			scu_base + ASPEED_CLK_SELECTION, 23, 3, 0,
677 			ast2400_div_table,
678 			&aspeed_clk_lock);
679 	aspeed_clk_data->hws[ASPEED_CLK_APB] = hw;
680 }
681 
682 static void __init aspeed_ast2500_cc(struct regmap *map)
683 {
684 	struct clk_hw *hw;
685 	u32 val, freq, div;
686 
687 	/* CLKIN is the crystal oscillator, 24 or 25MHz selected by strapping */
688 	regmap_read(map, ASPEED_STRAP, &val);
689 	if (val & CLKIN_25MHZ_EN)
690 		freq = 25000000;
691 	else
692 		freq = 24000000;
693 	hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, freq);
694 	pr_debug("clkin @%u MHz\n", freq / 1000000);
695 
696 	/*
697 	 * High-speed PLL clock derived from the crystal. This the CPU clock,
698 	 * and we assume that it is enabled
699 	 */
700 	regmap_read(map, ASPEED_HPLL_PARAM, &val);
701 	aspeed_clk_data->hws[ASPEED_CLK_HPLL] = aspeed_ast2500_calc_pll("hpll", val);
702 
703 	/* Strap bits 11:9 define the AXI/AHB clock frequency ratio (aka HCLK)*/
704 	regmap_read(map, ASPEED_STRAP, &val);
705 	val = (val >> 9) & 0x7;
706 	WARN(val == 0, "strapping is zero: cannot determine ahb clock");
707 	div = 2 * (val + 1);
708 	hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div);
709 	aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw;
710 
711 	/* APB clock clock selection register SCU08 (aka PCLK) */
712 	regmap_read(map, ASPEED_CLK_SELECTION, &val);
713 	val = (val >> 23) & 0x7;
714 	div = 4 * (val + 1);
715 	hw = clk_hw_register_fixed_factor(NULL, "apb", "hpll", 0, 1, div);
716 	aspeed_clk_data->hws[ASPEED_CLK_APB] = hw;
717 };
718 
719 static void __init aspeed_cc_init(struct device_node *np)
720 {
721 	struct regmap *map;
722 	u32 val;
723 	int ret;
724 	int i;
725 
726 	scu_base = of_iomap(np, 0);
727 	if (!scu_base)
728 		return;
729 
730 	aspeed_clk_data = kzalloc(struct_size(aspeed_clk_data, hws,
731 					      ASPEED_NUM_CLKS),
732 				  GFP_KERNEL);
733 	if (!aspeed_clk_data)
734 		return;
735 
736 	/*
737 	 * This way all clocks fetched before the platform device probes,
738 	 * except those we assign here for early use, will be deferred.
739 	 */
740 	for (i = 0; i < ASPEED_NUM_CLKS; i++)
741 		aspeed_clk_data->hws[i] = ERR_PTR(-EPROBE_DEFER);
742 
743 	map = syscon_node_to_regmap(np);
744 	if (IS_ERR(map)) {
745 		pr_err("no syscon regmap\n");
746 		return;
747 	}
748 	/*
749 	 * We check that the regmap works on this very first access,
750 	 * but as this is an MMIO-backed regmap, subsequent regmap
751 	 * access is not going to fail and we skip error checks from
752 	 * this point.
753 	 */
754 	ret = regmap_read(map, ASPEED_STRAP, &val);
755 	if (ret) {
756 		pr_err("failed to read strapping register\n");
757 		return;
758 	}
759 
760 	if (of_device_is_compatible(np, "aspeed,ast2400-scu"))
761 		aspeed_ast2400_cc(map);
762 	else if (of_device_is_compatible(np, "aspeed,ast2500-scu"))
763 		aspeed_ast2500_cc(map);
764 	else
765 		pr_err("unknown platform, failed to add clocks\n");
766 
767 	aspeed_clk_data->num = ASPEED_NUM_CLKS;
768 	ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, aspeed_clk_data);
769 	if (ret)
770 		pr_err("failed to add DT provider: %d\n", ret);
771 };
772 CLK_OF_DECLARE_DRIVER(aspeed_cc_g5, "aspeed,ast2500-scu", aspeed_cc_init);
773 CLK_OF_DECLARE_DRIVER(aspeed_cc_g4, "aspeed,ast2400-scu", aspeed_cc_init);
774