1 // SPDX-License-Identifier: GPL-2.0-only OR MIT 2 /* 3 * Driver for an SoC block (Numerically Controlled Oscillator) 4 * found on t8103 (M1) and other Apple chips 5 * 6 * Copyright (C) The Asahi Linux Contributors 7 */ 8 9 #include <linux/bits.h> 10 #include <linux/bitfield.h> 11 #include <linux/clk-provider.h> 12 #include <linux/io.h> 13 #include <linux/kernel.h> 14 #include <linux/math64.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/platform_device.h> 18 #include <linux/spinlock.h> 19 20 #define NCO_CHANNEL_STRIDE 0x4000 21 #define NCO_CHANNEL_REGSIZE 20 22 23 #define REG_CTRL 0 24 #define CTRL_ENABLE BIT(31) 25 #define REG_DIV 4 26 #define DIV_FINE GENMASK(1, 0) 27 #define DIV_COARSE GENMASK(12, 2) 28 #define REG_INC1 8 29 #define REG_INC2 12 30 #define REG_ACCINIT 16 31 32 /* 33 * Theory of operation (postulated) 34 * 35 * The REG_DIV register indirectly expresses a base integer divisor, roughly 36 * corresponding to twice the desired ratio of input to output clock. This 37 * base divisor is adjusted on a cycle-by-cycle basis based on the state of a 38 * 32-bit phase accumulator to achieve a desired precise clock ratio over the 39 * long term. 40 * 41 * Specifically an output clock cycle is produced after (REG_DIV divisor)/2 42 * or (REG_DIV divisor + 1)/2 input cycles, the latter taking effect when top 43 * bit of the 32-bit accumulator is set. The accumulator is incremented each 44 * produced output cycle, by the value from either REG_INC1 or REG_INC2, which 45 * of the two is selected depending again on the accumulator's current top bit. 46 * 47 * Because the NCO hardware implements counting of input clock cycles in part 48 * in a Galois linear-feedback shift register, the higher bits of divisor 49 * are programmed into REG_DIV by picking an appropriate LFSR state. See 50 * applnco_compute_tables/applnco_div_translate for details on this. 51 */ 52 53 #define LFSR_POLY 0xa01 54 #define LFSR_INIT 0x7ff 55 #define LFSR_LEN 11 56 #define LFSR_PERIOD ((1 << LFSR_LEN) - 1) 57 #define LFSR_TBLSIZE (1 << LFSR_LEN) 58 59 /* The minimal attainable coarse divisor (first value in table) */ 60 #define COARSE_DIV_OFFSET 2 61 62 struct applnco_tables { 63 u16 fwd[LFSR_TBLSIZE]; 64 u16 inv[LFSR_TBLSIZE]; 65 }; 66 67 struct applnco_channel { 68 void __iomem *base; 69 struct applnco_tables *tbl; 70 struct clk_hw hw; 71 72 spinlock_t lock; 73 }; 74 75 #define to_applnco_channel(_hw) container_of(_hw, struct applnco_channel, hw) 76 77 static void applnco_enable_nolock(struct clk_hw *hw) 78 { 79 struct applnco_channel *chan = to_applnco_channel(hw); 80 u32 val; 81 82 val = readl_relaxed(chan->base + REG_CTRL); 83 writel_relaxed(val | CTRL_ENABLE, chan->base + REG_CTRL); 84 } 85 86 static void applnco_disable_nolock(struct clk_hw *hw) 87 { 88 struct applnco_channel *chan = to_applnco_channel(hw); 89 u32 val; 90 91 val = readl_relaxed(chan->base + REG_CTRL); 92 writel_relaxed(val & ~CTRL_ENABLE, chan->base + REG_CTRL); 93 } 94 95 static int applnco_is_enabled(struct clk_hw *hw) 96 { 97 struct applnco_channel *chan = to_applnco_channel(hw); 98 99 return (readl_relaxed(chan->base + REG_CTRL) & CTRL_ENABLE) != 0; 100 } 101 102 static void applnco_compute_tables(struct applnco_tables *tbl) 103 { 104 int i; 105 u32 state = LFSR_INIT; 106 107 /* 108 * Go through the states of a Galois LFSR and build 109 * a coarse divisor translation table. 110 */ 111 for (i = LFSR_PERIOD; i > 0; i--) { 112 if (state & 1) 113 state = (state >> 1) ^ (LFSR_POLY >> 1); 114 else 115 state = (state >> 1); 116 tbl->fwd[i] = state; 117 tbl->inv[state] = i; 118 } 119 120 /* Zero value is special-cased */ 121 tbl->fwd[0] = 0; 122 tbl->inv[0] = 0; 123 } 124 125 static bool applnco_div_out_of_range(unsigned int div) 126 { 127 unsigned int coarse = div / 4; 128 129 return coarse < COARSE_DIV_OFFSET || 130 coarse >= COARSE_DIV_OFFSET + LFSR_TBLSIZE; 131 } 132 133 static u32 applnco_div_translate(struct applnco_tables *tbl, unsigned int div) 134 { 135 unsigned int coarse = div / 4; 136 137 if (WARN_ON(applnco_div_out_of_range(div))) 138 return 0; 139 140 return FIELD_PREP(DIV_COARSE, tbl->fwd[coarse - COARSE_DIV_OFFSET]) | 141 FIELD_PREP(DIV_FINE, div % 4); 142 } 143 144 static unsigned int applnco_div_translate_inv(struct applnco_tables *tbl, u32 regval) 145 { 146 unsigned int coarse, fine; 147 148 coarse = tbl->inv[FIELD_GET(DIV_COARSE, regval)] + COARSE_DIV_OFFSET; 149 fine = FIELD_GET(DIV_FINE, regval); 150 151 return coarse * 4 + fine; 152 } 153 154 static int applnco_set_rate(struct clk_hw *hw, unsigned long rate, 155 unsigned long parent_rate) 156 { 157 struct applnco_channel *chan = to_applnco_channel(hw); 158 unsigned long flags; 159 u32 div, inc1, inc2; 160 bool was_enabled; 161 162 div = 2 * parent_rate / rate; 163 inc1 = 2 * parent_rate - div * rate; 164 inc2 = inc1 - rate; 165 166 if (applnco_div_out_of_range(div)) 167 return -EINVAL; 168 169 div = applnco_div_translate(chan->tbl, div); 170 171 spin_lock_irqsave(&chan->lock, flags); 172 was_enabled = applnco_is_enabled(hw); 173 applnco_disable_nolock(hw); 174 175 writel_relaxed(div, chan->base + REG_DIV); 176 writel_relaxed(inc1, chan->base + REG_INC1); 177 writel_relaxed(inc2, chan->base + REG_INC2); 178 179 /* Presumably a neutral initial value for accumulator */ 180 writel_relaxed(1 << 31, chan->base + REG_ACCINIT); 181 182 if (was_enabled) 183 applnco_enable_nolock(hw); 184 spin_unlock_irqrestore(&chan->lock, flags); 185 186 return 0; 187 } 188 189 static unsigned long applnco_recalc_rate(struct clk_hw *hw, 190 unsigned long parent_rate) 191 { 192 struct applnco_channel *chan = to_applnco_channel(hw); 193 u32 div, inc1, inc2, incbase; 194 195 div = applnco_div_translate_inv(chan->tbl, 196 readl_relaxed(chan->base + REG_DIV)); 197 198 inc1 = readl_relaxed(chan->base + REG_INC1); 199 inc2 = readl_relaxed(chan->base + REG_INC2); 200 201 /* 202 * We don't support wraparound of accumulator 203 * nor the edge case of both increments being zero 204 */ 205 if (inc1 >= (1 << 31) || inc2 < (1 << 31) || (inc1 == 0 && inc2 == 0)) 206 return 0; 207 208 /* Scale both sides of division by incbase to maintain precision */ 209 incbase = inc1 - inc2; 210 211 return div64_u64(((u64) parent_rate) * 2 * incbase, 212 ((u64) div) * incbase + inc1); 213 } 214 215 static long applnco_round_rate(struct clk_hw *hw, unsigned long rate, 216 unsigned long *parent_rate) 217 { 218 unsigned long lo = *parent_rate / (COARSE_DIV_OFFSET + LFSR_TBLSIZE) + 1; 219 unsigned long hi = *parent_rate / COARSE_DIV_OFFSET; 220 221 return clamp(rate, lo, hi); 222 } 223 224 static int applnco_enable(struct clk_hw *hw) 225 { 226 struct applnco_channel *chan = to_applnco_channel(hw); 227 unsigned long flags; 228 229 spin_lock_irqsave(&chan->lock, flags); 230 applnco_enable_nolock(hw); 231 spin_unlock_irqrestore(&chan->lock, flags); 232 233 return 0; 234 } 235 236 static void applnco_disable(struct clk_hw *hw) 237 { 238 struct applnco_channel *chan = to_applnco_channel(hw); 239 unsigned long flags; 240 241 spin_lock_irqsave(&chan->lock, flags); 242 applnco_disable_nolock(hw); 243 spin_unlock_irqrestore(&chan->lock, flags); 244 } 245 246 static const struct clk_ops applnco_ops = { 247 .set_rate = applnco_set_rate, 248 .recalc_rate = applnco_recalc_rate, 249 .round_rate = applnco_round_rate, 250 .enable = applnco_enable, 251 .disable = applnco_disable, 252 .is_enabled = applnco_is_enabled, 253 }; 254 255 static int applnco_probe(struct platform_device *pdev) 256 { 257 struct device_node *np = pdev->dev.of_node; 258 struct clk_parent_data pdata = { .index = 0 }; 259 struct clk_init_data init; 260 struct clk_hw_onecell_data *onecell_data; 261 void __iomem *base; 262 struct resource *res; 263 struct applnco_tables *tbl; 264 unsigned int nchannels; 265 int ret, i; 266 267 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 268 if (IS_ERR(base)) 269 return PTR_ERR(base); 270 271 if (resource_size(res) < NCO_CHANNEL_REGSIZE) 272 return -EINVAL; 273 nchannels = (resource_size(res) - NCO_CHANNEL_REGSIZE) 274 / NCO_CHANNEL_STRIDE + 1; 275 276 onecell_data = devm_kzalloc(&pdev->dev, struct_size(onecell_data, hws, 277 nchannels), GFP_KERNEL); 278 if (!onecell_data) 279 return -ENOMEM; 280 onecell_data->num = nchannels; 281 282 tbl = devm_kzalloc(&pdev->dev, sizeof(*tbl), GFP_KERNEL); 283 if (!tbl) 284 return -ENOMEM; 285 applnco_compute_tables(tbl); 286 287 for (i = 0; i < nchannels; i++) { 288 struct applnco_channel *chan; 289 290 chan = devm_kzalloc(&pdev->dev, sizeof(*chan), GFP_KERNEL); 291 if (!chan) 292 return -ENOMEM; 293 chan->base = base + NCO_CHANNEL_STRIDE * i; 294 chan->tbl = tbl; 295 spin_lock_init(&chan->lock); 296 297 memset(&init, 0, sizeof(init)); 298 init.name = devm_kasprintf(&pdev->dev, GFP_KERNEL, 299 "%s-%d", np->name, i); 300 if (!init.name) 301 return -ENOMEM; 302 303 init.ops = &applnco_ops; 304 init.parent_data = &pdata; 305 init.num_parents = 1; 306 init.flags = 0; 307 308 chan->hw.init = &init; 309 ret = devm_clk_hw_register(&pdev->dev, &chan->hw); 310 if (ret) 311 return ret; 312 313 onecell_data->hws[i] = &chan->hw; 314 } 315 316 return devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_onecell_get, 317 onecell_data); 318 } 319 320 static const struct of_device_id applnco_ids[] = { 321 { .compatible = "apple,nco" }, 322 { } 323 }; 324 MODULE_DEVICE_TABLE(of, applnco_ids); 325 326 static struct platform_driver applnco_driver = { 327 .driver = { 328 .name = "apple-nco", 329 .of_match_table = applnco_ids, 330 }, 331 .probe = applnco_probe, 332 }; 333 module_platform_driver(applnco_driver); 334 335 MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>"); 336 MODULE_DESCRIPTION("Clock driver for NCO blocks on Apple SoCs"); 337 MODULE_LICENSE("GPL"); 338