xref: /openbmc/linux/drivers/clk/bcm/clk-kona.h (revision ee7da21a)
1 /*
2  * Copyright (C) 2013 Broadcom Corporation
3  * Copyright 2013 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #ifndef _CLK_KONA_H
16 #define _CLK_KONA_H
17 
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/slab.h>
22 #include <linux/device.h>
23 #include <linux/of.h>
24 #include <linux/clk-provider.h>
25 
26 #define	BILLION		1000000000
27 
28 /* The common clock framework uses u8 to represent a parent index */
29 #define PARENT_COUNT_MAX	((u32)U8_MAX)
30 
31 #define BAD_CLK_INDEX		U8_MAX	/* Can't ever be valid */
32 #define BAD_CLK_NAME		((const char *)-1)
33 
34 #define BAD_SCALED_DIV_VALUE	U64_MAX
35 
36 /*
37  * Utility macros for object flag management.  If possible, flags
38  * should be defined such that 0 is the desired default value.
39  */
40 #define FLAG(type, flag)		BCM_CLK_ ## type ## _FLAGS_ ## flag
41 #define FLAG_SET(obj, type, flag)	((obj)->flags |= FLAG(type, flag))
42 #define FLAG_CLEAR(obj, type, flag)	((obj)->flags &= ~(FLAG(type, flag)))
43 #define FLAG_FLIP(obj, type, flag)	((obj)->flags ^= FLAG(type, flag))
44 #define FLAG_TEST(obj, type, flag)	(!!((obj)->flags & FLAG(type, flag)))
45 
46 /* CCU field state tests */
47 
48 #define ccu_policy_exists(ccu_policy)	((ccu_policy)->enable.offset != 0)
49 
50 /* Clock field state tests */
51 
52 #define policy_exists(policy)		((policy)->offset != 0)
53 
54 #define gate_exists(gate)		FLAG_TEST(gate, GATE, EXISTS)
55 #define gate_is_enabled(gate)		FLAG_TEST(gate, GATE, ENABLED)
56 #define gate_is_hw_controllable(gate)	FLAG_TEST(gate, GATE, HW)
57 #define gate_is_sw_controllable(gate)	FLAG_TEST(gate, GATE, SW)
58 #define gate_is_sw_managed(gate)	FLAG_TEST(gate, GATE, SW_MANAGED)
59 #define gate_is_no_disable(gate)	FLAG_TEST(gate, GATE, NO_DISABLE)
60 
61 #define gate_flip_enabled(gate)		FLAG_FLIP(gate, GATE, ENABLED)
62 
63 #define hyst_exists(hyst)		((hyst)->offset != 0)
64 
65 #define divider_exists(div)		FLAG_TEST(div, DIV, EXISTS)
66 #define divider_is_fixed(div)		FLAG_TEST(div, DIV, FIXED)
67 #define divider_has_fraction(div)	(!divider_is_fixed(div) && \
68 						(div)->u.s.frac_width > 0)
69 
70 #define selector_exists(sel)		((sel)->width != 0)
71 #define trigger_exists(trig)		FLAG_TEST(trig, TRIG, EXISTS)
72 
73 #define policy_lvm_en_exists(enable)	((enable)->offset != 0)
74 #define policy_ctl_exists(control)	((control)->offset != 0)
75 
76 /* Clock type, used to tell common block what it's part of */
77 enum bcm_clk_type {
78 	bcm_clk_none,		/* undefined clock type */
79 	bcm_clk_bus,
80 	bcm_clk_core,
81 	bcm_clk_peri
82 };
83 
84 /*
85  * CCU policy control for clocks.  Clocks can be enabled or disabled
86  * based on the CCU policy in effect.  One bit in each policy mask
87  * register (one per CCU policy) represents whether the clock is
88  * enabled when that policy is effect or not.  The CCU policy engine
89  * must be stopped to update these bits, and must be restarted again
90  * afterward.
91  */
92 struct bcm_clk_policy {
93 	u32 offset;		/* first policy mask register offset */
94 	u32 bit;		/* bit used in all mask registers */
95 };
96 
97 /* Policy initialization macro */
98 
99 #define POLICY(_offset, _bit)						\
100 	{								\
101 		.offset = (_offset),					\
102 		.bit = (_bit),						\
103 	}
104 
105 /*
106  * Gating control and status is managed by a 32-bit gate register.
107  *
108  * There are several types of gating available:
109  * - (no gate)
110  *     A clock with no gate is assumed to be always enabled.
111  * - hardware-only gating (auto-gating)
112  *     Enabling or disabling clocks with this type of gate is
113  *     managed automatically by the hardware.  Such clocks can be
114  *     considered by the software to be enabled.  The current status
115  *     of auto-gated clocks can be read from the gate status bit.
116  * - software-only gating
117  *     Auto-gating is not available for this type of clock.
118  *     Instead, software manages whether it's enabled by setting or
119  *     clearing the enable bit.  The current gate status of a gate
120  *     under software control can be read from the gate status bit.
121  *     To ensure a change to the gating status is complete, the
122  *     status bit can be polled to verify that the gate has entered
123  *     the desired state.
124  * - selectable hardware or software gating
125  *     Gating for this type of clock can be configured to be either
126  *     under software or hardware control.  Which type is in use is
127  *     determined by the hw_sw_sel bit of the gate register.
128  */
129 struct bcm_clk_gate {
130 	u32 offset;		/* gate register offset */
131 	u32 status_bit;		/* 0: gate is disabled; 0: gatge is enabled */
132 	u32 en_bit;		/* 0: disable; 1: enable */
133 	u32 hw_sw_sel_bit;	/* 0: hardware gating; 1: software gating */
134 	u32 flags;		/* BCM_CLK_GATE_FLAGS_* below */
135 };
136 
137 /*
138  * Gate flags:
139  *   HW         means this gate can be auto-gated
140  *   SW         means the state of this gate can be software controlled
141  *   NO_DISABLE means this gate is (only) enabled if under software control
142  *   SW_MANAGED means the status of this gate is under software control
143  *   ENABLED    means this software-managed gate is *supposed* to be enabled
144  */
145 #define BCM_CLK_GATE_FLAGS_EXISTS	((u32)1 << 0)	/* Gate is valid */
146 #define BCM_CLK_GATE_FLAGS_HW		((u32)1 << 1)	/* Can auto-gate */
147 #define BCM_CLK_GATE_FLAGS_SW		((u32)1 << 2)	/* Software control */
148 #define BCM_CLK_GATE_FLAGS_NO_DISABLE	((u32)1 << 3)	/* HW or enabled */
149 #define BCM_CLK_GATE_FLAGS_SW_MANAGED	((u32)1 << 4)	/* SW now in control */
150 #define BCM_CLK_GATE_FLAGS_ENABLED	((u32)1 << 5)	/* If SW_MANAGED */
151 
152 /*
153  * Gate initialization macros.
154  *
155  * Any gate initially under software control will be enabled.
156  */
157 
158 /* A hardware/software gate initially under software control */
159 #define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
160 	{								\
161 		.offset = (_offset),					\
162 		.status_bit = (_status_bit),				\
163 		.en_bit = (_en_bit),					\
164 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
165 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
166 			FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|	\
167 			FLAG(GATE, EXISTS),				\
168 	}
169 
170 /* A hardware/software gate initially under hardware control */
171 #define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
172 	{								\
173 		.offset = (_offset),					\
174 		.status_bit = (_status_bit),				\
175 		.en_bit = (_en_bit),					\
176 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
177 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
178 			FLAG(GATE, EXISTS),				\
179 	}
180 
181 /* A hardware-or-enabled gate (enabled if not under hardware control) */
182 #define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
183 	{								\
184 		.offset = (_offset),					\
185 		.status_bit = (_status_bit),				\
186 		.en_bit = (_en_bit),					\
187 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
188 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
189 			FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),	\
190 	}
191 
192 /* A software-only gate */
193 #define SW_ONLY_GATE(_offset, _status_bit, _en_bit)			\
194 	{								\
195 		.offset = (_offset),					\
196 		.status_bit = (_status_bit),				\
197 		.en_bit = (_en_bit),					\
198 		.flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|		\
199 			FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),		\
200 	}
201 
202 /* A hardware-only gate */
203 #define HW_ONLY_GATE(_offset, _status_bit)				\
204 	{								\
205 		.offset = (_offset),					\
206 		.status_bit = (_status_bit),				\
207 		.flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),		\
208 	}
209 
210 /* Gate hysteresis for clocks */
211 struct bcm_clk_hyst {
212 	u32 offset;		/* hyst register offset (normally CLKGATE) */
213 	u32 en_bit;		/* bit used to enable hysteresis */
214 	u32 val_bit;		/* if enabled: 0 = low delay; 1 = high delay */
215 };
216 
217 /* Hysteresis initialization macro */
218 
219 #define HYST(_offset, _en_bit, _val_bit)				\
220 	{								\
221 		.offset = (_offset),					\
222 		.en_bit = (_en_bit),					\
223 		.val_bit = (_val_bit),					\
224 	}
225 
226 /*
227  * Each clock can have zero, one, or two dividers which change the
228  * output rate of the clock.  Each divider can be either fixed or
229  * variable.  If there are two dividers, they are the "pre-divider"
230  * and the "regular" or "downstream" divider.  If there is only one,
231  * there is no pre-divider.
232  *
233  * A fixed divider is any non-zero (positive) value, and it
234  * indicates how the input rate is affected by the divider.
235  *
236  * The value of a variable divider is maintained in a sub-field of a
237  * 32-bit divider register.  The position of the field in the
238  * register is defined by its offset and width.  The value recorded
239  * in this field is always 1 less than the value it represents.
240  *
241  * In addition, a variable divider can indicate that some subset
242  * of its bits represent a "fractional" part of the divider.  Such
243  * bits comprise the low-order portion of the divider field, and can
244  * be viewed as representing the portion of the divider that lies to
245  * the right of the decimal point.  Most variable dividers have zero
246  * fractional bits.  Variable dividers with non-zero fraction width
247  * still record a value 1 less than the value they represent; the
248  * added 1 does *not* affect the low-order bit in this case, it
249  * affects the bits above the fractional part only.  (Often in this
250  * code a divider field value is distinguished from the value it
251  * represents by referring to the latter as a "divisor".)
252  *
253  * In order to avoid dealing with fractions, divider arithmetic is
254  * performed using "scaled" values.  A scaled value is one that's
255  * been left-shifted by the fractional width of a divider.  Dividing
256  * a scaled value by a scaled divisor produces the desired quotient
257  * without loss of precision and without any other special handling
258  * for fractions.
259  *
260  * The recorded value of a variable divider can be modified.  To
261  * modify either divider (or both), a clock must be enabled (i.e.,
262  * using its gate).  In addition, a trigger register (described
263  * below) must be used to commit the change, and polled to verify
264  * the change is complete.
265  */
266 struct bcm_clk_div {
267 	union {
268 		struct {	/* variable divider */
269 			u32 offset;	/* divider register offset */
270 			u32 shift;	/* field shift */
271 			u32 width;	/* field width */
272 			u32 frac_width;	/* field fraction width */
273 
274 			u64 scaled_div;	/* scaled divider value */
275 		} s;
276 		u32 fixed;	/* non-zero fixed divider value */
277 	} u;
278 	u32 flags;		/* BCM_CLK_DIV_FLAGS_* below */
279 };
280 
281 /*
282  * Divider flags:
283  *   EXISTS means this divider exists
284  *   FIXED means it is a fixed-rate divider
285  */
286 #define BCM_CLK_DIV_FLAGS_EXISTS	((u32)1 << 0)	/* Divider is valid */
287 #define BCM_CLK_DIV_FLAGS_FIXED		((u32)1 << 1)	/* Fixed-value */
288 
289 /* Divider initialization macros */
290 
291 /* A fixed (non-zero) divider */
292 #define FIXED_DIVIDER(_value)						\
293 	{								\
294 		.u.fixed = (_value),					\
295 		.flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),		\
296 	}
297 
298 /* A divider with an integral divisor */
299 #define DIVIDER(_offset, _shift, _width)				\
300 	{								\
301 		.u.s.offset = (_offset),				\
302 		.u.s.shift = (_shift),					\
303 		.u.s.width = (_width),					\
304 		.u.s.scaled_div = BAD_SCALED_DIV_VALUE,			\
305 		.flags = FLAG(DIV, EXISTS),				\
306 	}
307 
308 /* A divider whose divisor has an integer and fractional part */
309 #define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)		\
310 	{								\
311 		.u.s.offset = (_offset),				\
312 		.u.s.shift = (_shift),					\
313 		.u.s.width = (_width),					\
314 		.u.s.frac_width = (_frac_width),			\
315 		.u.s.scaled_div = BAD_SCALED_DIV_VALUE,			\
316 		.flags = FLAG(DIV, EXISTS),				\
317 	}
318 
319 /*
320  * Clocks may have multiple "parent" clocks.  If there is more than
321  * one, a selector must be specified to define which of the parent
322  * clocks is currently in use.  The selected clock is indicated in a
323  * sub-field of a 32-bit selector register.  The range of
324  * representable selector values typically exceeds the number of
325  * available parent clocks.  Occasionally the reset value of a
326  * selector field is explicitly set to a (specific) value that does
327  * not correspond to a defined input clock.
328  *
329  * We register all known parent clocks with the common clock code
330  * using a packed array (i.e., no empty slots) of (parent) clock
331  * names, and refer to them later using indexes into that array.
332  * We maintain an array of selector values indexed by common clock
333  * index values in order to map between these common clock indexes
334  * and the selector values used by the hardware.
335  *
336  * Like dividers, a selector can be modified, but to do so a clock
337  * must be enabled, and a trigger must be used to commit the change.
338  */
339 struct bcm_clk_sel {
340 	u32 offset;		/* selector register offset */
341 	u32 shift;		/* field shift */
342 	u32 width;		/* field width */
343 
344 	u32 parent_count;	/* number of entries in parent_sel[] */
345 	u32 *parent_sel;	/* array of parent selector values */
346 	u8 clk_index;		/* current selected index in parent_sel[] */
347 };
348 
349 /* Selector initialization macro */
350 #define SELECTOR(_offset, _shift, _width)				\
351 	{								\
352 		.offset = (_offset),					\
353 		.shift = (_shift),					\
354 		.width = (_width),					\
355 		.clk_index = BAD_CLK_INDEX,				\
356 	}
357 
358 /*
359  * Making changes to a variable divider or a selector for a clock
360  * requires the use of a trigger.  A trigger is defined by a single
361  * bit within a register.  To signal a change, a 1 is written into
362  * that bit.  To determine when the change has been completed, that
363  * trigger bit is polled; the read value will be 1 while the change
364  * is in progress, and 0 when it is complete.
365  *
366  * Occasionally a clock will have more than one trigger.  In this
367  * case, the "pre-trigger" will be used when changing a clock's
368  * selector and/or its pre-divider.
369  */
370 struct bcm_clk_trig {
371 	u32 offset;		/* trigger register offset */
372 	u32 bit;		/* trigger bit */
373 	u32 flags;		/* BCM_CLK_TRIG_FLAGS_* below */
374 };
375 
376 /*
377  * Trigger flags:
378  *   EXISTS means this trigger exists
379  */
380 #define BCM_CLK_TRIG_FLAGS_EXISTS	((u32)1 << 0)	/* Trigger is valid */
381 
382 /* Trigger initialization macro */
383 #define TRIGGER(_offset, _bit)						\
384 	{								\
385 		.offset = (_offset),					\
386 		.bit = (_bit),						\
387 		.flags = FLAG(TRIG, EXISTS),				\
388 	}
389 
390 struct peri_clk_data {
391 	struct bcm_clk_policy policy;
392 	struct bcm_clk_gate gate;
393 	struct bcm_clk_hyst hyst;
394 	struct bcm_clk_trig pre_trig;
395 	struct bcm_clk_div pre_div;
396 	struct bcm_clk_trig trig;
397 	struct bcm_clk_div div;
398 	struct bcm_clk_sel sel;
399 	const char *clocks[];	/* must be last; use CLOCKS() to declare */
400 };
401 #define CLOCKS(...)	{ __VA_ARGS__, NULL, }
402 #define NO_CLOCKS	{ NULL, }	/* Must use of no parent clocks */
403 
404 struct kona_clk {
405 	struct clk_hw hw;
406 	struct clk_init_data init_data;	/* includes name of this clock */
407 	struct ccu_data *ccu;	/* ccu this clock is associated with */
408 	enum bcm_clk_type type;
409 	union {
410 		void *data;
411 		struct peri_clk_data *peri;
412 	} u;
413 };
414 #define to_kona_clk(_hw) \
415 	container_of(_hw, struct kona_clk, hw)
416 
417 /* Initialization macro for an entry in a CCU's kona_clks[] array. */
418 #define KONA_CLK(_ccu_name, _clk_name, _type)				\
419 	{								\
420 		.init_data	= {					\
421 			.name = #_clk_name,				\
422 			.ops = &kona_ ## _type ## _clk_ops,		\
423 		},							\
424 		.ccu		= &_ccu_name ## _ccu_data,		\
425 		.type		= bcm_clk_ ## _type,			\
426 		.u.data		= &_clk_name ## _data,			\
427 	}
428 #define LAST_KONA_CLK	{ .type = bcm_clk_none }
429 
430 /*
431  * CCU policy control.  To enable software update of the policy
432  * tables the CCU policy engine must be stopped by setting the
433  * software update enable bit (LVM_EN).  After an update the engine
434  * is restarted using the GO bit and either the GO_ATL or GO_AC bit.
435  */
436 struct bcm_lvm_en {
437 	u32 offset;		/* LVM_EN register offset */
438 	u32 bit;		/* POLICY_CONFIG_EN bit in register */
439 };
440 
441 /* Policy enable initialization macro */
442 #define CCU_LVM_EN(_offset, _bit)					\
443 	{								\
444 		.offset = (_offset),					\
445 		.bit = (_bit),						\
446 	}
447 
448 struct bcm_policy_ctl {
449 	u32 offset;		/* POLICY_CTL register offset */
450 	u32 go_bit;
451 	u32 atl_bit;		/* GO, GO_ATL, and GO_AC bits */
452 	u32 ac_bit;
453 };
454 
455 /* Policy control initialization macro */
456 #define CCU_POLICY_CTL(_offset, _go_bit, _ac_bit, _atl_bit)		\
457 	{								\
458 		.offset = (_offset),					\
459 		.go_bit = (_go_bit),					\
460 		.ac_bit = (_ac_bit),					\
461 		.atl_bit = (_atl_bit),					\
462 	}
463 
464 struct ccu_policy {
465 	struct bcm_lvm_en enable;
466 	struct bcm_policy_ctl control;
467 };
468 
469 /*
470  * Each CCU defines a mapped area of memory containing registers
471  * used to manage clocks implemented by the CCU.  Access to memory
472  * within the CCU's space is serialized by a spinlock.  Before any
473  * (other) address can be written, a special access "password" value
474  * must be written to its WR_ACCESS register (located at the base
475  * address of the range).  We keep track of the name of each CCU as
476  * it is set up, and maintain them in a list.
477  */
478 struct ccu_data {
479 	void __iomem *base;	/* base of mapped address space */
480 	spinlock_t lock;	/* serialization lock */
481 	bool write_enabled;	/* write access is currently enabled */
482 	struct ccu_policy policy;
483 	struct device_node *node;
484 	size_t clk_num;
485 	const char *name;
486 	u32 range;		/* byte range of address space */
487 	struct kona_clk kona_clks[];	/* must be last */
488 };
489 
490 /* Initialization for common fields in a Kona ccu_data structure */
491 #define KONA_CCU_COMMON(_prefix, _name, _ccuname)			    \
492 	.name		= #_name "_ccu",				    \
493 	.lock		= __SPIN_LOCK_UNLOCKED(_name ## _ccu_data.lock),    \
494 	.clk_num	= _prefix ## _ ## _ccuname ## _CCU_CLOCK_COUNT
495 
496 /* Exported globals */
497 
498 extern struct clk_ops kona_peri_clk_ops;
499 
500 /* Externally visible functions */
501 
502 extern u64 scaled_div_max(struct bcm_clk_div *div);
503 extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value,
504 				u32 billionths);
505 
506 extern void __init kona_dt_ccu_setup(struct ccu_data *ccu,
507 				struct device_node *node);
508 extern bool __init kona_ccu_init(struct ccu_data *ccu);
509 
510 #endif /* _CLK_KONA_H */
511