1 /* 2 * Copyright (C) 2013 Broadcom Corporation 3 * Copyright 2013 Linaro Limited 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation version 2. 8 * 9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 10 * kind, whether express or implied; without even the implied warranty 11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #ifndef _CLK_KONA_H 16 #define _CLK_KONA_H 17 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 #include <linux/spinlock.h> 21 #include <linux/slab.h> 22 #include <linux/device.h> 23 #include <linux/of.h> 24 #include <linux/clk-provider.h> 25 26 #define BILLION 1000000000 27 28 /* The common clock framework uses u8 to represent a parent index */ 29 #define PARENT_COUNT_MAX ((u32)U8_MAX) 30 31 #define BAD_CLK_INDEX U8_MAX /* Can't ever be valid */ 32 #define BAD_CLK_NAME ((const char *)-1) 33 34 #define BAD_SCALED_DIV_VALUE U64_MAX 35 36 /* 37 * Utility macros for object flag management. If possible, flags 38 * should be defined such that 0 is the desired default value. 39 */ 40 #define FLAG(type, flag) BCM_CLK_ ## type ## _FLAGS_ ## flag 41 #define FLAG_SET(obj, type, flag) ((obj)->flags |= FLAG(type, flag)) 42 #define FLAG_CLEAR(obj, type, flag) ((obj)->flags &= ~(FLAG(type, flag))) 43 #define FLAG_FLIP(obj, type, flag) ((obj)->flags ^= FLAG(type, flag)) 44 #define FLAG_TEST(obj, type, flag) (!!((obj)->flags & FLAG(type, flag))) 45 46 /* CCU field state tests */ 47 48 #define ccu_policy_exists(ccu_policy) ((ccu_policy)->enable.offset != 0) 49 50 /* Clock field state tests */ 51 52 #define policy_exists(policy) ((policy)->offset != 0) 53 54 #define gate_exists(gate) FLAG_TEST(gate, GATE, EXISTS) 55 #define gate_is_enabled(gate) FLAG_TEST(gate, GATE, ENABLED) 56 #define gate_is_hw_controllable(gate) FLAG_TEST(gate, GATE, HW) 57 #define gate_is_sw_controllable(gate) FLAG_TEST(gate, GATE, SW) 58 #define gate_is_sw_managed(gate) FLAG_TEST(gate, GATE, SW_MANAGED) 59 #define gate_is_no_disable(gate) FLAG_TEST(gate, GATE, NO_DISABLE) 60 61 #define gate_flip_enabled(gate) FLAG_FLIP(gate, GATE, ENABLED) 62 63 #define hyst_exists(hyst) ((hyst)->offset != 0) 64 65 #define divider_exists(div) FLAG_TEST(div, DIV, EXISTS) 66 #define divider_is_fixed(div) FLAG_TEST(div, DIV, FIXED) 67 #define divider_has_fraction(div) (!divider_is_fixed(div) && \ 68 (div)->u.s.frac_width > 0) 69 70 #define selector_exists(sel) ((sel)->width != 0) 71 #define trigger_exists(trig) FLAG_TEST(trig, TRIG, EXISTS) 72 73 #define policy_lvm_en_exists(enable) ((enable)->offset != 0) 74 #define policy_ctl_exists(control) ((control)->offset != 0) 75 76 /* Clock type, used to tell common block what it's part of */ 77 enum bcm_clk_type { 78 bcm_clk_none, /* undefined clock type */ 79 bcm_clk_bus, 80 bcm_clk_core, 81 bcm_clk_peri 82 }; 83 84 /* 85 * CCU policy control for clocks. Clocks can be enabled or disabled 86 * based on the CCU policy in effect. One bit in each policy mask 87 * register (one per CCU policy) represents whether the clock is 88 * enabled when that policy is effect or not. The CCU policy engine 89 * must be stopped to update these bits, and must be restarted again 90 * afterward. 91 */ 92 struct bcm_clk_policy { 93 u32 offset; /* first policy mask register offset */ 94 u32 bit; /* bit used in all mask registers */ 95 }; 96 97 /* Policy initialization macro */ 98 99 #define POLICY(_offset, _bit) \ 100 { \ 101 .offset = (_offset), \ 102 .bit = (_bit), \ 103 } 104 105 /* 106 * Gating control and status is managed by a 32-bit gate register. 107 * 108 * There are several types of gating available: 109 * - (no gate) 110 * A clock with no gate is assumed to be always enabled. 111 * - hardware-only gating (auto-gating) 112 * Enabling or disabling clocks with this type of gate is 113 * managed automatically by the hardware. Such clocks can be 114 * considered by the software to be enabled. The current status 115 * of auto-gated clocks can be read from the gate status bit. 116 * - software-only gating 117 * Auto-gating is not available for this type of clock. 118 * Instead, software manages whether it's enabled by setting or 119 * clearing the enable bit. The current gate status of a gate 120 * under software control can be read from the gate status bit. 121 * To ensure a change to the gating status is complete, the 122 * status bit can be polled to verify that the gate has entered 123 * the desired state. 124 * - selectable hardware or software gating 125 * Gating for this type of clock can be configured to be either 126 * under software or hardware control. Which type is in use is 127 * determined by the hw_sw_sel bit of the gate register. 128 */ 129 struct bcm_clk_gate { 130 u32 offset; /* gate register offset */ 131 u32 status_bit; /* 0: gate is disabled; 0: gatge is enabled */ 132 u32 en_bit; /* 0: disable; 1: enable */ 133 u32 hw_sw_sel_bit; /* 0: hardware gating; 1: software gating */ 134 u32 flags; /* BCM_CLK_GATE_FLAGS_* below */ 135 }; 136 137 /* 138 * Gate flags: 139 * HW means this gate can be auto-gated 140 * SW means the state of this gate can be software controlled 141 * NO_DISABLE means this gate is (only) enabled if under software control 142 * SW_MANAGED means the status of this gate is under software control 143 * ENABLED means this software-managed gate is *supposed* to be enabled 144 */ 145 #define BCM_CLK_GATE_FLAGS_EXISTS ((u32)1 << 0) /* Gate is valid */ 146 #define BCM_CLK_GATE_FLAGS_HW ((u32)1 << 1) /* Can auto-gate */ 147 #define BCM_CLK_GATE_FLAGS_SW ((u32)1 << 2) /* Software control */ 148 #define BCM_CLK_GATE_FLAGS_NO_DISABLE ((u32)1 << 3) /* HW or enabled */ 149 #define BCM_CLK_GATE_FLAGS_SW_MANAGED ((u32)1 << 4) /* SW now in control */ 150 #define BCM_CLK_GATE_FLAGS_ENABLED ((u32)1 << 5) /* If SW_MANAGED */ 151 152 /* 153 * Gate initialization macros. 154 * 155 * Any gate initially under software control will be enabled. 156 */ 157 158 /* A hardware/software gate initially under software control */ 159 #define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \ 160 { \ 161 .offset = (_offset), \ 162 .status_bit = (_status_bit), \ 163 .en_bit = (_en_bit), \ 164 .hw_sw_sel_bit = (_hw_sw_sel_bit), \ 165 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \ 166 FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)| \ 167 FLAG(GATE, EXISTS), \ 168 } 169 170 /* A hardware/software gate initially under hardware control */ 171 #define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \ 172 { \ 173 .offset = (_offset), \ 174 .status_bit = (_status_bit), \ 175 .en_bit = (_en_bit), \ 176 .hw_sw_sel_bit = (_hw_sw_sel_bit), \ 177 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \ 178 FLAG(GATE, EXISTS), \ 179 } 180 181 /* A hardware-or-enabled gate (enabled if not under hardware control) */ 182 #define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \ 183 { \ 184 .offset = (_offset), \ 185 .status_bit = (_status_bit), \ 186 .en_bit = (_en_bit), \ 187 .hw_sw_sel_bit = (_hw_sw_sel_bit), \ 188 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \ 189 FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS), \ 190 } 191 192 /* A software-only gate */ 193 #define SW_ONLY_GATE(_offset, _status_bit, _en_bit) \ 194 { \ 195 .offset = (_offset), \ 196 .status_bit = (_status_bit), \ 197 .en_bit = (_en_bit), \ 198 .flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)| \ 199 FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS), \ 200 } 201 202 /* A hardware-only gate */ 203 #define HW_ONLY_GATE(_offset, _status_bit) \ 204 { \ 205 .offset = (_offset), \ 206 .status_bit = (_status_bit), \ 207 .flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS), \ 208 } 209 210 /* Gate hysteresis for clocks */ 211 struct bcm_clk_hyst { 212 u32 offset; /* hyst register offset (normally CLKGATE) */ 213 u32 en_bit; /* bit used to enable hysteresis */ 214 u32 val_bit; /* if enabled: 0 = low delay; 1 = high delay */ 215 }; 216 217 /* Hysteresis initialization macro */ 218 219 #define HYST(_offset, _en_bit, _val_bit) \ 220 { \ 221 .offset = (_offset), \ 222 .en_bit = (_en_bit), \ 223 .val_bit = (_val_bit), \ 224 } 225 226 /* 227 * Each clock can have zero, one, or two dividers which change the 228 * output rate of the clock. Each divider can be either fixed or 229 * variable. If there are two dividers, they are the "pre-divider" 230 * and the "regular" or "downstream" divider. If there is only one, 231 * there is no pre-divider. 232 * 233 * A fixed divider is any non-zero (positive) value, and it 234 * indicates how the input rate is affected by the divider. 235 * 236 * The value of a variable divider is maintained in a sub-field of a 237 * 32-bit divider register. The position of the field in the 238 * register is defined by its offset and width. The value recorded 239 * in this field is always 1 less than the value it represents. 240 * 241 * In addition, a variable divider can indicate that some subset 242 * of its bits represent a "fractional" part of the divider. Such 243 * bits comprise the low-order portion of the divider field, and can 244 * be viewed as representing the portion of the divider that lies to 245 * the right of the decimal point. Most variable dividers have zero 246 * fractional bits. Variable dividers with non-zero fraction width 247 * still record a value 1 less than the value they represent; the 248 * added 1 does *not* affect the low-order bit in this case, it 249 * affects the bits above the fractional part only. (Often in this 250 * code a divider field value is distinguished from the value it 251 * represents by referring to the latter as a "divisor".) 252 * 253 * In order to avoid dealing with fractions, divider arithmetic is 254 * performed using "scaled" values. A scaled value is one that's 255 * been left-shifted by the fractional width of a divider. Dividing 256 * a scaled value by a scaled divisor produces the desired quotient 257 * without loss of precision and without any other special handling 258 * for fractions. 259 * 260 * The recorded value of a variable divider can be modified. To 261 * modify either divider (or both), a clock must be enabled (i.e., 262 * using its gate). In addition, a trigger register (described 263 * below) must be used to commit the change, and polled to verify 264 * the change is complete. 265 */ 266 struct bcm_clk_div { 267 union { 268 struct { /* variable divider */ 269 u32 offset; /* divider register offset */ 270 u32 shift; /* field shift */ 271 u32 width; /* field width */ 272 u32 frac_width; /* field fraction width */ 273 274 u64 scaled_div; /* scaled divider value */ 275 } s; 276 u32 fixed; /* non-zero fixed divider value */ 277 } u; 278 u32 flags; /* BCM_CLK_DIV_FLAGS_* below */ 279 }; 280 281 /* 282 * Divider flags: 283 * EXISTS means this divider exists 284 * FIXED means it is a fixed-rate divider 285 */ 286 #define BCM_CLK_DIV_FLAGS_EXISTS ((u32)1 << 0) /* Divider is valid */ 287 #define BCM_CLK_DIV_FLAGS_FIXED ((u32)1 << 1) /* Fixed-value */ 288 289 /* Divider initialization macros */ 290 291 /* A fixed (non-zero) divider */ 292 #define FIXED_DIVIDER(_value) \ 293 { \ 294 .u.fixed = (_value), \ 295 .flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED), \ 296 } 297 298 /* A divider with an integral divisor */ 299 #define DIVIDER(_offset, _shift, _width) \ 300 { \ 301 .u.s.offset = (_offset), \ 302 .u.s.shift = (_shift), \ 303 .u.s.width = (_width), \ 304 .u.s.scaled_div = BAD_SCALED_DIV_VALUE, \ 305 .flags = FLAG(DIV, EXISTS), \ 306 } 307 308 /* A divider whose divisor has an integer and fractional part */ 309 #define FRAC_DIVIDER(_offset, _shift, _width, _frac_width) \ 310 { \ 311 .u.s.offset = (_offset), \ 312 .u.s.shift = (_shift), \ 313 .u.s.width = (_width), \ 314 .u.s.frac_width = (_frac_width), \ 315 .u.s.scaled_div = BAD_SCALED_DIV_VALUE, \ 316 .flags = FLAG(DIV, EXISTS), \ 317 } 318 319 /* 320 * Clocks may have multiple "parent" clocks. If there is more than 321 * one, a selector must be specified to define which of the parent 322 * clocks is currently in use. The selected clock is indicated in a 323 * sub-field of a 32-bit selector register. The range of 324 * representable selector values typically exceeds the number of 325 * available parent clocks. Occasionally the reset value of a 326 * selector field is explicitly set to a (specific) value that does 327 * not correspond to a defined input clock. 328 * 329 * We register all known parent clocks with the common clock code 330 * using a packed array (i.e., no empty slots) of (parent) clock 331 * names, and refer to them later using indexes into that array. 332 * We maintain an array of selector values indexed by common clock 333 * index values in order to map between these common clock indexes 334 * and the selector values used by the hardware. 335 * 336 * Like dividers, a selector can be modified, but to do so a clock 337 * must be enabled, and a trigger must be used to commit the change. 338 */ 339 struct bcm_clk_sel { 340 u32 offset; /* selector register offset */ 341 u32 shift; /* field shift */ 342 u32 width; /* field width */ 343 344 u32 parent_count; /* number of entries in parent_sel[] */ 345 u32 *parent_sel; /* array of parent selector values */ 346 u8 clk_index; /* current selected index in parent_sel[] */ 347 }; 348 349 /* Selector initialization macro */ 350 #define SELECTOR(_offset, _shift, _width) \ 351 { \ 352 .offset = (_offset), \ 353 .shift = (_shift), \ 354 .width = (_width), \ 355 .clk_index = BAD_CLK_INDEX, \ 356 } 357 358 /* 359 * Making changes to a variable divider or a selector for a clock 360 * requires the use of a trigger. A trigger is defined by a single 361 * bit within a register. To signal a change, a 1 is written into 362 * that bit. To determine when the change has been completed, that 363 * trigger bit is polled; the read value will be 1 while the change 364 * is in progress, and 0 when it is complete. 365 * 366 * Occasionally a clock will have more than one trigger. In this 367 * case, the "pre-trigger" will be used when changing a clock's 368 * selector and/or its pre-divider. 369 */ 370 struct bcm_clk_trig { 371 u32 offset; /* trigger register offset */ 372 u32 bit; /* trigger bit */ 373 u32 flags; /* BCM_CLK_TRIG_FLAGS_* below */ 374 }; 375 376 /* 377 * Trigger flags: 378 * EXISTS means this trigger exists 379 */ 380 #define BCM_CLK_TRIG_FLAGS_EXISTS ((u32)1 << 0) /* Trigger is valid */ 381 382 /* Trigger initialization macro */ 383 #define TRIGGER(_offset, _bit) \ 384 { \ 385 .offset = (_offset), \ 386 .bit = (_bit), \ 387 .flags = FLAG(TRIG, EXISTS), \ 388 } 389 390 struct peri_clk_data { 391 struct bcm_clk_policy policy; 392 struct bcm_clk_gate gate; 393 struct bcm_clk_hyst hyst; 394 struct bcm_clk_trig pre_trig; 395 struct bcm_clk_div pre_div; 396 struct bcm_clk_trig trig; 397 struct bcm_clk_div div; 398 struct bcm_clk_sel sel; 399 const char *clocks[]; /* must be last; use CLOCKS() to declare */ 400 }; 401 #define CLOCKS(...) { __VA_ARGS__, NULL, } 402 #define NO_CLOCKS { NULL, } /* Must use of no parent clocks */ 403 404 struct kona_clk { 405 struct clk_hw hw; 406 struct clk_init_data init_data; /* includes name of this clock */ 407 struct ccu_data *ccu; /* ccu this clock is associated with */ 408 enum bcm_clk_type type; 409 union { 410 void *data; 411 struct peri_clk_data *peri; 412 } u; 413 }; 414 #define to_kona_clk(_hw) \ 415 container_of(_hw, struct kona_clk, hw) 416 417 /* Initialization macro for an entry in a CCU's kona_clks[] array. */ 418 #define KONA_CLK(_ccu_name, _clk_name, _type) \ 419 { \ 420 .init_data = { \ 421 .name = #_clk_name, \ 422 .ops = &kona_ ## _type ## _clk_ops, \ 423 }, \ 424 .ccu = &_ccu_name ## _ccu_data, \ 425 .type = bcm_clk_ ## _type, \ 426 .u.data = &_clk_name ## _data, \ 427 } 428 #define LAST_KONA_CLK { .type = bcm_clk_none } 429 430 /* 431 * CCU policy control. To enable software update of the policy 432 * tables the CCU policy engine must be stopped by setting the 433 * software update enable bit (LVM_EN). After an update the engine 434 * is restarted using the GO bit and either the GO_ATL or GO_AC bit. 435 */ 436 struct bcm_lvm_en { 437 u32 offset; /* LVM_EN register offset */ 438 u32 bit; /* POLICY_CONFIG_EN bit in register */ 439 }; 440 441 /* Policy enable initialization macro */ 442 #define CCU_LVM_EN(_offset, _bit) \ 443 { \ 444 .offset = (_offset), \ 445 .bit = (_bit), \ 446 } 447 448 struct bcm_policy_ctl { 449 u32 offset; /* POLICY_CTL register offset */ 450 u32 go_bit; 451 u32 atl_bit; /* GO, GO_ATL, and GO_AC bits */ 452 u32 ac_bit; 453 }; 454 455 /* Policy control initialization macro */ 456 #define CCU_POLICY_CTL(_offset, _go_bit, _ac_bit, _atl_bit) \ 457 { \ 458 .offset = (_offset), \ 459 .go_bit = (_go_bit), \ 460 .ac_bit = (_ac_bit), \ 461 .atl_bit = (_atl_bit), \ 462 } 463 464 struct ccu_policy { 465 struct bcm_lvm_en enable; 466 struct bcm_policy_ctl control; 467 }; 468 469 /* 470 * Each CCU defines a mapped area of memory containing registers 471 * used to manage clocks implemented by the CCU. Access to memory 472 * within the CCU's space is serialized by a spinlock. Before any 473 * (other) address can be written, a special access "password" value 474 * must be written to its WR_ACCESS register (located at the base 475 * address of the range). We keep track of the name of each CCU as 476 * it is set up, and maintain them in a list. 477 */ 478 struct ccu_data { 479 void __iomem *base; /* base of mapped address space */ 480 spinlock_t lock; /* serialization lock */ 481 bool write_enabled; /* write access is currently enabled */ 482 struct ccu_policy policy; 483 struct list_head links; /* for ccu_list */ 484 struct device_node *node; 485 struct clk_onecell_data clk_data; 486 const char *name; 487 u32 range; /* byte range of address space */ 488 struct kona_clk kona_clks[]; /* must be last */ 489 }; 490 491 /* Initialization for common fields in a Kona ccu_data structure */ 492 #define KONA_CCU_COMMON(_prefix, _name, _ccuname) \ 493 .name = #_name "_ccu", \ 494 .lock = __SPIN_LOCK_UNLOCKED(_name ## _ccu_data.lock), \ 495 .links = LIST_HEAD_INIT(_name ## _ccu_data.links), \ 496 .clk_data = { \ 497 .clk_num = _prefix ## _ ## _ccuname ## _CCU_CLOCK_COUNT, \ 498 } 499 500 /* Exported globals */ 501 502 extern struct clk_ops kona_peri_clk_ops; 503 504 /* Externally visible functions */ 505 506 extern u64 scaled_div_max(struct bcm_clk_div *div); 507 extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, 508 u32 billionths); 509 510 extern struct clk *kona_clk_setup(struct kona_clk *bcm_clk); 511 extern void __init kona_dt_ccu_setup(struct ccu_data *ccu, 512 struct device_node *node); 513 extern bool __init kona_ccu_init(struct ccu_data *ccu); 514 515 #endif /* _CLK_KONA_H */ 516