1 /* 2 * Copyright (C) 2013 Broadcom Corporation 3 * Copyright 2013 Linaro Limited 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation version 2. 8 * 9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 10 * kind, whether express or implied; without even the implied warranty 11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include "clk-kona.h" 16 17 #include <linux/delay.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/clk-provider.h> 21 22 /* 23 * "Policies" affect the frequencies of bus clocks provided by a 24 * CCU. (I believe these polices are named "Deep Sleep", "Economy", 25 * "Normal", and "Turbo".) A lower policy number has lower power 26 * consumption, and policy 2 is the default. 27 */ 28 #define CCU_POLICY_COUNT 4 29 30 #define CCU_ACCESS_PASSWORD 0xA5A500 31 #define CLK_GATE_DELAY_LOOP 2000 32 33 /* Bitfield operations */ 34 35 /* Produces a mask of set bits covering a range of a 32-bit value */ 36 static inline u32 bitfield_mask(u32 shift, u32 width) 37 { 38 return ((1 << width) - 1) << shift; 39 } 40 41 /* Extract the value of a bitfield found within a given register value */ 42 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width) 43 { 44 return (reg_val & bitfield_mask(shift, width)) >> shift; 45 } 46 47 /* Replace the value of a bitfield found within a given register value */ 48 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val) 49 { 50 u32 mask = bitfield_mask(shift, width); 51 52 return (reg_val & ~mask) | (val << shift); 53 } 54 55 /* Divider and scaling helpers */ 56 57 /* Convert a divider into the scaled divisor value it represents. */ 58 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div) 59 { 60 return (u64)reg_div + ((u64)1 << div->u.s.frac_width); 61 } 62 63 /* 64 * Build a scaled divider value as close as possible to the 65 * given whole part (div_value) and fractional part (expressed 66 * in billionths). 67 */ 68 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths) 69 { 70 u64 combined; 71 72 BUG_ON(!div_value); 73 BUG_ON(billionths >= BILLION); 74 75 combined = (u64)div_value * BILLION + billionths; 76 combined <<= div->u.s.frac_width; 77 78 return DIV_ROUND_CLOSEST_ULL(combined, BILLION); 79 } 80 81 /* The scaled minimum divisor representable by a divider */ 82 static inline u64 83 scaled_div_min(struct bcm_clk_div *div) 84 { 85 if (divider_is_fixed(div)) 86 return (u64)div->u.fixed; 87 88 return scaled_div_value(div, 0); 89 } 90 91 /* The scaled maximum divisor representable by a divider */ 92 u64 scaled_div_max(struct bcm_clk_div *div) 93 { 94 u32 reg_div; 95 96 if (divider_is_fixed(div)) 97 return (u64)div->u.fixed; 98 99 reg_div = ((u32)1 << div->u.s.width) - 1; 100 101 return scaled_div_value(div, reg_div); 102 } 103 104 /* 105 * Convert a scaled divisor into its divider representation as 106 * stored in a divider register field. 107 */ 108 static inline u32 109 divider(struct bcm_clk_div *div, u64 scaled_div) 110 { 111 BUG_ON(scaled_div < scaled_div_min(div)); 112 BUG_ON(scaled_div > scaled_div_max(div)); 113 114 return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width)); 115 } 116 117 /* Return a rate scaled for use when dividing by a scaled divisor. */ 118 static inline u64 119 scale_rate(struct bcm_clk_div *div, u32 rate) 120 { 121 if (divider_is_fixed(div)) 122 return (u64)rate; 123 124 return (u64)rate << div->u.s.frac_width; 125 } 126 127 /* CCU access */ 128 129 /* Read a 32-bit register value from a CCU's address space. */ 130 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset) 131 { 132 return readl(ccu->base + reg_offset); 133 } 134 135 /* Write a 32-bit register value into a CCU's address space. */ 136 static inline void 137 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val) 138 { 139 writel(reg_val, ccu->base + reg_offset); 140 } 141 142 static inline unsigned long ccu_lock(struct ccu_data *ccu) 143 { 144 unsigned long flags; 145 146 spin_lock_irqsave(&ccu->lock, flags); 147 148 return flags; 149 } 150 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags) 151 { 152 spin_unlock_irqrestore(&ccu->lock, flags); 153 } 154 155 /* 156 * Enable/disable write access to CCU protected registers. The 157 * WR_ACCESS register for all CCUs is at offset 0. 158 */ 159 static inline void __ccu_write_enable(struct ccu_data *ccu) 160 { 161 if (ccu->write_enabled) { 162 pr_err("%s: access already enabled for %s\n", __func__, 163 ccu->name); 164 return; 165 } 166 ccu->write_enabled = true; 167 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1); 168 } 169 170 static inline void __ccu_write_disable(struct ccu_data *ccu) 171 { 172 if (!ccu->write_enabled) { 173 pr_err("%s: access wasn't enabled for %s\n", __func__, 174 ccu->name); 175 return; 176 } 177 178 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD); 179 ccu->write_enabled = false; 180 } 181 182 /* 183 * Poll a register in a CCU's address space, returning when the 184 * specified bit in that register's value is set (or clear). Delay 185 * a microsecond after each read of the register. Returns true if 186 * successful, or false if we gave up trying. 187 * 188 * Caller must ensure the CCU lock is held. 189 */ 190 static inline bool 191 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want) 192 { 193 unsigned int tries; 194 u32 bit_mask = 1 << bit; 195 196 for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) { 197 u32 val; 198 bool bit_val; 199 200 val = __ccu_read(ccu, reg_offset); 201 bit_val = (val & bit_mask) != 0; 202 if (bit_val == want) 203 return true; 204 udelay(1); 205 } 206 pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__, 207 ccu->name, reg_offset, bit, want ? "set" : "clear"); 208 209 return false; 210 } 211 212 /* Policy operations */ 213 214 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync) 215 { 216 struct bcm_policy_ctl *control = &ccu->policy.control; 217 u32 offset; 218 u32 go_bit; 219 u32 mask; 220 bool ret; 221 222 /* If we don't need to control policy for this CCU, we're done. */ 223 if (!policy_ctl_exists(control)) 224 return true; 225 226 offset = control->offset; 227 go_bit = control->go_bit; 228 229 /* Ensure we're not busy before we start */ 230 ret = __ccu_wait_bit(ccu, offset, go_bit, false); 231 if (!ret) { 232 pr_err("%s: ccu %s policy engine wouldn't go idle\n", 233 __func__, ccu->name); 234 return false; 235 } 236 237 /* 238 * If it's a synchronous request, we'll wait for the voltage 239 * and frequency of the active load to stabilize before 240 * returning. To do this we select the active load by 241 * setting the ATL bit. 242 * 243 * An asynchronous request instead ramps the voltage in the 244 * background, and when that process stabilizes, the target 245 * load is copied to the active load and the CCU frequency 246 * is switched. We do this by selecting the target load 247 * (ATL bit clear) and setting the request auto-copy (AC bit 248 * set). 249 * 250 * Note, we do NOT read-modify-write this register. 251 */ 252 mask = (u32)1 << go_bit; 253 if (sync) 254 mask |= 1 << control->atl_bit; 255 else 256 mask |= 1 << control->ac_bit; 257 __ccu_write(ccu, offset, mask); 258 259 /* Wait for indication that operation is complete. */ 260 ret = __ccu_wait_bit(ccu, offset, go_bit, false); 261 if (!ret) 262 pr_err("%s: ccu %s policy engine never started\n", 263 __func__, ccu->name); 264 265 return ret; 266 } 267 268 static bool __ccu_policy_engine_stop(struct ccu_data *ccu) 269 { 270 struct bcm_lvm_en *enable = &ccu->policy.enable; 271 u32 offset; 272 u32 enable_bit; 273 bool ret; 274 275 /* If we don't need to control policy for this CCU, we're done. */ 276 if (!policy_lvm_en_exists(enable)) 277 return true; 278 279 /* Ensure we're not busy before we start */ 280 offset = enable->offset; 281 enable_bit = enable->bit; 282 ret = __ccu_wait_bit(ccu, offset, enable_bit, false); 283 if (!ret) { 284 pr_err("%s: ccu %s policy engine already stopped\n", 285 __func__, ccu->name); 286 return false; 287 } 288 289 /* Now set the bit to stop the engine (NO read-modify-write) */ 290 __ccu_write(ccu, offset, (u32)1 << enable_bit); 291 292 /* Wait for indication that it has stopped. */ 293 ret = __ccu_wait_bit(ccu, offset, enable_bit, false); 294 if (!ret) 295 pr_err("%s: ccu %s policy engine never stopped\n", 296 __func__, ccu->name); 297 298 return ret; 299 } 300 301 /* 302 * A CCU has four operating conditions ("policies"), and some clocks 303 * can be disabled or enabled based on which policy is currently in 304 * effect. Such clocks have a bit in a "policy mask" register for 305 * each policy indicating whether the clock is enabled for that 306 * policy or not. The bit position for a clock is the same for all 307 * four registers, and the 32-bit registers are at consecutive 308 * addresses. 309 */ 310 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy) 311 { 312 u32 offset; 313 u32 mask; 314 int i; 315 bool ret; 316 317 if (!policy_exists(policy)) 318 return true; 319 320 /* 321 * We need to stop the CCU policy engine to allow update 322 * of our policy bits. 323 */ 324 if (!__ccu_policy_engine_stop(ccu)) { 325 pr_err("%s: unable to stop CCU %s policy engine\n", 326 __func__, ccu->name); 327 return false; 328 } 329 330 /* 331 * For now, if a clock defines its policy bit we just mark 332 * it "enabled" for all four policies. 333 */ 334 offset = policy->offset; 335 mask = (u32)1 << policy->bit; 336 for (i = 0; i < CCU_POLICY_COUNT; i++) { 337 u32 reg_val; 338 339 reg_val = __ccu_read(ccu, offset); 340 reg_val |= mask; 341 __ccu_write(ccu, offset, reg_val); 342 offset += sizeof(u32); 343 } 344 345 /* We're done updating; fire up the policy engine again. */ 346 ret = __ccu_policy_engine_start(ccu, true); 347 if (!ret) 348 pr_err("%s: unable to restart CCU %s policy engine\n", 349 __func__, ccu->name); 350 351 return ret; 352 } 353 354 /* Gate operations */ 355 356 /* Determine whether a clock is gated. CCU lock must be held. */ 357 static bool 358 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) 359 { 360 u32 bit_mask; 361 u32 reg_val; 362 363 /* If there is no gate we can assume it's enabled. */ 364 if (!gate_exists(gate)) 365 return true; 366 367 bit_mask = 1 << gate->status_bit; 368 reg_val = __ccu_read(ccu, gate->offset); 369 370 return (reg_val & bit_mask) != 0; 371 } 372 373 /* Determine whether a clock is gated. */ 374 static bool 375 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) 376 { 377 long flags; 378 bool ret; 379 380 /* Avoid taking the lock if we can */ 381 if (!gate_exists(gate)) 382 return true; 383 384 flags = ccu_lock(ccu); 385 ret = __is_clk_gate_enabled(ccu, gate); 386 ccu_unlock(ccu, flags); 387 388 return ret; 389 } 390 391 /* 392 * Commit our desired gate state to the hardware. 393 * Returns true if successful, false otherwise. 394 */ 395 static bool 396 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate) 397 { 398 u32 reg_val; 399 u32 mask; 400 bool enabled = false; 401 402 BUG_ON(!gate_exists(gate)); 403 if (!gate_is_sw_controllable(gate)) 404 return true; /* Nothing we can change */ 405 406 reg_val = __ccu_read(ccu, gate->offset); 407 408 /* For a hardware/software gate, set which is in control */ 409 if (gate_is_hw_controllable(gate)) { 410 mask = (u32)1 << gate->hw_sw_sel_bit; 411 if (gate_is_sw_managed(gate)) 412 reg_val |= mask; 413 else 414 reg_val &= ~mask; 415 } 416 417 /* 418 * If software is in control, enable or disable the gate. 419 * If hardware is, clear the enabled bit for good measure. 420 * If a software controlled gate can't be disabled, we're 421 * required to write a 0 into the enable bit (but the gate 422 * will be enabled). 423 */ 424 mask = (u32)1 << gate->en_bit; 425 if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) && 426 !gate_is_no_disable(gate)) 427 reg_val |= mask; 428 else 429 reg_val &= ~mask; 430 431 __ccu_write(ccu, gate->offset, reg_val); 432 433 /* For a hardware controlled gate, we're done */ 434 if (!gate_is_sw_managed(gate)) 435 return true; 436 437 /* Otherwise wait for the gate to be in desired state */ 438 return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled); 439 } 440 441 /* 442 * Initialize a gate. Our desired state (hardware/software select, 443 * and if software, its enable state) is committed to hardware 444 * without the usual checks to see if it's already set up that way. 445 * Returns true if successful, false otherwise. 446 */ 447 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate) 448 { 449 if (!gate_exists(gate)) 450 return true; 451 return __gate_commit(ccu, gate); 452 } 453 454 /* 455 * Set a gate to enabled or disabled state. Does nothing if the 456 * gate is not currently under software control, or if it is already 457 * in the requested state. Returns true if successful, false 458 * otherwise. CCU lock must be held. 459 */ 460 static bool 461 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable) 462 { 463 bool ret; 464 465 if (!gate_exists(gate) || !gate_is_sw_managed(gate)) 466 return true; /* Nothing to do */ 467 468 if (!enable && gate_is_no_disable(gate)) { 469 pr_warn("%s: invalid gate disable request (ignoring)\n", 470 __func__); 471 return true; 472 } 473 474 if (enable == gate_is_enabled(gate)) 475 return true; /* No change */ 476 477 gate_flip_enabled(gate); 478 ret = __gate_commit(ccu, gate); 479 if (!ret) 480 gate_flip_enabled(gate); /* Revert the change */ 481 482 return ret; 483 } 484 485 /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */ 486 static int clk_gate(struct ccu_data *ccu, const char *name, 487 struct bcm_clk_gate *gate, bool enable) 488 { 489 unsigned long flags; 490 bool success; 491 492 /* 493 * Avoid taking the lock if we can. We quietly ignore 494 * requests to change state that don't make sense. 495 */ 496 if (!gate_exists(gate) || !gate_is_sw_managed(gate)) 497 return 0; 498 if (!enable && gate_is_no_disable(gate)) 499 return 0; 500 501 flags = ccu_lock(ccu); 502 __ccu_write_enable(ccu); 503 504 success = __clk_gate(ccu, gate, enable); 505 506 __ccu_write_disable(ccu); 507 ccu_unlock(ccu, flags); 508 509 if (success) 510 return 0; 511 512 pr_err("%s: failed to %s gate for %s\n", __func__, 513 enable ? "enable" : "disable", name); 514 515 return -EIO; 516 } 517 518 /* Hysteresis operations */ 519 520 /* 521 * If a clock gate requires a turn-off delay it will have 522 * "hysteresis" register bits defined. The first, if set, enables 523 * the delay; and if enabled, the second bit determines whether the 524 * delay is "low" or "high" (1 means high). For now, if it's 525 * defined for a clock, we set it. 526 */ 527 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst) 528 { 529 u32 offset; 530 u32 reg_val; 531 u32 mask; 532 533 if (!hyst_exists(hyst)) 534 return true; 535 536 offset = hyst->offset; 537 mask = (u32)1 << hyst->en_bit; 538 mask |= (u32)1 << hyst->val_bit; 539 540 reg_val = __ccu_read(ccu, offset); 541 reg_val |= mask; 542 __ccu_write(ccu, offset, reg_val); 543 544 return true; 545 } 546 547 /* Trigger operations */ 548 549 /* 550 * Caller must ensure CCU lock is held and access is enabled. 551 * Returns true if successful, false otherwise. 552 */ 553 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig) 554 { 555 /* Trigger the clock and wait for it to finish */ 556 __ccu_write(ccu, trig->offset, 1 << trig->bit); 557 558 return __ccu_wait_bit(ccu, trig->offset, trig->bit, false); 559 } 560 561 /* Divider operations */ 562 563 /* Read a divider value and return the scaled divisor it represents. */ 564 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div) 565 { 566 unsigned long flags; 567 u32 reg_val; 568 u32 reg_div; 569 570 if (divider_is_fixed(div)) 571 return (u64)div->u.fixed; 572 573 flags = ccu_lock(ccu); 574 reg_val = __ccu_read(ccu, div->u.s.offset); 575 ccu_unlock(ccu, flags); 576 577 /* Extract the full divider field from the register value */ 578 reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width); 579 580 /* Return the scaled divisor value it represents */ 581 return scaled_div_value(div, reg_div); 582 } 583 584 /* 585 * Convert a divider's scaled divisor value into its recorded form 586 * and commit it into the hardware divider register. 587 * 588 * Returns 0 on success. Returns -EINVAL for invalid arguments. 589 * Returns -ENXIO if gating failed, and -EIO if a trigger failed. 590 */ 591 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, 592 struct bcm_clk_div *div, struct bcm_clk_trig *trig) 593 { 594 bool enabled; 595 u32 reg_div; 596 u32 reg_val; 597 int ret = 0; 598 599 BUG_ON(divider_is_fixed(div)); 600 601 /* 602 * If we're just initializing the divider, and no initial 603 * state was defined in the device tree, we just find out 604 * what its current value is rather than updating it. 605 */ 606 if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) { 607 reg_val = __ccu_read(ccu, div->u.s.offset); 608 reg_div = bitfield_extract(reg_val, div->u.s.shift, 609 div->u.s.width); 610 div->u.s.scaled_div = scaled_div_value(div, reg_div); 611 612 return 0; 613 } 614 615 /* Convert the scaled divisor to the value we need to record */ 616 reg_div = divider(div, div->u.s.scaled_div); 617 618 /* Clock needs to be enabled before changing the rate */ 619 enabled = __is_clk_gate_enabled(ccu, gate); 620 if (!enabled && !__clk_gate(ccu, gate, true)) { 621 ret = -ENXIO; 622 goto out; 623 } 624 625 /* Replace the divider value and record the result */ 626 reg_val = __ccu_read(ccu, div->u.s.offset); 627 reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width, 628 reg_div); 629 __ccu_write(ccu, div->u.s.offset, reg_val); 630 631 /* If the trigger fails we still want to disable the gate */ 632 if (!__clk_trigger(ccu, trig)) 633 ret = -EIO; 634 635 /* Disable the clock again if it was disabled to begin with */ 636 if (!enabled && !__clk_gate(ccu, gate, false)) 637 ret = ret ? ret : -ENXIO; /* return first error */ 638 out: 639 return ret; 640 } 641 642 /* 643 * Initialize a divider by committing our desired state to hardware 644 * without the usual checks to see if it's already set up that way. 645 * Returns true if successful, false otherwise. 646 */ 647 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, 648 struct bcm_clk_div *div, struct bcm_clk_trig *trig) 649 { 650 if (!divider_exists(div) || divider_is_fixed(div)) 651 return true; 652 return !__div_commit(ccu, gate, div, trig); 653 } 654 655 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, 656 struct bcm_clk_div *div, struct bcm_clk_trig *trig, 657 u64 scaled_div) 658 { 659 unsigned long flags; 660 u64 previous; 661 int ret; 662 663 BUG_ON(divider_is_fixed(div)); 664 665 previous = div->u.s.scaled_div; 666 if (previous == scaled_div) 667 return 0; /* No change */ 668 669 div->u.s.scaled_div = scaled_div; 670 671 flags = ccu_lock(ccu); 672 __ccu_write_enable(ccu); 673 674 ret = __div_commit(ccu, gate, div, trig); 675 676 __ccu_write_disable(ccu); 677 ccu_unlock(ccu, flags); 678 679 if (ret) 680 div->u.s.scaled_div = previous; /* Revert the change */ 681 682 return ret; 683 684 } 685 686 /* Common clock rate helpers */ 687 688 /* 689 * Implement the common clock framework recalc_rate method, taking 690 * into account a divider and an optional pre-divider. The 691 * pre-divider register pointer may be NULL. 692 */ 693 static unsigned long clk_recalc_rate(struct ccu_data *ccu, 694 struct bcm_clk_div *div, struct bcm_clk_div *pre_div, 695 unsigned long parent_rate) 696 { 697 u64 scaled_parent_rate; 698 u64 scaled_div; 699 u64 result; 700 701 if (!divider_exists(div)) 702 return parent_rate; 703 704 if (parent_rate > (unsigned long)LONG_MAX) 705 return 0; /* actually this would be a caller bug */ 706 707 /* 708 * If there is a pre-divider, divide the scaled parent rate 709 * by the pre-divider value first. In this case--to improve 710 * accuracy--scale the parent rate by *both* the pre-divider 711 * value and the divider before actually computing the 712 * result of the pre-divider. 713 * 714 * If there's only one divider, just scale the parent rate. 715 */ 716 if (pre_div && divider_exists(pre_div)) { 717 u64 scaled_rate; 718 719 scaled_rate = scale_rate(pre_div, parent_rate); 720 scaled_rate = scale_rate(div, scaled_rate); 721 scaled_div = divider_read_scaled(ccu, pre_div); 722 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, 723 scaled_div); 724 } else { 725 scaled_parent_rate = scale_rate(div, parent_rate); 726 } 727 728 /* 729 * Get the scaled divisor value, and divide the scaled 730 * parent rate by that to determine this clock's resulting 731 * rate. 732 */ 733 scaled_div = divider_read_scaled(ccu, div); 734 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div); 735 736 return (unsigned long)result; 737 } 738 739 /* 740 * Compute the output rate produced when a given parent rate is fed 741 * into two dividers. The pre-divider can be NULL, and even if it's 742 * non-null it may be nonexistent. It's also OK for the divider to 743 * be nonexistent, and in that case the pre-divider is also ignored. 744 * 745 * If scaled_div is non-null, it is used to return the scaled divisor 746 * value used by the (downstream) divider to produce that rate. 747 */ 748 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div, 749 struct bcm_clk_div *pre_div, 750 unsigned long rate, unsigned long parent_rate, 751 u64 *scaled_div) 752 { 753 u64 scaled_parent_rate; 754 u64 min_scaled_div; 755 u64 max_scaled_div; 756 u64 best_scaled_div; 757 u64 result; 758 759 BUG_ON(!divider_exists(div)); 760 BUG_ON(!rate); 761 BUG_ON(parent_rate > (u64)LONG_MAX); 762 763 /* 764 * If there is a pre-divider, divide the scaled parent rate 765 * by the pre-divider value first. In this case--to improve 766 * accuracy--scale the parent rate by *both* the pre-divider 767 * value and the divider before actually computing the 768 * result of the pre-divider. 769 * 770 * If there's only one divider, just scale the parent rate. 771 * 772 * For simplicity we treat the pre-divider as fixed (for now). 773 */ 774 if (divider_exists(pre_div)) { 775 u64 scaled_rate; 776 u64 scaled_pre_div; 777 778 scaled_rate = scale_rate(pre_div, parent_rate); 779 scaled_rate = scale_rate(div, scaled_rate); 780 scaled_pre_div = divider_read_scaled(ccu, pre_div); 781 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, 782 scaled_pre_div); 783 } else { 784 scaled_parent_rate = scale_rate(div, parent_rate); 785 } 786 787 /* 788 * Compute the best possible divider and ensure it is in 789 * range. A fixed divider can't be changed, so just report 790 * the best we can do. 791 */ 792 if (!divider_is_fixed(div)) { 793 best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, 794 rate); 795 min_scaled_div = scaled_div_min(div); 796 max_scaled_div = scaled_div_max(div); 797 if (best_scaled_div > max_scaled_div) 798 best_scaled_div = max_scaled_div; 799 else if (best_scaled_div < min_scaled_div) 800 best_scaled_div = min_scaled_div; 801 } else { 802 best_scaled_div = divider_read_scaled(ccu, div); 803 } 804 805 /* OK, figure out the resulting rate */ 806 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div); 807 808 if (scaled_div) 809 *scaled_div = best_scaled_div; 810 811 return (long)result; 812 } 813 814 /* Common clock parent helpers */ 815 816 /* 817 * For a given parent selector (register field) value, find the 818 * index into a selector's parent_sel array that contains it. 819 * Returns the index, or BAD_CLK_INDEX if it's not found. 820 */ 821 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel) 822 { 823 u8 i; 824 825 BUG_ON(sel->parent_count > (u32)U8_MAX); 826 for (i = 0; i < sel->parent_count; i++) 827 if (sel->parent_sel[i] == parent_sel) 828 return i; 829 return BAD_CLK_INDEX; 830 } 831 832 /* 833 * Fetch the current value of the selector, and translate that into 834 * its corresponding index in the parent array we registered with 835 * the clock framework. 836 * 837 * Returns parent array index that corresponds with the value found, 838 * or BAD_CLK_INDEX if the found value is out of range. 839 */ 840 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel) 841 { 842 unsigned long flags; 843 u32 reg_val; 844 u32 parent_sel; 845 u8 index; 846 847 /* If there's no selector, there's only one parent */ 848 if (!selector_exists(sel)) 849 return 0; 850 851 /* Get the value in the selector register */ 852 flags = ccu_lock(ccu); 853 reg_val = __ccu_read(ccu, sel->offset); 854 ccu_unlock(ccu, flags); 855 856 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); 857 858 /* Look up that selector's parent array index and return it */ 859 index = parent_index(sel, parent_sel); 860 if (index == BAD_CLK_INDEX) 861 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n", 862 __func__, parent_sel, ccu->name, sel->offset); 863 864 return index; 865 } 866 867 /* 868 * Commit our desired selector value to the hardware. 869 * 870 * Returns 0 on success. Returns -EINVAL for invalid arguments. 871 * Returns -ENXIO if gating failed, and -EIO if a trigger failed. 872 */ 873 static int 874 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, 875 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) 876 { 877 u32 parent_sel; 878 u32 reg_val; 879 bool enabled; 880 int ret = 0; 881 882 BUG_ON(!selector_exists(sel)); 883 884 /* 885 * If we're just initializing the selector, and no initial 886 * state was defined in the device tree, we just find out 887 * what its current value is rather than updating it. 888 */ 889 if (sel->clk_index == BAD_CLK_INDEX) { 890 u8 index; 891 892 reg_val = __ccu_read(ccu, sel->offset); 893 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); 894 index = parent_index(sel, parent_sel); 895 if (index == BAD_CLK_INDEX) 896 return -EINVAL; 897 sel->clk_index = index; 898 899 return 0; 900 } 901 902 BUG_ON((u32)sel->clk_index >= sel->parent_count); 903 parent_sel = sel->parent_sel[sel->clk_index]; 904 905 /* Clock needs to be enabled before changing the parent */ 906 enabled = __is_clk_gate_enabled(ccu, gate); 907 if (!enabled && !__clk_gate(ccu, gate, true)) 908 return -ENXIO; 909 910 /* Replace the selector value and record the result */ 911 reg_val = __ccu_read(ccu, sel->offset); 912 reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel); 913 __ccu_write(ccu, sel->offset, reg_val); 914 915 /* If the trigger fails we still want to disable the gate */ 916 if (!__clk_trigger(ccu, trig)) 917 ret = -EIO; 918 919 /* Disable the clock again if it was disabled to begin with */ 920 if (!enabled && !__clk_gate(ccu, gate, false)) 921 ret = ret ? ret : -ENXIO; /* return first error */ 922 923 return ret; 924 } 925 926 /* 927 * Initialize a selector by committing our desired state to hardware 928 * without the usual checks to see if it's already set up that way. 929 * Returns true if successful, false otherwise. 930 */ 931 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, 932 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) 933 { 934 if (!selector_exists(sel)) 935 return true; 936 return !__sel_commit(ccu, gate, sel, trig); 937 } 938 939 /* 940 * Write a new value into a selector register to switch to a 941 * different parent clock. Returns 0 on success, or an error code 942 * (from __sel_commit()) otherwise. 943 */ 944 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, 945 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig, 946 u8 index) 947 { 948 unsigned long flags; 949 u8 previous; 950 int ret; 951 952 previous = sel->clk_index; 953 if (previous == index) 954 return 0; /* No change */ 955 956 sel->clk_index = index; 957 958 flags = ccu_lock(ccu); 959 __ccu_write_enable(ccu); 960 961 ret = __sel_commit(ccu, gate, sel, trig); 962 963 __ccu_write_disable(ccu); 964 ccu_unlock(ccu, flags); 965 966 if (ret) 967 sel->clk_index = previous; /* Revert the change */ 968 969 return ret; 970 } 971 972 /* Clock operations */ 973 974 static int kona_peri_clk_enable(struct clk_hw *hw) 975 { 976 struct kona_clk *bcm_clk = to_kona_clk(hw); 977 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; 978 979 return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true); 980 } 981 982 static void kona_peri_clk_disable(struct clk_hw *hw) 983 { 984 struct kona_clk *bcm_clk = to_kona_clk(hw); 985 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; 986 987 (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false); 988 } 989 990 static int kona_peri_clk_is_enabled(struct clk_hw *hw) 991 { 992 struct kona_clk *bcm_clk = to_kona_clk(hw); 993 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; 994 995 return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0; 996 } 997 998 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw, 999 unsigned long parent_rate) 1000 { 1001 struct kona_clk *bcm_clk = to_kona_clk(hw); 1002 struct peri_clk_data *data = bcm_clk->u.peri; 1003 1004 return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div, 1005 parent_rate); 1006 } 1007 1008 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate, 1009 unsigned long *parent_rate) 1010 { 1011 struct kona_clk *bcm_clk = to_kona_clk(hw); 1012 struct bcm_clk_div *div = &bcm_clk->u.peri->div; 1013 1014 if (!divider_exists(div)) 1015 return clk_hw_get_rate(hw); 1016 1017 /* Quietly avoid a zero rate */ 1018 return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div, 1019 rate ? rate : 1, *parent_rate, NULL); 1020 } 1021 1022 static int kona_peri_clk_determine_rate(struct clk_hw *hw, 1023 struct clk_rate_request *req) 1024 { 1025 struct kona_clk *bcm_clk = to_kona_clk(hw); 1026 struct clk_hw *current_parent; 1027 unsigned long parent_rate; 1028 unsigned long best_delta; 1029 unsigned long best_rate; 1030 u32 parent_count; 1031 long rate; 1032 u32 which; 1033 1034 /* 1035 * If there is no other parent to choose, use the current one. 1036 * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT. 1037 */ 1038 WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT); 1039 parent_count = (u32)bcm_clk->init_data.num_parents; 1040 if (parent_count < 2) { 1041 rate = kona_peri_clk_round_rate(hw, req->rate, 1042 &req->best_parent_rate); 1043 if (rate < 0) 1044 return rate; 1045 1046 req->rate = rate; 1047 return 0; 1048 } 1049 1050 /* Unless we can do better, stick with current parent */ 1051 current_parent = clk_hw_get_parent(hw); 1052 parent_rate = clk_hw_get_rate(current_parent); 1053 best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate); 1054 best_delta = abs(best_rate - req->rate); 1055 1056 /* Check whether any other parent clock can produce a better result */ 1057 for (which = 0; which < parent_count; which++) { 1058 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which); 1059 unsigned long delta; 1060 unsigned long other_rate; 1061 1062 BUG_ON(!parent); 1063 if (parent == current_parent) 1064 continue; 1065 1066 /* We don't support CLK_SET_RATE_PARENT */ 1067 parent_rate = clk_hw_get_rate(parent); 1068 other_rate = kona_peri_clk_round_rate(hw, req->rate, 1069 &parent_rate); 1070 delta = abs(other_rate - req->rate); 1071 if (delta < best_delta) { 1072 best_delta = delta; 1073 best_rate = other_rate; 1074 req->best_parent_hw = parent; 1075 req->best_parent_rate = parent_rate; 1076 } 1077 } 1078 1079 req->rate = best_rate; 1080 return 0; 1081 } 1082 1083 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index) 1084 { 1085 struct kona_clk *bcm_clk = to_kona_clk(hw); 1086 struct peri_clk_data *data = bcm_clk->u.peri; 1087 struct bcm_clk_sel *sel = &data->sel; 1088 struct bcm_clk_trig *trig; 1089 int ret; 1090 1091 BUG_ON(index >= sel->parent_count); 1092 1093 /* If there's only one parent we don't require a selector */ 1094 if (!selector_exists(sel)) 1095 return 0; 1096 1097 /* 1098 * The regular trigger is used by default, but if there's a 1099 * pre-trigger we want to use that instead. 1100 */ 1101 trig = trigger_exists(&data->pre_trig) ? &data->pre_trig 1102 : &data->trig; 1103 1104 ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index); 1105 if (ret == -ENXIO) { 1106 pr_err("%s: gating failure for %s\n", __func__, 1107 bcm_clk->init_data.name); 1108 ret = -EIO; /* Don't proliferate weird errors */ 1109 } else if (ret == -EIO) { 1110 pr_err("%s: %strigger failed for %s\n", __func__, 1111 trig == &data->pre_trig ? "pre-" : "", 1112 bcm_clk->init_data.name); 1113 } 1114 1115 return ret; 1116 } 1117 1118 static u8 kona_peri_clk_get_parent(struct clk_hw *hw) 1119 { 1120 struct kona_clk *bcm_clk = to_kona_clk(hw); 1121 struct peri_clk_data *data = bcm_clk->u.peri; 1122 u8 index; 1123 1124 index = selector_read_index(bcm_clk->ccu, &data->sel); 1125 1126 /* Not all callers would handle an out-of-range value gracefully */ 1127 return index == BAD_CLK_INDEX ? 0 : index; 1128 } 1129 1130 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate, 1131 unsigned long parent_rate) 1132 { 1133 struct kona_clk *bcm_clk = to_kona_clk(hw); 1134 struct peri_clk_data *data = bcm_clk->u.peri; 1135 struct bcm_clk_div *div = &data->div; 1136 u64 scaled_div = 0; 1137 int ret; 1138 1139 if (parent_rate > (unsigned long)LONG_MAX) 1140 return -EINVAL; 1141 1142 if (rate == clk_hw_get_rate(hw)) 1143 return 0; 1144 1145 if (!divider_exists(div)) 1146 return rate == parent_rate ? 0 : -EINVAL; 1147 1148 /* 1149 * A fixed divider can't be changed. (Nor can a fixed 1150 * pre-divider be, but for now we never actually try to 1151 * change that.) Tolerate a request for a no-op change. 1152 */ 1153 if (divider_is_fixed(&data->div)) 1154 return rate == parent_rate ? 0 : -EINVAL; 1155 1156 /* 1157 * Get the scaled divisor value needed to achieve a clock 1158 * rate as close as possible to what was requested, given 1159 * the parent clock rate supplied. 1160 */ 1161 (void)round_rate(bcm_clk->ccu, div, &data->pre_div, 1162 rate ? rate : 1, parent_rate, &scaled_div); 1163 1164 /* 1165 * We aren't updating any pre-divider at this point, so 1166 * we'll use the regular trigger. 1167 */ 1168 ret = divider_write(bcm_clk->ccu, &data->gate, &data->div, 1169 &data->trig, scaled_div); 1170 if (ret == -ENXIO) { 1171 pr_err("%s: gating failure for %s\n", __func__, 1172 bcm_clk->init_data.name); 1173 ret = -EIO; /* Don't proliferate weird errors */ 1174 } else if (ret == -EIO) { 1175 pr_err("%s: trigger failed for %s\n", __func__, 1176 bcm_clk->init_data.name); 1177 } 1178 1179 return ret; 1180 } 1181 1182 struct clk_ops kona_peri_clk_ops = { 1183 .enable = kona_peri_clk_enable, 1184 .disable = kona_peri_clk_disable, 1185 .is_enabled = kona_peri_clk_is_enabled, 1186 .recalc_rate = kona_peri_clk_recalc_rate, 1187 .determine_rate = kona_peri_clk_determine_rate, 1188 .set_parent = kona_peri_clk_set_parent, 1189 .get_parent = kona_peri_clk_get_parent, 1190 .set_rate = kona_peri_clk_set_rate, 1191 }; 1192 1193 /* Put a peripheral clock into its initial state */ 1194 static bool __peri_clk_init(struct kona_clk *bcm_clk) 1195 { 1196 struct ccu_data *ccu = bcm_clk->ccu; 1197 struct peri_clk_data *peri = bcm_clk->u.peri; 1198 const char *name = bcm_clk->init_data.name; 1199 struct bcm_clk_trig *trig; 1200 1201 BUG_ON(bcm_clk->type != bcm_clk_peri); 1202 1203 if (!policy_init(ccu, &peri->policy)) { 1204 pr_err("%s: error initializing policy for %s\n", 1205 __func__, name); 1206 return false; 1207 } 1208 if (!gate_init(ccu, &peri->gate)) { 1209 pr_err("%s: error initializing gate for %s\n", __func__, name); 1210 return false; 1211 } 1212 if (!hyst_init(ccu, &peri->hyst)) { 1213 pr_err("%s: error initializing hyst for %s\n", __func__, name); 1214 return false; 1215 } 1216 if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) { 1217 pr_err("%s: error initializing divider for %s\n", __func__, 1218 name); 1219 return false; 1220 } 1221 1222 /* 1223 * For the pre-divider and selector, the pre-trigger is used 1224 * if it's present, otherwise we just use the regular trigger. 1225 */ 1226 trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig 1227 : &peri->trig; 1228 1229 if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) { 1230 pr_err("%s: error initializing pre-divider for %s\n", __func__, 1231 name); 1232 return false; 1233 } 1234 1235 if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) { 1236 pr_err("%s: error initializing selector for %s\n", __func__, 1237 name); 1238 return false; 1239 } 1240 1241 return true; 1242 } 1243 1244 static bool __kona_clk_init(struct kona_clk *bcm_clk) 1245 { 1246 switch (bcm_clk->type) { 1247 case bcm_clk_peri: 1248 return __peri_clk_init(bcm_clk); 1249 default: 1250 BUG(); 1251 } 1252 return false; 1253 } 1254 1255 /* Set a CCU and all its clocks into their desired initial state */ 1256 bool __init kona_ccu_init(struct ccu_data *ccu) 1257 { 1258 unsigned long flags; 1259 unsigned int which; 1260 struct kona_clk *kona_clks = ccu->kona_clks; 1261 bool success = true; 1262 1263 flags = ccu_lock(ccu); 1264 __ccu_write_enable(ccu); 1265 1266 for (which = 0; which < ccu->clk_num; which++) { 1267 struct kona_clk *bcm_clk = &kona_clks[which]; 1268 1269 if (!bcm_clk->ccu) 1270 continue; 1271 1272 success &= __kona_clk_init(bcm_clk); 1273 } 1274 1275 __ccu_write_disable(ccu); 1276 ccu_unlock(ccu, flags); 1277 return success; 1278 } 1279