xref: /openbmc/linux/drivers/clk/bcm/clk-kona.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Broadcom Corporation
4  * Copyright 2013 Linaro Limited
5  */
6 
7 #include "clk-kona.h"
8 
9 #include <linux/delay.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/clk-provider.h>
13 
14 /*
15  * "Policies" affect the frequencies of bus clocks provided by a
16  * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
17  * "Normal", and "Turbo".)  A lower policy number has lower power
18  * consumption, and policy 2 is the default.
19  */
20 #define CCU_POLICY_COUNT	4
21 
22 #define CCU_ACCESS_PASSWORD      0xA5A500
23 #define CLK_GATE_DELAY_LOOP      2000
24 
25 /* Bitfield operations */
26 
27 /* Produces a mask of set bits covering a range of a 32-bit value */
28 static inline u32 bitfield_mask(u32 shift, u32 width)
29 {
30 	return ((1 << width) - 1) << shift;
31 }
32 
33 /* Extract the value of a bitfield found within a given register value */
34 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
35 {
36 	return (reg_val & bitfield_mask(shift, width)) >> shift;
37 }
38 
39 /* Replace the value of a bitfield found within a given register value */
40 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
41 {
42 	u32 mask = bitfield_mask(shift, width);
43 
44 	return (reg_val & ~mask) | (val << shift);
45 }
46 
47 /* Divider and scaling helpers */
48 
49 /* Convert a divider into the scaled divisor value it represents. */
50 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
51 {
52 	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
53 }
54 
55 /*
56  * Build a scaled divider value as close as possible to the
57  * given whole part (div_value) and fractional part (expressed
58  * in billionths).
59  */
60 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
61 {
62 	u64 combined;
63 
64 	BUG_ON(!div_value);
65 	BUG_ON(billionths >= BILLION);
66 
67 	combined = (u64)div_value * BILLION + billionths;
68 	combined <<= div->u.s.frac_width;
69 
70 	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
71 }
72 
73 /* The scaled minimum divisor representable by a divider */
74 static inline u64
75 scaled_div_min(struct bcm_clk_div *div)
76 {
77 	if (divider_is_fixed(div))
78 		return (u64)div->u.fixed;
79 
80 	return scaled_div_value(div, 0);
81 }
82 
83 /* The scaled maximum divisor representable by a divider */
84 u64 scaled_div_max(struct bcm_clk_div *div)
85 {
86 	u32 reg_div;
87 
88 	if (divider_is_fixed(div))
89 		return (u64)div->u.fixed;
90 
91 	reg_div = ((u32)1 << div->u.s.width) - 1;
92 
93 	return scaled_div_value(div, reg_div);
94 }
95 
96 /*
97  * Convert a scaled divisor into its divider representation as
98  * stored in a divider register field.
99  */
100 static inline u32
101 divider(struct bcm_clk_div *div, u64 scaled_div)
102 {
103 	BUG_ON(scaled_div < scaled_div_min(div));
104 	BUG_ON(scaled_div > scaled_div_max(div));
105 
106 	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
107 }
108 
109 /* Return a rate scaled for use when dividing by a scaled divisor. */
110 static inline u64
111 scale_rate(struct bcm_clk_div *div, u32 rate)
112 {
113 	if (divider_is_fixed(div))
114 		return (u64)rate;
115 
116 	return (u64)rate << div->u.s.frac_width;
117 }
118 
119 /* CCU access */
120 
121 /* Read a 32-bit register value from a CCU's address space. */
122 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
123 {
124 	return readl(ccu->base + reg_offset);
125 }
126 
127 /* Write a 32-bit register value into a CCU's address space. */
128 static inline void
129 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
130 {
131 	writel(reg_val, ccu->base + reg_offset);
132 }
133 
134 static inline unsigned long ccu_lock(struct ccu_data *ccu)
135 {
136 	unsigned long flags;
137 
138 	spin_lock_irqsave(&ccu->lock, flags);
139 
140 	return flags;
141 }
142 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
143 {
144 	spin_unlock_irqrestore(&ccu->lock, flags);
145 }
146 
147 /*
148  * Enable/disable write access to CCU protected registers.  The
149  * WR_ACCESS register for all CCUs is at offset 0.
150  */
151 static inline void __ccu_write_enable(struct ccu_data *ccu)
152 {
153 	if (ccu->write_enabled) {
154 		pr_err("%s: access already enabled for %s\n", __func__,
155 			ccu->name);
156 		return;
157 	}
158 	ccu->write_enabled = true;
159 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
160 }
161 
162 static inline void __ccu_write_disable(struct ccu_data *ccu)
163 {
164 	if (!ccu->write_enabled) {
165 		pr_err("%s: access wasn't enabled for %s\n", __func__,
166 			ccu->name);
167 		return;
168 	}
169 
170 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
171 	ccu->write_enabled = false;
172 }
173 
174 /*
175  * Poll a register in a CCU's address space, returning when the
176  * specified bit in that register's value is set (or clear).  Delay
177  * a microsecond after each read of the register.  Returns true if
178  * successful, or false if we gave up trying.
179  *
180  * Caller must ensure the CCU lock is held.
181  */
182 static inline bool
183 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
184 {
185 	unsigned int tries;
186 	u32 bit_mask = 1 << bit;
187 
188 	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
189 		u32 val;
190 		bool bit_val;
191 
192 		val = __ccu_read(ccu, reg_offset);
193 		bit_val = (val & bit_mask) != 0;
194 		if (bit_val == want)
195 			return true;
196 		udelay(1);
197 	}
198 	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
199 		ccu->name, reg_offset, bit, want ? "set" : "clear");
200 
201 	return false;
202 }
203 
204 /* Policy operations */
205 
206 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
207 {
208 	struct bcm_policy_ctl *control = &ccu->policy.control;
209 	u32 offset;
210 	u32 go_bit;
211 	u32 mask;
212 	bool ret;
213 
214 	/* If we don't need to control policy for this CCU, we're done. */
215 	if (!policy_ctl_exists(control))
216 		return true;
217 
218 	offset = control->offset;
219 	go_bit = control->go_bit;
220 
221 	/* Ensure we're not busy before we start */
222 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
223 	if (!ret) {
224 		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
225 			__func__, ccu->name);
226 		return false;
227 	}
228 
229 	/*
230 	 * If it's a synchronous request, we'll wait for the voltage
231 	 * and frequency of the active load to stabilize before
232 	 * returning.  To do this we select the active load by
233 	 * setting the ATL bit.
234 	 *
235 	 * An asynchronous request instead ramps the voltage in the
236 	 * background, and when that process stabilizes, the target
237 	 * load is copied to the active load and the CCU frequency
238 	 * is switched.  We do this by selecting the target load
239 	 * (ATL bit clear) and setting the request auto-copy (AC bit
240 	 * set).
241 	 *
242 	 * Note, we do NOT read-modify-write this register.
243 	 */
244 	mask = (u32)1 << go_bit;
245 	if (sync)
246 		mask |= 1 << control->atl_bit;
247 	else
248 		mask |= 1 << control->ac_bit;
249 	__ccu_write(ccu, offset, mask);
250 
251 	/* Wait for indication that operation is complete. */
252 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
253 	if (!ret)
254 		pr_err("%s: ccu %s policy engine never started\n",
255 			__func__, ccu->name);
256 
257 	return ret;
258 }
259 
260 static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
261 {
262 	struct bcm_lvm_en *enable = &ccu->policy.enable;
263 	u32 offset;
264 	u32 enable_bit;
265 	bool ret;
266 
267 	/* If we don't need to control policy for this CCU, we're done. */
268 	if (!policy_lvm_en_exists(enable))
269 		return true;
270 
271 	/* Ensure we're not busy before we start */
272 	offset = enable->offset;
273 	enable_bit = enable->bit;
274 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
275 	if (!ret) {
276 		pr_err("%s: ccu %s policy engine already stopped\n",
277 			__func__, ccu->name);
278 		return false;
279 	}
280 
281 	/* Now set the bit to stop the engine (NO read-modify-write) */
282 	__ccu_write(ccu, offset, (u32)1 << enable_bit);
283 
284 	/* Wait for indication that it has stopped. */
285 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
286 	if (!ret)
287 		pr_err("%s: ccu %s policy engine never stopped\n",
288 			__func__, ccu->name);
289 
290 	return ret;
291 }
292 
293 /*
294  * A CCU has four operating conditions ("policies"), and some clocks
295  * can be disabled or enabled based on which policy is currently in
296  * effect.  Such clocks have a bit in a "policy mask" register for
297  * each policy indicating whether the clock is enabled for that
298  * policy or not.  The bit position for a clock is the same for all
299  * four registers, and the 32-bit registers are at consecutive
300  * addresses.
301  */
302 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
303 {
304 	u32 offset;
305 	u32 mask;
306 	int i;
307 	bool ret;
308 
309 	if (!policy_exists(policy))
310 		return true;
311 
312 	/*
313 	 * We need to stop the CCU policy engine to allow update
314 	 * of our policy bits.
315 	 */
316 	if (!__ccu_policy_engine_stop(ccu)) {
317 		pr_err("%s: unable to stop CCU %s policy engine\n",
318 			__func__, ccu->name);
319 		return false;
320 	}
321 
322 	/*
323 	 * For now, if a clock defines its policy bit we just mark
324 	 * it "enabled" for all four policies.
325 	 */
326 	offset = policy->offset;
327 	mask = (u32)1 << policy->bit;
328 	for (i = 0; i < CCU_POLICY_COUNT; i++) {
329 		u32 reg_val;
330 
331 		reg_val = __ccu_read(ccu, offset);
332 		reg_val |= mask;
333 		__ccu_write(ccu, offset, reg_val);
334 		offset += sizeof(u32);
335 	}
336 
337 	/* We're done updating; fire up the policy engine again. */
338 	ret = __ccu_policy_engine_start(ccu, true);
339 	if (!ret)
340 		pr_err("%s: unable to restart CCU %s policy engine\n",
341 			__func__, ccu->name);
342 
343 	return ret;
344 }
345 
346 /* Gate operations */
347 
348 /* Determine whether a clock is gated.  CCU lock must be held.  */
349 static bool
350 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
351 {
352 	u32 bit_mask;
353 	u32 reg_val;
354 
355 	/* If there is no gate we can assume it's enabled. */
356 	if (!gate_exists(gate))
357 		return true;
358 
359 	bit_mask = 1 << gate->status_bit;
360 	reg_val = __ccu_read(ccu, gate->offset);
361 
362 	return (reg_val & bit_mask) != 0;
363 }
364 
365 /* Determine whether a clock is gated. */
366 static bool
367 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
368 {
369 	long flags;
370 	bool ret;
371 
372 	/* Avoid taking the lock if we can */
373 	if (!gate_exists(gate))
374 		return true;
375 
376 	flags = ccu_lock(ccu);
377 	ret = __is_clk_gate_enabled(ccu, gate);
378 	ccu_unlock(ccu, flags);
379 
380 	return ret;
381 }
382 
383 /*
384  * Commit our desired gate state to the hardware.
385  * Returns true if successful, false otherwise.
386  */
387 static bool
388 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
389 {
390 	u32 reg_val;
391 	u32 mask;
392 	bool enabled = false;
393 
394 	BUG_ON(!gate_exists(gate));
395 	if (!gate_is_sw_controllable(gate))
396 		return true;		/* Nothing we can change */
397 
398 	reg_val = __ccu_read(ccu, gate->offset);
399 
400 	/* For a hardware/software gate, set which is in control */
401 	if (gate_is_hw_controllable(gate)) {
402 		mask = (u32)1 << gate->hw_sw_sel_bit;
403 		if (gate_is_sw_managed(gate))
404 			reg_val |= mask;
405 		else
406 			reg_val &= ~mask;
407 	}
408 
409 	/*
410 	 * If software is in control, enable or disable the gate.
411 	 * If hardware is, clear the enabled bit for good measure.
412 	 * If a software controlled gate can't be disabled, we're
413 	 * required to write a 0 into the enable bit (but the gate
414 	 * will be enabled).
415 	 */
416 	mask = (u32)1 << gate->en_bit;
417 	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
418 			!gate_is_no_disable(gate))
419 		reg_val |= mask;
420 	else
421 		reg_val &= ~mask;
422 
423 	__ccu_write(ccu, gate->offset, reg_val);
424 
425 	/* For a hardware controlled gate, we're done */
426 	if (!gate_is_sw_managed(gate))
427 		return true;
428 
429 	/* Otherwise wait for the gate to be in desired state */
430 	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
431 }
432 
433 /*
434  * Initialize a gate.  Our desired state (hardware/software select,
435  * and if software, its enable state) is committed to hardware
436  * without the usual checks to see if it's already set up that way.
437  * Returns true if successful, false otherwise.
438  */
439 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
440 {
441 	if (!gate_exists(gate))
442 		return true;
443 	return __gate_commit(ccu, gate);
444 }
445 
446 /*
447  * Set a gate to enabled or disabled state.  Does nothing if the
448  * gate is not currently under software control, or if it is already
449  * in the requested state.  Returns true if successful, false
450  * otherwise.  CCU lock must be held.
451  */
452 static bool
453 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
454 {
455 	bool ret;
456 
457 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
458 		return true;	/* Nothing to do */
459 
460 	if (!enable && gate_is_no_disable(gate)) {
461 		pr_warn("%s: invalid gate disable request (ignoring)\n",
462 			__func__);
463 		return true;
464 	}
465 
466 	if (enable == gate_is_enabled(gate))
467 		return true;	/* No change */
468 
469 	gate_flip_enabled(gate);
470 	ret = __gate_commit(ccu, gate);
471 	if (!ret)
472 		gate_flip_enabled(gate);	/* Revert the change */
473 
474 	return ret;
475 }
476 
477 /* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
478 static int clk_gate(struct ccu_data *ccu, const char *name,
479 			struct bcm_clk_gate *gate, bool enable)
480 {
481 	unsigned long flags;
482 	bool success;
483 
484 	/*
485 	 * Avoid taking the lock if we can.  We quietly ignore
486 	 * requests to change state that don't make sense.
487 	 */
488 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
489 		return 0;
490 	if (!enable && gate_is_no_disable(gate))
491 		return 0;
492 
493 	flags = ccu_lock(ccu);
494 	__ccu_write_enable(ccu);
495 
496 	success = __clk_gate(ccu, gate, enable);
497 
498 	__ccu_write_disable(ccu);
499 	ccu_unlock(ccu, flags);
500 
501 	if (success)
502 		return 0;
503 
504 	pr_err("%s: failed to %s gate for %s\n", __func__,
505 		enable ? "enable" : "disable", name);
506 
507 	return -EIO;
508 }
509 
510 /* Hysteresis operations */
511 
512 /*
513  * If a clock gate requires a turn-off delay it will have
514  * "hysteresis" register bits defined.  The first, if set, enables
515  * the delay; and if enabled, the second bit determines whether the
516  * delay is "low" or "high" (1 means high).  For now, if it's
517  * defined for a clock, we set it.
518  */
519 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
520 {
521 	u32 offset;
522 	u32 reg_val;
523 	u32 mask;
524 
525 	if (!hyst_exists(hyst))
526 		return true;
527 
528 	offset = hyst->offset;
529 	mask = (u32)1 << hyst->en_bit;
530 	mask |= (u32)1 << hyst->val_bit;
531 
532 	reg_val = __ccu_read(ccu, offset);
533 	reg_val |= mask;
534 	__ccu_write(ccu, offset, reg_val);
535 
536 	return true;
537 }
538 
539 /* Trigger operations */
540 
541 /*
542  * Caller must ensure CCU lock is held and access is enabled.
543  * Returns true if successful, false otherwise.
544  */
545 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
546 {
547 	/* Trigger the clock and wait for it to finish */
548 	__ccu_write(ccu, trig->offset, 1 << trig->bit);
549 
550 	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
551 }
552 
553 /* Divider operations */
554 
555 /* Read a divider value and return the scaled divisor it represents. */
556 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
557 {
558 	unsigned long flags;
559 	u32 reg_val;
560 	u32 reg_div;
561 
562 	if (divider_is_fixed(div))
563 		return (u64)div->u.fixed;
564 
565 	flags = ccu_lock(ccu);
566 	reg_val = __ccu_read(ccu, div->u.s.offset);
567 	ccu_unlock(ccu, flags);
568 
569 	/* Extract the full divider field from the register value */
570 	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
571 
572 	/* Return the scaled divisor value it represents */
573 	return scaled_div_value(div, reg_div);
574 }
575 
576 /*
577  * Convert a divider's scaled divisor value into its recorded form
578  * and commit it into the hardware divider register.
579  *
580  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
581  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
582  */
583 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
584 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
585 {
586 	bool enabled;
587 	u32 reg_div;
588 	u32 reg_val;
589 	int ret = 0;
590 
591 	BUG_ON(divider_is_fixed(div));
592 
593 	/*
594 	 * If we're just initializing the divider, and no initial
595 	 * state was defined in the device tree, we just find out
596 	 * what its current value is rather than updating it.
597 	 */
598 	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
599 		reg_val = __ccu_read(ccu, div->u.s.offset);
600 		reg_div = bitfield_extract(reg_val, div->u.s.shift,
601 						div->u.s.width);
602 		div->u.s.scaled_div = scaled_div_value(div, reg_div);
603 
604 		return 0;
605 	}
606 
607 	/* Convert the scaled divisor to the value we need to record */
608 	reg_div = divider(div, div->u.s.scaled_div);
609 
610 	/* Clock needs to be enabled before changing the rate */
611 	enabled = __is_clk_gate_enabled(ccu, gate);
612 	if (!enabled && !__clk_gate(ccu, gate, true)) {
613 		ret = -ENXIO;
614 		goto out;
615 	}
616 
617 	/* Replace the divider value and record the result */
618 	reg_val = __ccu_read(ccu, div->u.s.offset);
619 	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
620 					reg_div);
621 	__ccu_write(ccu, div->u.s.offset, reg_val);
622 
623 	/* If the trigger fails we still want to disable the gate */
624 	if (!__clk_trigger(ccu, trig))
625 		ret = -EIO;
626 
627 	/* Disable the clock again if it was disabled to begin with */
628 	if (!enabled && !__clk_gate(ccu, gate, false))
629 		ret = ret ? ret : -ENXIO;	/* return first error */
630 out:
631 	return ret;
632 }
633 
634 /*
635  * Initialize a divider by committing our desired state to hardware
636  * without the usual checks to see if it's already set up that way.
637  * Returns true if successful, false otherwise.
638  */
639 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
640 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
641 {
642 	if (!divider_exists(div) || divider_is_fixed(div))
643 		return true;
644 	return !__div_commit(ccu, gate, div, trig);
645 }
646 
647 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
648 			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
649 			u64 scaled_div)
650 {
651 	unsigned long flags;
652 	u64 previous;
653 	int ret;
654 
655 	BUG_ON(divider_is_fixed(div));
656 
657 	previous = div->u.s.scaled_div;
658 	if (previous == scaled_div)
659 		return 0;	/* No change */
660 
661 	div->u.s.scaled_div = scaled_div;
662 
663 	flags = ccu_lock(ccu);
664 	__ccu_write_enable(ccu);
665 
666 	ret = __div_commit(ccu, gate, div, trig);
667 
668 	__ccu_write_disable(ccu);
669 	ccu_unlock(ccu, flags);
670 
671 	if (ret)
672 		div->u.s.scaled_div = previous;		/* Revert the change */
673 
674 	return ret;
675 
676 }
677 
678 /* Common clock rate helpers */
679 
680 /*
681  * Implement the common clock framework recalc_rate method, taking
682  * into account a divider and an optional pre-divider.  The
683  * pre-divider register pointer may be NULL.
684  */
685 static unsigned long clk_recalc_rate(struct ccu_data *ccu,
686 			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
687 			unsigned long parent_rate)
688 {
689 	u64 scaled_parent_rate;
690 	u64 scaled_div;
691 	u64 result;
692 
693 	if (!divider_exists(div))
694 		return parent_rate;
695 
696 	if (parent_rate > (unsigned long)LONG_MAX)
697 		return 0;	/* actually this would be a caller bug */
698 
699 	/*
700 	 * If there is a pre-divider, divide the scaled parent rate
701 	 * by the pre-divider value first.  In this case--to improve
702 	 * accuracy--scale the parent rate by *both* the pre-divider
703 	 * value and the divider before actually computing the
704 	 * result of the pre-divider.
705 	 *
706 	 * If there's only one divider, just scale the parent rate.
707 	 */
708 	if (pre_div && divider_exists(pre_div)) {
709 		u64 scaled_rate;
710 
711 		scaled_rate = scale_rate(pre_div, parent_rate);
712 		scaled_rate = scale_rate(div, scaled_rate);
713 		scaled_div = divider_read_scaled(ccu, pre_div);
714 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
715 							scaled_div);
716 	} else  {
717 		scaled_parent_rate = scale_rate(div, parent_rate);
718 	}
719 
720 	/*
721 	 * Get the scaled divisor value, and divide the scaled
722 	 * parent rate by that to determine this clock's resulting
723 	 * rate.
724 	 */
725 	scaled_div = divider_read_scaled(ccu, div);
726 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
727 
728 	return (unsigned long)result;
729 }
730 
731 /*
732  * Compute the output rate produced when a given parent rate is fed
733  * into two dividers.  The pre-divider can be NULL, and even if it's
734  * non-null it may be nonexistent.  It's also OK for the divider to
735  * be nonexistent, and in that case the pre-divider is also ignored.
736  *
737  * If scaled_div is non-null, it is used to return the scaled divisor
738  * value used by the (downstream) divider to produce that rate.
739  */
740 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
741 				struct bcm_clk_div *pre_div,
742 				unsigned long rate, unsigned long parent_rate,
743 				u64 *scaled_div)
744 {
745 	u64 scaled_parent_rate;
746 	u64 min_scaled_div;
747 	u64 max_scaled_div;
748 	u64 best_scaled_div;
749 	u64 result;
750 
751 	BUG_ON(!divider_exists(div));
752 	BUG_ON(!rate);
753 	BUG_ON(parent_rate > (u64)LONG_MAX);
754 
755 	/*
756 	 * If there is a pre-divider, divide the scaled parent rate
757 	 * by the pre-divider value first.  In this case--to improve
758 	 * accuracy--scale the parent rate by *both* the pre-divider
759 	 * value and the divider before actually computing the
760 	 * result of the pre-divider.
761 	 *
762 	 * If there's only one divider, just scale the parent rate.
763 	 *
764 	 * For simplicity we treat the pre-divider as fixed (for now).
765 	 */
766 	if (divider_exists(pre_div)) {
767 		u64 scaled_rate;
768 		u64 scaled_pre_div;
769 
770 		scaled_rate = scale_rate(pre_div, parent_rate);
771 		scaled_rate = scale_rate(div, scaled_rate);
772 		scaled_pre_div = divider_read_scaled(ccu, pre_div);
773 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
774 							scaled_pre_div);
775 	} else {
776 		scaled_parent_rate = scale_rate(div, parent_rate);
777 	}
778 
779 	/*
780 	 * Compute the best possible divider and ensure it is in
781 	 * range.  A fixed divider can't be changed, so just report
782 	 * the best we can do.
783 	 */
784 	if (!divider_is_fixed(div)) {
785 		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
786 							rate);
787 		min_scaled_div = scaled_div_min(div);
788 		max_scaled_div = scaled_div_max(div);
789 		if (best_scaled_div > max_scaled_div)
790 			best_scaled_div = max_scaled_div;
791 		else if (best_scaled_div < min_scaled_div)
792 			best_scaled_div = min_scaled_div;
793 	} else {
794 		best_scaled_div = divider_read_scaled(ccu, div);
795 	}
796 
797 	/* OK, figure out the resulting rate */
798 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
799 
800 	if (scaled_div)
801 		*scaled_div = best_scaled_div;
802 
803 	return (long)result;
804 }
805 
806 /* Common clock parent helpers */
807 
808 /*
809  * For a given parent selector (register field) value, find the
810  * index into a selector's parent_sel array that contains it.
811  * Returns the index, or BAD_CLK_INDEX if it's not found.
812  */
813 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
814 {
815 	u8 i;
816 
817 	BUG_ON(sel->parent_count > (u32)U8_MAX);
818 	for (i = 0; i < sel->parent_count; i++)
819 		if (sel->parent_sel[i] == parent_sel)
820 			return i;
821 	return BAD_CLK_INDEX;
822 }
823 
824 /*
825  * Fetch the current value of the selector, and translate that into
826  * its corresponding index in the parent array we registered with
827  * the clock framework.
828  *
829  * Returns parent array index that corresponds with the value found,
830  * or BAD_CLK_INDEX if the found value is out of range.
831  */
832 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
833 {
834 	unsigned long flags;
835 	u32 reg_val;
836 	u32 parent_sel;
837 	u8 index;
838 
839 	/* If there's no selector, there's only one parent */
840 	if (!selector_exists(sel))
841 		return 0;
842 
843 	/* Get the value in the selector register */
844 	flags = ccu_lock(ccu);
845 	reg_val = __ccu_read(ccu, sel->offset);
846 	ccu_unlock(ccu, flags);
847 
848 	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
849 
850 	/* Look up that selector's parent array index and return it */
851 	index = parent_index(sel, parent_sel);
852 	if (index == BAD_CLK_INDEX)
853 		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
854 			__func__, parent_sel, ccu->name, sel->offset);
855 
856 	return index;
857 }
858 
859 /*
860  * Commit our desired selector value to the hardware.
861  *
862  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
863  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
864  */
865 static int
866 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
867 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
868 {
869 	u32 parent_sel;
870 	u32 reg_val;
871 	bool enabled;
872 	int ret = 0;
873 
874 	BUG_ON(!selector_exists(sel));
875 
876 	/*
877 	 * If we're just initializing the selector, and no initial
878 	 * state was defined in the device tree, we just find out
879 	 * what its current value is rather than updating it.
880 	 */
881 	if (sel->clk_index == BAD_CLK_INDEX) {
882 		u8 index;
883 
884 		reg_val = __ccu_read(ccu, sel->offset);
885 		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
886 		index = parent_index(sel, parent_sel);
887 		if (index == BAD_CLK_INDEX)
888 			return -EINVAL;
889 		sel->clk_index = index;
890 
891 		return 0;
892 	}
893 
894 	BUG_ON((u32)sel->clk_index >= sel->parent_count);
895 	parent_sel = sel->parent_sel[sel->clk_index];
896 
897 	/* Clock needs to be enabled before changing the parent */
898 	enabled = __is_clk_gate_enabled(ccu, gate);
899 	if (!enabled && !__clk_gate(ccu, gate, true))
900 		return -ENXIO;
901 
902 	/* Replace the selector value and record the result */
903 	reg_val = __ccu_read(ccu, sel->offset);
904 	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
905 	__ccu_write(ccu, sel->offset, reg_val);
906 
907 	/* If the trigger fails we still want to disable the gate */
908 	if (!__clk_trigger(ccu, trig))
909 		ret = -EIO;
910 
911 	/* Disable the clock again if it was disabled to begin with */
912 	if (!enabled && !__clk_gate(ccu, gate, false))
913 		ret = ret ? ret : -ENXIO;	/* return first error */
914 
915 	return ret;
916 }
917 
918 /*
919  * Initialize a selector by committing our desired state to hardware
920  * without the usual checks to see if it's already set up that way.
921  * Returns true if successful, false otherwise.
922  */
923 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
924 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
925 {
926 	if (!selector_exists(sel))
927 		return true;
928 	return !__sel_commit(ccu, gate, sel, trig);
929 }
930 
931 /*
932  * Write a new value into a selector register to switch to a
933  * different parent clock.  Returns 0 on success, or an error code
934  * (from __sel_commit()) otherwise.
935  */
936 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
937 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
938 			u8 index)
939 {
940 	unsigned long flags;
941 	u8 previous;
942 	int ret;
943 
944 	previous = sel->clk_index;
945 	if (previous == index)
946 		return 0;	/* No change */
947 
948 	sel->clk_index = index;
949 
950 	flags = ccu_lock(ccu);
951 	__ccu_write_enable(ccu);
952 
953 	ret = __sel_commit(ccu, gate, sel, trig);
954 
955 	__ccu_write_disable(ccu);
956 	ccu_unlock(ccu, flags);
957 
958 	if (ret)
959 		sel->clk_index = previous;	/* Revert the change */
960 
961 	return ret;
962 }
963 
964 /* Clock operations */
965 
966 static int kona_peri_clk_enable(struct clk_hw *hw)
967 {
968 	struct kona_clk *bcm_clk = to_kona_clk(hw);
969 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
970 
971 	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
972 }
973 
974 static void kona_peri_clk_disable(struct clk_hw *hw)
975 {
976 	struct kona_clk *bcm_clk = to_kona_clk(hw);
977 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
978 
979 	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
980 }
981 
982 static int kona_peri_clk_is_enabled(struct clk_hw *hw)
983 {
984 	struct kona_clk *bcm_clk = to_kona_clk(hw);
985 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
986 
987 	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
988 }
989 
990 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
991 			unsigned long parent_rate)
992 {
993 	struct kona_clk *bcm_clk = to_kona_clk(hw);
994 	struct peri_clk_data *data = bcm_clk->u.peri;
995 
996 	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
997 				parent_rate);
998 }
999 
1000 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1001 			unsigned long *parent_rate)
1002 {
1003 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1004 	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1005 
1006 	if (!divider_exists(div))
1007 		return clk_hw_get_rate(hw);
1008 
1009 	/* Quietly avoid a zero rate */
1010 	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1011 				rate ? rate : 1, *parent_rate, NULL);
1012 }
1013 
1014 static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1015 					struct clk_rate_request *req)
1016 {
1017 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1018 	struct clk_hw *current_parent;
1019 	unsigned long parent_rate;
1020 	unsigned long best_delta;
1021 	unsigned long best_rate;
1022 	u32 parent_count;
1023 	long rate;
1024 	u32 which;
1025 
1026 	/*
1027 	 * If there is no other parent to choose, use the current one.
1028 	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1029 	 */
1030 	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1031 	parent_count = (u32)bcm_clk->init_data.num_parents;
1032 	if (parent_count < 2) {
1033 		rate = kona_peri_clk_round_rate(hw, req->rate,
1034 						&req->best_parent_rate);
1035 		if (rate < 0)
1036 			return rate;
1037 
1038 		req->rate = rate;
1039 		return 0;
1040 	}
1041 
1042 	/* Unless we can do better, stick with current parent */
1043 	current_parent = clk_hw_get_parent(hw);
1044 	parent_rate = clk_hw_get_rate(current_parent);
1045 	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1046 	best_delta = abs(best_rate - req->rate);
1047 
1048 	/* Check whether any other parent clock can produce a better result */
1049 	for (which = 0; which < parent_count; which++) {
1050 		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1051 		unsigned long delta;
1052 		unsigned long other_rate;
1053 
1054 		BUG_ON(!parent);
1055 		if (parent == current_parent)
1056 			continue;
1057 
1058 		/* We don't support CLK_SET_RATE_PARENT */
1059 		parent_rate = clk_hw_get_rate(parent);
1060 		other_rate = kona_peri_clk_round_rate(hw, req->rate,
1061 						      &parent_rate);
1062 		delta = abs(other_rate - req->rate);
1063 		if (delta < best_delta) {
1064 			best_delta = delta;
1065 			best_rate = other_rate;
1066 			req->best_parent_hw = parent;
1067 			req->best_parent_rate = parent_rate;
1068 		}
1069 	}
1070 
1071 	req->rate = best_rate;
1072 	return 0;
1073 }
1074 
1075 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1076 {
1077 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1078 	struct peri_clk_data *data = bcm_clk->u.peri;
1079 	struct bcm_clk_sel *sel = &data->sel;
1080 	struct bcm_clk_trig *trig;
1081 	int ret;
1082 
1083 	BUG_ON(index >= sel->parent_count);
1084 
1085 	/* If there's only one parent we don't require a selector */
1086 	if (!selector_exists(sel))
1087 		return 0;
1088 
1089 	/*
1090 	 * The regular trigger is used by default, but if there's a
1091 	 * pre-trigger we want to use that instead.
1092 	 */
1093 	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1094 					       : &data->trig;
1095 
1096 	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1097 	if (ret == -ENXIO) {
1098 		pr_err("%s: gating failure for %s\n", __func__,
1099 			bcm_clk->init_data.name);
1100 		ret = -EIO;	/* Don't proliferate weird errors */
1101 	} else if (ret == -EIO) {
1102 		pr_err("%s: %strigger failed for %s\n", __func__,
1103 			trig == &data->pre_trig ? "pre-" : "",
1104 			bcm_clk->init_data.name);
1105 	}
1106 
1107 	return ret;
1108 }
1109 
1110 static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1111 {
1112 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1113 	struct peri_clk_data *data = bcm_clk->u.peri;
1114 	u8 index;
1115 
1116 	index = selector_read_index(bcm_clk->ccu, &data->sel);
1117 
1118 	/* Not all callers would handle an out-of-range value gracefully */
1119 	return index == BAD_CLK_INDEX ? 0 : index;
1120 }
1121 
1122 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1123 			unsigned long parent_rate)
1124 {
1125 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1126 	struct peri_clk_data *data = bcm_clk->u.peri;
1127 	struct bcm_clk_div *div = &data->div;
1128 	u64 scaled_div = 0;
1129 	int ret;
1130 
1131 	if (parent_rate > (unsigned long)LONG_MAX)
1132 		return -EINVAL;
1133 
1134 	if (rate == clk_hw_get_rate(hw))
1135 		return 0;
1136 
1137 	if (!divider_exists(div))
1138 		return rate == parent_rate ? 0 : -EINVAL;
1139 
1140 	/*
1141 	 * A fixed divider can't be changed.  (Nor can a fixed
1142 	 * pre-divider be, but for now we never actually try to
1143 	 * change that.)  Tolerate a request for a no-op change.
1144 	 */
1145 	if (divider_is_fixed(&data->div))
1146 		return rate == parent_rate ? 0 : -EINVAL;
1147 
1148 	/*
1149 	 * Get the scaled divisor value needed to achieve a clock
1150 	 * rate as close as possible to what was requested, given
1151 	 * the parent clock rate supplied.
1152 	 */
1153 	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1154 				rate ? rate : 1, parent_rate, &scaled_div);
1155 
1156 	/*
1157 	 * We aren't updating any pre-divider at this point, so
1158 	 * we'll use the regular trigger.
1159 	 */
1160 	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1161 				&data->trig, scaled_div);
1162 	if (ret == -ENXIO) {
1163 		pr_err("%s: gating failure for %s\n", __func__,
1164 			bcm_clk->init_data.name);
1165 		ret = -EIO;	/* Don't proliferate weird errors */
1166 	} else if (ret == -EIO) {
1167 		pr_err("%s: trigger failed for %s\n", __func__,
1168 			bcm_clk->init_data.name);
1169 	}
1170 
1171 	return ret;
1172 }
1173 
1174 struct clk_ops kona_peri_clk_ops = {
1175 	.enable = kona_peri_clk_enable,
1176 	.disable = kona_peri_clk_disable,
1177 	.is_enabled = kona_peri_clk_is_enabled,
1178 	.recalc_rate = kona_peri_clk_recalc_rate,
1179 	.determine_rate = kona_peri_clk_determine_rate,
1180 	.set_parent = kona_peri_clk_set_parent,
1181 	.get_parent = kona_peri_clk_get_parent,
1182 	.set_rate = kona_peri_clk_set_rate,
1183 };
1184 
1185 /* Put a peripheral clock into its initial state */
1186 static bool __peri_clk_init(struct kona_clk *bcm_clk)
1187 {
1188 	struct ccu_data *ccu = bcm_clk->ccu;
1189 	struct peri_clk_data *peri = bcm_clk->u.peri;
1190 	const char *name = bcm_clk->init_data.name;
1191 	struct bcm_clk_trig *trig;
1192 
1193 	BUG_ON(bcm_clk->type != bcm_clk_peri);
1194 
1195 	if (!policy_init(ccu, &peri->policy)) {
1196 		pr_err("%s: error initializing policy for %s\n",
1197 			__func__, name);
1198 		return false;
1199 	}
1200 	if (!gate_init(ccu, &peri->gate)) {
1201 		pr_err("%s: error initializing gate for %s\n", __func__, name);
1202 		return false;
1203 	}
1204 	if (!hyst_init(ccu, &peri->hyst)) {
1205 		pr_err("%s: error initializing hyst for %s\n", __func__, name);
1206 		return false;
1207 	}
1208 	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1209 		pr_err("%s: error initializing divider for %s\n", __func__,
1210 			name);
1211 		return false;
1212 	}
1213 
1214 	/*
1215 	 * For the pre-divider and selector, the pre-trigger is used
1216 	 * if it's present, otherwise we just use the regular trigger.
1217 	 */
1218 	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1219 					       : &peri->trig;
1220 
1221 	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1222 		pr_err("%s: error initializing pre-divider for %s\n", __func__,
1223 			name);
1224 		return false;
1225 	}
1226 
1227 	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1228 		pr_err("%s: error initializing selector for %s\n", __func__,
1229 			name);
1230 		return false;
1231 	}
1232 
1233 	return true;
1234 }
1235 
1236 static bool __kona_clk_init(struct kona_clk *bcm_clk)
1237 {
1238 	switch (bcm_clk->type) {
1239 	case bcm_clk_peri:
1240 		return __peri_clk_init(bcm_clk);
1241 	default:
1242 		BUG();
1243 	}
1244 	return false;
1245 }
1246 
1247 /* Set a CCU and all its clocks into their desired initial state */
1248 bool __init kona_ccu_init(struct ccu_data *ccu)
1249 {
1250 	unsigned long flags;
1251 	unsigned int which;
1252 	struct kona_clk *kona_clks = ccu->kona_clks;
1253 	bool success = true;
1254 
1255 	flags = ccu_lock(ccu);
1256 	__ccu_write_enable(ccu);
1257 
1258 	for (which = 0; which < ccu->clk_num; which++) {
1259 		struct kona_clk *bcm_clk = &kona_clks[which];
1260 
1261 		if (!bcm_clk->ccu)
1262 			continue;
1263 
1264 		success &= __kona_clk_init(bcm_clk);
1265 	}
1266 
1267 	__ccu_write_disable(ccu);
1268 	ccu_unlock(ccu, flags);
1269 	return success;
1270 }
1271