1 /* 2 * Copyright (C) 2013 Broadcom Corporation 3 * Copyright 2013 Linaro Limited 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation version 2. 8 * 9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 10 * kind, whether express or implied; without even the implied warranty 11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include "clk-kona.h" 16 17 #include <linux/delay.h> 18 19 #define CCU_ACCESS_PASSWORD 0xA5A500 20 #define CLK_GATE_DELAY_LOOP 2000 21 22 /* Bitfield operations */ 23 24 /* Produces a mask of set bits covering a range of a 32-bit value */ 25 static inline u32 bitfield_mask(u32 shift, u32 width) 26 { 27 return ((1 << width) - 1) << shift; 28 } 29 30 /* Extract the value of a bitfield found within a given register value */ 31 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width) 32 { 33 return (reg_val & bitfield_mask(shift, width)) >> shift; 34 } 35 36 /* Replace the value of a bitfield found within a given register value */ 37 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val) 38 { 39 u32 mask = bitfield_mask(shift, width); 40 41 return (reg_val & ~mask) | (val << shift); 42 } 43 44 /* Divider and scaling helpers */ 45 46 /* 47 * Implement DIV_ROUND_CLOSEST() for 64-bit dividend and both values 48 * unsigned. Note that unlike do_div(), the remainder is discarded 49 * and the return value is the quotient (not the remainder). 50 */ 51 u64 do_div_round_closest(u64 dividend, unsigned long divisor) 52 { 53 u64 result; 54 55 result = dividend + ((u64)divisor >> 1); 56 (void)do_div(result, divisor); 57 58 return result; 59 } 60 61 /* Convert a divider into the scaled divisor value it represents. */ 62 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div) 63 { 64 return (u64)reg_div + ((u64)1 << div->frac_width); 65 } 66 67 /* 68 * Build a scaled divider value as close as possible to the 69 * given whole part (div_value) and fractional part (expressed 70 * in billionths). 71 */ 72 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths) 73 { 74 u64 combined; 75 76 BUG_ON(!div_value); 77 BUG_ON(billionths >= BILLION); 78 79 combined = (u64)div_value * BILLION + billionths; 80 combined <<= div->frac_width; 81 82 return do_div_round_closest(combined, BILLION); 83 } 84 85 /* The scaled minimum divisor representable by a divider */ 86 static inline u64 87 scaled_div_min(struct bcm_clk_div *div) 88 { 89 if (divider_is_fixed(div)) 90 return (u64)div->fixed; 91 92 return scaled_div_value(div, 0); 93 } 94 95 /* The scaled maximum divisor representable by a divider */ 96 u64 scaled_div_max(struct bcm_clk_div *div) 97 { 98 u32 reg_div; 99 100 if (divider_is_fixed(div)) 101 return (u64)div->fixed; 102 103 reg_div = ((u32)1 << div->width) - 1; 104 105 return scaled_div_value(div, reg_div); 106 } 107 108 /* 109 * Convert a scaled divisor into its divider representation as 110 * stored in a divider register field. 111 */ 112 static inline u32 113 divider(struct bcm_clk_div *div, u64 scaled_div) 114 { 115 BUG_ON(scaled_div < scaled_div_min(div)); 116 BUG_ON(scaled_div > scaled_div_max(div)); 117 118 return (u32)(scaled_div - ((u64)1 << div->frac_width)); 119 } 120 121 /* Return a rate scaled for use when dividing by a scaled divisor. */ 122 static inline u64 123 scale_rate(struct bcm_clk_div *div, u32 rate) 124 { 125 if (divider_is_fixed(div)) 126 return (u64)rate; 127 128 return (u64)rate << div->frac_width; 129 } 130 131 /* CCU access */ 132 133 /* Read a 32-bit register value from a CCU's address space. */ 134 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset) 135 { 136 return readl(ccu->base + reg_offset); 137 } 138 139 /* Write a 32-bit register value into a CCU's address space. */ 140 static inline void 141 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val) 142 { 143 writel(reg_val, ccu->base + reg_offset); 144 } 145 146 static inline unsigned long ccu_lock(struct ccu_data *ccu) 147 { 148 unsigned long flags; 149 150 spin_lock_irqsave(&ccu->lock, flags); 151 152 return flags; 153 } 154 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags) 155 { 156 spin_unlock_irqrestore(&ccu->lock, flags); 157 } 158 159 /* 160 * Enable/disable write access to CCU protected registers. The 161 * WR_ACCESS register for all CCUs is at offset 0. 162 */ 163 static inline void __ccu_write_enable(struct ccu_data *ccu) 164 { 165 if (ccu->write_enabled) { 166 pr_err("%s: access already enabled for %s\n", __func__, 167 ccu->name); 168 return; 169 } 170 ccu->write_enabled = true; 171 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1); 172 } 173 174 static inline void __ccu_write_disable(struct ccu_data *ccu) 175 { 176 if (!ccu->write_enabled) { 177 pr_err("%s: access wasn't enabled for %s\n", __func__, 178 ccu->name); 179 return; 180 } 181 182 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD); 183 ccu->write_enabled = false; 184 } 185 186 /* 187 * Poll a register in a CCU's address space, returning when the 188 * specified bit in that register's value is set (or clear). Delay 189 * a microsecond after each read of the register. Returns true if 190 * successful, or false if we gave up trying. 191 * 192 * Caller must ensure the CCU lock is held. 193 */ 194 static inline bool 195 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want) 196 { 197 unsigned int tries; 198 u32 bit_mask = 1 << bit; 199 200 for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) { 201 u32 val; 202 bool bit_val; 203 204 val = __ccu_read(ccu, reg_offset); 205 bit_val = (val & bit_mask) != 0; 206 if (bit_val == want) 207 return true; 208 udelay(1); 209 } 210 return false; 211 } 212 213 /* Gate operations */ 214 215 /* Determine whether a clock is gated. CCU lock must be held. */ 216 static bool 217 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) 218 { 219 u32 bit_mask; 220 u32 reg_val; 221 222 /* If there is no gate we can assume it's enabled. */ 223 if (!gate_exists(gate)) 224 return true; 225 226 bit_mask = 1 << gate->status_bit; 227 reg_val = __ccu_read(ccu, gate->offset); 228 229 return (reg_val & bit_mask) != 0; 230 } 231 232 /* Determine whether a clock is gated. */ 233 static bool 234 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) 235 { 236 long flags; 237 bool ret; 238 239 /* Avoid taking the lock if we can */ 240 if (!gate_exists(gate)) 241 return true; 242 243 flags = ccu_lock(ccu); 244 ret = __is_clk_gate_enabled(ccu, gate); 245 ccu_unlock(ccu, flags); 246 247 return ret; 248 } 249 250 /* 251 * Commit our desired gate state to the hardware. 252 * Returns true if successful, false otherwise. 253 */ 254 static bool 255 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate) 256 { 257 u32 reg_val; 258 u32 mask; 259 bool enabled = false; 260 261 BUG_ON(!gate_exists(gate)); 262 if (!gate_is_sw_controllable(gate)) 263 return true; /* Nothing we can change */ 264 265 reg_val = __ccu_read(ccu, gate->offset); 266 267 /* For a hardware/software gate, set which is in control */ 268 if (gate_is_hw_controllable(gate)) { 269 mask = (u32)1 << gate->hw_sw_sel_bit; 270 if (gate_is_sw_managed(gate)) 271 reg_val |= mask; 272 else 273 reg_val &= ~mask; 274 } 275 276 /* 277 * If software is in control, enable or disable the gate. 278 * If hardware is, clear the enabled bit for good measure. 279 * If a software controlled gate can't be disabled, we're 280 * required to write a 0 into the enable bit (but the gate 281 * will be enabled). 282 */ 283 mask = (u32)1 << gate->en_bit; 284 if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) && 285 !gate_is_no_disable(gate)) 286 reg_val |= mask; 287 else 288 reg_val &= ~mask; 289 290 __ccu_write(ccu, gate->offset, reg_val); 291 292 /* For a hardware controlled gate, we're done */ 293 if (!gate_is_sw_managed(gate)) 294 return true; 295 296 /* Otherwise wait for the gate to be in desired state */ 297 return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled); 298 } 299 300 /* 301 * Initialize a gate. Our desired state (hardware/software select, 302 * and if software, its enable state) is committed to hardware 303 * without the usual checks to see if it's already set up that way. 304 * Returns true if successful, false otherwise. 305 */ 306 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate) 307 { 308 if (!gate_exists(gate)) 309 return true; 310 return __gate_commit(ccu, gate); 311 } 312 313 /* 314 * Set a gate to enabled or disabled state. Does nothing if the 315 * gate is not currently under software control, or if it is already 316 * in the requested state. Returns true if successful, false 317 * otherwise. CCU lock must be held. 318 */ 319 static bool 320 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable) 321 { 322 bool ret; 323 324 if (!gate_exists(gate) || !gate_is_sw_managed(gate)) 325 return true; /* Nothing to do */ 326 327 if (!enable && gate_is_no_disable(gate)) { 328 pr_warn("%s: invalid gate disable request (ignoring)\n", 329 __func__); 330 return true; 331 } 332 333 if (enable == gate_is_enabled(gate)) 334 return true; /* No change */ 335 336 gate_flip_enabled(gate); 337 ret = __gate_commit(ccu, gate); 338 if (!ret) 339 gate_flip_enabled(gate); /* Revert the change */ 340 341 return ret; 342 } 343 344 /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */ 345 static int clk_gate(struct ccu_data *ccu, const char *name, 346 struct bcm_clk_gate *gate, bool enable) 347 { 348 unsigned long flags; 349 bool success; 350 351 /* 352 * Avoid taking the lock if we can. We quietly ignore 353 * requests to change state that don't make sense. 354 */ 355 if (!gate_exists(gate) || !gate_is_sw_managed(gate)) 356 return 0; 357 if (!enable && gate_is_no_disable(gate)) 358 return 0; 359 360 flags = ccu_lock(ccu); 361 __ccu_write_enable(ccu); 362 363 success = __clk_gate(ccu, gate, enable); 364 365 __ccu_write_disable(ccu); 366 ccu_unlock(ccu, flags); 367 368 if (success) 369 return 0; 370 371 pr_err("%s: failed to %s gate for %s\n", __func__, 372 enable ? "enable" : "disable", name); 373 374 return -EIO; 375 } 376 377 /* Trigger operations */ 378 379 /* 380 * Caller must ensure CCU lock is held and access is enabled. 381 * Returns true if successful, false otherwise. 382 */ 383 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig) 384 { 385 /* Trigger the clock and wait for it to finish */ 386 __ccu_write(ccu, trig->offset, 1 << trig->bit); 387 388 return __ccu_wait_bit(ccu, trig->offset, trig->bit, false); 389 } 390 391 /* Divider operations */ 392 393 /* Read a divider value and return the scaled divisor it represents. */ 394 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div) 395 { 396 unsigned long flags; 397 u32 reg_val; 398 u32 reg_div; 399 400 if (divider_is_fixed(div)) 401 return (u64)div->fixed; 402 403 flags = ccu_lock(ccu); 404 reg_val = __ccu_read(ccu, div->offset); 405 ccu_unlock(ccu, flags); 406 407 /* Extract the full divider field from the register value */ 408 reg_div = bitfield_extract(reg_val, div->shift, div->width); 409 410 /* Return the scaled divisor value it represents */ 411 return scaled_div_value(div, reg_div); 412 } 413 414 /* 415 * Convert a divider's scaled divisor value into its recorded form 416 * and commit it into the hardware divider register. 417 * 418 * Returns 0 on success. Returns -EINVAL for invalid arguments. 419 * Returns -ENXIO if gating failed, and -EIO if a trigger failed. 420 */ 421 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, 422 struct bcm_clk_div *div, struct bcm_clk_trig *trig) 423 { 424 bool enabled; 425 u32 reg_div; 426 u32 reg_val; 427 int ret = 0; 428 429 BUG_ON(divider_is_fixed(div)); 430 431 /* 432 * If we're just initializing the divider, and no initial 433 * state was defined in the device tree, we just find out 434 * what its current value is rather than updating it. 435 */ 436 if (div->scaled_div == BAD_SCALED_DIV_VALUE) { 437 reg_val = __ccu_read(ccu, div->offset); 438 reg_div = bitfield_extract(reg_val, div->shift, div->width); 439 div->scaled_div = scaled_div_value(div, reg_div); 440 441 return 0; 442 } 443 444 /* Convert the scaled divisor to the value we need to record */ 445 reg_div = divider(div, div->scaled_div); 446 447 /* Clock needs to be enabled before changing the rate */ 448 enabled = __is_clk_gate_enabled(ccu, gate); 449 if (!enabled && !__clk_gate(ccu, gate, true)) { 450 ret = -ENXIO; 451 goto out; 452 } 453 454 /* Replace the divider value and record the result */ 455 reg_val = __ccu_read(ccu, div->offset); 456 reg_val = bitfield_replace(reg_val, div->shift, div->width, reg_div); 457 __ccu_write(ccu, div->offset, reg_val); 458 459 /* If the trigger fails we still want to disable the gate */ 460 if (!__clk_trigger(ccu, trig)) 461 ret = -EIO; 462 463 /* Disable the clock again if it was disabled to begin with */ 464 if (!enabled && !__clk_gate(ccu, gate, false)) 465 ret = ret ? ret : -ENXIO; /* return first error */ 466 out: 467 return ret; 468 } 469 470 /* 471 * Initialize a divider by committing our desired state to hardware 472 * without the usual checks to see if it's already set up that way. 473 * Returns true if successful, false otherwise. 474 */ 475 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, 476 struct bcm_clk_div *div, struct bcm_clk_trig *trig) 477 { 478 if (!divider_exists(div) || divider_is_fixed(div)) 479 return true; 480 return !__div_commit(ccu, gate, div, trig); 481 } 482 483 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, 484 struct bcm_clk_div *div, struct bcm_clk_trig *trig, 485 u64 scaled_div) 486 { 487 unsigned long flags; 488 u64 previous; 489 int ret; 490 491 BUG_ON(divider_is_fixed(div)); 492 493 previous = div->scaled_div; 494 if (previous == scaled_div) 495 return 0; /* No change */ 496 497 div->scaled_div = scaled_div; 498 499 flags = ccu_lock(ccu); 500 __ccu_write_enable(ccu); 501 502 ret = __div_commit(ccu, gate, div, trig); 503 504 __ccu_write_disable(ccu); 505 ccu_unlock(ccu, flags); 506 507 if (ret) 508 div->scaled_div = previous; /* Revert the change */ 509 510 return ret; 511 512 } 513 514 /* Common clock rate helpers */ 515 516 /* 517 * Implement the common clock framework recalc_rate method, taking 518 * into account a divider and an optional pre-divider. The 519 * pre-divider register pointer may be NULL. 520 */ 521 static unsigned long clk_recalc_rate(struct ccu_data *ccu, 522 struct bcm_clk_div *div, struct bcm_clk_div *pre_div, 523 unsigned long parent_rate) 524 { 525 u64 scaled_parent_rate; 526 u64 scaled_div; 527 u64 result; 528 529 if (!divider_exists(div)) 530 return parent_rate; 531 532 if (parent_rate > (unsigned long)LONG_MAX) 533 return 0; /* actually this would be a caller bug */ 534 535 /* 536 * If there is a pre-divider, divide the scaled parent rate 537 * by the pre-divider value first. In this case--to improve 538 * accuracy--scale the parent rate by *both* the pre-divider 539 * value and the divider before actually computing the 540 * result of the pre-divider. 541 * 542 * If there's only one divider, just scale the parent rate. 543 */ 544 if (pre_div && divider_exists(pre_div)) { 545 u64 scaled_rate; 546 547 scaled_rate = scale_rate(pre_div, parent_rate); 548 scaled_rate = scale_rate(div, scaled_rate); 549 scaled_div = divider_read_scaled(ccu, pre_div); 550 scaled_parent_rate = do_div_round_closest(scaled_rate, 551 scaled_div); 552 } else { 553 scaled_parent_rate = scale_rate(div, parent_rate); 554 } 555 556 /* 557 * Get the scaled divisor value, and divide the scaled 558 * parent rate by that to determine this clock's resulting 559 * rate. 560 */ 561 scaled_div = divider_read_scaled(ccu, div); 562 result = do_div_round_closest(scaled_parent_rate, scaled_div); 563 564 return (unsigned long)result; 565 } 566 567 /* 568 * Compute the output rate produced when a given parent rate is fed 569 * into two dividers. The pre-divider can be NULL, and even if it's 570 * non-null it may be nonexistent. It's also OK for the divider to 571 * be nonexistent, and in that case the pre-divider is also ignored. 572 * 573 * If scaled_div is non-null, it is used to return the scaled divisor 574 * value used by the (downstream) divider to produce that rate. 575 */ 576 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div, 577 struct bcm_clk_div *pre_div, 578 unsigned long rate, unsigned long parent_rate, 579 u64 *scaled_div) 580 { 581 u64 scaled_parent_rate; 582 u64 min_scaled_div; 583 u64 max_scaled_div; 584 u64 best_scaled_div; 585 u64 result; 586 587 BUG_ON(!divider_exists(div)); 588 BUG_ON(!rate); 589 BUG_ON(parent_rate > (u64)LONG_MAX); 590 591 /* 592 * If there is a pre-divider, divide the scaled parent rate 593 * by the pre-divider value first. In this case--to improve 594 * accuracy--scale the parent rate by *both* the pre-divider 595 * value and the divider before actually computing the 596 * result of the pre-divider. 597 * 598 * If there's only one divider, just scale the parent rate. 599 * 600 * For simplicity we treat the pre-divider as fixed (for now). 601 */ 602 if (divider_exists(pre_div)) { 603 u64 scaled_rate; 604 u64 scaled_pre_div; 605 606 scaled_rate = scale_rate(pre_div, parent_rate); 607 scaled_rate = scale_rate(div, scaled_rate); 608 scaled_pre_div = divider_read_scaled(ccu, pre_div); 609 scaled_parent_rate = do_div_round_closest(scaled_rate, 610 scaled_pre_div); 611 } else { 612 scaled_parent_rate = scale_rate(div, parent_rate); 613 } 614 615 /* 616 * Compute the best possible divider and ensure it is in 617 * range. A fixed divider can't be changed, so just report 618 * the best we can do. 619 */ 620 if (!divider_is_fixed(div)) { 621 best_scaled_div = do_div_round_closest(scaled_parent_rate, 622 rate); 623 min_scaled_div = scaled_div_min(div); 624 max_scaled_div = scaled_div_max(div); 625 if (best_scaled_div > max_scaled_div) 626 best_scaled_div = max_scaled_div; 627 else if (best_scaled_div < min_scaled_div) 628 best_scaled_div = min_scaled_div; 629 } else { 630 best_scaled_div = divider_read_scaled(ccu, div); 631 } 632 633 /* OK, figure out the resulting rate */ 634 result = do_div_round_closest(scaled_parent_rate, best_scaled_div); 635 636 if (scaled_div) 637 *scaled_div = best_scaled_div; 638 639 return (long)result; 640 } 641 642 /* Common clock parent helpers */ 643 644 /* 645 * For a given parent selector (register field) value, find the 646 * index into a selector's parent_sel array that contains it. 647 * Returns the index, or BAD_CLK_INDEX if it's not found. 648 */ 649 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel) 650 { 651 u8 i; 652 653 BUG_ON(sel->parent_count > (u32)U8_MAX); 654 for (i = 0; i < sel->parent_count; i++) 655 if (sel->parent_sel[i] == parent_sel) 656 return i; 657 return BAD_CLK_INDEX; 658 } 659 660 /* 661 * Fetch the current value of the selector, and translate that into 662 * its corresponding index in the parent array we registered with 663 * the clock framework. 664 * 665 * Returns parent array index that corresponds with the value found, 666 * or BAD_CLK_INDEX if the found value is out of range. 667 */ 668 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel) 669 { 670 unsigned long flags; 671 u32 reg_val; 672 u32 parent_sel; 673 u8 index; 674 675 /* If there's no selector, there's only one parent */ 676 if (!selector_exists(sel)) 677 return 0; 678 679 /* Get the value in the selector register */ 680 flags = ccu_lock(ccu); 681 reg_val = __ccu_read(ccu, sel->offset); 682 ccu_unlock(ccu, flags); 683 684 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); 685 686 /* Look up that selector's parent array index and return it */ 687 index = parent_index(sel, parent_sel); 688 if (index == BAD_CLK_INDEX) 689 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n", 690 __func__, parent_sel, ccu->name, sel->offset); 691 692 return index; 693 } 694 695 /* 696 * Commit our desired selector value to the hardware. 697 * 698 * Returns 0 on success. Returns -EINVAL for invalid arguments. 699 * Returns -ENXIO if gating failed, and -EIO if a trigger failed. 700 */ 701 static int 702 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, 703 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) 704 { 705 u32 parent_sel; 706 u32 reg_val; 707 bool enabled; 708 int ret = 0; 709 710 BUG_ON(!selector_exists(sel)); 711 712 /* 713 * If we're just initializing the selector, and no initial 714 * state was defined in the device tree, we just find out 715 * what its current value is rather than updating it. 716 */ 717 if (sel->clk_index == BAD_CLK_INDEX) { 718 u8 index; 719 720 reg_val = __ccu_read(ccu, sel->offset); 721 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); 722 index = parent_index(sel, parent_sel); 723 if (index == BAD_CLK_INDEX) 724 return -EINVAL; 725 sel->clk_index = index; 726 727 return 0; 728 } 729 730 BUG_ON((u32)sel->clk_index >= sel->parent_count); 731 parent_sel = sel->parent_sel[sel->clk_index]; 732 733 /* Clock needs to be enabled before changing the parent */ 734 enabled = __is_clk_gate_enabled(ccu, gate); 735 if (!enabled && !__clk_gate(ccu, gate, true)) 736 return -ENXIO; 737 738 /* Replace the selector value and record the result */ 739 reg_val = __ccu_read(ccu, sel->offset); 740 reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel); 741 __ccu_write(ccu, sel->offset, reg_val); 742 743 /* If the trigger fails we still want to disable the gate */ 744 if (!__clk_trigger(ccu, trig)) 745 ret = -EIO; 746 747 /* Disable the clock again if it was disabled to begin with */ 748 if (!enabled && !__clk_gate(ccu, gate, false)) 749 ret = ret ? ret : -ENXIO; /* return first error */ 750 751 return ret; 752 } 753 754 /* 755 * Initialize a selector by committing our desired state to hardware 756 * without the usual checks to see if it's already set up that way. 757 * Returns true if successful, false otherwise. 758 */ 759 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, 760 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) 761 { 762 if (!selector_exists(sel)) 763 return true; 764 return !__sel_commit(ccu, gate, sel, trig); 765 } 766 767 /* 768 * Write a new value into a selector register to switch to a 769 * different parent clock. Returns 0 on success, or an error code 770 * (from __sel_commit()) otherwise. 771 */ 772 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, 773 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig, 774 u8 index) 775 { 776 unsigned long flags; 777 u8 previous; 778 int ret; 779 780 previous = sel->clk_index; 781 if (previous == index) 782 return 0; /* No change */ 783 784 sel->clk_index = index; 785 786 flags = ccu_lock(ccu); 787 __ccu_write_enable(ccu); 788 789 ret = __sel_commit(ccu, gate, sel, trig); 790 791 __ccu_write_disable(ccu); 792 ccu_unlock(ccu, flags); 793 794 if (ret) 795 sel->clk_index = previous; /* Revert the change */ 796 797 return ret; 798 } 799 800 /* Clock operations */ 801 802 static int kona_peri_clk_enable(struct clk_hw *hw) 803 { 804 struct kona_clk *bcm_clk = to_kona_clk(hw); 805 struct bcm_clk_gate *gate = &bcm_clk->peri->gate; 806 807 return clk_gate(bcm_clk->ccu, bcm_clk->name, gate, true); 808 } 809 810 static void kona_peri_clk_disable(struct clk_hw *hw) 811 { 812 struct kona_clk *bcm_clk = to_kona_clk(hw); 813 struct bcm_clk_gate *gate = &bcm_clk->peri->gate; 814 815 (void)clk_gate(bcm_clk->ccu, bcm_clk->name, gate, false); 816 } 817 818 static int kona_peri_clk_is_enabled(struct clk_hw *hw) 819 { 820 struct kona_clk *bcm_clk = to_kona_clk(hw); 821 struct bcm_clk_gate *gate = &bcm_clk->peri->gate; 822 823 return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0; 824 } 825 826 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw, 827 unsigned long parent_rate) 828 { 829 struct kona_clk *bcm_clk = to_kona_clk(hw); 830 struct peri_clk_data *data = bcm_clk->peri; 831 832 return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div, 833 parent_rate); 834 } 835 836 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate, 837 unsigned long *parent_rate) 838 { 839 struct kona_clk *bcm_clk = to_kona_clk(hw); 840 struct bcm_clk_div *div = &bcm_clk->peri->div; 841 842 if (!divider_exists(div)) 843 return __clk_get_rate(hw->clk); 844 845 /* Quietly avoid a zero rate */ 846 return round_rate(bcm_clk->ccu, div, &bcm_clk->peri->pre_div, 847 rate ? rate : 1, *parent_rate, NULL); 848 } 849 850 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index) 851 { 852 struct kona_clk *bcm_clk = to_kona_clk(hw); 853 struct peri_clk_data *data = bcm_clk->peri; 854 struct bcm_clk_sel *sel = &data->sel; 855 struct bcm_clk_trig *trig; 856 int ret; 857 858 BUG_ON(index >= sel->parent_count); 859 860 /* If there's only one parent we don't require a selector */ 861 if (!selector_exists(sel)) 862 return 0; 863 864 /* 865 * The regular trigger is used by default, but if there's a 866 * pre-trigger we want to use that instead. 867 */ 868 trig = trigger_exists(&data->pre_trig) ? &data->pre_trig 869 : &data->trig; 870 871 ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index); 872 if (ret == -ENXIO) { 873 pr_err("%s: gating failure for %s\n", __func__, bcm_clk->name); 874 ret = -EIO; /* Don't proliferate weird errors */ 875 } else if (ret == -EIO) { 876 pr_err("%s: %strigger failed for %s\n", __func__, 877 trig == &data->pre_trig ? "pre-" : "", 878 bcm_clk->name); 879 } 880 881 return ret; 882 } 883 884 static u8 kona_peri_clk_get_parent(struct clk_hw *hw) 885 { 886 struct kona_clk *bcm_clk = to_kona_clk(hw); 887 struct peri_clk_data *data = bcm_clk->peri; 888 u8 index; 889 890 index = selector_read_index(bcm_clk->ccu, &data->sel); 891 892 /* Not all callers would handle an out-of-range value gracefully */ 893 return index == BAD_CLK_INDEX ? 0 : index; 894 } 895 896 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate, 897 unsigned long parent_rate) 898 { 899 struct kona_clk *bcm_clk = to_kona_clk(hw); 900 struct peri_clk_data *data = bcm_clk->peri; 901 struct bcm_clk_div *div = &data->div; 902 u64 scaled_div = 0; 903 int ret; 904 905 if (parent_rate > (unsigned long)LONG_MAX) 906 return -EINVAL; 907 908 if (rate == __clk_get_rate(hw->clk)) 909 return 0; 910 911 if (!divider_exists(div)) 912 return rate == parent_rate ? 0 : -EINVAL; 913 914 /* 915 * A fixed divider can't be changed. (Nor can a fixed 916 * pre-divider be, but for now we never actually try to 917 * change that.) Tolerate a request for a no-op change. 918 */ 919 if (divider_is_fixed(&data->div)) 920 return rate == parent_rate ? 0 : -EINVAL; 921 922 /* 923 * Get the scaled divisor value needed to achieve a clock 924 * rate as close as possible to what was requested, given 925 * the parent clock rate supplied. 926 */ 927 (void)round_rate(bcm_clk->ccu, div, &data->pre_div, 928 rate ? rate : 1, parent_rate, &scaled_div); 929 930 /* 931 * We aren't updating any pre-divider at this point, so 932 * we'll use the regular trigger. 933 */ 934 ret = divider_write(bcm_clk->ccu, &data->gate, &data->div, 935 &data->trig, scaled_div); 936 if (ret == -ENXIO) { 937 pr_err("%s: gating failure for %s\n", __func__, bcm_clk->name); 938 ret = -EIO; /* Don't proliferate weird errors */ 939 } else if (ret == -EIO) { 940 pr_err("%s: trigger failed for %s\n", __func__, bcm_clk->name); 941 } 942 943 return ret; 944 } 945 946 struct clk_ops kona_peri_clk_ops = { 947 .enable = kona_peri_clk_enable, 948 .disable = kona_peri_clk_disable, 949 .is_enabled = kona_peri_clk_is_enabled, 950 .recalc_rate = kona_peri_clk_recalc_rate, 951 .round_rate = kona_peri_clk_round_rate, 952 .set_parent = kona_peri_clk_set_parent, 953 .get_parent = kona_peri_clk_get_parent, 954 .set_rate = kona_peri_clk_set_rate, 955 }; 956 957 /* Put a peripheral clock into its initial state */ 958 static bool __peri_clk_init(struct kona_clk *bcm_clk) 959 { 960 struct ccu_data *ccu = bcm_clk->ccu; 961 struct peri_clk_data *peri = bcm_clk->peri; 962 const char *name = bcm_clk->name; 963 struct bcm_clk_trig *trig; 964 965 BUG_ON(bcm_clk->type != bcm_clk_peri); 966 967 if (!gate_init(ccu, &peri->gate)) { 968 pr_err("%s: error initializing gate for %s\n", __func__, name); 969 return false; 970 } 971 if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) { 972 pr_err("%s: error initializing divider for %s\n", __func__, 973 name); 974 return false; 975 } 976 977 /* 978 * For the pre-divider and selector, the pre-trigger is used 979 * if it's present, otherwise we just use the regular trigger. 980 */ 981 trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig 982 : &peri->trig; 983 984 if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) { 985 pr_err("%s: error initializing pre-divider for %s\n", __func__, 986 name); 987 return false; 988 } 989 990 if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) { 991 pr_err("%s: error initializing selector for %s\n", __func__, 992 name); 993 return false; 994 } 995 996 return true; 997 } 998 999 static bool __kona_clk_init(struct kona_clk *bcm_clk) 1000 { 1001 switch (bcm_clk->type) { 1002 case bcm_clk_peri: 1003 return __peri_clk_init(bcm_clk); 1004 default: 1005 BUG(); 1006 } 1007 return -EINVAL; 1008 } 1009 1010 /* Set a CCU and all its clocks into their desired initial state */ 1011 bool __init kona_ccu_init(struct ccu_data *ccu) 1012 { 1013 unsigned long flags; 1014 unsigned int which; 1015 struct clk **clks = ccu->data.clks; 1016 bool success = true; 1017 1018 flags = ccu_lock(ccu); 1019 __ccu_write_enable(ccu); 1020 1021 for (which = 0; which < ccu->data.clk_num; which++) { 1022 struct kona_clk *bcm_clk; 1023 1024 if (!clks[which]) 1025 continue; 1026 bcm_clk = to_kona_clk(__clk_get_hw(clks[which])); 1027 success &= __kona_clk_init(bcm_clk); 1028 } 1029 1030 __ccu_write_disable(ccu); 1031 ccu_unlock(ccu, flags); 1032 return success; 1033 } 1034