xref: /openbmc/linux/drivers/clk/bcm/clk-kona.c (revision 92a2c6b2)
1 /*
2  * Copyright (C) 2013 Broadcom Corporation
3  * Copyright 2013 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include "clk-kona.h"
16 
17 #include <linux/delay.h>
18 
19 /*
20  * "Policies" affect the frequencies of bus clocks provided by a
21  * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
22  * "Normal", and "Turbo".)  A lower policy number has lower power
23  * consumption, and policy 2 is the default.
24  */
25 #define CCU_POLICY_COUNT	4
26 
27 #define CCU_ACCESS_PASSWORD      0xA5A500
28 #define CLK_GATE_DELAY_LOOP      2000
29 
30 /* Bitfield operations */
31 
32 /* Produces a mask of set bits covering a range of a 32-bit value */
33 static inline u32 bitfield_mask(u32 shift, u32 width)
34 {
35 	return ((1 << width) - 1) << shift;
36 }
37 
38 /* Extract the value of a bitfield found within a given register value */
39 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
40 {
41 	return (reg_val & bitfield_mask(shift, width)) >> shift;
42 }
43 
44 /* Replace the value of a bitfield found within a given register value */
45 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
46 {
47 	u32 mask = bitfield_mask(shift, width);
48 
49 	return (reg_val & ~mask) | (val << shift);
50 }
51 
52 /* Divider and scaling helpers */
53 
54 /*
55  * Implement DIV_ROUND_CLOSEST() for 64-bit dividend and both values
56  * unsigned.  Note that unlike do_div(), the remainder is discarded
57  * and the return value is the quotient (not the remainder).
58  */
59 u64 do_div_round_closest(u64 dividend, unsigned long divisor)
60 {
61 	u64 result;
62 
63 	result = dividend + ((u64)divisor >> 1);
64 	(void)do_div(result, divisor);
65 
66 	return result;
67 }
68 
69 /* Convert a divider into the scaled divisor value it represents. */
70 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
71 {
72 	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
73 }
74 
75 /*
76  * Build a scaled divider value as close as possible to the
77  * given whole part (div_value) and fractional part (expressed
78  * in billionths).
79  */
80 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
81 {
82 	u64 combined;
83 
84 	BUG_ON(!div_value);
85 	BUG_ON(billionths >= BILLION);
86 
87 	combined = (u64)div_value * BILLION + billionths;
88 	combined <<= div->u.s.frac_width;
89 
90 	return do_div_round_closest(combined, BILLION);
91 }
92 
93 /* The scaled minimum divisor representable by a divider */
94 static inline u64
95 scaled_div_min(struct bcm_clk_div *div)
96 {
97 	if (divider_is_fixed(div))
98 		return (u64)div->u.fixed;
99 
100 	return scaled_div_value(div, 0);
101 }
102 
103 /* The scaled maximum divisor representable by a divider */
104 u64 scaled_div_max(struct bcm_clk_div *div)
105 {
106 	u32 reg_div;
107 
108 	if (divider_is_fixed(div))
109 		return (u64)div->u.fixed;
110 
111 	reg_div = ((u32)1 << div->u.s.width) - 1;
112 
113 	return scaled_div_value(div, reg_div);
114 }
115 
116 /*
117  * Convert a scaled divisor into its divider representation as
118  * stored in a divider register field.
119  */
120 static inline u32
121 divider(struct bcm_clk_div *div, u64 scaled_div)
122 {
123 	BUG_ON(scaled_div < scaled_div_min(div));
124 	BUG_ON(scaled_div > scaled_div_max(div));
125 
126 	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
127 }
128 
129 /* Return a rate scaled for use when dividing by a scaled divisor. */
130 static inline u64
131 scale_rate(struct bcm_clk_div *div, u32 rate)
132 {
133 	if (divider_is_fixed(div))
134 		return (u64)rate;
135 
136 	return (u64)rate << div->u.s.frac_width;
137 }
138 
139 /* CCU access */
140 
141 /* Read a 32-bit register value from a CCU's address space. */
142 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
143 {
144 	return readl(ccu->base + reg_offset);
145 }
146 
147 /* Write a 32-bit register value into a CCU's address space. */
148 static inline void
149 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
150 {
151 	writel(reg_val, ccu->base + reg_offset);
152 }
153 
154 static inline unsigned long ccu_lock(struct ccu_data *ccu)
155 {
156 	unsigned long flags;
157 
158 	spin_lock_irqsave(&ccu->lock, flags);
159 
160 	return flags;
161 }
162 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
163 {
164 	spin_unlock_irqrestore(&ccu->lock, flags);
165 }
166 
167 /*
168  * Enable/disable write access to CCU protected registers.  The
169  * WR_ACCESS register for all CCUs is at offset 0.
170  */
171 static inline void __ccu_write_enable(struct ccu_data *ccu)
172 {
173 	if (ccu->write_enabled) {
174 		pr_err("%s: access already enabled for %s\n", __func__,
175 			ccu->name);
176 		return;
177 	}
178 	ccu->write_enabled = true;
179 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
180 }
181 
182 static inline void __ccu_write_disable(struct ccu_data *ccu)
183 {
184 	if (!ccu->write_enabled) {
185 		pr_err("%s: access wasn't enabled for %s\n", __func__,
186 			ccu->name);
187 		return;
188 	}
189 
190 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
191 	ccu->write_enabled = false;
192 }
193 
194 /*
195  * Poll a register in a CCU's address space, returning when the
196  * specified bit in that register's value is set (or clear).  Delay
197  * a microsecond after each read of the register.  Returns true if
198  * successful, or false if we gave up trying.
199  *
200  * Caller must ensure the CCU lock is held.
201  */
202 static inline bool
203 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
204 {
205 	unsigned int tries;
206 	u32 bit_mask = 1 << bit;
207 
208 	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
209 		u32 val;
210 		bool bit_val;
211 
212 		val = __ccu_read(ccu, reg_offset);
213 		bit_val = (val & bit_mask) != 0;
214 		if (bit_val == want)
215 			return true;
216 		udelay(1);
217 	}
218 	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
219 		ccu->name, reg_offset, bit, want ? "set" : "clear");
220 
221 	return false;
222 }
223 
224 /* Policy operations */
225 
226 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
227 {
228 	struct bcm_policy_ctl *control = &ccu->policy.control;
229 	u32 offset;
230 	u32 go_bit;
231 	u32 mask;
232 	bool ret;
233 
234 	/* If we don't need to control policy for this CCU, we're done. */
235 	if (!policy_ctl_exists(control))
236 		return true;
237 
238 	offset = control->offset;
239 	go_bit = control->go_bit;
240 
241 	/* Ensure we're not busy before we start */
242 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
243 	if (!ret) {
244 		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
245 			__func__, ccu->name);
246 		return false;
247 	}
248 
249 	/*
250 	 * If it's a synchronous request, we'll wait for the voltage
251 	 * and frequency of the active load to stabilize before
252 	 * returning.  To do this we select the active load by
253 	 * setting the ATL bit.
254 	 *
255 	 * An asynchronous request instead ramps the voltage in the
256 	 * background, and when that process stabilizes, the target
257 	 * load is copied to the active load and the CCU frequency
258 	 * is switched.  We do this by selecting the target load
259 	 * (ATL bit clear) and setting the request auto-copy (AC bit
260 	 * set).
261 	 *
262 	 * Note, we do NOT read-modify-write this register.
263 	 */
264 	mask = (u32)1 << go_bit;
265 	if (sync)
266 		mask |= 1 << control->atl_bit;
267 	else
268 		mask |= 1 << control->ac_bit;
269 	__ccu_write(ccu, offset, mask);
270 
271 	/* Wait for indication that operation is complete. */
272 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
273 	if (!ret)
274 		pr_err("%s: ccu %s policy engine never started\n",
275 			__func__, ccu->name);
276 
277 	return ret;
278 }
279 
280 static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
281 {
282 	struct bcm_lvm_en *enable = &ccu->policy.enable;
283 	u32 offset;
284 	u32 enable_bit;
285 	bool ret;
286 
287 	/* If we don't need to control policy for this CCU, we're done. */
288 	if (!policy_lvm_en_exists(enable))
289 		return true;
290 
291 	/* Ensure we're not busy before we start */
292 	offset = enable->offset;
293 	enable_bit = enable->bit;
294 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
295 	if (!ret) {
296 		pr_err("%s: ccu %s policy engine already stopped\n",
297 			__func__, ccu->name);
298 		return false;
299 	}
300 
301 	/* Now set the bit to stop the engine (NO read-modify-write) */
302 	__ccu_write(ccu, offset, (u32)1 << enable_bit);
303 
304 	/* Wait for indication that it has stopped. */
305 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
306 	if (!ret)
307 		pr_err("%s: ccu %s policy engine never stopped\n",
308 			__func__, ccu->name);
309 
310 	return ret;
311 }
312 
313 /*
314  * A CCU has four operating conditions ("policies"), and some clocks
315  * can be disabled or enabled based on which policy is currently in
316  * effect.  Such clocks have a bit in a "policy mask" register for
317  * each policy indicating whether the clock is enabled for that
318  * policy or not.  The bit position for a clock is the same for all
319  * four registers, and the 32-bit registers are at consecutive
320  * addresses.
321  */
322 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
323 {
324 	u32 offset;
325 	u32 mask;
326 	int i;
327 	bool ret;
328 
329 	if (!policy_exists(policy))
330 		return true;
331 
332 	/*
333 	 * We need to stop the CCU policy engine to allow update
334 	 * of our policy bits.
335 	 */
336 	if (!__ccu_policy_engine_stop(ccu)) {
337 		pr_err("%s: unable to stop CCU %s policy engine\n",
338 			__func__, ccu->name);
339 		return false;
340 	}
341 
342 	/*
343 	 * For now, if a clock defines its policy bit we just mark
344 	 * it "enabled" for all four policies.
345 	 */
346 	offset = policy->offset;
347 	mask = (u32)1 << policy->bit;
348 	for (i = 0; i < CCU_POLICY_COUNT; i++) {
349 		u32 reg_val;
350 
351 		reg_val = __ccu_read(ccu, offset);
352 		reg_val |= mask;
353 		__ccu_write(ccu, offset, reg_val);
354 		offset += sizeof(u32);
355 	}
356 
357 	/* We're done updating; fire up the policy engine again. */
358 	ret = __ccu_policy_engine_start(ccu, true);
359 	if (!ret)
360 		pr_err("%s: unable to restart CCU %s policy engine\n",
361 			__func__, ccu->name);
362 
363 	return ret;
364 }
365 
366 /* Gate operations */
367 
368 /* Determine whether a clock is gated.  CCU lock must be held.  */
369 static bool
370 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
371 {
372 	u32 bit_mask;
373 	u32 reg_val;
374 
375 	/* If there is no gate we can assume it's enabled. */
376 	if (!gate_exists(gate))
377 		return true;
378 
379 	bit_mask = 1 << gate->status_bit;
380 	reg_val = __ccu_read(ccu, gate->offset);
381 
382 	return (reg_val & bit_mask) != 0;
383 }
384 
385 /* Determine whether a clock is gated. */
386 static bool
387 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
388 {
389 	long flags;
390 	bool ret;
391 
392 	/* Avoid taking the lock if we can */
393 	if (!gate_exists(gate))
394 		return true;
395 
396 	flags = ccu_lock(ccu);
397 	ret = __is_clk_gate_enabled(ccu, gate);
398 	ccu_unlock(ccu, flags);
399 
400 	return ret;
401 }
402 
403 /*
404  * Commit our desired gate state to the hardware.
405  * Returns true if successful, false otherwise.
406  */
407 static bool
408 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
409 {
410 	u32 reg_val;
411 	u32 mask;
412 	bool enabled = false;
413 
414 	BUG_ON(!gate_exists(gate));
415 	if (!gate_is_sw_controllable(gate))
416 		return true;		/* Nothing we can change */
417 
418 	reg_val = __ccu_read(ccu, gate->offset);
419 
420 	/* For a hardware/software gate, set which is in control */
421 	if (gate_is_hw_controllable(gate)) {
422 		mask = (u32)1 << gate->hw_sw_sel_bit;
423 		if (gate_is_sw_managed(gate))
424 			reg_val |= mask;
425 		else
426 			reg_val &= ~mask;
427 	}
428 
429 	/*
430 	 * If software is in control, enable or disable the gate.
431 	 * If hardware is, clear the enabled bit for good measure.
432 	 * If a software controlled gate can't be disabled, we're
433 	 * required to write a 0 into the enable bit (but the gate
434 	 * will be enabled).
435 	 */
436 	mask = (u32)1 << gate->en_bit;
437 	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
438 			!gate_is_no_disable(gate))
439 		reg_val |= mask;
440 	else
441 		reg_val &= ~mask;
442 
443 	__ccu_write(ccu, gate->offset, reg_val);
444 
445 	/* For a hardware controlled gate, we're done */
446 	if (!gate_is_sw_managed(gate))
447 		return true;
448 
449 	/* Otherwise wait for the gate to be in desired state */
450 	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
451 }
452 
453 /*
454  * Initialize a gate.  Our desired state (hardware/software select,
455  * and if software, its enable state) is committed to hardware
456  * without the usual checks to see if it's already set up that way.
457  * Returns true if successful, false otherwise.
458  */
459 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
460 {
461 	if (!gate_exists(gate))
462 		return true;
463 	return __gate_commit(ccu, gate);
464 }
465 
466 /*
467  * Set a gate to enabled or disabled state.  Does nothing if the
468  * gate is not currently under software control, or if it is already
469  * in the requested state.  Returns true if successful, false
470  * otherwise.  CCU lock must be held.
471  */
472 static bool
473 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
474 {
475 	bool ret;
476 
477 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
478 		return true;	/* Nothing to do */
479 
480 	if (!enable && gate_is_no_disable(gate)) {
481 		pr_warn("%s: invalid gate disable request (ignoring)\n",
482 			__func__);
483 		return true;
484 	}
485 
486 	if (enable == gate_is_enabled(gate))
487 		return true;	/* No change */
488 
489 	gate_flip_enabled(gate);
490 	ret = __gate_commit(ccu, gate);
491 	if (!ret)
492 		gate_flip_enabled(gate);	/* Revert the change */
493 
494 	return ret;
495 }
496 
497 /* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
498 static int clk_gate(struct ccu_data *ccu, const char *name,
499 			struct bcm_clk_gate *gate, bool enable)
500 {
501 	unsigned long flags;
502 	bool success;
503 
504 	/*
505 	 * Avoid taking the lock if we can.  We quietly ignore
506 	 * requests to change state that don't make sense.
507 	 */
508 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
509 		return 0;
510 	if (!enable && gate_is_no_disable(gate))
511 		return 0;
512 
513 	flags = ccu_lock(ccu);
514 	__ccu_write_enable(ccu);
515 
516 	success = __clk_gate(ccu, gate, enable);
517 
518 	__ccu_write_disable(ccu);
519 	ccu_unlock(ccu, flags);
520 
521 	if (success)
522 		return 0;
523 
524 	pr_err("%s: failed to %s gate for %s\n", __func__,
525 		enable ? "enable" : "disable", name);
526 
527 	return -EIO;
528 }
529 
530 /* Hysteresis operations */
531 
532 /*
533  * If a clock gate requires a turn-off delay it will have
534  * "hysteresis" register bits defined.  The first, if set, enables
535  * the delay; and if enabled, the second bit determines whether the
536  * delay is "low" or "high" (1 means high).  For now, if it's
537  * defined for a clock, we set it.
538  */
539 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
540 {
541 	u32 offset;
542 	u32 reg_val;
543 	u32 mask;
544 
545 	if (!hyst_exists(hyst))
546 		return true;
547 
548 	offset = hyst->offset;
549 	mask = (u32)1 << hyst->en_bit;
550 	mask |= (u32)1 << hyst->val_bit;
551 
552 	reg_val = __ccu_read(ccu, offset);
553 	reg_val |= mask;
554 	__ccu_write(ccu, offset, reg_val);
555 
556 	return true;
557 }
558 
559 /* Trigger operations */
560 
561 /*
562  * Caller must ensure CCU lock is held and access is enabled.
563  * Returns true if successful, false otherwise.
564  */
565 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
566 {
567 	/* Trigger the clock and wait for it to finish */
568 	__ccu_write(ccu, trig->offset, 1 << trig->bit);
569 
570 	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
571 }
572 
573 /* Divider operations */
574 
575 /* Read a divider value and return the scaled divisor it represents. */
576 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
577 {
578 	unsigned long flags;
579 	u32 reg_val;
580 	u32 reg_div;
581 
582 	if (divider_is_fixed(div))
583 		return (u64)div->u.fixed;
584 
585 	flags = ccu_lock(ccu);
586 	reg_val = __ccu_read(ccu, div->u.s.offset);
587 	ccu_unlock(ccu, flags);
588 
589 	/* Extract the full divider field from the register value */
590 	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
591 
592 	/* Return the scaled divisor value it represents */
593 	return scaled_div_value(div, reg_div);
594 }
595 
596 /*
597  * Convert a divider's scaled divisor value into its recorded form
598  * and commit it into the hardware divider register.
599  *
600  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
601  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
602  */
603 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
604 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
605 {
606 	bool enabled;
607 	u32 reg_div;
608 	u32 reg_val;
609 	int ret = 0;
610 
611 	BUG_ON(divider_is_fixed(div));
612 
613 	/*
614 	 * If we're just initializing the divider, and no initial
615 	 * state was defined in the device tree, we just find out
616 	 * what its current value is rather than updating it.
617 	 */
618 	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
619 		reg_val = __ccu_read(ccu, div->u.s.offset);
620 		reg_div = bitfield_extract(reg_val, div->u.s.shift,
621 						div->u.s.width);
622 		div->u.s.scaled_div = scaled_div_value(div, reg_div);
623 
624 		return 0;
625 	}
626 
627 	/* Convert the scaled divisor to the value we need to record */
628 	reg_div = divider(div, div->u.s.scaled_div);
629 
630 	/* Clock needs to be enabled before changing the rate */
631 	enabled = __is_clk_gate_enabled(ccu, gate);
632 	if (!enabled && !__clk_gate(ccu, gate, true)) {
633 		ret = -ENXIO;
634 		goto out;
635 	}
636 
637 	/* Replace the divider value and record the result */
638 	reg_val = __ccu_read(ccu, div->u.s.offset);
639 	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
640 					reg_div);
641 	__ccu_write(ccu, div->u.s.offset, reg_val);
642 
643 	/* If the trigger fails we still want to disable the gate */
644 	if (!__clk_trigger(ccu, trig))
645 		ret = -EIO;
646 
647 	/* Disable the clock again if it was disabled to begin with */
648 	if (!enabled && !__clk_gate(ccu, gate, false))
649 		ret = ret ? ret : -ENXIO;	/* return first error */
650 out:
651 	return ret;
652 }
653 
654 /*
655  * Initialize a divider by committing our desired state to hardware
656  * without the usual checks to see if it's already set up that way.
657  * Returns true if successful, false otherwise.
658  */
659 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
660 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
661 {
662 	if (!divider_exists(div) || divider_is_fixed(div))
663 		return true;
664 	return !__div_commit(ccu, gate, div, trig);
665 }
666 
667 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
668 			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
669 			u64 scaled_div)
670 {
671 	unsigned long flags;
672 	u64 previous;
673 	int ret;
674 
675 	BUG_ON(divider_is_fixed(div));
676 
677 	previous = div->u.s.scaled_div;
678 	if (previous == scaled_div)
679 		return 0;	/* No change */
680 
681 	div->u.s.scaled_div = scaled_div;
682 
683 	flags = ccu_lock(ccu);
684 	__ccu_write_enable(ccu);
685 
686 	ret = __div_commit(ccu, gate, div, trig);
687 
688 	__ccu_write_disable(ccu);
689 	ccu_unlock(ccu, flags);
690 
691 	if (ret)
692 		div->u.s.scaled_div = previous;		/* Revert the change */
693 
694 	return ret;
695 
696 }
697 
698 /* Common clock rate helpers */
699 
700 /*
701  * Implement the common clock framework recalc_rate method, taking
702  * into account a divider and an optional pre-divider.  The
703  * pre-divider register pointer may be NULL.
704  */
705 static unsigned long clk_recalc_rate(struct ccu_data *ccu,
706 			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
707 			unsigned long parent_rate)
708 {
709 	u64 scaled_parent_rate;
710 	u64 scaled_div;
711 	u64 result;
712 
713 	if (!divider_exists(div))
714 		return parent_rate;
715 
716 	if (parent_rate > (unsigned long)LONG_MAX)
717 		return 0;	/* actually this would be a caller bug */
718 
719 	/*
720 	 * If there is a pre-divider, divide the scaled parent rate
721 	 * by the pre-divider value first.  In this case--to improve
722 	 * accuracy--scale the parent rate by *both* the pre-divider
723 	 * value and the divider before actually computing the
724 	 * result of the pre-divider.
725 	 *
726 	 * If there's only one divider, just scale the parent rate.
727 	 */
728 	if (pre_div && divider_exists(pre_div)) {
729 		u64 scaled_rate;
730 
731 		scaled_rate = scale_rate(pre_div, parent_rate);
732 		scaled_rate = scale_rate(div, scaled_rate);
733 		scaled_div = divider_read_scaled(ccu, pre_div);
734 		scaled_parent_rate = do_div_round_closest(scaled_rate,
735 							scaled_div);
736 	} else  {
737 		scaled_parent_rate = scale_rate(div, parent_rate);
738 	}
739 
740 	/*
741 	 * Get the scaled divisor value, and divide the scaled
742 	 * parent rate by that to determine this clock's resulting
743 	 * rate.
744 	 */
745 	scaled_div = divider_read_scaled(ccu, div);
746 	result = do_div_round_closest(scaled_parent_rate, scaled_div);
747 
748 	return (unsigned long)result;
749 }
750 
751 /*
752  * Compute the output rate produced when a given parent rate is fed
753  * into two dividers.  The pre-divider can be NULL, and even if it's
754  * non-null it may be nonexistent.  It's also OK for the divider to
755  * be nonexistent, and in that case the pre-divider is also ignored.
756  *
757  * If scaled_div is non-null, it is used to return the scaled divisor
758  * value used by the (downstream) divider to produce that rate.
759  */
760 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
761 				struct bcm_clk_div *pre_div,
762 				unsigned long rate, unsigned long parent_rate,
763 				u64 *scaled_div)
764 {
765 	u64 scaled_parent_rate;
766 	u64 min_scaled_div;
767 	u64 max_scaled_div;
768 	u64 best_scaled_div;
769 	u64 result;
770 
771 	BUG_ON(!divider_exists(div));
772 	BUG_ON(!rate);
773 	BUG_ON(parent_rate > (u64)LONG_MAX);
774 
775 	/*
776 	 * If there is a pre-divider, divide the scaled parent rate
777 	 * by the pre-divider value first.  In this case--to improve
778 	 * accuracy--scale the parent rate by *both* the pre-divider
779 	 * value and the divider before actually computing the
780 	 * result of the pre-divider.
781 	 *
782 	 * If there's only one divider, just scale the parent rate.
783 	 *
784 	 * For simplicity we treat the pre-divider as fixed (for now).
785 	 */
786 	if (divider_exists(pre_div)) {
787 		u64 scaled_rate;
788 		u64 scaled_pre_div;
789 
790 		scaled_rate = scale_rate(pre_div, parent_rate);
791 		scaled_rate = scale_rate(div, scaled_rate);
792 		scaled_pre_div = divider_read_scaled(ccu, pre_div);
793 		scaled_parent_rate = do_div_round_closest(scaled_rate,
794 							scaled_pre_div);
795 	} else {
796 		scaled_parent_rate = scale_rate(div, parent_rate);
797 	}
798 
799 	/*
800 	 * Compute the best possible divider and ensure it is in
801 	 * range.  A fixed divider can't be changed, so just report
802 	 * the best we can do.
803 	 */
804 	if (!divider_is_fixed(div)) {
805 		best_scaled_div = do_div_round_closest(scaled_parent_rate,
806 							rate);
807 		min_scaled_div = scaled_div_min(div);
808 		max_scaled_div = scaled_div_max(div);
809 		if (best_scaled_div > max_scaled_div)
810 			best_scaled_div = max_scaled_div;
811 		else if (best_scaled_div < min_scaled_div)
812 			best_scaled_div = min_scaled_div;
813 	} else {
814 		best_scaled_div = divider_read_scaled(ccu, div);
815 	}
816 
817 	/* OK, figure out the resulting rate */
818 	result = do_div_round_closest(scaled_parent_rate, best_scaled_div);
819 
820 	if (scaled_div)
821 		*scaled_div = best_scaled_div;
822 
823 	return (long)result;
824 }
825 
826 /* Common clock parent helpers */
827 
828 /*
829  * For a given parent selector (register field) value, find the
830  * index into a selector's parent_sel array that contains it.
831  * Returns the index, or BAD_CLK_INDEX if it's not found.
832  */
833 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
834 {
835 	u8 i;
836 
837 	BUG_ON(sel->parent_count > (u32)U8_MAX);
838 	for (i = 0; i < sel->parent_count; i++)
839 		if (sel->parent_sel[i] == parent_sel)
840 			return i;
841 	return BAD_CLK_INDEX;
842 }
843 
844 /*
845  * Fetch the current value of the selector, and translate that into
846  * its corresponding index in the parent array we registered with
847  * the clock framework.
848  *
849  * Returns parent array index that corresponds with the value found,
850  * or BAD_CLK_INDEX if the found value is out of range.
851  */
852 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
853 {
854 	unsigned long flags;
855 	u32 reg_val;
856 	u32 parent_sel;
857 	u8 index;
858 
859 	/* If there's no selector, there's only one parent */
860 	if (!selector_exists(sel))
861 		return 0;
862 
863 	/* Get the value in the selector register */
864 	flags = ccu_lock(ccu);
865 	reg_val = __ccu_read(ccu, sel->offset);
866 	ccu_unlock(ccu, flags);
867 
868 	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
869 
870 	/* Look up that selector's parent array index and return it */
871 	index = parent_index(sel, parent_sel);
872 	if (index == BAD_CLK_INDEX)
873 		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
874 			__func__, parent_sel, ccu->name, sel->offset);
875 
876 	return index;
877 }
878 
879 /*
880  * Commit our desired selector value to the hardware.
881  *
882  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
883  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
884  */
885 static int
886 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
887 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
888 {
889 	u32 parent_sel;
890 	u32 reg_val;
891 	bool enabled;
892 	int ret = 0;
893 
894 	BUG_ON(!selector_exists(sel));
895 
896 	/*
897 	 * If we're just initializing the selector, and no initial
898 	 * state was defined in the device tree, we just find out
899 	 * what its current value is rather than updating it.
900 	 */
901 	if (sel->clk_index == BAD_CLK_INDEX) {
902 		u8 index;
903 
904 		reg_val = __ccu_read(ccu, sel->offset);
905 		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
906 		index = parent_index(sel, parent_sel);
907 		if (index == BAD_CLK_INDEX)
908 			return -EINVAL;
909 		sel->clk_index = index;
910 
911 		return 0;
912 	}
913 
914 	BUG_ON((u32)sel->clk_index >= sel->parent_count);
915 	parent_sel = sel->parent_sel[sel->clk_index];
916 
917 	/* Clock needs to be enabled before changing the parent */
918 	enabled = __is_clk_gate_enabled(ccu, gate);
919 	if (!enabled && !__clk_gate(ccu, gate, true))
920 		return -ENXIO;
921 
922 	/* Replace the selector value and record the result */
923 	reg_val = __ccu_read(ccu, sel->offset);
924 	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
925 	__ccu_write(ccu, sel->offset, reg_val);
926 
927 	/* If the trigger fails we still want to disable the gate */
928 	if (!__clk_trigger(ccu, trig))
929 		ret = -EIO;
930 
931 	/* Disable the clock again if it was disabled to begin with */
932 	if (!enabled && !__clk_gate(ccu, gate, false))
933 		ret = ret ? ret : -ENXIO;	/* return first error */
934 
935 	return ret;
936 }
937 
938 /*
939  * Initialize a selector by committing our desired state to hardware
940  * without the usual checks to see if it's already set up that way.
941  * Returns true if successful, false otherwise.
942  */
943 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
944 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
945 {
946 	if (!selector_exists(sel))
947 		return true;
948 	return !__sel_commit(ccu, gate, sel, trig);
949 }
950 
951 /*
952  * Write a new value into a selector register to switch to a
953  * different parent clock.  Returns 0 on success, or an error code
954  * (from __sel_commit()) otherwise.
955  */
956 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
957 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
958 			u8 index)
959 {
960 	unsigned long flags;
961 	u8 previous;
962 	int ret;
963 
964 	previous = sel->clk_index;
965 	if (previous == index)
966 		return 0;	/* No change */
967 
968 	sel->clk_index = index;
969 
970 	flags = ccu_lock(ccu);
971 	__ccu_write_enable(ccu);
972 
973 	ret = __sel_commit(ccu, gate, sel, trig);
974 
975 	__ccu_write_disable(ccu);
976 	ccu_unlock(ccu, flags);
977 
978 	if (ret)
979 		sel->clk_index = previous;	/* Revert the change */
980 
981 	return ret;
982 }
983 
984 /* Clock operations */
985 
986 static int kona_peri_clk_enable(struct clk_hw *hw)
987 {
988 	struct kona_clk *bcm_clk = to_kona_clk(hw);
989 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
990 
991 	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
992 }
993 
994 static void kona_peri_clk_disable(struct clk_hw *hw)
995 {
996 	struct kona_clk *bcm_clk = to_kona_clk(hw);
997 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
998 
999 	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
1000 }
1001 
1002 static int kona_peri_clk_is_enabled(struct clk_hw *hw)
1003 {
1004 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1005 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
1006 
1007 	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
1008 }
1009 
1010 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
1011 			unsigned long parent_rate)
1012 {
1013 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1014 	struct peri_clk_data *data = bcm_clk->u.peri;
1015 
1016 	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1017 				parent_rate);
1018 }
1019 
1020 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1021 			unsigned long *parent_rate)
1022 {
1023 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1024 	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1025 
1026 	if (!divider_exists(div))
1027 		return __clk_get_rate(hw->clk);
1028 
1029 	/* Quietly avoid a zero rate */
1030 	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1031 				rate ? rate : 1, *parent_rate, NULL);
1032 }
1033 
1034 static long kona_peri_clk_determine_rate(struct clk_hw *hw, unsigned long rate,
1035 		unsigned long min_rate,
1036 		unsigned long max_rate,
1037 		unsigned long *best_parent_rate, struct clk_hw **best_parent)
1038 {
1039 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1040 	struct clk *clk = hw->clk;
1041 	struct clk *current_parent;
1042 	unsigned long parent_rate;
1043 	unsigned long best_delta;
1044 	unsigned long best_rate;
1045 	u32 parent_count;
1046 	u32 which;
1047 
1048 	/*
1049 	 * If there is no other parent to choose, use the current one.
1050 	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1051 	 */
1052 	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1053 	parent_count = (u32)bcm_clk->init_data.num_parents;
1054 	if (parent_count < 2)
1055 		return kona_peri_clk_round_rate(hw, rate, best_parent_rate);
1056 
1057 	/* Unless we can do better, stick with current parent */
1058 	current_parent = clk_get_parent(clk);
1059 	parent_rate = __clk_get_rate(current_parent);
1060 	best_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
1061 	best_delta = abs(best_rate - rate);
1062 
1063 	/* Check whether any other parent clock can produce a better result */
1064 	for (which = 0; which < parent_count; which++) {
1065 		struct clk *parent = clk_get_parent_by_index(clk, which);
1066 		unsigned long delta;
1067 		unsigned long other_rate;
1068 
1069 		BUG_ON(!parent);
1070 		if (parent == current_parent)
1071 			continue;
1072 
1073 		/* We don't support CLK_SET_RATE_PARENT */
1074 		parent_rate = __clk_get_rate(parent);
1075 		other_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
1076 		delta = abs(other_rate - rate);
1077 		if (delta < best_delta) {
1078 			best_delta = delta;
1079 			best_rate = other_rate;
1080 			*best_parent = __clk_get_hw(parent);
1081 			*best_parent_rate = parent_rate;
1082 		}
1083 	}
1084 
1085 	return best_rate;
1086 }
1087 
1088 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1089 {
1090 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1091 	struct peri_clk_data *data = bcm_clk->u.peri;
1092 	struct bcm_clk_sel *sel = &data->sel;
1093 	struct bcm_clk_trig *trig;
1094 	int ret;
1095 
1096 	BUG_ON(index >= sel->parent_count);
1097 
1098 	/* If there's only one parent we don't require a selector */
1099 	if (!selector_exists(sel))
1100 		return 0;
1101 
1102 	/*
1103 	 * The regular trigger is used by default, but if there's a
1104 	 * pre-trigger we want to use that instead.
1105 	 */
1106 	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1107 					       : &data->trig;
1108 
1109 	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1110 	if (ret == -ENXIO) {
1111 		pr_err("%s: gating failure for %s\n", __func__,
1112 			bcm_clk->init_data.name);
1113 		ret = -EIO;	/* Don't proliferate weird errors */
1114 	} else if (ret == -EIO) {
1115 		pr_err("%s: %strigger failed for %s\n", __func__,
1116 			trig == &data->pre_trig ? "pre-" : "",
1117 			bcm_clk->init_data.name);
1118 	}
1119 
1120 	return ret;
1121 }
1122 
1123 static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1124 {
1125 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1126 	struct peri_clk_data *data = bcm_clk->u.peri;
1127 	u8 index;
1128 
1129 	index = selector_read_index(bcm_clk->ccu, &data->sel);
1130 
1131 	/* Not all callers would handle an out-of-range value gracefully */
1132 	return index == BAD_CLK_INDEX ? 0 : index;
1133 }
1134 
1135 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1136 			unsigned long parent_rate)
1137 {
1138 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1139 	struct peri_clk_data *data = bcm_clk->u.peri;
1140 	struct bcm_clk_div *div = &data->div;
1141 	u64 scaled_div = 0;
1142 	int ret;
1143 
1144 	if (parent_rate > (unsigned long)LONG_MAX)
1145 		return -EINVAL;
1146 
1147 	if (rate == __clk_get_rate(hw->clk))
1148 		return 0;
1149 
1150 	if (!divider_exists(div))
1151 		return rate == parent_rate ? 0 : -EINVAL;
1152 
1153 	/*
1154 	 * A fixed divider can't be changed.  (Nor can a fixed
1155 	 * pre-divider be, but for now we never actually try to
1156 	 * change that.)  Tolerate a request for a no-op change.
1157 	 */
1158 	if (divider_is_fixed(&data->div))
1159 		return rate == parent_rate ? 0 : -EINVAL;
1160 
1161 	/*
1162 	 * Get the scaled divisor value needed to achieve a clock
1163 	 * rate as close as possible to what was requested, given
1164 	 * the parent clock rate supplied.
1165 	 */
1166 	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1167 				rate ? rate : 1, parent_rate, &scaled_div);
1168 
1169 	/*
1170 	 * We aren't updating any pre-divider at this point, so
1171 	 * we'll use the regular trigger.
1172 	 */
1173 	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1174 				&data->trig, scaled_div);
1175 	if (ret == -ENXIO) {
1176 		pr_err("%s: gating failure for %s\n", __func__,
1177 			bcm_clk->init_data.name);
1178 		ret = -EIO;	/* Don't proliferate weird errors */
1179 	} else if (ret == -EIO) {
1180 		pr_err("%s: trigger failed for %s\n", __func__,
1181 			bcm_clk->init_data.name);
1182 	}
1183 
1184 	return ret;
1185 }
1186 
1187 struct clk_ops kona_peri_clk_ops = {
1188 	.enable = kona_peri_clk_enable,
1189 	.disable = kona_peri_clk_disable,
1190 	.is_enabled = kona_peri_clk_is_enabled,
1191 	.recalc_rate = kona_peri_clk_recalc_rate,
1192 	.determine_rate = kona_peri_clk_determine_rate,
1193 	.set_parent = kona_peri_clk_set_parent,
1194 	.get_parent = kona_peri_clk_get_parent,
1195 	.set_rate = kona_peri_clk_set_rate,
1196 };
1197 
1198 /* Put a peripheral clock into its initial state */
1199 static bool __peri_clk_init(struct kona_clk *bcm_clk)
1200 {
1201 	struct ccu_data *ccu = bcm_clk->ccu;
1202 	struct peri_clk_data *peri = bcm_clk->u.peri;
1203 	const char *name = bcm_clk->init_data.name;
1204 	struct bcm_clk_trig *trig;
1205 
1206 	BUG_ON(bcm_clk->type != bcm_clk_peri);
1207 
1208 	if (!policy_init(ccu, &peri->policy)) {
1209 		pr_err("%s: error initializing policy for %s\n",
1210 			__func__, name);
1211 		return false;
1212 	}
1213 	if (!gate_init(ccu, &peri->gate)) {
1214 		pr_err("%s: error initializing gate for %s\n", __func__, name);
1215 		return false;
1216 	}
1217 	if (!hyst_init(ccu, &peri->hyst)) {
1218 		pr_err("%s: error initializing hyst for %s\n", __func__, name);
1219 		return false;
1220 	}
1221 	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1222 		pr_err("%s: error initializing divider for %s\n", __func__,
1223 			name);
1224 		return false;
1225 	}
1226 
1227 	/*
1228 	 * For the pre-divider and selector, the pre-trigger is used
1229 	 * if it's present, otherwise we just use the regular trigger.
1230 	 */
1231 	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1232 					       : &peri->trig;
1233 
1234 	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1235 		pr_err("%s: error initializing pre-divider for %s\n", __func__,
1236 			name);
1237 		return false;
1238 	}
1239 
1240 	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1241 		pr_err("%s: error initializing selector for %s\n", __func__,
1242 			name);
1243 		return false;
1244 	}
1245 
1246 	return true;
1247 }
1248 
1249 static bool __kona_clk_init(struct kona_clk *bcm_clk)
1250 {
1251 	switch (bcm_clk->type) {
1252 	case bcm_clk_peri:
1253 		return __peri_clk_init(bcm_clk);
1254 	default:
1255 		BUG();
1256 	}
1257 	return -EINVAL;
1258 }
1259 
1260 /* Set a CCU and all its clocks into their desired initial state */
1261 bool __init kona_ccu_init(struct ccu_data *ccu)
1262 {
1263 	unsigned long flags;
1264 	unsigned int which;
1265 	struct clk **clks = ccu->clk_data.clks;
1266 	bool success = true;
1267 
1268 	flags = ccu_lock(ccu);
1269 	__ccu_write_enable(ccu);
1270 
1271 	for (which = 0; which < ccu->clk_data.clk_num; which++) {
1272 		struct kona_clk *bcm_clk;
1273 
1274 		if (!clks[which])
1275 			continue;
1276 		bcm_clk = to_kona_clk(__clk_get_hw(clks[which]));
1277 		success &= __kona_clk_init(bcm_clk);
1278 	}
1279 
1280 	__ccu_write_disable(ccu);
1281 	ccu_unlock(ccu, flags);
1282 	return success;
1283 }
1284