xref: /openbmc/linux/drivers/clk/bcm/clk-kona.c (revision 020c5260)
1 /*
2  * Copyright (C) 2013 Broadcom Corporation
3  * Copyright 2013 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include "clk-kona.h"
16 
17 #include <linux/delay.h>
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 
21 /*
22  * "Policies" affect the frequencies of bus clocks provided by a
23  * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
24  * "Normal", and "Turbo".)  A lower policy number has lower power
25  * consumption, and policy 2 is the default.
26  */
27 #define CCU_POLICY_COUNT	4
28 
29 #define CCU_ACCESS_PASSWORD      0xA5A500
30 #define CLK_GATE_DELAY_LOOP      2000
31 
32 /* Bitfield operations */
33 
34 /* Produces a mask of set bits covering a range of a 32-bit value */
35 static inline u32 bitfield_mask(u32 shift, u32 width)
36 {
37 	return ((1 << width) - 1) << shift;
38 }
39 
40 /* Extract the value of a bitfield found within a given register value */
41 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
42 {
43 	return (reg_val & bitfield_mask(shift, width)) >> shift;
44 }
45 
46 /* Replace the value of a bitfield found within a given register value */
47 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
48 {
49 	u32 mask = bitfield_mask(shift, width);
50 
51 	return (reg_val & ~mask) | (val << shift);
52 }
53 
54 /* Divider and scaling helpers */
55 
56 /* Convert a divider into the scaled divisor value it represents. */
57 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
58 {
59 	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
60 }
61 
62 /*
63  * Build a scaled divider value as close as possible to the
64  * given whole part (div_value) and fractional part (expressed
65  * in billionths).
66  */
67 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
68 {
69 	u64 combined;
70 
71 	BUG_ON(!div_value);
72 	BUG_ON(billionths >= BILLION);
73 
74 	combined = (u64)div_value * BILLION + billionths;
75 	combined <<= div->u.s.frac_width;
76 
77 	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
78 }
79 
80 /* The scaled minimum divisor representable by a divider */
81 static inline u64
82 scaled_div_min(struct bcm_clk_div *div)
83 {
84 	if (divider_is_fixed(div))
85 		return (u64)div->u.fixed;
86 
87 	return scaled_div_value(div, 0);
88 }
89 
90 /* The scaled maximum divisor representable by a divider */
91 u64 scaled_div_max(struct bcm_clk_div *div)
92 {
93 	u32 reg_div;
94 
95 	if (divider_is_fixed(div))
96 		return (u64)div->u.fixed;
97 
98 	reg_div = ((u32)1 << div->u.s.width) - 1;
99 
100 	return scaled_div_value(div, reg_div);
101 }
102 
103 /*
104  * Convert a scaled divisor into its divider representation as
105  * stored in a divider register field.
106  */
107 static inline u32
108 divider(struct bcm_clk_div *div, u64 scaled_div)
109 {
110 	BUG_ON(scaled_div < scaled_div_min(div));
111 	BUG_ON(scaled_div > scaled_div_max(div));
112 
113 	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
114 }
115 
116 /* Return a rate scaled for use when dividing by a scaled divisor. */
117 static inline u64
118 scale_rate(struct bcm_clk_div *div, u32 rate)
119 {
120 	if (divider_is_fixed(div))
121 		return (u64)rate;
122 
123 	return (u64)rate << div->u.s.frac_width;
124 }
125 
126 /* CCU access */
127 
128 /* Read a 32-bit register value from a CCU's address space. */
129 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
130 {
131 	return readl(ccu->base + reg_offset);
132 }
133 
134 /* Write a 32-bit register value into a CCU's address space. */
135 static inline void
136 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
137 {
138 	writel(reg_val, ccu->base + reg_offset);
139 }
140 
141 static inline unsigned long ccu_lock(struct ccu_data *ccu)
142 {
143 	unsigned long flags;
144 
145 	spin_lock_irqsave(&ccu->lock, flags);
146 
147 	return flags;
148 }
149 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
150 {
151 	spin_unlock_irqrestore(&ccu->lock, flags);
152 }
153 
154 /*
155  * Enable/disable write access to CCU protected registers.  The
156  * WR_ACCESS register for all CCUs is at offset 0.
157  */
158 static inline void __ccu_write_enable(struct ccu_data *ccu)
159 {
160 	if (ccu->write_enabled) {
161 		pr_err("%s: access already enabled for %s\n", __func__,
162 			ccu->name);
163 		return;
164 	}
165 	ccu->write_enabled = true;
166 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
167 }
168 
169 static inline void __ccu_write_disable(struct ccu_data *ccu)
170 {
171 	if (!ccu->write_enabled) {
172 		pr_err("%s: access wasn't enabled for %s\n", __func__,
173 			ccu->name);
174 		return;
175 	}
176 
177 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
178 	ccu->write_enabled = false;
179 }
180 
181 /*
182  * Poll a register in a CCU's address space, returning when the
183  * specified bit in that register's value is set (or clear).  Delay
184  * a microsecond after each read of the register.  Returns true if
185  * successful, or false if we gave up trying.
186  *
187  * Caller must ensure the CCU lock is held.
188  */
189 static inline bool
190 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
191 {
192 	unsigned int tries;
193 	u32 bit_mask = 1 << bit;
194 
195 	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
196 		u32 val;
197 		bool bit_val;
198 
199 		val = __ccu_read(ccu, reg_offset);
200 		bit_val = (val & bit_mask) != 0;
201 		if (bit_val == want)
202 			return true;
203 		udelay(1);
204 	}
205 	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
206 		ccu->name, reg_offset, bit, want ? "set" : "clear");
207 
208 	return false;
209 }
210 
211 /* Policy operations */
212 
213 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
214 {
215 	struct bcm_policy_ctl *control = &ccu->policy.control;
216 	u32 offset;
217 	u32 go_bit;
218 	u32 mask;
219 	bool ret;
220 
221 	/* If we don't need to control policy for this CCU, we're done. */
222 	if (!policy_ctl_exists(control))
223 		return true;
224 
225 	offset = control->offset;
226 	go_bit = control->go_bit;
227 
228 	/* Ensure we're not busy before we start */
229 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
230 	if (!ret) {
231 		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
232 			__func__, ccu->name);
233 		return false;
234 	}
235 
236 	/*
237 	 * If it's a synchronous request, we'll wait for the voltage
238 	 * and frequency of the active load to stabilize before
239 	 * returning.  To do this we select the active load by
240 	 * setting the ATL bit.
241 	 *
242 	 * An asynchronous request instead ramps the voltage in the
243 	 * background, and when that process stabilizes, the target
244 	 * load is copied to the active load and the CCU frequency
245 	 * is switched.  We do this by selecting the target load
246 	 * (ATL bit clear) and setting the request auto-copy (AC bit
247 	 * set).
248 	 *
249 	 * Note, we do NOT read-modify-write this register.
250 	 */
251 	mask = (u32)1 << go_bit;
252 	if (sync)
253 		mask |= 1 << control->atl_bit;
254 	else
255 		mask |= 1 << control->ac_bit;
256 	__ccu_write(ccu, offset, mask);
257 
258 	/* Wait for indication that operation is complete. */
259 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
260 	if (!ret)
261 		pr_err("%s: ccu %s policy engine never started\n",
262 			__func__, ccu->name);
263 
264 	return ret;
265 }
266 
267 static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
268 {
269 	struct bcm_lvm_en *enable = &ccu->policy.enable;
270 	u32 offset;
271 	u32 enable_bit;
272 	bool ret;
273 
274 	/* If we don't need to control policy for this CCU, we're done. */
275 	if (!policy_lvm_en_exists(enable))
276 		return true;
277 
278 	/* Ensure we're not busy before we start */
279 	offset = enable->offset;
280 	enable_bit = enable->bit;
281 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
282 	if (!ret) {
283 		pr_err("%s: ccu %s policy engine already stopped\n",
284 			__func__, ccu->name);
285 		return false;
286 	}
287 
288 	/* Now set the bit to stop the engine (NO read-modify-write) */
289 	__ccu_write(ccu, offset, (u32)1 << enable_bit);
290 
291 	/* Wait for indication that it has stopped. */
292 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
293 	if (!ret)
294 		pr_err("%s: ccu %s policy engine never stopped\n",
295 			__func__, ccu->name);
296 
297 	return ret;
298 }
299 
300 /*
301  * A CCU has four operating conditions ("policies"), and some clocks
302  * can be disabled or enabled based on which policy is currently in
303  * effect.  Such clocks have a bit in a "policy mask" register for
304  * each policy indicating whether the clock is enabled for that
305  * policy or not.  The bit position for a clock is the same for all
306  * four registers, and the 32-bit registers are at consecutive
307  * addresses.
308  */
309 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
310 {
311 	u32 offset;
312 	u32 mask;
313 	int i;
314 	bool ret;
315 
316 	if (!policy_exists(policy))
317 		return true;
318 
319 	/*
320 	 * We need to stop the CCU policy engine to allow update
321 	 * of our policy bits.
322 	 */
323 	if (!__ccu_policy_engine_stop(ccu)) {
324 		pr_err("%s: unable to stop CCU %s policy engine\n",
325 			__func__, ccu->name);
326 		return false;
327 	}
328 
329 	/*
330 	 * For now, if a clock defines its policy bit we just mark
331 	 * it "enabled" for all four policies.
332 	 */
333 	offset = policy->offset;
334 	mask = (u32)1 << policy->bit;
335 	for (i = 0; i < CCU_POLICY_COUNT; i++) {
336 		u32 reg_val;
337 
338 		reg_val = __ccu_read(ccu, offset);
339 		reg_val |= mask;
340 		__ccu_write(ccu, offset, reg_val);
341 		offset += sizeof(u32);
342 	}
343 
344 	/* We're done updating; fire up the policy engine again. */
345 	ret = __ccu_policy_engine_start(ccu, true);
346 	if (!ret)
347 		pr_err("%s: unable to restart CCU %s policy engine\n",
348 			__func__, ccu->name);
349 
350 	return ret;
351 }
352 
353 /* Gate operations */
354 
355 /* Determine whether a clock is gated.  CCU lock must be held.  */
356 static bool
357 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
358 {
359 	u32 bit_mask;
360 	u32 reg_val;
361 
362 	/* If there is no gate we can assume it's enabled. */
363 	if (!gate_exists(gate))
364 		return true;
365 
366 	bit_mask = 1 << gate->status_bit;
367 	reg_val = __ccu_read(ccu, gate->offset);
368 
369 	return (reg_val & bit_mask) != 0;
370 }
371 
372 /* Determine whether a clock is gated. */
373 static bool
374 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
375 {
376 	long flags;
377 	bool ret;
378 
379 	/* Avoid taking the lock if we can */
380 	if (!gate_exists(gate))
381 		return true;
382 
383 	flags = ccu_lock(ccu);
384 	ret = __is_clk_gate_enabled(ccu, gate);
385 	ccu_unlock(ccu, flags);
386 
387 	return ret;
388 }
389 
390 /*
391  * Commit our desired gate state to the hardware.
392  * Returns true if successful, false otherwise.
393  */
394 static bool
395 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
396 {
397 	u32 reg_val;
398 	u32 mask;
399 	bool enabled = false;
400 
401 	BUG_ON(!gate_exists(gate));
402 	if (!gate_is_sw_controllable(gate))
403 		return true;		/* Nothing we can change */
404 
405 	reg_val = __ccu_read(ccu, gate->offset);
406 
407 	/* For a hardware/software gate, set which is in control */
408 	if (gate_is_hw_controllable(gate)) {
409 		mask = (u32)1 << gate->hw_sw_sel_bit;
410 		if (gate_is_sw_managed(gate))
411 			reg_val |= mask;
412 		else
413 			reg_val &= ~mask;
414 	}
415 
416 	/*
417 	 * If software is in control, enable or disable the gate.
418 	 * If hardware is, clear the enabled bit for good measure.
419 	 * If a software controlled gate can't be disabled, we're
420 	 * required to write a 0 into the enable bit (but the gate
421 	 * will be enabled).
422 	 */
423 	mask = (u32)1 << gate->en_bit;
424 	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
425 			!gate_is_no_disable(gate))
426 		reg_val |= mask;
427 	else
428 		reg_val &= ~mask;
429 
430 	__ccu_write(ccu, gate->offset, reg_val);
431 
432 	/* For a hardware controlled gate, we're done */
433 	if (!gate_is_sw_managed(gate))
434 		return true;
435 
436 	/* Otherwise wait for the gate to be in desired state */
437 	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
438 }
439 
440 /*
441  * Initialize a gate.  Our desired state (hardware/software select,
442  * and if software, its enable state) is committed to hardware
443  * without the usual checks to see if it's already set up that way.
444  * Returns true if successful, false otherwise.
445  */
446 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
447 {
448 	if (!gate_exists(gate))
449 		return true;
450 	return __gate_commit(ccu, gate);
451 }
452 
453 /*
454  * Set a gate to enabled or disabled state.  Does nothing if the
455  * gate is not currently under software control, or if it is already
456  * in the requested state.  Returns true if successful, false
457  * otherwise.  CCU lock must be held.
458  */
459 static bool
460 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
461 {
462 	bool ret;
463 
464 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
465 		return true;	/* Nothing to do */
466 
467 	if (!enable && gate_is_no_disable(gate)) {
468 		pr_warn("%s: invalid gate disable request (ignoring)\n",
469 			__func__);
470 		return true;
471 	}
472 
473 	if (enable == gate_is_enabled(gate))
474 		return true;	/* No change */
475 
476 	gate_flip_enabled(gate);
477 	ret = __gate_commit(ccu, gate);
478 	if (!ret)
479 		gate_flip_enabled(gate);	/* Revert the change */
480 
481 	return ret;
482 }
483 
484 /* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
485 static int clk_gate(struct ccu_data *ccu, const char *name,
486 			struct bcm_clk_gate *gate, bool enable)
487 {
488 	unsigned long flags;
489 	bool success;
490 
491 	/*
492 	 * Avoid taking the lock if we can.  We quietly ignore
493 	 * requests to change state that don't make sense.
494 	 */
495 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
496 		return 0;
497 	if (!enable && gate_is_no_disable(gate))
498 		return 0;
499 
500 	flags = ccu_lock(ccu);
501 	__ccu_write_enable(ccu);
502 
503 	success = __clk_gate(ccu, gate, enable);
504 
505 	__ccu_write_disable(ccu);
506 	ccu_unlock(ccu, flags);
507 
508 	if (success)
509 		return 0;
510 
511 	pr_err("%s: failed to %s gate for %s\n", __func__,
512 		enable ? "enable" : "disable", name);
513 
514 	return -EIO;
515 }
516 
517 /* Hysteresis operations */
518 
519 /*
520  * If a clock gate requires a turn-off delay it will have
521  * "hysteresis" register bits defined.  The first, if set, enables
522  * the delay; and if enabled, the second bit determines whether the
523  * delay is "low" or "high" (1 means high).  For now, if it's
524  * defined for a clock, we set it.
525  */
526 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
527 {
528 	u32 offset;
529 	u32 reg_val;
530 	u32 mask;
531 
532 	if (!hyst_exists(hyst))
533 		return true;
534 
535 	offset = hyst->offset;
536 	mask = (u32)1 << hyst->en_bit;
537 	mask |= (u32)1 << hyst->val_bit;
538 
539 	reg_val = __ccu_read(ccu, offset);
540 	reg_val |= mask;
541 	__ccu_write(ccu, offset, reg_val);
542 
543 	return true;
544 }
545 
546 /* Trigger operations */
547 
548 /*
549  * Caller must ensure CCU lock is held and access is enabled.
550  * Returns true if successful, false otherwise.
551  */
552 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
553 {
554 	/* Trigger the clock and wait for it to finish */
555 	__ccu_write(ccu, trig->offset, 1 << trig->bit);
556 
557 	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
558 }
559 
560 /* Divider operations */
561 
562 /* Read a divider value and return the scaled divisor it represents. */
563 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
564 {
565 	unsigned long flags;
566 	u32 reg_val;
567 	u32 reg_div;
568 
569 	if (divider_is_fixed(div))
570 		return (u64)div->u.fixed;
571 
572 	flags = ccu_lock(ccu);
573 	reg_val = __ccu_read(ccu, div->u.s.offset);
574 	ccu_unlock(ccu, flags);
575 
576 	/* Extract the full divider field from the register value */
577 	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
578 
579 	/* Return the scaled divisor value it represents */
580 	return scaled_div_value(div, reg_div);
581 }
582 
583 /*
584  * Convert a divider's scaled divisor value into its recorded form
585  * and commit it into the hardware divider register.
586  *
587  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
588  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
589  */
590 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
591 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
592 {
593 	bool enabled;
594 	u32 reg_div;
595 	u32 reg_val;
596 	int ret = 0;
597 
598 	BUG_ON(divider_is_fixed(div));
599 
600 	/*
601 	 * If we're just initializing the divider, and no initial
602 	 * state was defined in the device tree, we just find out
603 	 * what its current value is rather than updating it.
604 	 */
605 	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
606 		reg_val = __ccu_read(ccu, div->u.s.offset);
607 		reg_div = bitfield_extract(reg_val, div->u.s.shift,
608 						div->u.s.width);
609 		div->u.s.scaled_div = scaled_div_value(div, reg_div);
610 
611 		return 0;
612 	}
613 
614 	/* Convert the scaled divisor to the value we need to record */
615 	reg_div = divider(div, div->u.s.scaled_div);
616 
617 	/* Clock needs to be enabled before changing the rate */
618 	enabled = __is_clk_gate_enabled(ccu, gate);
619 	if (!enabled && !__clk_gate(ccu, gate, true)) {
620 		ret = -ENXIO;
621 		goto out;
622 	}
623 
624 	/* Replace the divider value and record the result */
625 	reg_val = __ccu_read(ccu, div->u.s.offset);
626 	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
627 					reg_div);
628 	__ccu_write(ccu, div->u.s.offset, reg_val);
629 
630 	/* If the trigger fails we still want to disable the gate */
631 	if (!__clk_trigger(ccu, trig))
632 		ret = -EIO;
633 
634 	/* Disable the clock again if it was disabled to begin with */
635 	if (!enabled && !__clk_gate(ccu, gate, false))
636 		ret = ret ? ret : -ENXIO;	/* return first error */
637 out:
638 	return ret;
639 }
640 
641 /*
642  * Initialize a divider by committing our desired state to hardware
643  * without the usual checks to see if it's already set up that way.
644  * Returns true if successful, false otherwise.
645  */
646 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
647 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
648 {
649 	if (!divider_exists(div) || divider_is_fixed(div))
650 		return true;
651 	return !__div_commit(ccu, gate, div, trig);
652 }
653 
654 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
655 			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
656 			u64 scaled_div)
657 {
658 	unsigned long flags;
659 	u64 previous;
660 	int ret;
661 
662 	BUG_ON(divider_is_fixed(div));
663 
664 	previous = div->u.s.scaled_div;
665 	if (previous == scaled_div)
666 		return 0;	/* No change */
667 
668 	div->u.s.scaled_div = scaled_div;
669 
670 	flags = ccu_lock(ccu);
671 	__ccu_write_enable(ccu);
672 
673 	ret = __div_commit(ccu, gate, div, trig);
674 
675 	__ccu_write_disable(ccu);
676 	ccu_unlock(ccu, flags);
677 
678 	if (ret)
679 		div->u.s.scaled_div = previous;		/* Revert the change */
680 
681 	return ret;
682 
683 }
684 
685 /* Common clock rate helpers */
686 
687 /*
688  * Implement the common clock framework recalc_rate method, taking
689  * into account a divider and an optional pre-divider.  The
690  * pre-divider register pointer may be NULL.
691  */
692 static unsigned long clk_recalc_rate(struct ccu_data *ccu,
693 			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
694 			unsigned long parent_rate)
695 {
696 	u64 scaled_parent_rate;
697 	u64 scaled_div;
698 	u64 result;
699 
700 	if (!divider_exists(div))
701 		return parent_rate;
702 
703 	if (parent_rate > (unsigned long)LONG_MAX)
704 		return 0;	/* actually this would be a caller bug */
705 
706 	/*
707 	 * If there is a pre-divider, divide the scaled parent rate
708 	 * by the pre-divider value first.  In this case--to improve
709 	 * accuracy--scale the parent rate by *both* the pre-divider
710 	 * value and the divider before actually computing the
711 	 * result of the pre-divider.
712 	 *
713 	 * If there's only one divider, just scale the parent rate.
714 	 */
715 	if (pre_div && divider_exists(pre_div)) {
716 		u64 scaled_rate;
717 
718 		scaled_rate = scale_rate(pre_div, parent_rate);
719 		scaled_rate = scale_rate(div, scaled_rate);
720 		scaled_div = divider_read_scaled(ccu, pre_div);
721 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
722 							scaled_div);
723 	} else  {
724 		scaled_parent_rate = scale_rate(div, parent_rate);
725 	}
726 
727 	/*
728 	 * Get the scaled divisor value, and divide the scaled
729 	 * parent rate by that to determine this clock's resulting
730 	 * rate.
731 	 */
732 	scaled_div = divider_read_scaled(ccu, div);
733 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
734 
735 	return (unsigned long)result;
736 }
737 
738 /*
739  * Compute the output rate produced when a given parent rate is fed
740  * into two dividers.  The pre-divider can be NULL, and even if it's
741  * non-null it may be nonexistent.  It's also OK for the divider to
742  * be nonexistent, and in that case the pre-divider is also ignored.
743  *
744  * If scaled_div is non-null, it is used to return the scaled divisor
745  * value used by the (downstream) divider to produce that rate.
746  */
747 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
748 				struct bcm_clk_div *pre_div,
749 				unsigned long rate, unsigned long parent_rate,
750 				u64 *scaled_div)
751 {
752 	u64 scaled_parent_rate;
753 	u64 min_scaled_div;
754 	u64 max_scaled_div;
755 	u64 best_scaled_div;
756 	u64 result;
757 
758 	BUG_ON(!divider_exists(div));
759 	BUG_ON(!rate);
760 	BUG_ON(parent_rate > (u64)LONG_MAX);
761 
762 	/*
763 	 * If there is a pre-divider, divide the scaled parent rate
764 	 * by the pre-divider value first.  In this case--to improve
765 	 * accuracy--scale the parent rate by *both* the pre-divider
766 	 * value and the divider before actually computing the
767 	 * result of the pre-divider.
768 	 *
769 	 * If there's only one divider, just scale the parent rate.
770 	 *
771 	 * For simplicity we treat the pre-divider as fixed (for now).
772 	 */
773 	if (divider_exists(pre_div)) {
774 		u64 scaled_rate;
775 		u64 scaled_pre_div;
776 
777 		scaled_rate = scale_rate(pre_div, parent_rate);
778 		scaled_rate = scale_rate(div, scaled_rate);
779 		scaled_pre_div = divider_read_scaled(ccu, pre_div);
780 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
781 							scaled_pre_div);
782 	} else {
783 		scaled_parent_rate = scale_rate(div, parent_rate);
784 	}
785 
786 	/*
787 	 * Compute the best possible divider and ensure it is in
788 	 * range.  A fixed divider can't be changed, so just report
789 	 * the best we can do.
790 	 */
791 	if (!divider_is_fixed(div)) {
792 		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
793 							rate);
794 		min_scaled_div = scaled_div_min(div);
795 		max_scaled_div = scaled_div_max(div);
796 		if (best_scaled_div > max_scaled_div)
797 			best_scaled_div = max_scaled_div;
798 		else if (best_scaled_div < min_scaled_div)
799 			best_scaled_div = min_scaled_div;
800 	} else {
801 		best_scaled_div = divider_read_scaled(ccu, div);
802 	}
803 
804 	/* OK, figure out the resulting rate */
805 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
806 
807 	if (scaled_div)
808 		*scaled_div = best_scaled_div;
809 
810 	return (long)result;
811 }
812 
813 /* Common clock parent helpers */
814 
815 /*
816  * For a given parent selector (register field) value, find the
817  * index into a selector's parent_sel array that contains it.
818  * Returns the index, or BAD_CLK_INDEX if it's not found.
819  */
820 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
821 {
822 	u8 i;
823 
824 	BUG_ON(sel->parent_count > (u32)U8_MAX);
825 	for (i = 0; i < sel->parent_count; i++)
826 		if (sel->parent_sel[i] == parent_sel)
827 			return i;
828 	return BAD_CLK_INDEX;
829 }
830 
831 /*
832  * Fetch the current value of the selector, and translate that into
833  * its corresponding index in the parent array we registered with
834  * the clock framework.
835  *
836  * Returns parent array index that corresponds with the value found,
837  * or BAD_CLK_INDEX if the found value is out of range.
838  */
839 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
840 {
841 	unsigned long flags;
842 	u32 reg_val;
843 	u32 parent_sel;
844 	u8 index;
845 
846 	/* If there's no selector, there's only one parent */
847 	if (!selector_exists(sel))
848 		return 0;
849 
850 	/* Get the value in the selector register */
851 	flags = ccu_lock(ccu);
852 	reg_val = __ccu_read(ccu, sel->offset);
853 	ccu_unlock(ccu, flags);
854 
855 	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
856 
857 	/* Look up that selector's parent array index and return it */
858 	index = parent_index(sel, parent_sel);
859 	if (index == BAD_CLK_INDEX)
860 		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
861 			__func__, parent_sel, ccu->name, sel->offset);
862 
863 	return index;
864 }
865 
866 /*
867  * Commit our desired selector value to the hardware.
868  *
869  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
870  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
871  */
872 static int
873 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
874 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
875 {
876 	u32 parent_sel;
877 	u32 reg_val;
878 	bool enabled;
879 	int ret = 0;
880 
881 	BUG_ON(!selector_exists(sel));
882 
883 	/*
884 	 * If we're just initializing the selector, and no initial
885 	 * state was defined in the device tree, we just find out
886 	 * what its current value is rather than updating it.
887 	 */
888 	if (sel->clk_index == BAD_CLK_INDEX) {
889 		u8 index;
890 
891 		reg_val = __ccu_read(ccu, sel->offset);
892 		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
893 		index = parent_index(sel, parent_sel);
894 		if (index == BAD_CLK_INDEX)
895 			return -EINVAL;
896 		sel->clk_index = index;
897 
898 		return 0;
899 	}
900 
901 	BUG_ON((u32)sel->clk_index >= sel->parent_count);
902 	parent_sel = sel->parent_sel[sel->clk_index];
903 
904 	/* Clock needs to be enabled before changing the parent */
905 	enabled = __is_clk_gate_enabled(ccu, gate);
906 	if (!enabled && !__clk_gate(ccu, gate, true))
907 		return -ENXIO;
908 
909 	/* Replace the selector value and record the result */
910 	reg_val = __ccu_read(ccu, sel->offset);
911 	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
912 	__ccu_write(ccu, sel->offset, reg_val);
913 
914 	/* If the trigger fails we still want to disable the gate */
915 	if (!__clk_trigger(ccu, trig))
916 		ret = -EIO;
917 
918 	/* Disable the clock again if it was disabled to begin with */
919 	if (!enabled && !__clk_gate(ccu, gate, false))
920 		ret = ret ? ret : -ENXIO;	/* return first error */
921 
922 	return ret;
923 }
924 
925 /*
926  * Initialize a selector by committing our desired state to hardware
927  * without the usual checks to see if it's already set up that way.
928  * Returns true if successful, false otherwise.
929  */
930 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
931 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
932 {
933 	if (!selector_exists(sel))
934 		return true;
935 	return !__sel_commit(ccu, gate, sel, trig);
936 }
937 
938 /*
939  * Write a new value into a selector register to switch to a
940  * different parent clock.  Returns 0 on success, or an error code
941  * (from __sel_commit()) otherwise.
942  */
943 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
944 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
945 			u8 index)
946 {
947 	unsigned long flags;
948 	u8 previous;
949 	int ret;
950 
951 	previous = sel->clk_index;
952 	if (previous == index)
953 		return 0;	/* No change */
954 
955 	sel->clk_index = index;
956 
957 	flags = ccu_lock(ccu);
958 	__ccu_write_enable(ccu);
959 
960 	ret = __sel_commit(ccu, gate, sel, trig);
961 
962 	__ccu_write_disable(ccu);
963 	ccu_unlock(ccu, flags);
964 
965 	if (ret)
966 		sel->clk_index = previous;	/* Revert the change */
967 
968 	return ret;
969 }
970 
971 /* Clock operations */
972 
973 static int kona_peri_clk_enable(struct clk_hw *hw)
974 {
975 	struct kona_clk *bcm_clk = to_kona_clk(hw);
976 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
977 
978 	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
979 }
980 
981 static void kona_peri_clk_disable(struct clk_hw *hw)
982 {
983 	struct kona_clk *bcm_clk = to_kona_clk(hw);
984 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
985 
986 	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
987 }
988 
989 static int kona_peri_clk_is_enabled(struct clk_hw *hw)
990 {
991 	struct kona_clk *bcm_clk = to_kona_clk(hw);
992 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
993 
994 	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
995 }
996 
997 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
998 			unsigned long parent_rate)
999 {
1000 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1001 	struct peri_clk_data *data = bcm_clk->u.peri;
1002 
1003 	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1004 				parent_rate);
1005 }
1006 
1007 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1008 			unsigned long *parent_rate)
1009 {
1010 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1011 	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1012 
1013 	if (!divider_exists(div))
1014 		return clk_hw_get_rate(hw);
1015 
1016 	/* Quietly avoid a zero rate */
1017 	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1018 				rate ? rate : 1, *parent_rate, NULL);
1019 }
1020 
1021 static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1022 					struct clk_rate_request *req)
1023 {
1024 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1025 	struct clk_hw *current_parent;
1026 	unsigned long parent_rate;
1027 	unsigned long best_delta;
1028 	unsigned long best_rate;
1029 	u32 parent_count;
1030 	long rate;
1031 	u32 which;
1032 
1033 	/*
1034 	 * If there is no other parent to choose, use the current one.
1035 	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1036 	 */
1037 	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1038 	parent_count = (u32)bcm_clk->init_data.num_parents;
1039 	if (parent_count < 2) {
1040 		rate = kona_peri_clk_round_rate(hw, req->rate,
1041 						&req->best_parent_rate);
1042 		if (rate < 0)
1043 			return rate;
1044 
1045 		req->rate = rate;
1046 		return 0;
1047 	}
1048 
1049 	/* Unless we can do better, stick with current parent */
1050 	current_parent = clk_hw_get_parent(hw);
1051 	parent_rate = clk_hw_get_rate(current_parent);
1052 	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1053 	best_delta = abs(best_rate - req->rate);
1054 
1055 	/* Check whether any other parent clock can produce a better result */
1056 	for (which = 0; which < parent_count; which++) {
1057 		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1058 		unsigned long delta;
1059 		unsigned long other_rate;
1060 
1061 		BUG_ON(!parent);
1062 		if (parent == current_parent)
1063 			continue;
1064 
1065 		/* We don't support CLK_SET_RATE_PARENT */
1066 		parent_rate = clk_hw_get_rate(parent);
1067 		other_rate = kona_peri_clk_round_rate(hw, req->rate,
1068 						      &parent_rate);
1069 		delta = abs(other_rate - req->rate);
1070 		if (delta < best_delta) {
1071 			best_delta = delta;
1072 			best_rate = other_rate;
1073 			req->best_parent_hw = parent;
1074 			req->best_parent_rate = parent_rate;
1075 		}
1076 	}
1077 
1078 	req->rate = best_rate;
1079 	return 0;
1080 }
1081 
1082 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1083 {
1084 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1085 	struct peri_clk_data *data = bcm_clk->u.peri;
1086 	struct bcm_clk_sel *sel = &data->sel;
1087 	struct bcm_clk_trig *trig;
1088 	int ret;
1089 
1090 	BUG_ON(index >= sel->parent_count);
1091 
1092 	/* If there's only one parent we don't require a selector */
1093 	if (!selector_exists(sel))
1094 		return 0;
1095 
1096 	/*
1097 	 * The regular trigger is used by default, but if there's a
1098 	 * pre-trigger we want to use that instead.
1099 	 */
1100 	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1101 					       : &data->trig;
1102 
1103 	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1104 	if (ret == -ENXIO) {
1105 		pr_err("%s: gating failure for %s\n", __func__,
1106 			bcm_clk->init_data.name);
1107 		ret = -EIO;	/* Don't proliferate weird errors */
1108 	} else if (ret == -EIO) {
1109 		pr_err("%s: %strigger failed for %s\n", __func__,
1110 			trig == &data->pre_trig ? "pre-" : "",
1111 			bcm_clk->init_data.name);
1112 	}
1113 
1114 	return ret;
1115 }
1116 
1117 static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1118 {
1119 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1120 	struct peri_clk_data *data = bcm_clk->u.peri;
1121 	u8 index;
1122 
1123 	index = selector_read_index(bcm_clk->ccu, &data->sel);
1124 
1125 	/* Not all callers would handle an out-of-range value gracefully */
1126 	return index == BAD_CLK_INDEX ? 0 : index;
1127 }
1128 
1129 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1130 			unsigned long parent_rate)
1131 {
1132 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1133 	struct peri_clk_data *data = bcm_clk->u.peri;
1134 	struct bcm_clk_div *div = &data->div;
1135 	u64 scaled_div = 0;
1136 	int ret;
1137 
1138 	if (parent_rate > (unsigned long)LONG_MAX)
1139 		return -EINVAL;
1140 
1141 	if (rate == clk_hw_get_rate(hw))
1142 		return 0;
1143 
1144 	if (!divider_exists(div))
1145 		return rate == parent_rate ? 0 : -EINVAL;
1146 
1147 	/*
1148 	 * A fixed divider can't be changed.  (Nor can a fixed
1149 	 * pre-divider be, but for now we never actually try to
1150 	 * change that.)  Tolerate a request for a no-op change.
1151 	 */
1152 	if (divider_is_fixed(&data->div))
1153 		return rate == parent_rate ? 0 : -EINVAL;
1154 
1155 	/*
1156 	 * Get the scaled divisor value needed to achieve a clock
1157 	 * rate as close as possible to what was requested, given
1158 	 * the parent clock rate supplied.
1159 	 */
1160 	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1161 				rate ? rate : 1, parent_rate, &scaled_div);
1162 
1163 	/*
1164 	 * We aren't updating any pre-divider at this point, so
1165 	 * we'll use the regular trigger.
1166 	 */
1167 	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1168 				&data->trig, scaled_div);
1169 	if (ret == -ENXIO) {
1170 		pr_err("%s: gating failure for %s\n", __func__,
1171 			bcm_clk->init_data.name);
1172 		ret = -EIO;	/* Don't proliferate weird errors */
1173 	} else if (ret == -EIO) {
1174 		pr_err("%s: trigger failed for %s\n", __func__,
1175 			bcm_clk->init_data.name);
1176 	}
1177 
1178 	return ret;
1179 }
1180 
1181 struct clk_ops kona_peri_clk_ops = {
1182 	.enable = kona_peri_clk_enable,
1183 	.disable = kona_peri_clk_disable,
1184 	.is_enabled = kona_peri_clk_is_enabled,
1185 	.recalc_rate = kona_peri_clk_recalc_rate,
1186 	.determine_rate = kona_peri_clk_determine_rate,
1187 	.set_parent = kona_peri_clk_set_parent,
1188 	.get_parent = kona_peri_clk_get_parent,
1189 	.set_rate = kona_peri_clk_set_rate,
1190 };
1191 
1192 /* Put a peripheral clock into its initial state */
1193 static bool __peri_clk_init(struct kona_clk *bcm_clk)
1194 {
1195 	struct ccu_data *ccu = bcm_clk->ccu;
1196 	struct peri_clk_data *peri = bcm_clk->u.peri;
1197 	const char *name = bcm_clk->init_data.name;
1198 	struct bcm_clk_trig *trig;
1199 
1200 	BUG_ON(bcm_clk->type != bcm_clk_peri);
1201 
1202 	if (!policy_init(ccu, &peri->policy)) {
1203 		pr_err("%s: error initializing policy for %s\n",
1204 			__func__, name);
1205 		return false;
1206 	}
1207 	if (!gate_init(ccu, &peri->gate)) {
1208 		pr_err("%s: error initializing gate for %s\n", __func__, name);
1209 		return false;
1210 	}
1211 	if (!hyst_init(ccu, &peri->hyst)) {
1212 		pr_err("%s: error initializing hyst for %s\n", __func__, name);
1213 		return false;
1214 	}
1215 	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1216 		pr_err("%s: error initializing divider for %s\n", __func__,
1217 			name);
1218 		return false;
1219 	}
1220 
1221 	/*
1222 	 * For the pre-divider and selector, the pre-trigger is used
1223 	 * if it's present, otherwise we just use the regular trigger.
1224 	 */
1225 	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1226 					       : &peri->trig;
1227 
1228 	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1229 		pr_err("%s: error initializing pre-divider for %s\n", __func__,
1230 			name);
1231 		return false;
1232 	}
1233 
1234 	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1235 		pr_err("%s: error initializing selector for %s\n", __func__,
1236 			name);
1237 		return false;
1238 	}
1239 
1240 	return true;
1241 }
1242 
1243 static bool __kona_clk_init(struct kona_clk *bcm_clk)
1244 {
1245 	switch (bcm_clk->type) {
1246 	case bcm_clk_peri:
1247 		return __peri_clk_init(bcm_clk);
1248 	default:
1249 		BUG();
1250 	}
1251 	return false;
1252 }
1253 
1254 /* Set a CCU and all its clocks into their desired initial state */
1255 bool __init kona_ccu_init(struct ccu_data *ccu)
1256 {
1257 	unsigned long flags;
1258 	unsigned int which;
1259 	struct kona_clk *kona_clks = ccu->kona_clks;
1260 	bool success = true;
1261 
1262 	flags = ccu_lock(ccu);
1263 	__ccu_write_enable(ccu);
1264 
1265 	for (which = 0; which < ccu->clk_num; which++) {
1266 		struct kona_clk *bcm_clk = &kona_clks[which];
1267 
1268 		if (!bcm_clk->ccu)
1269 			continue;
1270 
1271 		success &= __kona_clk_init(bcm_clk);
1272 	}
1273 
1274 	__ccu_write_disable(ccu);
1275 	ccu_unlock(ccu, flags);
1276 	return success;
1277 }
1278