1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013 Broadcom Corporation
4 * Copyright 2013 Linaro Limited
5 */
6
7 #include "clk-kona.h"
8
9 #include <linux/delay.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/clk-provider.h>
13
14 /*
15 * "Policies" affect the frequencies of bus clocks provided by a
16 * CCU. (I believe these polices are named "Deep Sleep", "Economy",
17 * "Normal", and "Turbo".) A lower policy number has lower power
18 * consumption, and policy 2 is the default.
19 */
20 #define CCU_POLICY_COUNT 4
21
22 #define CCU_ACCESS_PASSWORD 0xA5A500
23 #define CLK_GATE_DELAY_LOOP 2000
24
25 /* Bitfield operations */
26
27 /* Produces a mask of set bits covering a range of a 32-bit value */
bitfield_mask(u32 shift,u32 width)28 static inline u32 bitfield_mask(u32 shift, u32 width)
29 {
30 return ((1 << width) - 1) << shift;
31 }
32
33 /* Extract the value of a bitfield found within a given register value */
bitfield_extract(u32 reg_val,u32 shift,u32 width)34 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
35 {
36 return (reg_val & bitfield_mask(shift, width)) >> shift;
37 }
38
39 /* Replace the value of a bitfield found within a given register value */
bitfield_replace(u32 reg_val,u32 shift,u32 width,u32 val)40 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
41 {
42 u32 mask = bitfield_mask(shift, width);
43
44 return (reg_val & ~mask) | (val << shift);
45 }
46
47 /* Divider and scaling helpers */
48
49 /* Convert a divider into the scaled divisor value it represents. */
scaled_div_value(struct bcm_clk_div * div,u32 reg_div)50 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
51 {
52 return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
53 }
54
55 /*
56 * Build a scaled divider value as close as possible to the
57 * given whole part (div_value) and fractional part (expressed
58 * in billionths).
59 */
scaled_div_build(struct bcm_clk_div * div,u32 div_value,u32 billionths)60 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
61 {
62 u64 combined;
63
64 BUG_ON(!div_value);
65 BUG_ON(billionths >= BILLION);
66
67 combined = (u64)div_value * BILLION + billionths;
68 combined <<= div->u.s.frac_width;
69
70 return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
71 }
72
73 /* The scaled minimum divisor representable by a divider */
74 static inline u64
scaled_div_min(struct bcm_clk_div * div)75 scaled_div_min(struct bcm_clk_div *div)
76 {
77 if (divider_is_fixed(div))
78 return (u64)div->u.fixed;
79
80 return scaled_div_value(div, 0);
81 }
82
83 /* The scaled maximum divisor representable by a divider */
scaled_div_max(struct bcm_clk_div * div)84 u64 scaled_div_max(struct bcm_clk_div *div)
85 {
86 u32 reg_div;
87
88 if (divider_is_fixed(div))
89 return (u64)div->u.fixed;
90
91 reg_div = ((u32)1 << div->u.s.width) - 1;
92
93 return scaled_div_value(div, reg_div);
94 }
95
96 /*
97 * Convert a scaled divisor into its divider representation as
98 * stored in a divider register field.
99 */
100 static inline u32
divider(struct bcm_clk_div * div,u64 scaled_div)101 divider(struct bcm_clk_div *div, u64 scaled_div)
102 {
103 BUG_ON(scaled_div < scaled_div_min(div));
104 BUG_ON(scaled_div > scaled_div_max(div));
105
106 return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
107 }
108
109 /* Return a rate scaled for use when dividing by a scaled divisor. */
110 static inline u64
scale_rate(struct bcm_clk_div * div,u32 rate)111 scale_rate(struct bcm_clk_div *div, u32 rate)
112 {
113 if (divider_is_fixed(div))
114 return (u64)rate;
115
116 return (u64)rate << div->u.s.frac_width;
117 }
118
119 /* CCU access */
120
121 /* Read a 32-bit register value from a CCU's address space. */
__ccu_read(struct ccu_data * ccu,u32 reg_offset)122 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
123 {
124 return readl(ccu->base + reg_offset);
125 }
126
127 /* Write a 32-bit register value into a CCU's address space. */
128 static inline void
__ccu_write(struct ccu_data * ccu,u32 reg_offset,u32 reg_val)129 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
130 {
131 writel(reg_val, ccu->base + reg_offset);
132 }
133
ccu_lock(struct ccu_data * ccu)134 static inline unsigned long ccu_lock(struct ccu_data *ccu)
135 {
136 unsigned long flags;
137
138 spin_lock_irqsave(&ccu->lock, flags);
139
140 return flags;
141 }
ccu_unlock(struct ccu_data * ccu,unsigned long flags)142 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
143 {
144 spin_unlock_irqrestore(&ccu->lock, flags);
145 }
146
147 /*
148 * Enable/disable write access to CCU protected registers. The
149 * WR_ACCESS register for all CCUs is at offset 0.
150 */
__ccu_write_enable(struct ccu_data * ccu)151 static inline void __ccu_write_enable(struct ccu_data *ccu)
152 {
153 if (ccu->write_enabled) {
154 pr_err("%s: access already enabled for %s\n", __func__,
155 ccu->name);
156 return;
157 }
158 ccu->write_enabled = true;
159 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
160 }
161
__ccu_write_disable(struct ccu_data * ccu)162 static inline void __ccu_write_disable(struct ccu_data *ccu)
163 {
164 if (!ccu->write_enabled) {
165 pr_err("%s: access wasn't enabled for %s\n", __func__,
166 ccu->name);
167 return;
168 }
169
170 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
171 ccu->write_enabled = false;
172 }
173
174 /*
175 * Poll a register in a CCU's address space, returning when the
176 * specified bit in that register's value is set (or clear). Delay
177 * a microsecond after each read of the register. Returns true if
178 * successful, or false if we gave up trying.
179 *
180 * Caller must ensure the CCU lock is held.
181 */
182 static inline bool
__ccu_wait_bit(struct ccu_data * ccu,u32 reg_offset,u32 bit,bool want)183 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
184 {
185 unsigned int tries;
186 u32 bit_mask = 1 << bit;
187
188 for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
189 u32 val;
190 bool bit_val;
191
192 val = __ccu_read(ccu, reg_offset);
193 bit_val = (val & bit_mask) != 0;
194 if (bit_val == want)
195 return true;
196 udelay(1);
197 }
198 pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
199 ccu->name, reg_offset, bit, want ? "set" : "clear");
200
201 return false;
202 }
203
204 /* Policy operations */
205
__ccu_policy_engine_start(struct ccu_data * ccu,bool sync)206 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
207 {
208 struct bcm_policy_ctl *control = &ccu->policy.control;
209 u32 offset;
210 u32 go_bit;
211 u32 mask;
212 bool ret;
213
214 /* If we don't need to control policy for this CCU, we're done. */
215 if (!policy_ctl_exists(control))
216 return true;
217
218 offset = control->offset;
219 go_bit = control->go_bit;
220
221 /* Ensure we're not busy before we start */
222 ret = __ccu_wait_bit(ccu, offset, go_bit, false);
223 if (!ret) {
224 pr_err("%s: ccu %s policy engine wouldn't go idle\n",
225 __func__, ccu->name);
226 return false;
227 }
228
229 /*
230 * If it's a synchronous request, we'll wait for the voltage
231 * and frequency of the active load to stabilize before
232 * returning. To do this we select the active load by
233 * setting the ATL bit.
234 *
235 * An asynchronous request instead ramps the voltage in the
236 * background, and when that process stabilizes, the target
237 * load is copied to the active load and the CCU frequency
238 * is switched. We do this by selecting the target load
239 * (ATL bit clear) and setting the request auto-copy (AC bit
240 * set).
241 *
242 * Note, we do NOT read-modify-write this register.
243 */
244 mask = (u32)1 << go_bit;
245 if (sync)
246 mask |= 1 << control->atl_bit;
247 else
248 mask |= 1 << control->ac_bit;
249 __ccu_write(ccu, offset, mask);
250
251 /* Wait for indication that operation is complete. */
252 ret = __ccu_wait_bit(ccu, offset, go_bit, false);
253 if (!ret)
254 pr_err("%s: ccu %s policy engine never started\n",
255 __func__, ccu->name);
256
257 return ret;
258 }
259
__ccu_policy_engine_stop(struct ccu_data * ccu)260 static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
261 {
262 struct bcm_lvm_en *enable = &ccu->policy.enable;
263 u32 offset;
264 u32 enable_bit;
265 bool ret;
266
267 /* If we don't need to control policy for this CCU, we're done. */
268 if (!policy_lvm_en_exists(enable))
269 return true;
270
271 /* Ensure we're not busy before we start */
272 offset = enable->offset;
273 enable_bit = enable->bit;
274 ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
275 if (!ret) {
276 pr_err("%s: ccu %s policy engine already stopped\n",
277 __func__, ccu->name);
278 return false;
279 }
280
281 /* Now set the bit to stop the engine (NO read-modify-write) */
282 __ccu_write(ccu, offset, (u32)1 << enable_bit);
283
284 /* Wait for indication that it has stopped. */
285 ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
286 if (!ret)
287 pr_err("%s: ccu %s policy engine never stopped\n",
288 __func__, ccu->name);
289
290 return ret;
291 }
292
293 /*
294 * A CCU has four operating conditions ("policies"), and some clocks
295 * can be disabled or enabled based on which policy is currently in
296 * effect. Such clocks have a bit in a "policy mask" register for
297 * each policy indicating whether the clock is enabled for that
298 * policy or not. The bit position for a clock is the same for all
299 * four registers, and the 32-bit registers are at consecutive
300 * addresses.
301 */
policy_init(struct ccu_data * ccu,struct bcm_clk_policy * policy)302 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
303 {
304 u32 offset;
305 u32 mask;
306 int i;
307 bool ret;
308
309 if (!policy_exists(policy))
310 return true;
311
312 /*
313 * We need to stop the CCU policy engine to allow update
314 * of our policy bits.
315 */
316 if (!__ccu_policy_engine_stop(ccu)) {
317 pr_err("%s: unable to stop CCU %s policy engine\n",
318 __func__, ccu->name);
319 return false;
320 }
321
322 /*
323 * For now, if a clock defines its policy bit we just mark
324 * it "enabled" for all four policies.
325 */
326 offset = policy->offset;
327 mask = (u32)1 << policy->bit;
328 for (i = 0; i < CCU_POLICY_COUNT; i++) {
329 u32 reg_val;
330
331 reg_val = __ccu_read(ccu, offset);
332 reg_val |= mask;
333 __ccu_write(ccu, offset, reg_val);
334 offset += sizeof(u32);
335 }
336
337 /* We're done updating; fire up the policy engine again. */
338 ret = __ccu_policy_engine_start(ccu, true);
339 if (!ret)
340 pr_err("%s: unable to restart CCU %s policy engine\n",
341 __func__, ccu->name);
342
343 return ret;
344 }
345
346 /* Gate operations */
347
348 /* Determine whether a clock is gated. CCU lock must be held. */
349 static bool
__is_clk_gate_enabled(struct ccu_data * ccu,struct bcm_clk_gate * gate)350 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
351 {
352 u32 bit_mask;
353 u32 reg_val;
354
355 /* If there is no gate we can assume it's enabled. */
356 if (!gate_exists(gate))
357 return true;
358
359 bit_mask = 1 << gate->status_bit;
360 reg_val = __ccu_read(ccu, gate->offset);
361
362 return (reg_val & bit_mask) != 0;
363 }
364
365 /* Determine whether a clock is gated. */
366 static bool
is_clk_gate_enabled(struct ccu_data * ccu,struct bcm_clk_gate * gate)367 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
368 {
369 long flags;
370 bool ret;
371
372 /* Avoid taking the lock if we can */
373 if (!gate_exists(gate))
374 return true;
375
376 flags = ccu_lock(ccu);
377 ret = __is_clk_gate_enabled(ccu, gate);
378 ccu_unlock(ccu, flags);
379
380 return ret;
381 }
382
383 /*
384 * Commit our desired gate state to the hardware.
385 * Returns true if successful, false otherwise.
386 */
387 static bool
__gate_commit(struct ccu_data * ccu,struct bcm_clk_gate * gate)388 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
389 {
390 u32 reg_val;
391 u32 mask;
392 bool enabled = false;
393
394 BUG_ON(!gate_exists(gate));
395 if (!gate_is_sw_controllable(gate))
396 return true; /* Nothing we can change */
397
398 reg_val = __ccu_read(ccu, gate->offset);
399
400 /* For a hardware/software gate, set which is in control */
401 if (gate_is_hw_controllable(gate)) {
402 mask = (u32)1 << gate->hw_sw_sel_bit;
403 if (gate_is_sw_managed(gate))
404 reg_val |= mask;
405 else
406 reg_val &= ~mask;
407 }
408
409 /*
410 * If software is in control, enable or disable the gate.
411 * If hardware is, clear the enabled bit for good measure.
412 * If a software controlled gate can't be disabled, we're
413 * required to write a 0 into the enable bit (but the gate
414 * will be enabled).
415 */
416 mask = (u32)1 << gate->en_bit;
417 if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
418 !gate_is_no_disable(gate))
419 reg_val |= mask;
420 else
421 reg_val &= ~mask;
422
423 __ccu_write(ccu, gate->offset, reg_val);
424
425 /* For a hardware controlled gate, we're done */
426 if (!gate_is_sw_managed(gate))
427 return true;
428
429 /* Otherwise wait for the gate to be in desired state */
430 return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
431 }
432
433 /*
434 * Initialize a gate. Our desired state (hardware/software select,
435 * and if software, its enable state) is committed to hardware
436 * without the usual checks to see if it's already set up that way.
437 * Returns true if successful, false otherwise.
438 */
gate_init(struct ccu_data * ccu,struct bcm_clk_gate * gate)439 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
440 {
441 if (!gate_exists(gate))
442 return true;
443 return __gate_commit(ccu, gate);
444 }
445
446 /*
447 * Set a gate to enabled or disabled state. Does nothing if the
448 * gate is not currently under software control, or if it is already
449 * in the requested state. Returns true if successful, false
450 * otherwise. CCU lock must be held.
451 */
452 static bool
__clk_gate(struct ccu_data * ccu,struct bcm_clk_gate * gate,bool enable)453 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
454 {
455 bool ret;
456
457 if (!gate_exists(gate) || !gate_is_sw_managed(gate))
458 return true; /* Nothing to do */
459
460 if (!enable && gate_is_no_disable(gate)) {
461 pr_warn("%s: invalid gate disable request (ignoring)\n",
462 __func__);
463 return true;
464 }
465
466 if (enable == gate_is_enabled(gate))
467 return true; /* No change */
468
469 gate_flip_enabled(gate);
470 ret = __gate_commit(ccu, gate);
471 if (!ret)
472 gate_flip_enabled(gate); /* Revert the change */
473
474 return ret;
475 }
476
477 /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */
clk_gate(struct ccu_data * ccu,const char * name,struct bcm_clk_gate * gate,bool enable)478 static int clk_gate(struct ccu_data *ccu, const char *name,
479 struct bcm_clk_gate *gate, bool enable)
480 {
481 unsigned long flags;
482 bool success;
483
484 /*
485 * Avoid taking the lock if we can. We quietly ignore
486 * requests to change state that don't make sense.
487 */
488 if (!gate_exists(gate) || !gate_is_sw_managed(gate))
489 return 0;
490 if (!enable && gate_is_no_disable(gate))
491 return 0;
492
493 flags = ccu_lock(ccu);
494 __ccu_write_enable(ccu);
495
496 success = __clk_gate(ccu, gate, enable);
497
498 __ccu_write_disable(ccu);
499 ccu_unlock(ccu, flags);
500
501 if (success)
502 return 0;
503
504 pr_err("%s: failed to %s gate for %s\n", __func__,
505 enable ? "enable" : "disable", name);
506
507 return -EIO;
508 }
509
510 /* Hysteresis operations */
511
512 /*
513 * If a clock gate requires a turn-off delay it will have
514 * "hysteresis" register bits defined. The first, if set, enables
515 * the delay; and if enabled, the second bit determines whether the
516 * delay is "low" or "high" (1 means high). For now, if it's
517 * defined for a clock, we set it.
518 */
hyst_init(struct ccu_data * ccu,struct bcm_clk_hyst * hyst)519 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
520 {
521 u32 offset;
522 u32 reg_val;
523 u32 mask;
524
525 if (!hyst_exists(hyst))
526 return true;
527
528 offset = hyst->offset;
529 mask = (u32)1 << hyst->en_bit;
530 mask |= (u32)1 << hyst->val_bit;
531
532 reg_val = __ccu_read(ccu, offset);
533 reg_val |= mask;
534 __ccu_write(ccu, offset, reg_val);
535
536 return true;
537 }
538
539 /* Trigger operations */
540
541 /*
542 * Caller must ensure CCU lock is held and access is enabled.
543 * Returns true if successful, false otherwise.
544 */
__clk_trigger(struct ccu_data * ccu,struct bcm_clk_trig * trig)545 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
546 {
547 /* Trigger the clock and wait for it to finish */
548 __ccu_write(ccu, trig->offset, 1 << trig->bit);
549
550 return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
551 }
552
553 /* Divider operations */
554
555 /* Read a divider value and return the scaled divisor it represents. */
divider_read_scaled(struct ccu_data * ccu,struct bcm_clk_div * div)556 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
557 {
558 unsigned long flags;
559 u32 reg_val;
560 u32 reg_div;
561
562 if (divider_is_fixed(div))
563 return (u64)div->u.fixed;
564
565 flags = ccu_lock(ccu);
566 reg_val = __ccu_read(ccu, div->u.s.offset);
567 ccu_unlock(ccu, flags);
568
569 /* Extract the full divider field from the register value */
570 reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
571
572 /* Return the scaled divisor value it represents */
573 return scaled_div_value(div, reg_div);
574 }
575
576 /*
577 * Convert a divider's scaled divisor value into its recorded form
578 * and commit it into the hardware divider register.
579 *
580 * Returns 0 on success. Returns -EINVAL for invalid arguments.
581 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
582 */
__div_commit(struct ccu_data * ccu,struct bcm_clk_gate * gate,struct bcm_clk_div * div,struct bcm_clk_trig * trig)583 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
584 struct bcm_clk_div *div, struct bcm_clk_trig *trig)
585 {
586 bool enabled;
587 u32 reg_div;
588 u32 reg_val;
589 int ret = 0;
590
591 BUG_ON(divider_is_fixed(div));
592
593 /*
594 * If we're just initializing the divider, and no initial
595 * state was defined in the device tree, we just find out
596 * what its current value is rather than updating it.
597 */
598 if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
599 reg_val = __ccu_read(ccu, div->u.s.offset);
600 reg_div = bitfield_extract(reg_val, div->u.s.shift,
601 div->u.s.width);
602 div->u.s.scaled_div = scaled_div_value(div, reg_div);
603
604 return 0;
605 }
606
607 /* Convert the scaled divisor to the value we need to record */
608 reg_div = divider(div, div->u.s.scaled_div);
609
610 /* Clock needs to be enabled before changing the rate */
611 enabled = __is_clk_gate_enabled(ccu, gate);
612 if (!enabled && !__clk_gate(ccu, gate, true)) {
613 ret = -ENXIO;
614 goto out;
615 }
616
617 /* Replace the divider value and record the result */
618 reg_val = __ccu_read(ccu, div->u.s.offset);
619 reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
620 reg_div);
621 __ccu_write(ccu, div->u.s.offset, reg_val);
622
623 /* If the trigger fails we still want to disable the gate */
624 if (!__clk_trigger(ccu, trig))
625 ret = -EIO;
626
627 /* Disable the clock again if it was disabled to begin with */
628 if (!enabled && !__clk_gate(ccu, gate, false))
629 ret = ret ? ret : -ENXIO; /* return first error */
630 out:
631 return ret;
632 }
633
634 /*
635 * Initialize a divider by committing our desired state to hardware
636 * without the usual checks to see if it's already set up that way.
637 * Returns true if successful, false otherwise.
638 */
div_init(struct ccu_data * ccu,struct bcm_clk_gate * gate,struct bcm_clk_div * div,struct bcm_clk_trig * trig)639 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
640 struct bcm_clk_div *div, struct bcm_clk_trig *trig)
641 {
642 if (!divider_exists(div) || divider_is_fixed(div))
643 return true;
644 return !__div_commit(ccu, gate, div, trig);
645 }
646
divider_write(struct ccu_data * ccu,struct bcm_clk_gate * gate,struct bcm_clk_div * div,struct bcm_clk_trig * trig,u64 scaled_div)647 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
648 struct bcm_clk_div *div, struct bcm_clk_trig *trig,
649 u64 scaled_div)
650 {
651 unsigned long flags;
652 u64 previous;
653 int ret;
654
655 BUG_ON(divider_is_fixed(div));
656
657 previous = div->u.s.scaled_div;
658 if (previous == scaled_div)
659 return 0; /* No change */
660
661 div->u.s.scaled_div = scaled_div;
662
663 flags = ccu_lock(ccu);
664 __ccu_write_enable(ccu);
665
666 ret = __div_commit(ccu, gate, div, trig);
667
668 __ccu_write_disable(ccu);
669 ccu_unlock(ccu, flags);
670
671 if (ret)
672 div->u.s.scaled_div = previous; /* Revert the change */
673
674 return ret;
675
676 }
677
678 /* Common clock rate helpers */
679
680 /*
681 * Implement the common clock framework recalc_rate method, taking
682 * into account a divider and an optional pre-divider. The
683 * pre-divider register pointer may be NULL.
684 */
clk_recalc_rate(struct ccu_data * ccu,struct bcm_clk_div * div,struct bcm_clk_div * pre_div,unsigned long parent_rate)685 static unsigned long clk_recalc_rate(struct ccu_data *ccu,
686 struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
687 unsigned long parent_rate)
688 {
689 u64 scaled_parent_rate;
690 u64 scaled_div;
691 u64 result;
692
693 if (!divider_exists(div))
694 return parent_rate;
695
696 if (parent_rate > (unsigned long)LONG_MAX)
697 return 0; /* actually this would be a caller bug */
698
699 /*
700 * If there is a pre-divider, divide the scaled parent rate
701 * by the pre-divider value first. In this case--to improve
702 * accuracy--scale the parent rate by *both* the pre-divider
703 * value and the divider before actually computing the
704 * result of the pre-divider.
705 *
706 * If there's only one divider, just scale the parent rate.
707 */
708 if (pre_div && divider_exists(pre_div)) {
709 u64 scaled_rate;
710
711 scaled_rate = scale_rate(pre_div, parent_rate);
712 scaled_rate = scale_rate(div, scaled_rate);
713 scaled_div = divider_read_scaled(ccu, pre_div);
714 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
715 scaled_div);
716 } else {
717 scaled_parent_rate = scale_rate(div, parent_rate);
718 }
719
720 /*
721 * Get the scaled divisor value, and divide the scaled
722 * parent rate by that to determine this clock's resulting
723 * rate.
724 */
725 scaled_div = divider_read_scaled(ccu, div);
726 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
727
728 return (unsigned long)result;
729 }
730
731 /*
732 * Compute the output rate produced when a given parent rate is fed
733 * into two dividers. The pre-divider can be NULL, and even if it's
734 * non-null it may be nonexistent. It's also OK for the divider to
735 * be nonexistent, and in that case the pre-divider is also ignored.
736 *
737 * If scaled_div is non-null, it is used to return the scaled divisor
738 * value used by the (downstream) divider to produce that rate.
739 */
round_rate(struct ccu_data * ccu,struct bcm_clk_div * div,struct bcm_clk_div * pre_div,unsigned long rate,unsigned long parent_rate,u64 * scaled_div)740 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
741 struct bcm_clk_div *pre_div,
742 unsigned long rate, unsigned long parent_rate,
743 u64 *scaled_div)
744 {
745 u64 scaled_parent_rate;
746 u64 min_scaled_div;
747 u64 max_scaled_div;
748 u64 best_scaled_div;
749 u64 result;
750
751 BUG_ON(!divider_exists(div));
752 BUG_ON(!rate);
753 BUG_ON(parent_rate > (u64)LONG_MAX);
754
755 /*
756 * If there is a pre-divider, divide the scaled parent rate
757 * by the pre-divider value first. In this case--to improve
758 * accuracy--scale the parent rate by *both* the pre-divider
759 * value and the divider before actually computing the
760 * result of the pre-divider.
761 *
762 * If there's only one divider, just scale the parent rate.
763 *
764 * For simplicity we treat the pre-divider as fixed (for now).
765 */
766 if (divider_exists(pre_div)) {
767 u64 scaled_rate;
768 u64 scaled_pre_div;
769
770 scaled_rate = scale_rate(pre_div, parent_rate);
771 scaled_rate = scale_rate(div, scaled_rate);
772 scaled_pre_div = divider_read_scaled(ccu, pre_div);
773 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
774 scaled_pre_div);
775 } else {
776 scaled_parent_rate = scale_rate(div, parent_rate);
777 }
778
779 /*
780 * Compute the best possible divider and ensure it is in
781 * range. A fixed divider can't be changed, so just report
782 * the best we can do.
783 */
784 if (!divider_is_fixed(div)) {
785 best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
786 rate);
787 min_scaled_div = scaled_div_min(div);
788 max_scaled_div = scaled_div_max(div);
789 if (best_scaled_div > max_scaled_div)
790 best_scaled_div = max_scaled_div;
791 else if (best_scaled_div < min_scaled_div)
792 best_scaled_div = min_scaled_div;
793 } else {
794 best_scaled_div = divider_read_scaled(ccu, div);
795 }
796
797 /* OK, figure out the resulting rate */
798 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
799
800 if (scaled_div)
801 *scaled_div = best_scaled_div;
802
803 return (long)result;
804 }
805
806 /* Common clock parent helpers */
807
808 /*
809 * For a given parent selector (register field) value, find the
810 * index into a selector's parent_sel array that contains it.
811 * Returns the index, or BAD_CLK_INDEX if it's not found.
812 */
parent_index(struct bcm_clk_sel * sel,u8 parent_sel)813 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
814 {
815 u8 i;
816
817 BUG_ON(sel->parent_count > (u32)U8_MAX);
818 for (i = 0; i < sel->parent_count; i++)
819 if (sel->parent_sel[i] == parent_sel)
820 return i;
821 return BAD_CLK_INDEX;
822 }
823
824 /*
825 * Fetch the current value of the selector, and translate that into
826 * its corresponding index in the parent array we registered with
827 * the clock framework.
828 *
829 * Returns parent array index that corresponds with the value found,
830 * or BAD_CLK_INDEX if the found value is out of range.
831 */
selector_read_index(struct ccu_data * ccu,struct bcm_clk_sel * sel)832 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
833 {
834 unsigned long flags;
835 u32 reg_val;
836 u32 parent_sel;
837 u8 index;
838
839 /* If there's no selector, there's only one parent */
840 if (!selector_exists(sel))
841 return 0;
842
843 /* Get the value in the selector register */
844 flags = ccu_lock(ccu);
845 reg_val = __ccu_read(ccu, sel->offset);
846 ccu_unlock(ccu, flags);
847
848 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
849
850 /* Look up that selector's parent array index and return it */
851 index = parent_index(sel, parent_sel);
852 if (index == BAD_CLK_INDEX)
853 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
854 __func__, parent_sel, ccu->name, sel->offset);
855
856 return index;
857 }
858
859 /*
860 * Commit our desired selector value to the hardware.
861 *
862 * Returns 0 on success. Returns -EINVAL for invalid arguments.
863 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
864 */
865 static int
__sel_commit(struct ccu_data * ccu,struct bcm_clk_gate * gate,struct bcm_clk_sel * sel,struct bcm_clk_trig * trig)866 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
867 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
868 {
869 u32 parent_sel;
870 u32 reg_val;
871 bool enabled;
872 int ret = 0;
873
874 BUG_ON(!selector_exists(sel));
875
876 /*
877 * If we're just initializing the selector, and no initial
878 * state was defined in the device tree, we just find out
879 * what its current value is rather than updating it.
880 */
881 if (sel->clk_index == BAD_CLK_INDEX) {
882 u8 index;
883
884 reg_val = __ccu_read(ccu, sel->offset);
885 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
886 index = parent_index(sel, parent_sel);
887 if (index == BAD_CLK_INDEX)
888 return -EINVAL;
889 sel->clk_index = index;
890
891 return 0;
892 }
893
894 BUG_ON((u32)sel->clk_index >= sel->parent_count);
895 parent_sel = sel->parent_sel[sel->clk_index];
896
897 /* Clock needs to be enabled before changing the parent */
898 enabled = __is_clk_gate_enabled(ccu, gate);
899 if (!enabled && !__clk_gate(ccu, gate, true))
900 return -ENXIO;
901
902 /* Replace the selector value and record the result */
903 reg_val = __ccu_read(ccu, sel->offset);
904 reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
905 __ccu_write(ccu, sel->offset, reg_val);
906
907 /* If the trigger fails we still want to disable the gate */
908 if (!__clk_trigger(ccu, trig))
909 ret = -EIO;
910
911 /* Disable the clock again if it was disabled to begin with */
912 if (!enabled && !__clk_gate(ccu, gate, false))
913 ret = ret ? ret : -ENXIO; /* return first error */
914
915 return ret;
916 }
917
918 /*
919 * Initialize a selector by committing our desired state to hardware
920 * without the usual checks to see if it's already set up that way.
921 * Returns true if successful, false otherwise.
922 */
sel_init(struct ccu_data * ccu,struct bcm_clk_gate * gate,struct bcm_clk_sel * sel,struct bcm_clk_trig * trig)923 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
924 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
925 {
926 if (!selector_exists(sel))
927 return true;
928 return !__sel_commit(ccu, gate, sel, trig);
929 }
930
931 /*
932 * Write a new value into a selector register to switch to a
933 * different parent clock. Returns 0 on success, or an error code
934 * (from __sel_commit()) otherwise.
935 */
selector_write(struct ccu_data * ccu,struct bcm_clk_gate * gate,struct bcm_clk_sel * sel,struct bcm_clk_trig * trig,u8 index)936 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
937 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
938 u8 index)
939 {
940 unsigned long flags;
941 u8 previous;
942 int ret;
943
944 previous = sel->clk_index;
945 if (previous == index)
946 return 0; /* No change */
947
948 sel->clk_index = index;
949
950 flags = ccu_lock(ccu);
951 __ccu_write_enable(ccu);
952
953 ret = __sel_commit(ccu, gate, sel, trig);
954
955 __ccu_write_disable(ccu);
956 ccu_unlock(ccu, flags);
957
958 if (ret)
959 sel->clk_index = previous; /* Revert the change */
960
961 return ret;
962 }
963
964 /* Clock operations */
965
kona_peri_clk_enable(struct clk_hw * hw)966 static int kona_peri_clk_enable(struct clk_hw *hw)
967 {
968 struct kona_clk *bcm_clk = to_kona_clk(hw);
969 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
970
971 return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
972 }
973
kona_peri_clk_disable(struct clk_hw * hw)974 static void kona_peri_clk_disable(struct clk_hw *hw)
975 {
976 struct kona_clk *bcm_clk = to_kona_clk(hw);
977 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
978
979 (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
980 }
981
kona_peri_clk_is_enabled(struct clk_hw * hw)982 static int kona_peri_clk_is_enabled(struct clk_hw *hw)
983 {
984 struct kona_clk *bcm_clk = to_kona_clk(hw);
985 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
986
987 return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
988 }
989
kona_peri_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)990 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
991 unsigned long parent_rate)
992 {
993 struct kona_clk *bcm_clk = to_kona_clk(hw);
994 struct peri_clk_data *data = bcm_clk->u.peri;
995
996 return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
997 parent_rate);
998 }
999
kona_peri_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)1000 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1001 unsigned long *parent_rate)
1002 {
1003 struct kona_clk *bcm_clk = to_kona_clk(hw);
1004 struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1005
1006 if (!divider_exists(div))
1007 return clk_hw_get_rate(hw);
1008
1009 /* Quietly avoid a zero rate */
1010 return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1011 rate ? rate : 1, *parent_rate, NULL);
1012 }
1013
kona_peri_clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1014 static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1015 struct clk_rate_request *req)
1016 {
1017 struct kona_clk *bcm_clk = to_kona_clk(hw);
1018 struct clk_hw *current_parent;
1019 unsigned long parent_rate;
1020 unsigned long best_delta;
1021 unsigned long best_rate;
1022 u32 parent_count;
1023 long rate;
1024 u32 which;
1025
1026 /*
1027 * If there is no other parent to choose, use the current one.
1028 * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1029 */
1030 WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1031 parent_count = (u32)bcm_clk->init_data.num_parents;
1032 if (parent_count < 2) {
1033 rate = kona_peri_clk_round_rate(hw, req->rate,
1034 &req->best_parent_rate);
1035 if (rate < 0)
1036 return rate;
1037
1038 req->rate = rate;
1039 return 0;
1040 }
1041
1042 /* Unless we can do better, stick with current parent */
1043 current_parent = clk_hw_get_parent(hw);
1044 parent_rate = clk_hw_get_rate(current_parent);
1045 best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1046 best_delta = abs(best_rate - req->rate);
1047
1048 /* Check whether any other parent clock can produce a better result */
1049 for (which = 0; which < parent_count; which++) {
1050 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1051 unsigned long delta;
1052 unsigned long other_rate;
1053
1054 BUG_ON(!parent);
1055 if (parent == current_parent)
1056 continue;
1057
1058 /* We don't support CLK_SET_RATE_PARENT */
1059 parent_rate = clk_hw_get_rate(parent);
1060 other_rate = kona_peri_clk_round_rate(hw, req->rate,
1061 &parent_rate);
1062 delta = abs(other_rate - req->rate);
1063 if (delta < best_delta) {
1064 best_delta = delta;
1065 best_rate = other_rate;
1066 req->best_parent_hw = parent;
1067 req->best_parent_rate = parent_rate;
1068 }
1069 }
1070
1071 req->rate = best_rate;
1072 return 0;
1073 }
1074
kona_peri_clk_set_parent(struct clk_hw * hw,u8 index)1075 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1076 {
1077 struct kona_clk *bcm_clk = to_kona_clk(hw);
1078 struct peri_clk_data *data = bcm_clk->u.peri;
1079 struct bcm_clk_sel *sel = &data->sel;
1080 struct bcm_clk_trig *trig;
1081 int ret;
1082
1083 BUG_ON(index >= sel->parent_count);
1084
1085 /* If there's only one parent we don't require a selector */
1086 if (!selector_exists(sel))
1087 return 0;
1088
1089 /*
1090 * The regular trigger is used by default, but if there's a
1091 * pre-trigger we want to use that instead.
1092 */
1093 trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1094 : &data->trig;
1095
1096 ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1097 if (ret == -ENXIO) {
1098 pr_err("%s: gating failure for %s\n", __func__,
1099 bcm_clk->init_data.name);
1100 ret = -EIO; /* Don't proliferate weird errors */
1101 } else if (ret == -EIO) {
1102 pr_err("%s: %strigger failed for %s\n", __func__,
1103 trig == &data->pre_trig ? "pre-" : "",
1104 bcm_clk->init_data.name);
1105 }
1106
1107 return ret;
1108 }
1109
kona_peri_clk_get_parent(struct clk_hw * hw)1110 static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1111 {
1112 struct kona_clk *bcm_clk = to_kona_clk(hw);
1113 struct peri_clk_data *data = bcm_clk->u.peri;
1114 u8 index;
1115
1116 index = selector_read_index(bcm_clk->ccu, &data->sel);
1117
1118 /* Not all callers would handle an out-of-range value gracefully */
1119 return index == BAD_CLK_INDEX ? 0 : index;
1120 }
1121
kona_peri_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1122 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1123 unsigned long parent_rate)
1124 {
1125 struct kona_clk *bcm_clk = to_kona_clk(hw);
1126 struct peri_clk_data *data = bcm_clk->u.peri;
1127 struct bcm_clk_div *div = &data->div;
1128 u64 scaled_div = 0;
1129 int ret;
1130
1131 if (parent_rate > (unsigned long)LONG_MAX)
1132 return -EINVAL;
1133
1134 if (rate == clk_hw_get_rate(hw))
1135 return 0;
1136
1137 if (!divider_exists(div))
1138 return rate == parent_rate ? 0 : -EINVAL;
1139
1140 /*
1141 * A fixed divider can't be changed. (Nor can a fixed
1142 * pre-divider be, but for now we never actually try to
1143 * change that.) Tolerate a request for a no-op change.
1144 */
1145 if (divider_is_fixed(&data->div))
1146 return rate == parent_rate ? 0 : -EINVAL;
1147
1148 /*
1149 * Get the scaled divisor value needed to achieve a clock
1150 * rate as close as possible to what was requested, given
1151 * the parent clock rate supplied.
1152 */
1153 (void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1154 rate ? rate : 1, parent_rate, &scaled_div);
1155
1156 /*
1157 * We aren't updating any pre-divider at this point, so
1158 * we'll use the regular trigger.
1159 */
1160 ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1161 &data->trig, scaled_div);
1162 if (ret == -ENXIO) {
1163 pr_err("%s: gating failure for %s\n", __func__,
1164 bcm_clk->init_data.name);
1165 ret = -EIO; /* Don't proliferate weird errors */
1166 } else if (ret == -EIO) {
1167 pr_err("%s: trigger failed for %s\n", __func__,
1168 bcm_clk->init_data.name);
1169 }
1170
1171 return ret;
1172 }
1173
1174 struct clk_ops kona_peri_clk_ops = {
1175 .enable = kona_peri_clk_enable,
1176 .disable = kona_peri_clk_disable,
1177 .is_enabled = kona_peri_clk_is_enabled,
1178 .recalc_rate = kona_peri_clk_recalc_rate,
1179 .determine_rate = kona_peri_clk_determine_rate,
1180 .set_parent = kona_peri_clk_set_parent,
1181 .get_parent = kona_peri_clk_get_parent,
1182 .set_rate = kona_peri_clk_set_rate,
1183 };
1184
1185 /* Put a peripheral clock into its initial state */
__peri_clk_init(struct kona_clk * bcm_clk)1186 static bool __peri_clk_init(struct kona_clk *bcm_clk)
1187 {
1188 struct ccu_data *ccu = bcm_clk->ccu;
1189 struct peri_clk_data *peri = bcm_clk->u.peri;
1190 const char *name = bcm_clk->init_data.name;
1191 struct bcm_clk_trig *trig;
1192
1193 BUG_ON(bcm_clk->type != bcm_clk_peri);
1194
1195 if (!policy_init(ccu, &peri->policy)) {
1196 pr_err("%s: error initializing policy for %s\n",
1197 __func__, name);
1198 return false;
1199 }
1200 if (!gate_init(ccu, &peri->gate)) {
1201 pr_err("%s: error initializing gate for %s\n", __func__, name);
1202 return false;
1203 }
1204 if (!hyst_init(ccu, &peri->hyst)) {
1205 pr_err("%s: error initializing hyst for %s\n", __func__, name);
1206 return false;
1207 }
1208 if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1209 pr_err("%s: error initializing divider for %s\n", __func__,
1210 name);
1211 return false;
1212 }
1213
1214 /*
1215 * For the pre-divider and selector, the pre-trigger is used
1216 * if it's present, otherwise we just use the regular trigger.
1217 */
1218 trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1219 : &peri->trig;
1220
1221 if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1222 pr_err("%s: error initializing pre-divider for %s\n", __func__,
1223 name);
1224 return false;
1225 }
1226
1227 if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1228 pr_err("%s: error initializing selector for %s\n", __func__,
1229 name);
1230 return false;
1231 }
1232
1233 return true;
1234 }
1235
__kona_clk_init(struct kona_clk * bcm_clk)1236 static bool __kona_clk_init(struct kona_clk *bcm_clk)
1237 {
1238 switch (bcm_clk->type) {
1239 case bcm_clk_peri:
1240 return __peri_clk_init(bcm_clk);
1241 default:
1242 BUG();
1243 }
1244 return false;
1245 }
1246
1247 /* Set a CCU and all its clocks into their desired initial state */
kona_ccu_init(struct ccu_data * ccu)1248 bool __init kona_ccu_init(struct ccu_data *ccu)
1249 {
1250 unsigned long flags;
1251 unsigned int which;
1252 struct kona_clk *kona_clks = ccu->kona_clks;
1253 bool success = true;
1254
1255 flags = ccu_lock(ccu);
1256 __ccu_write_enable(ccu);
1257
1258 for (which = 0; which < ccu->clk_num; which++) {
1259 struct kona_clk *bcm_clk = &kona_clks[which];
1260
1261 if (!bcm_clk->ccu)
1262 continue;
1263
1264 success &= __kona_clk_init(bcm_clk);
1265 }
1266
1267 __ccu_write_disable(ccu);
1268 ccu_unlock(ccu, flags);
1269 return success;
1270 }
1271