1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Broadcom Corporation 4 * Copyright 2013 Linaro Limited 5 */ 6 7 #include <linux/io.h> 8 #include <linux/of_address.h> 9 10 #include "clk-kona.h" 11 12 /* These are used when a selector or trigger is found to be unneeded */ 13 #define selector_clear_exists(sel) ((sel)->width = 0) 14 #define trigger_clear_exists(trig) FLAG_CLEAR(trig, TRIG, EXISTS) 15 16 /* Validity checking */ 17 18 static bool ccu_data_offsets_valid(struct ccu_data *ccu) 19 { 20 struct ccu_policy *ccu_policy = &ccu->policy; 21 u32 limit; 22 23 limit = ccu->range - sizeof(u32); 24 limit = round_down(limit, sizeof(u32)); 25 if (ccu_policy_exists(ccu_policy)) { 26 if (ccu_policy->enable.offset > limit) { 27 pr_err("%s: bad policy enable offset for %s " 28 "(%u > %u)\n", __func__, 29 ccu->name, ccu_policy->enable.offset, limit); 30 return false; 31 } 32 if (ccu_policy->control.offset > limit) { 33 pr_err("%s: bad policy control offset for %s " 34 "(%u > %u)\n", __func__, 35 ccu->name, ccu_policy->control.offset, limit); 36 return false; 37 } 38 } 39 40 return true; 41 } 42 43 static bool clk_requires_trigger(struct kona_clk *bcm_clk) 44 { 45 struct peri_clk_data *peri = bcm_clk->u.peri; 46 struct bcm_clk_sel *sel; 47 struct bcm_clk_div *div; 48 49 if (bcm_clk->type != bcm_clk_peri) 50 return false; 51 52 sel = &peri->sel; 53 if (sel->parent_count && selector_exists(sel)) 54 return true; 55 56 div = &peri->div; 57 if (!divider_exists(div)) 58 return false; 59 60 /* Fixed dividers don't need triggers */ 61 if (!divider_is_fixed(div)) 62 return true; 63 64 div = &peri->pre_div; 65 66 return divider_exists(div) && !divider_is_fixed(div); 67 } 68 69 static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk) 70 { 71 struct peri_clk_data *peri; 72 struct bcm_clk_policy *policy; 73 struct bcm_clk_gate *gate; 74 struct bcm_clk_hyst *hyst; 75 struct bcm_clk_div *div; 76 struct bcm_clk_sel *sel; 77 struct bcm_clk_trig *trig; 78 const char *name; 79 u32 range; 80 u32 limit; 81 82 BUG_ON(bcm_clk->type != bcm_clk_peri); 83 peri = bcm_clk->u.peri; 84 name = bcm_clk->init_data.name; 85 range = bcm_clk->ccu->range; 86 87 limit = range - sizeof(u32); 88 limit = round_down(limit, sizeof(u32)); 89 90 policy = &peri->policy; 91 if (policy_exists(policy)) { 92 if (policy->offset > limit) { 93 pr_err("%s: bad policy offset for %s (%u > %u)\n", 94 __func__, name, policy->offset, limit); 95 return false; 96 } 97 } 98 99 gate = &peri->gate; 100 hyst = &peri->hyst; 101 if (gate_exists(gate)) { 102 if (gate->offset > limit) { 103 pr_err("%s: bad gate offset for %s (%u > %u)\n", 104 __func__, name, gate->offset, limit); 105 return false; 106 } 107 108 if (hyst_exists(hyst)) { 109 if (hyst->offset > limit) { 110 pr_err("%s: bad hysteresis offset for %s " 111 "(%u > %u)\n", __func__, 112 name, hyst->offset, limit); 113 return false; 114 } 115 } 116 } else if (hyst_exists(hyst)) { 117 pr_err("%s: hysteresis but no gate for %s\n", __func__, name); 118 return false; 119 } 120 121 div = &peri->div; 122 if (divider_exists(div)) { 123 if (div->u.s.offset > limit) { 124 pr_err("%s: bad divider offset for %s (%u > %u)\n", 125 __func__, name, div->u.s.offset, limit); 126 return false; 127 } 128 } 129 130 div = &peri->pre_div; 131 if (divider_exists(div)) { 132 if (div->u.s.offset > limit) { 133 pr_err("%s: bad pre-divider offset for %s " 134 "(%u > %u)\n", 135 __func__, name, div->u.s.offset, limit); 136 return false; 137 } 138 } 139 140 sel = &peri->sel; 141 if (selector_exists(sel)) { 142 if (sel->offset > limit) { 143 pr_err("%s: bad selector offset for %s (%u > %u)\n", 144 __func__, name, sel->offset, limit); 145 return false; 146 } 147 } 148 149 trig = &peri->trig; 150 if (trigger_exists(trig)) { 151 if (trig->offset > limit) { 152 pr_err("%s: bad trigger offset for %s (%u > %u)\n", 153 __func__, name, trig->offset, limit); 154 return false; 155 } 156 } 157 158 trig = &peri->pre_trig; 159 if (trigger_exists(trig)) { 160 if (trig->offset > limit) { 161 pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n", 162 __func__, name, trig->offset, limit); 163 return false; 164 } 165 } 166 167 return true; 168 } 169 170 /* A bit position must be less than the number of bits in a 32-bit register. */ 171 static bool bit_posn_valid(u32 bit_posn, const char *field_name, 172 const char *clock_name) 173 { 174 u32 limit = BITS_PER_BYTE * sizeof(u32) - 1; 175 176 if (bit_posn > limit) { 177 pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__, 178 field_name, clock_name, bit_posn, limit); 179 return false; 180 } 181 return true; 182 } 183 184 /* 185 * A bitfield must be at least 1 bit wide. Both the low-order and 186 * high-order bits must lie within a 32-bit register. We require 187 * fields to be less than 32 bits wide, mainly because we use 188 * shifting to produce field masks, and shifting a full word width 189 * is not well-defined by the C standard. 190 */ 191 static bool bitfield_valid(u32 shift, u32 width, const char *field_name, 192 const char *clock_name) 193 { 194 u32 limit = BITS_PER_BYTE * sizeof(u32); 195 196 if (!width) { 197 pr_err("%s: bad %s field width 0 for %s\n", __func__, 198 field_name, clock_name); 199 return false; 200 } 201 if (shift + width > limit) { 202 pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__, 203 field_name, clock_name, shift, width, limit); 204 return false; 205 } 206 return true; 207 } 208 209 static bool 210 ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name) 211 { 212 struct bcm_lvm_en *enable = &ccu_policy->enable; 213 struct bcm_policy_ctl *control; 214 215 if (!bit_posn_valid(enable->bit, "policy enable", ccu_name)) 216 return false; 217 218 control = &ccu_policy->control; 219 if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name)) 220 return false; 221 222 if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name)) 223 return false; 224 225 if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name)) 226 return false; 227 228 return true; 229 } 230 231 static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name) 232 { 233 if (!bit_posn_valid(policy->bit, "policy", clock_name)) 234 return false; 235 236 return true; 237 } 238 239 /* 240 * All gates, if defined, have a status bit, and for hardware-only 241 * gates, that's it. Gates that can be software controlled also 242 * have an enable bit. And a gate that can be hardware or software 243 * controlled will have a hardware/software select bit. 244 */ 245 static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name, 246 const char *clock_name) 247 { 248 if (!bit_posn_valid(gate->status_bit, "gate status", clock_name)) 249 return false; 250 251 if (gate_is_sw_controllable(gate)) { 252 if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name)) 253 return false; 254 255 if (gate_is_hw_controllable(gate)) { 256 if (!bit_posn_valid(gate->hw_sw_sel_bit, 257 "gate hw/sw select", 258 clock_name)) 259 return false; 260 } 261 } else { 262 BUG_ON(!gate_is_hw_controllable(gate)); 263 } 264 265 return true; 266 } 267 268 static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name) 269 { 270 if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name)) 271 return false; 272 273 if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name)) 274 return false; 275 276 return true; 277 } 278 279 /* 280 * A selector bitfield must be valid. Its parent_sel array must 281 * also be reasonable for the field. 282 */ 283 static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name, 284 const char *clock_name) 285 { 286 if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name)) 287 return false; 288 289 if (sel->parent_count) { 290 u32 max_sel; 291 u32 limit; 292 293 /* 294 * Make sure the selector field can hold all the 295 * selector values we expect to be able to use. A 296 * clock only needs to have a selector defined if it 297 * has more than one parent. And in that case the 298 * highest selector value will be in the last entry 299 * in the array. 300 */ 301 max_sel = sel->parent_sel[sel->parent_count - 1]; 302 limit = (1 << sel->width) - 1; 303 if (max_sel > limit) { 304 pr_err("%s: bad selector for %s " 305 "(%u needs > %u bits)\n", 306 __func__, clock_name, max_sel, 307 sel->width); 308 return false; 309 } 310 } else { 311 pr_warn("%s: ignoring selector for %s (no parents)\n", 312 __func__, clock_name); 313 selector_clear_exists(sel); 314 kfree(sel->parent_sel); 315 sel->parent_sel = NULL; 316 } 317 318 return true; 319 } 320 321 /* 322 * A fixed divider just needs to be non-zero. A variable divider 323 * has to have a valid divider bitfield, and if it has a fraction, 324 * the width of the fraction must not be no more than the width of 325 * the divider as a whole. 326 */ 327 static bool div_valid(struct bcm_clk_div *div, const char *field_name, 328 const char *clock_name) 329 { 330 if (divider_is_fixed(div)) { 331 /* Any fixed divider value but 0 is OK */ 332 if (div->u.fixed == 0) { 333 pr_err("%s: bad %s fixed value 0 for %s\n", __func__, 334 field_name, clock_name); 335 return false; 336 } 337 return true; 338 } 339 if (!bitfield_valid(div->u.s.shift, div->u.s.width, 340 field_name, clock_name)) 341 return false; 342 343 if (divider_has_fraction(div)) 344 if (div->u.s.frac_width > div->u.s.width) { 345 pr_warn("%s: bad %s fraction width for %s (%u > %u)\n", 346 __func__, field_name, clock_name, 347 div->u.s.frac_width, div->u.s.width); 348 return false; 349 } 350 351 return true; 352 } 353 354 /* 355 * If a clock has two dividers, the combined number of fractional 356 * bits must be representable in a 32-bit unsigned value. This 357 * is because we scale up a dividend using both dividers before 358 * dividing to improve accuracy, and we need to avoid overflow. 359 */ 360 static bool kona_dividers_valid(struct kona_clk *bcm_clk) 361 { 362 struct peri_clk_data *peri = bcm_clk->u.peri; 363 struct bcm_clk_div *div; 364 struct bcm_clk_div *pre_div; 365 u32 limit; 366 367 BUG_ON(bcm_clk->type != bcm_clk_peri); 368 369 if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div)) 370 return true; 371 372 div = &peri->div; 373 pre_div = &peri->pre_div; 374 if (divider_is_fixed(div) || divider_is_fixed(pre_div)) 375 return true; 376 377 limit = BITS_PER_BYTE * sizeof(u32); 378 379 return div->u.s.frac_width + pre_div->u.s.frac_width <= limit; 380 } 381 382 383 /* A trigger just needs to represent a valid bit position */ 384 static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name, 385 const char *clock_name) 386 { 387 return bit_posn_valid(trig->bit, field_name, clock_name); 388 } 389 390 /* Determine whether the set of peripheral clock registers are valid. */ 391 static bool 392 peri_clk_data_valid(struct kona_clk *bcm_clk) 393 { 394 struct peri_clk_data *peri; 395 struct bcm_clk_policy *policy; 396 struct bcm_clk_gate *gate; 397 struct bcm_clk_hyst *hyst; 398 struct bcm_clk_sel *sel; 399 struct bcm_clk_div *div; 400 struct bcm_clk_div *pre_div; 401 struct bcm_clk_trig *trig; 402 const char *name; 403 404 BUG_ON(bcm_clk->type != bcm_clk_peri); 405 406 /* 407 * First validate register offsets. This is the only place 408 * where we need something from the ccu, so we do these 409 * together. 410 */ 411 if (!peri_clk_data_offsets_valid(bcm_clk)) 412 return false; 413 414 peri = bcm_clk->u.peri; 415 name = bcm_clk->init_data.name; 416 417 policy = &peri->policy; 418 if (policy_exists(policy) && !policy_valid(policy, name)) 419 return false; 420 421 gate = &peri->gate; 422 if (gate_exists(gate) && !gate_valid(gate, "gate", name)) 423 return false; 424 425 hyst = &peri->hyst; 426 if (hyst_exists(hyst) && !hyst_valid(hyst, name)) 427 return false; 428 429 sel = &peri->sel; 430 if (selector_exists(sel)) { 431 if (!sel_valid(sel, "selector", name)) 432 return false; 433 434 } else if (sel->parent_count > 1) { 435 pr_err("%s: multiple parents but no selector for %s\n", 436 __func__, name); 437 438 return false; 439 } 440 441 div = &peri->div; 442 pre_div = &peri->pre_div; 443 if (divider_exists(div)) { 444 if (!div_valid(div, "divider", name)) 445 return false; 446 447 if (divider_exists(pre_div)) 448 if (!div_valid(pre_div, "pre-divider", name)) 449 return false; 450 } else if (divider_exists(pre_div)) { 451 pr_err("%s: pre-divider but no divider for %s\n", __func__, 452 name); 453 return false; 454 } 455 456 trig = &peri->trig; 457 if (trigger_exists(trig)) { 458 if (!trig_valid(trig, "trigger", name)) 459 return false; 460 461 if (trigger_exists(&peri->pre_trig)) { 462 if (!trig_valid(trig, "pre-trigger", name)) { 463 return false; 464 } 465 } 466 if (!clk_requires_trigger(bcm_clk)) { 467 pr_warn("%s: ignoring trigger for %s (not needed)\n", 468 __func__, name); 469 trigger_clear_exists(trig); 470 } 471 } else if (trigger_exists(&peri->pre_trig)) { 472 pr_err("%s: pre-trigger but no trigger for %s\n", __func__, 473 name); 474 return false; 475 } else if (clk_requires_trigger(bcm_clk)) { 476 pr_err("%s: required trigger missing for %s\n", __func__, 477 name); 478 return false; 479 } 480 481 return kona_dividers_valid(bcm_clk); 482 } 483 484 static bool kona_clk_valid(struct kona_clk *bcm_clk) 485 { 486 switch (bcm_clk->type) { 487 case bcm_clk_peri: 488 if (!peri_clk_data_valid(bcm_clk)) 489 return false; 490 break; 491 default: 492 pr_err("%s: unrecognized clock type (%d)\n", __func__, 493 (int)bcm_clk->type); 494 return false; 495 } 496 return true; 497 } 498 499 /* 500 * Scan an array of parent clock names to determine whether there 501 * are any entries containing BAD_CLK_NAME. Such entries are 502 * placeholders for non-supported clocks. Keep track of the 503 * position of each clock name in the original array. 504 * 505 * Allocates an array of pointers to hold the names of all 506 * non-null entries in the original array, and returns a pointer to 507 * that array in *names. This will be used for registering the 508 * clock with the common clock code. On successful return, 509 * *count indicates how many entries are in that names array. 510 * 511 * If there is more than one entry in the resulting names array, 512 * another array is allocated to record the parent selector value 513 * for each (defined) parent clock. This is the value that 514 * represents this parent clock in the clock's source selector 515 * register. The position of the clock in the original parent array 516 * defines that selector value. The number of entries in this array 517 * is the same as the number of entries in the parent names array. 518 * 519 * The array of selector values is returned. If the clock has no 520 * parents, no selector is required and a null pointer is returned. 521 * 522 * Returns a null pointer if the clock names array supplied was 523 * null. (This is not an error.) 524 * 525 * Returns a pointer-coded error if an error occurs. 526 */ 527 static u32 *parent_process(const char *clocks[], 528 u32 *count, const char ***names) 529 { 530 static const char **parent_names; 531 static u32 *parent_sel; 532 const char **clock; 533 u32 parent_count; 534 u32 bad_count = 0; 535 u32 orig_count; 536 u32 i; 537 u32 j; 538 539 *count = 0; /* In case of early return */ 540 *names = NULL; 541 if (!clocks) 542 return NULL; 543 544 /* 545 * Count the number of names in the null-terminated array, 546 * and find out how many of those are actually clock names. 547 */ 548 for (clock = clocks; *clock; clock++) 549 if (*clock == BAD_CLK_NAME) 550 bad_count++; 551 orig_count = (u32)(clock - clocks); 552 parent_count = orig_count - bad_count; 553 554 /* If all clocks are unsupported, we treat it as no clock */ 555 if (!parent_count) 556 return NULL; 557 558 /* Avoid exceeding our parent clock limit */ 559 if (parent_count > PARENT_COUNT_MAX) { 560 pr_err("%s: too many parents (%u > %u)\n", __func__, 561 parent_count, PARENT_COUNT_MAX); 562 return ERR_PTR(-EINVAL); 563 } 564 565 /* 566 * There is one parent name for each defined parent clock. 567 * We also maintain an array containing the selector value 568 * for each defined clock. If there's only one clock, the 569 * selector is not required, but we allocate space for the 570 * array anyway to keep things simple. 571 */ 572 parent_names = kmalloc_array(parent_count, sizeof(*parent_names), 573 GFP_KERNEL); 574 if (!parent_names) 575 return ERR_PTR(-ENOMEM); 576 577 /* There is at least one parent, so allocate a selector array */ 578 parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel), 579 GFP_KERNEL); 580 if (!parent_sel) { 581 kfree(parent_names); 582 583 return ERR_PTR(-ENOMEM); 584 } 585 586 /* Now fill in the parent names and selector arrays */ 587 for (i = 0, j = 0; i < orig_count; i++) { 588 if (clocks[i] != BAD_CLK_NAME) { 589 parent_names[j] = clocks[i]; 590 parent_sel[j] = i; 591 j++; 592 } 593 } 594 *names = parent_names; 595 *count = parent_count; 596 597 return parent_sel; 598 } 599 600 static int 601 clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel, 602 struct clk_init_data *init_data) 603 { 604 const char **parent_names = NULL; 605 u32 parent_count = 0; 606 u32 *parent_sel; 607 608 /* 609 * If a peripheral clock has multiple parents, the value 610 * used by the hardware to select that parent is represented 611 * by the parent clock's position in the "clocks" list. Some 612 * values don't have defined or supported clocks; these will 613 * have BAD_CLK_NAME entries in the parents[] array. The 614 * list is terminated by a NULL entry. 615 * 616 * We need to supply (only) the names of defined parent 617 * clocks when registering a clock though, so we use an 618 * array of parent selector values to map between the 619 * indexes the common clock code uses and the selector 620 * values we need. 621 */ 622 parent_sel = parent_process(clocks, &parent_count, &parent_names); 623 if (IS_ERR(parent_sel)) { 624 int ret = PTR_ERR(parent_sel); 625 626 pr_err("%s: error processing parent clocks for %s (%d)\n", 627 __func__, init_data->name, ret); 628 629 return ret; 630 } 631 632 init_data->parent_names = parent_names; 633 init_data->num_parents = parent_count; 634 635 sel->parent_count = parent_count; 636 sel->parent_sel = parent_sel; 637 638 return 0; 639 } 640 641 static void clk_sel_teardown(struct bcm_clk_sel *sel, 642 struct clk_init_data *init_data) 643 { 644 kfree(sel->parent_sel); 645 sel->parent_sel = NULL; 646 sel->parent_count = 0; 647 648 init_data->num_parents = 0; 649 kfree(init_data->parent_names); 650 init_data->parent_names = NULL; 651 } 652 653 static void peri_clk_teardown(struct peri_clk_data *data, 654 struct clk_init_data *init_data) 655 { 656 clk_sel_teardown(&data->sel, init_data); 657 } 658 659 /* 660 * Caller is responsible for freeing the parent_names[] and 661 * parent_sel[] arrays in the peripheral clock's "data" structure 662 * that can be assigned if the clock has one or more parent clocks 663 * associated with it. 664 */ 665 static int 666 peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data) 667 { 668 init_data->flags = CLK_IGNORE_UNUSED; 669 670 return clk_sel_setup(data->clocks, &data->sel, init_data); 671 } 672 673 static void bcm_clk_teardown(struct kona_clk *bcm_clk) 674 { 675 switch (bcm_clk->type) { 676 case bcm_clk_peri: 677 peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data); 678 break; 679 default: 680 break; 681 } 682 bcm_clk->u.data = NULL; 683 bcm_clk->type = bcm_clk_none; 684 } 685 686 static void kona_clk_teardown(struct clk_hw *hw) 687 { 688 struct kona_clk *bcm_clk; 689 690 if (!hw) 691 return; 692 693 clk_hw_unregister(hw); 694 695 bcm_clk = to_kona_clk(hw); 696 bcm_clk_teardown(bcm_clk); 697 } 698 699 static int kona_clk_setup(struct kona_clk *bcm_clk) 700 { 701 int ret; 702 struct clk_init_data *init_data = &bcm_clk->init_data; 703 704 switch (bcm_clk->type) { 705 case bcm_clk_peri: 706 ret = peri_clk_setup(bcm_clk->u.data, init_data); 707 if (ret) 708 return ret; 709 break; 710 default: 711 pr_err("%s: clock type %d invalid for %s\n", __func__, 712 (int)bcm_clk->type, init_data->name); 713 return -EINVAL; 714 } 715 716 /* Make sure everything makes sense before we set it up */ 717 if (!kona_clk_valid(bcm_clk)) { 718 pr_err("%s: clock data invalid for %s\n", __func__, 719 init_data->name); 720 ret = -EINVAL; 721 goto out_teardown; 722 } 723 724 bcm_clk->hw.init = init_data; 725 ret = clk_hw_register(NULL, &bcm_clk->hw); 726 if (ret) { 727 pr_err("%s: error registering clock %s (%d)\n", __func__, 728 init_data->name, ret); 729 goto out_teardown; 730 } 731 732 return 0; 733 out_teardown: 734 bcm_clk_teardown(bcm_clk); 735 736 return ret; 737 } 738 739 static void ccu_clks_teardown(struct ccu_data *ccu) 740 { 741 u32 i; 742 743 for (i = 0; i < ccu->clk_num; i++) 744 kona_clk_teardown(&ccu->kona_clks[i].hw); 745 } 746 747 static void kona_ccu_teardown(struct ccu_data *ccu) 748 { 749 if (!ccu->base) 750 return; 751 752 of_clk_del_provider(ccu->node); /* safe if never added */ 753 ccu_clks_teardown(ccu); 754 of_node_put(ccu->node); 755 ccu->node = NULL; 756 iounmap(ccu->base); 757 ccu->base = NULL; 758 } 759 760 static bool ccu_data_valid(struct ccu_data *ccu) 761 { 762 struct ccu_policy *ccu_policy; 763 764 if (!ccu_data_offsets_valid(ccu)) 765 return false; 766 767 ccu_policy = &ccu->policy; 768 if (ccu_policy_exists(ccu_policy)) 769 if (!ccu_policy_valid(ccu_policy, ccu->name)) 770 return false; 771 772 return true; 773 } 774 775 static struct clk_hw * 776 of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data) 777 { 778 struct ccu_data *ccu = data; 779 unsigned int idx = clkspec->args[0]; 780 781 if (idx >= ccu->clk_num) { 782 pr_err("%s: invalid index %u\n", __func__, idx); 783 return ERR_PTR(-EINVAL); 784 } 785 786 return &ccu->kona_clks[idx].hw; 787 } 788 789 /* 790 * Set up a CCU. Call the provided ccu_clks_setup callback to 791 * initialize the array of clocks provided by the CCU. 792 */ 793 void __init kona_dt_ccu_setup(struct ccu_data *ccu, 794 struct device_node *node) 795 { 796 struct resource res = { 0 }; 797 resource_size_t range; 798 unsigned int i; 799 int ret; 800 801 ret = of_address_to_resource(node, 0, &res); 802 if (ret) { 803 pr_err("%s: no valid CCU registers found for %pOFn\n", __func__, 804 node); 805 goto out_err; 806 } 807 808 range = resource_size(&res); 809 if (range > (resource_size_t)U32_MAX) { 810 pr_err("%s: address range too large for %pOFn\n", __func__, 811 node); 812 goto out_err; 813 } 814 815 ccu->range = (u32)range; 816 817 if (!ccu_data_valid(ccu)) { 818 pr_err("%s: ccu data not valid for %pOFn\n", __func__, node); 819 goto out_err; 820 } 821 822 ccu->base = ioremap(res.start, ccu->range); 823 if (!ccu->base) { 824 pr_err("%s: unable to map CCU registers for %pOFn\n", __func__, 825 node); 826 goto out_err; 827 } 828 ccu->node = of_node_get(node); 829 830 /* 831 * Set up each defined kona clock and save the result in 832 * the clock framework clock array (in ccu->data). Then 833 * register as a provider for these clocks. 834 */ 835 for (i = 0; i < ccu->clk_num; i++) { 836 if (!ccu->kona_clks[i].ccu) 837 continue; 838 kona_clk_setup(&ccu->kona_clks[i]); 839 } 840 841 ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu); 842 if (ret) { 843 pr_err("%s: error adding ccu %pOFn as provider (%d)\n", __func__, 844 node, ret); 845 goto out_err; 846 } 847 848 if (!kona_ccu_init(ccu)) 849 pr_err("Broadcom %pOFn initialization had errors\n", node); 850 851 return; 852 out_err: 853 kona_ccu_teardown(ccu); 854 pr_err("Broadcom %pOFn setup aborted\n", node); 855 } 856