xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision f3539c12)
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36 
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk/bcm2835.h>
40 #include <linux/debugfs.h>
41 #include <linux/module.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <dt-bindings/clock/bcm2835.h>
46 
47 #define CM_PASSWORD		0x5a000000
48 
49 #define CM_GNRICCTL		0x000
50 #define CM_GNRICDIV		0x004
51 # define CM_DIV_FRAC_BITS	12
52 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
53 
54 #define CM_VPUCTL		0x008
55 #define CM_VPUDIV		0x00c
56 #define CM_SYSCTL		0x010
57 #define CM_SYSDIV		0x014
58 #define CM_PERIACTL		0x018
59 #define CM_PERIADIV		0x01c
60 #define CM_PERIICTL		0x020
61 #define CM_PERIIDIV		0x024
62 #define CM_H264CTL		0x028
63 #define CM_H264DIV		0x02c
64 #define CM_ISPCTL		0x030
65 #define CM_ISPDIV		0x034
66 #define CM_V3DCTL		0x038
67 #define CM_V3DDIV		0x03c
68 #define CM_CAM0CTL		0x040
69 #define CM_CAM0DIV		0x044
70 #define CM_CAM1CTL		0x048
71 #define CM_CAM1DIV		0x04c
72 #define CM_CCP2CTL		0x050
73 #define CM_CCP2DIV		0x054
74 #define CM_DSI0ECTL		0x058
75 #define CM_DSI0EDIV		0x05c
76 #define CM_DSI0PCTL		0x060
77 #define CM_DSI0PDIV		0x064
78 #define CM_DPICTL		0x068
79 #define CM_DPIDIV		0x06c
80 #define CM_GP0CTL		0x070
81 #define CM_GP0DIV		0x074
82 #define CM_GP1CTL		0x078
83 #define CM_GP1DIV		0x07c
84 #define CM_GP2CTL		0x080
85 #define CM_GP2DIV		0x084
86 #define CM_HSMCTL		0x088
87 #define CM_HSMDIV		0x08c
88 #define CM_OTPCTL		0x090
89 #define CM_OTPDIV		0x094
90 #define CM_PCMCTL		0x098
91 #define CM_PCMDIV		0x09c
92 #define CM_PWMCTL		0x0a0
93 #define CM_PWMDIV		0x0a4
94 #define CM_SLIMCTL		0x0a8
95 #define CM_SLIMDIV		0x0ac
96 #define CM_SMICTL		0x0b0
97 #define CM_SMIDIV		0x0b4
98 /* no definition for 0x0b8  and 0x0bc */
99 #define CM_TCNTCTL		0x0c0
100 #define CM_TCNTDIV		0x0c4
101 #define CM_TECCTL		0x0c8
102 #define CM_TECDIV		0x0cc
103 #define CM_TD0CTL		0x0d0
104 #define CM_TD0DIV		0x0d4
105 #define CM_TD1CTL		0x0d8
106 #define CM_TD1DIV		0x0dc
107 #define CM_TSENSCTL		0x0e0
108 #define CM_TSENSDIV		0x0e4
109 #define CM_TIMERCTL		0x0e8
110 #define CM_TIMERDIV		0x0ec
111 #define CM_UARTCTL		0x0f0
112 #define CM_UARTDIV		0x0f4
113 #define CM_VECCTL		0x0f8
114 #define CM_VECDIV		0x0fc
115 #define CM_PULSECTL		0x190
116 #define CM_PULSEDIV		0x194
117 #define CM_SDCCTL		0x1a8
118 #define CM_SDCDIV		0x1ac
119 #define CM_ARMCTL		0x1b0
120 #define CM_AVEOCTL		0x1b8
121 #define CM_AVEODIV		0x1bc
122 #define CM_EMMCCTL		0x1c0
123 #define CM_EMMCDIV		0x1c4
124 
125 /* General bits for the CM_*CTL regs */
126 # define CM_ENABLE			BIT(4)
127 # define CM_KILL			BIT(5)
128 # define CM_GATE_BIT			6
129 # define CM_GATE			BIT(CM_GATE_BIT)
130 # define CM_BUSY			BIT(7)
131 # define CM_BUSYD			BIT(8)
132 # define CM_FRAC			BIT(9)
133 # define CM_SRC_SHIFT			0
134 # define CM_SRC_BITS			4
135 # define CM_SRC_MASK			0xf
136 # define CM_SRC_GND			0
137 # define CM_SRC_OSC			1
138 # define CM_SRC_TESTDEBUG0		2
139 # define CM_SRC_TESTDEBUG1		3
140 # define CM_SRC_PLLA_CORE		4
141 # define CM_SRC_PLLA_PER		4
142 # define CM_SRC_PLLC_CORE0		5
143 # define CM_SRC_PLLC_PER		5
144 # define CM_SRC_PLLC_CORE1		8
145 # define CM_SRC_PLLD_CORE		6
146 # define CM_SRC_PLLD_PER		6
147 # define CM_SRC_PLLH_AUX		7
148 # define CM_SRC_PLLC_CORE1		8
149 # define CM_SRC_PLLC_CORE2		9
150 
151 #define CM_OSCCOUNT		0x100
152 
153 #define CM_PLLA			0x104
154 # define CM_PLL_ANARST			BIT(8)
155 # define CM_PLLA_HOLDPER		BIT(7)
156 # define CM_PLLA_LOADPER		BIT(6)
157 # define CM_PLLA_HOLDCORE		BIT(5)
158 # define CM_PLLA_LOADCORE		BIT(4)
159 # define CM_PLLA_HOLDCCP2		BIT(3)
160 # define CM_PLLA_LOADCCP2		BIT(2)
161 # define CM_PLLA_HOLDDSI0		BIT(1)
162 # define CM_PLLA_LOADDSI0		BIT(0)
163 
164 #define CM_PLLC			0x108
165 # define CM_PLLC_HOLDPER		BIT(7)
166 # define CM_PLLC_LOADPER		BIT(6)
167 # define CM_PLLC_HOLDCORE2		BIT(5)
168 # define CM_PLLC_LOADCORE2		BIT(4)
169 # define CM_PLLC_HOLDCORE1		BIT(3)
170 # define CM_PLLC_LOADCORE1		BIT(2)
171 # define CM_PLLC_HOLDCORE0		BIT(1)
172 # define CM_PLLC_LOADCORE0		BIT(0)
173 
174 #define CM_PLLD			0x10c
175 # define CM_PLLD_HOLDPER		BIT(7)
176 # define CM_PLLD_LOADPER		BIT(6)
177 # define CM_PLLD_HOLDCORE		BIT(5)
178 # define CM_PLLD_LOADCORE		BIT(4)
179 # define CM_PLLD_HOLDDSI1		BIT(3)
180 # define CM_PLLD_LOADDSI1		BIT(2)
181 # define CM_PLLD_HOLDDSI0		BIT(1)
182 # define CM_PLLD_LOADDSI0		BIT(0)
183 
184 #define CM_PLLH			0x110
185 # define CM_PLLH_LOADRCAL		BIT(2)
186 # define CM_PLLH_LOADAUX		BIT(1)
187 # define CM_PLLH_LOADPIX		BIT(0)
188 
189 #define CM_LOCK			0x114
190 # define CM_LOCK_FLOCKH			BIT(12)
191 # define CM_LOCK_FLOCKD			BIT(11)
192 # define CM_LOCK_FLOCKC			BIT(10)
193 # define CM_LOCK_FLOCKB			BIT(9)
194 # define CM_LOCK_FLOCKA			BIT(8)
195 
196 #define CM_EVENT		0x118
197 #define CM_DSI1ECTL		0x158
198 #define CM_DSI1EDIV		0x15c
199 #define CM_DSI1PCTL		0x160
200 #define CM_DSI1PDIV		0x164
201 #define CM_DFTCTL		0x168
202 #define CM_DFTDIV		0x16c
203 
204 #define CM_PLLB			0x170
205 # define CM_PLLB_HOLDARM		BIT(1)
206 # define CM_PLLB_LOADARM		BIT(0)
207 
208 #define A2W_PLLA_CTRL		0x1100
209 #define A2W_PLLC_CTRL		0x1120
210 #define A2W_PLLD_CTRL		0x1140
211 #define A2W_PLLH_CTRL		0x1160
212 #define A2W_PLLB_CTRL		0x11e0
213 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
214 # define A2W_PLL_CTRL_PWRDN		BIT(16)
215 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
216 # define A2W_PLL_CTRL_PDIV_SHIFT	12
217 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
218 # define A2W_PLL_CTRL_NDIV_SHIFT	0
219 
220 #define A2W_PLLA_ANA0		0x1010
221 #define A2W_PLLC_ANA0		0x1030
222 #define A2W_PLLD_ANA0		0x1050
223 #define A2W_PLLH_ANA0		0x1070
224 #define A2W_PLLB_ANA0		0x10f0
225 
226 #define A2W_PLL_KA_SHIFT	7
227 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
228 #define A2W_PLL_KI_SHIFT	19
229 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
230 #define A2W_PLL_KP_SHIFT	15
231 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
232 
233 #define A2W_PLLH_KA_SHIFT	19
234 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
235 #define A2W_PLLH_KI_LOW_SHIFT	22
236 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
237 #define A2W_PLLH_KI_HIGH_SHIFT	0
238 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
239 #define A2W_PLLH_KP_SHIFT	1
240 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
241 
242 #define A2W_XOSC_CTRL		0x1190
243 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
244 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
245 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
246 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
247 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
248 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
249 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
250 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
251 
252 #define A2W_PLLA_FRAC		0x1200
253 #define A2W_PLLC_FRAC		0x1220
254 #define A2W_PLLD_FRAC		0x1240
255 #define A2W_PLLH_FRAC		0x1260
256 #define A2W_PLLB_FRAC		0x12e0
257 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
258 # define A2W_PLL_FRAC_BITS		20
259 
260 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
261 #define A2W_PLL_DIV_BITS		8
262 #define A2W_PLL_DIV_SHIFT		0
263 
264 #define A2W_PLLA_DSI0		0x1300
265 #define A2W_PLLA_CORE		0x1400
266 #define A2W_PLLA_PER		0x1500
267 #define A2W_PLLA_CCP2		0x1600
268 
269 #define A2W_PLLC_CORE2		0x1320
270 #define A2W_PLLC_CORE1		0x1420
271 #define A2W_PLLC_PER		0x1520
272 #define A2W_PLLC_CORE0		0x1620
273 
274 #define A2W_PLLD_DSI0		0x1340
275 #define A2W_PLLD_CORE		0x1440
276 #define A2W_PLLD_PER		0x1540
277 #define A2W_PLLD_DSI1		0x1640
278 
279 #define A2W_PLLH_AUX		0x1360
280 #define A2W_PLLH_RCAL		0x1460
281 #define A2W_PLLH_PIX		0x1560
282 #define A2W_PLLH_STS		0x1660
283 
284 #define A2W_PLLH_CTRLR		0x1960
285 #define A2W_PLLH_FRACR		0x1a60
286 #define A2W_PLLH_AUXR		0x1b60
287 #define A2W_PLLH_RCALR		0x1c60
288 #define A2W_PLLH_PIXR		0x1d60
289 #define A2W_PLLH_STSR		0x1e60
290 
291 #define A2W_PLLB_ARM		0x13e0
292 #define A2W_PLLB_SP0		0x14e0
293 #define A2W_PLLB_SP1		0x15e0
294 #define A2W_PLLB_SP2		0x16e0
295 
296 #define LOCK_TIMEOUT_NS		100000000
297 #define BCM2835_MAX_FB_RATE	1750000000u
298 
299 struct bcm2835_cprman {
300 	struct device *dev;
301 	void __iomem *regs;
302 	spinlock_t regs_lock; /* spinlock for all clocks */
303 	const char *osc_name;
304 
305 	struct clk_onecell_data onecell;
306 	struct clk *clks[];
307 };
308 
309 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
310 {
311 	writel(CM_PASSWORD | val, cprman->regs + reg);
312 }
313 
314 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
315 {
316 	return readl(cprman->regs + reg);
317 }
318 
319 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
320 				  struct debugfs_reg32 *regs, size_t nregs,
321 				  struct dentry *dentry)
322 {
323 	struct dentry *regdump;
324 	struct debugfs_regset32 *regset;
325 
326 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
327 	if (!regset)
328 		return -ENOMEM;
329 
330 	regset->regs = regs;
331 	regset->nregs = nregs;
332 	regset->base = cprman->regs + base;
333 
334 	regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
335 					  regset);
336 
337 	return regdump ? 0 : -ENOMEM;
338 }
339 
340 /*
341  * These are fixed clocks. They're probably not all root clocks and it may
342  * be possible to turn them on and off but until this is mapped out better
343  * it's the only way they can be used.
344  */
345 void __init bcm2835_init_clocks(void)
346 {
347 	struct clk *clk;
348 	int ret;
349 
350 	clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
351 	if (IS_ERR(clk))
352 		pr_err("apb_pclk not registered\n");
353 
354 	clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
355 	if (IS_ERR(clk))
356 		pr_err("uart0_pclk not registered\n");
357 	ret = clk_register_clkdev(clk, NULL, "20201000.uart");
358 	if (ret)
359 		pr_err("uart0_pclk alias not registered\n");
360 
361 	clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
362 	if (IS_ERR(clk))
363 		pr_err("uart1_pclk not registered\n");
364 	ret = clk_register_clkdev(clk, NULL, "20215000.uart");
365 	if (ret)
366 		pr_err("uart1_pclk alias not registered\n");
367 }
368 
369 struct bcm2835_pll_data {
370 	const char *name;
371 	u32 cm_ctrl_reg;
372 	u32 a2w_ctrl_reg;
373 	u32 frac_reg;
374 	u32 ana_reg_base;
375 	u32 reference_enable_mask;
376 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
377 	u32 lock_mask;
378 
379 	const struct bcm2835_pll_ana_bits *ana;
380 
381 	unsigned long min_rate;
382 	unsigned long max_rate;
383 	/*
384 	 * Highest rate for the VCO before we have to use the
385 	 * pre-divide-by-2.
386 	 */
387 	unsigned long max_fb_rate;
388 };
389 
390 struct bcm2835_pll_ana_bits {
391 	u32 mask0;
392 	u32 set0;
393 	u32 mask1;
394 	u32 set1;
395 	u32 mask3;
396 	u32 set3;
397 	u32 fb_prediv_mask;
398 };
399 
400 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
401 	.mask0 = 0,
402 	.set0 = 0,
403 	.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
404 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
405 	.mask3 = (u32)~A2W_PLL_KA_MASK,
406 	.set3 = (2 << A2W_PLL_KA_SHIFT),
407 	.fb_prediv_mask = BIT(14),
408 };
409 
410 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
411 	.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
412 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
413 	.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
414 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
415 	.mask3 = 0,
416 	.set3 = 0,
417 	.fb_prediv_mask = BIT(11),
418 };
419 
420 struct bcm2835_pll_divider_data {
421 	const char *name;
422 	const char *source_pll;
423 
424 	u32 cm_reg;
425 	u32 a2w_reg;
426 
427 	u32 load_mask;
428 	u32 hold_mask;
429 	u32 fixed_divider;
430 };
431 
432 struct bcm2835_clock_data {
433 	const char *name;
434 
435 	const char *const *parents;
436 	int num_mux_parents;
437 
438 	u32 ctl_reg;
439 	u32 div_reg;
440 
441 	/* Number of integer bits in the divider */
442 	u32 int_bits;
443 	/* Number of fractional bits in the divider */
444 	u32 frac_bits;
445 
446 	bool is_vpu_clock;
447 	bool is_mash_clock;
448 };
449 
450 struct bcm2835_gate_data {
451 	const char *name;
452 	const char *parent;
453 
454 	u32 ctl_reg;
455 };
456 
457 struct bcm2835_pll {
458 	struct clk_hw hw;
459 	struct bcm2835_cprman *cprman;
460 	const struct bcm2835_pll_data *data;
461 };
462 
463 static int bcm2835_pll_is_on(struct clk_hw *hw)
464 {
465 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
466 	struct bcm2835_cprman *cprman = pll->cprman;
467 	const struct bcm2835_pll_data *data = pll->data;
468 
469 	return cprman_read(cprman, data->a2w_ctrl_reg) &
470 		A2W_PLL_CTRL_PRST_DISABLE;
471 }
472 
473 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
474 					     unsigned long parent_rate,
475 					     u32 *ndiv, u32 *fdiv)
476 {
477 	u64 div;
478 
479 	div = (u64)rate << A2W_PLL_FRAC_BITS;
480 	do_div(div, parent_rate);
481 
482 	*ndiv = div >> A2W_PLL_FRAC_BITS;
483 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
484 }
485 
486 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
487 					   u32 ndiv, u32 fdiv, u32 pdiv)
488 {
489 	u64 rate;
490 
491 	if (pdiv == 0)
492 		return 0;
493 
494 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
495 	do_div(rate, pdiv);
496 	return rate >> A2W_PLL_FRAC_BITS;
497 }
498 
499 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
500 				   unsigned long *parent_rate)
501 {
502 	u32 ndiv, fdiv;
503 
504 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
505 
506 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
507 }
508 
509 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
510 					  unsigned long parent_rate)
511 {
512 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
513 	struct bcm2835_cprman *cprman = pll->cprman;
514 	const struct bcm2835_pll_data *data = pll->data;
515 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
516 	u32 ndiv, pdiv, fdiv;
517 	bool using_prediv;
518 
519 	if (parent_rate == 0)
520 		return 0;
521 
522 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
523 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
524 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
525 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
526 		data->ana->fb_prediv_mask;
527 
528 	if (using_prediv)
529 		ndiv *= 2;
530 
531 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
532 }
533 
534 static void bcm2835_pll_off(struct clk_hw *hw)
535 {
536 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
537 	struct bcm2835_cprman *cprman = pll->cprman;
538 	const struct bcm2835_pll_data *data = pll->data;
539 
540 	spin_lock(&cprman->regs_lock);
541 	cprman_write(cprman, data->cm_ctrl_reg,
542 		     cprman_read(cprman, data->cm_ctrl_reg) |
543 		     CM_PLL_ANARST);
544 	cprman_write(cprman, data->a2w_ctrl_reg,
545 		     cprman_read(cprman, data->a2w_ctrl_reg) |
546 		     A2W_PLL_CTRL_PWRDN);
547 	spin_unlock(&cprman->regs_lock);
548 }
549 
550 static int bcm2835_pll_on(struct clk_hw *hw)
551 {
552 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
553 	struct bcm2835_cprman *cprman = pll->cprman;
554 	const struct bcm2835_pll_data *data = pll->data;
555 	ktime_t timeout;
556 
557 	cprman_write(cprman, data->a2w_ctrl_reg,
558 		     cprman_read(cprman, data->a2w_ctrl_reg) &
559 		     ~A2W_PLL_CTRL_PWRDN);
560 
561 	/* Take the PLL out of reset. */
562 	cprman_write(cprman, data->cm_ctrl_reg,
563 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
564 
565 	/* Wait for the PLL to lock. */
566 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
567 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
568 		if (ktime_after(ktime_get(), timeout)) {
569 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
570 				clk_hw_get_name(hw));
571 			return -ETIMEDOUT;
572 		}
573 
574 		cpu_relax();
575 	}
576 
577 	return 0;
578 }
579 
580 static void
581 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
582 {
583 	int i;
584 
585 	/*
586 	 * ANA register setup is done as a series of writes to
587 	 * ANA3-ANA0, in that order.  This lets us write all 4
588 	 * registers as a single cycle of the serdes interface (taking
589 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
590 	 * 3 individually through their partial-write registers, each
591 	 * would be their own serdes cycle.
592 	 */
593 	for (i = 3; i >= 0; i--)
594 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
595 }
596 
597 static int bcm2835_pll_set_rate(struct clk_hw *hw,
598 				unsigned long rate, unsigned long parent_rate)
599 {
600 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
601 	struct bcm2835_cprman *cprman = pll->cprman;
602 	const struct bcm2835_pll_data *data = pll->data;
603 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
604 	u32 ndiv, fdiv, a2w_ctl;
605 	u32 ana[4];
606 	int i;
607 
608 	if (rate < data->min_rate || rate > data->max_rate) {
609 		dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
610 			clk_hw_get_name(hw), rate,
611 			data->min_rate, data->max_rate);
612 		return -EINVAL;
613 	}
614 
615 	if (rate > data->max_fb_rate) {
616 		use_fb_prediv = true;
617 		rate /= 2;
618 	} else {
619 		use_fb_prediv = false;
620 	}
621 
622 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
623 
624 	for (i = 3; i >= 0; i--)
625 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
626 
627 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
628 
629 	ana[0] &= ~data->ana->mask0;
630 	ana[0] |= data->ana->set0;
631 	ana[1] &= ~data->ana->mask1;
632 	ana[1] |= data->ana->set1;
633 	ana[3] &= ~data->ana->mask3;
634 	ana[3] |= data->ana->set3;
635 
636 	if (was_using_prediv && !use_fb_prediv) {
637 		ana[1] &= ~data->ana->fb_prediv_mask;
638 		do_ana_setup_first = true;
639 	} else if (!was_using_prediv && use_fb_prediv) {
640 		ana[1] |= data->ana->fb_prediv_mask;
641 		do_ana_setup_first = false;
642 	} else {
643 		do_ana_setup_first = true;
644 	}
645 
646 	/* Unmask the reference clock from the oscillator. */
647 	cprman_write(cprman, A2W_XOSC_CTRL,
648 		     cprman_read(cprman, A2W_XOSC_CTRL) |
649 		     data->reference_enable_mask);
650 
651 	if (do_ana_setup_first)
652 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
653 
654 	/* Set the PLL multiplier from the oscillator. */
655 	cprman_write(cprman, data->frac_reg, fdiv);
656 
657 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
658 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
659 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
660 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
661 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
662 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
663 
664 	if (!do_ana_setup_first)
665 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
666 
667 	return 0;
668 }
669 
670 static int bcm2835_pll_debug_init(struct clk_hw *hw,
671 				  struct dentry *dentry)
672 {
673 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
674 	struct bcm2835_cprman *cprman = pll->cprman;
675 	const struct bcm2835_pll_data *data = pll->data;
676 	struct debugfs_reg32 *regs;
677 
678 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
679 	if (!regs)
680 		return -ENOMEM;
681 
682 	regs[0].name = "cm_ctrl";
683 	regs[0].offset = data->cm_ctrl_reg;
684 	regs[1].name = "a2w_ctrl";
685 	regs[1].offset = data->a2w_ctrl_reg;
686 	regs[2].name = "frac";
687 	regs[2].offset = data->frac_reg;
688 	regs[3].name = "ana0";
689 	regs[3].offset = data->ana_reg_base + 0 * 4;
690 	regs[4].name = "ana1";
691 	regs[4].offset = data->ana_reg_base + 1 * 4;
692 	regs[5].name = "ana2";
693 	regs[5].offset = data->ana_reg_base + 2 * 4;
694 	regs[6].name = "ana3";
695 	regs[6].offset = data->ana_reg_base + 3 * 4;
696 
697 	return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
698 }
699 
700 static const struct clk_ops bcm2835_pll_clk_ops = {
701 	.is_prepared = bcm2835_pll_is_on,
702 	.prepare = bcm2835_pll_on,
703 	.unprepare = bcm2835_pll_off,
704 	.recalc_rate = bcm2835_pll_get_rate,
705 	.set_rate = bcm2835_pll_set_rate,
706 	.round_rate = bcm2835_pll_round_rate,
707 	.debug_init = bcm2835_pll_debug_init,
708 };
709 
710 struct bcm2835_pll_divider {
711 	struct clk_divider div;
712 	struct bcm2835_cprman *cprman;
713 	const struct bcm2835_pll_divider_data *data;
714 };
715 
716 static struct bcm2835_pll_divider *
717 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
718 {
719 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
720 }
721 
722 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
723 {
724 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
725 	struct bcm2835_cprman *cprman = divider->cprman;
726 	const struct bcm2835_pll_divider_data *data = divider->data;
727 
728 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
729 }
730 
731 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
732 					   unsigned long rate,
733 					   unsigned long *parent_rate)
734 {
735 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
736 }
737 
738 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
739 						  unsigned long parent_rate)
740 {
741 	return clk_divider_ops.recalc_rate(hw, parent_rate);
742 }
743 
744 static void bcm2835_pll_divider_off(struct clk_hw *hw)
745 {
746 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
747 	struct bcm2835_cprman *cprman = divider->cprman;
748 	const struct bcm2835_pll_divider_data *data = divider->data;
749 
750 	spin_lock(&cprman->regs_lock);
751 	cprman_write(cprman, data->cm_reg,
752 		     (cprman_read(cprman, data->cm_reg) &
753 		      ~data->load_mask) | data->hold_mask);
754 	cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
755 	spin_unlock(&cprman->regs_lock);
756 }
757 
758 static int bcm2835_pll_divider_on(struct clk_hw *hw)
759 {
760 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
761 	struct bcm2835_cprman *cprman = divider->cprman;
762 	const struct bcm2835_pll_divider_data *data = divider->data;
763 
764 	spin_lock(&cprman->regs_lock);
765 	cprman_write(cprman, data->a2w_reg,
766 		     cprman_read(cprman, data->a2w_reg) &
767 		     ~A2W_PLL_CHANNEL_DISABLE);
768 
769 	cprman_write(cprman, data->cm_reg,
770 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
771 	spin_unlock(&cprman->regs_lock);
772 
773 	return 0;
774 }
775 
776 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
777 					unsigned long rate,
778 					unsigned long parent_rate)
779 {
780 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
781 	struct bcm2835_cprman *cprman = divider->cprman;
782 	const struct bcm2835_pll_divider_data *data = divider->data;
783 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
784 
785 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
786 
787 	div = min(div, max_div);
788 	if (div == max_div)
789 		div = 0;
790 
791 	cprman_write(cprman, data->a2w_reg, div);
792 	cm = cprman_read(cprman, data->cm_reg);
793 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
794 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
795 
796 	return 0;
797 }
798 
799 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
800 					  struct dentry *dentry)
801 {
802 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
803 	struct bcm2835_cprman *cprman = divider->cprman;
804 	const struct bcm2835_pll_divider_data *data = divider->data;
805 	struct debugfs_reg32 *regs;
806 
807 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
808 	if (!regs)
809 		return -ENOMEM;
810 
811 	regs[0].name = "cm";
812 	regs[0].offset = data->cm_reg;
813 	regs[1].name = "a2w";
814 	regs[1].offset = data->a2w_reg;
815 
816 	return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
817 }
818 
819 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
820 	.is_prepared = bcm2835_pll_divider_is_on,
821 	.prepare = bcm2835_pll_divider_on,
822 	.unprepare = bcm2835_pll_divider_off,
823 	.recalc_rate = bcm2835_pll_divider_get_rate,
824 	.set_rate = bcm2835_pll_divider_set_rate,
825 	.round_rate = bcm2835_pll_divider_round_rate,
826 	.debug_init = bcm2835_pll_divider_debug_init,
827 };
828 
829 /*
830  * The CM dividers do fixed-point division, so we can't use the
831  * generic integer divider code like the PLL dividers do (and we can't
832  * fake it by having some fixed shifts preceding it in the clock tree,
833  * because we'd run out of bits in a 32-bit unsigned long).
834  */
835 struct bcm2835_clock {
836 	struct clk_hw hw;
837 	struct bcm2835_cprman *cprman;
838 	const struct bcm2835_clock_data *data;
839 };
840 
841 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
842 {
843 	return container_of(hw, struct bcm2835_clock, hw);
844 }
845 
846 static int bcm2835_clock_is_on(struct clk_hw *hw)
847 {
848 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
849 	struct bcm2835_cprman *cprman = clock->cprman;
850 	const struct bcm2835_clock_data *data = clock->data;
851 
852 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
853 }
854 
855 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
856 				    unsigned long rate,
857 				    unsigned long parent_rate,
858 				    bool round_up)
859 {
860 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
861 	const struct bcm2835_clock_data *data = clock->data;
862 	u32 unused_frac_mask =
863 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
864 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
865 	u64 rem;
866 	u32 div, mindiv, maxdiv;
867 
868 	rem = do_div(temp, rate);
869 	div = temp;
870 
871 	/* Round up and mask off the unused bits */
872 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
873 		div += unused_frac_mask + 1;
874 	div &= ~unused_frac_mask;
875 
876 	/* different clamping limits apply for a mash clock */
877 	if (data->is_mash_clock) {
878 		/* clamp to min divider of 2 */
879 		mindiv = 2 << CM_DIV_FRAC_BITS;
880 		/* clamp to the highest possible integer divider */
881 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
882 	} else {
883 		/* clamp to min divider of 1 */
884 		mindiv = 1 << CM_DIV_FRAC_BITS;
885 		/* clamp to the highest possible fractional divider */
886 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
887 				 CM_DIV_FRAC_BITS - data->frac_bits);
888 	}
889 
890 	/* apply the clamping  limits */
891 	div = max_t(u32, div, mindiv);
892 	div = min_t(u32, div, maxdiv);
893 
894 	return div;
895 }
896 
897 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
898 					    unsigned long parent_rate,
899 					    u32 div)
900 {
901 	const struct bcm2835_clock_data *data = clock->data;
902 	u64 temp;
903 
904 	/*
905 	 * The divisor is a 12.12 fixed point field, but only some of
906 	 * the bits are populated in any given clock.
907 	 */
908 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
909 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
910 
911 	if (div == 0)
912 		return 0;
913 
914 	temp = (u64)parent_rate << data->frac_bits;
915 
916 	do_div(temp, div);
917 
918 	return temp;
919 }
920 
921 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
922 					    unsigned long parent_rate)
923 {
924 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
925 	struct bcm2835_cprman *cprman = clock->cprman;
926 	const struct bcm2835_clock_data *data = clock->data;
927 	u32 div = cprman_read(cprman, data->div_reg);
928 
929 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
930 }
931 
932 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
933 {
934 	struct bcm2835_cprman *cprman = clock->cprman;
935 	const struct bcm2835_clock_data *data = clock->data;
936 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
937 
938 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
939 		if (ktime_after(ktime_get(), timeout)) {
940 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
941 				clk_hw_get_name(&clock->hw));
942 			return;
943 		}
944 		cpu_relax();
945 	}
946 }
947 
948 static void bcm2835_clock_off(struct clk_hw *hw)
949 {
950 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
951 	struct bcm2835_cprman *cprman = clock->cprman;
952 	const struct bcm2835_clock_data *data = clock->data;
953 
954 	spin_lock(&cprman->regs_lock);
955 	cprman_write(cprman, data->ctl_reg,
956 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
957 	spin_unlock(&cprman->regs_lock);
958 
959 	/* BUSY will remain high until the divider completes its cycle. */
960 	bcm2835_clock_wait_busy(clock);
961 }
962 
963 static int bcm2835_clock_on(struct clk_hw *hw)
964 {
965 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
966 	struct bcm2835_cprman *cprman = clock->cprman;
967 	const struct bcm2835_clock_data *data = clock->data;
968 
969 	spin_lock(&cprman->regs_lock);
970 	cprman_write(cprman, data->ctl_reg,
971 		     cprman_read(cprman, data->ctl_reg) |
972 		     CM_ENABLE |
973 		     CM_GATE);
974 	spin_unlock(&cprman->regs_lock);
975 
976 	return 0;
977 }
978 
979 static int bcm2835_clock_set_rate(struct clk_hw *hw,
980 				  unsigned long rate, unsigned long parent_rate)
981 {
982 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
983 	struct bcm2835_cprman *cprman = clock->cprman;
984 	const struct bcm2835_clock_data *data = clock->data;
985 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
986 	u32 ctl;
987 
988 	spin_lock(&cprman->regs_lock);
989 
990 	/*
991 	 * Setting up frac support
992 	 *
993 	 * In principle it is recommended to stop/start the clock first,
994 	 * but as we set CLK_SET_RATE_GATE during registration of the
995 	 * clock this requirement should be take care of by the
996 	 * clk-framework.
997 	 */
998 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
999 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1000 	cprman_write(cprman, data->ctl_reg, ctl);
1001 
1002 	cprman_write(cprman, data->div_reg, div);
1003 
1004 	spin_unlock(&cprman->regs_lock);
1005 
1006 	return 0;
1007 }
1008 
1009 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1010 					struct clk_rate_request *req)
1011 {
1012 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1013 	struct clk_hw *parent, *best_parent = NULL;
1014 	unsigned long rate, best_rate = 0;
1015 	unsigned long prate, best_prate = 0;
1016 	size_t i;
1017 	u32 div;
1018 
1019 	/*
1020 	 * Select parent clock that results in the closest but lower rate
1021 	 */
1022 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1023 		parent = clk_hw_get_parent_by_index(hw, i);
1024 		if (!parent)
1025 			continue;
1026 		prate = clk_hw_get_rate(parent);
1027 		div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
1028 		rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
1029 		if (rate > best_rate && rate <= req->rate) {
1030 			best_parent = parent;
1031 			best_prate = prate;
1032 			best_rate = rate;
1033 		}
1034 	}
1035 
1036 	if (!best_parent)
1037 		return -EINVAL;
1038 
1039 	req->best_parent_hw = best_parent;
1040 	req->best_parent_rate = best_prate;
1041 
1042 	req->rate = best_rate;
1043 
1044 	return 0;
1045 }
1046 
1047 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1048 {
1049 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1050 	struct bcm2835_cprman *cprman = clock->cprman;
1051 	const struct bcm2835_clock_data *data = clock->data;
1052 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1053 
1054 	cprman_write(cprman, data->ctl_reg, src);
1055 	return 0;
1056 }
1057 
1058 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1059 {
1060 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1061 	struct bcm2835_cprman *cprman = clock->cprman;
1062 	const struct bcm2835_clock_data *data = clock->data;
1063 	u32 src = cprman_read(cprman, data->ctl_reg);
1064 
1065 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1066 }
1067 
1068 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1069 	{
1070 		.name = "ctl",
1071 		.offset = 0,
1072 	},
1073 	{
1074 		.name = "div",
1075 		.offset = 4,
1076 	},
1077 };
1078 
1079 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1080 				    struct dentry *dentry)
1081 {
1082 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1083 	struct bcm2835_cprman *cprman = clock->cprman;
1084 	const struct bcm2835_clock_data *data = clock->data;
1085 
1086 	return bcm2835_debugfs_regset(
1087 		cprman, data->ctl_reg,
1088 		bcm2835_debugfs_clock_reg32,
1089 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1090 		dentry);
1091 }
1092 
1093 static const struct clk_ops bcm2835_clock_clk_ops = {
1094 	.is_prepared = bcm2835_clock_is_on,
1095 	.prepare = bcm2835_clock_on,
1096 	.unprepare = bcm2835_clock_off,
1097 	.recalc_rate = bcm2835_clock_get_rate,
1098 	.set_rate = bcm2835_clock_set_rate,
1099 	.determine_rate = bcm2835_clock_determine_rate,
1100 	.set_parent = bcm2835_clock_set_parent,
1101 	.get_parent = bcm2835_clock_get_parent,
1102 	.debug_init = bcm2835_clock_debug_init,
1103 };
1104 
1105 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1106 {
1107 	return true;
1108 }
1109 
1110 /*
1111  * The VPU clock can never be disabled (it doesn't have an ENABLE
1112  * bit), so it gets its own set of clock ops.
1113  */
1114 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1115 	.is_prepared = bcm2835_vpu_clock_is_on,
1116 	.recalc_rate = bcm2835_clock_get_rate,
1117 	.set_rate = bcm2835_clock_set_rate,
1118 	.determine_rate = bcm2835_clock_determine_rate,
1119 	.set_parent = bcm2835_clock_set_parent,
1120 	.get_parent = bcm2835_clock_get_parent,
1121 	.debug_init = bcm2835_clock_debug_init,
1122 };
1123 
1124 static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1125 					const struct bcm2835_pll_data *data)
1126 {
1127 	struct bcm2835_pll *pll;
1128 	struct clk_init_data init;
1129 
1130 	memset(&init, 0, sizeof(init));
1131 
1132 	/* All of the PLLs derive from the external oscillator. */
1133 	init.parent_names = &cprman->osc_name;
1134 	init.num_parents = 1;
1135 	init.name = data->name;
1136 	init.ops = &bcm2835_pll_clk_ops;
1137 	init.flags = CLK_IGNORE_UNUSED;
1138 
1139 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1140 	if (!pll)
1141 		return NULL;
1142 
1143 	pll->cprman = cprman;
1144 	pll->data = data;
1145 	pll->hw.init = &init;
1146 
1147 	return devm_clk_register(cprman->dev, &pll->hw);
1148 }
1149 
1150 static struct clk *
1151 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1152 			     const struct bcm2835_pll_divider_data *data)
1153 {
1154 	struct bcm2835_pll_divider *divider;
1155 	struct clk_init_data init;
1156 	struct clk *clk;
1157 	const char *divider_name;
1158 
1159 	if (data->fixed_divider != 1) {
1160 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1161 					      "%s_prediv", data->name);
1162 		if (!divider_name)
1163 			return NULL;
1164 	} else {
1165 		divider_name = data->name;
1166 	}
1167 
1168 	memset(&init, 0, sizeof(init));
1169 
1170 	init.parent_names = &data->source_pll;
1171 	init.num_parents = 1;
1172 	init.name = divider_name;
1173 	init.ops = &bcm2835_pll_divider_clk_ops;
1174 	init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1175 
1176 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1177 	if (!divider)
1178 		return NULL;
1179 
1180 	divider->div.reg = cprman->regs + data->a2w_reg;
1181 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1182 	divider->div.width = A2W_PLL_DIV_BITS;
1183 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1184 	divider->div.lock = &cprman->regs_lock;
1185 	divider->div.hw.init = &init;
1186 	divider->div.table = NULL;
1187 
1188 	divider->cprman = cprman;
1189 	divider->data = data;
1190 
1191 	clk = devm_clk_register(cprman->dev, &divider->div.hw);
1192 	if (IS_ERR(clk))
1193 		return clk;
1194 
1195 	/*
1196 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1197 	 * is what our consumers are actually using.
1198 	 */
1199 	if (data->fixed_divider != 1) {
1200 		return clk_register_fixed_factor(cprman->dev, data->name,
1201 						 divider_name,
1202 						 CLK_SET_RATE_PARENT,
1203 						 1,
1204 						 data->fixed_divider);
1205 	}
1206 
1207 	return clk;
1208 }
1209 
1210 static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1211 					  const struct bcm2835_clock_data *data)
1212 {
1213 	struct bcm2835_clock *clock;
1214 	struct clk_init_data init;
1215 	const char *parents[1 << CM_SRC_BITS];
1216 	size_t i;
1217 
1218 	/*
1219 	 * Replace our "xosc" references with the oscillator's
1220 	 * actual name.
1221 	 */
1222 	for (i = 0; i < data->num_mux_parents; i++) {
1223 		if (strcmp(data->parents[i], "xosc") == 0)
1224 			parents[i] = cprman->osc_name;
1225 		else
1226 			parents[i] = data->parents[i];
1227 	}
1228 
1229 	memset(&init, 0, sizeof(init));
1230 	init.parent_names = parents;
1231 	init.num_parents = data->num_mux_parents;
1232 	init.name = data->name;
1233 	init.flags = CLK_IGNORE_UNUSED;
1234 
1235 	if (data->is_vpu_clock) {
1236 		init.ops = &bcm2835_vpu_clock_clk_ops;
1237 	} else {
1238 		init.ops = &bcm2835_clock_clk_ops;
1239 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1240 	}
1241 
1242 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1243 	if (!clock)
1244 		return NULL;
1245 
1246 	clock->cprman = cprman;
1247 	clock->data = data;
1248 	clock->hw.init = &init;
1249 
1250 	return devm_clk_register(cprman->dev, &clock->hw);
1251 }
1252 
1253 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1254 					 const struct bcm2835_gate_data *data)
1255 {
1256 	return clk_register_gate(cprman->dev, data->name, data->parent,
1257 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1258 				 cprman->regs + data->ctl_reg,
1259 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1260 }
1261 
1262 typedef struct clk *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1263 					    const void *data);
1264 struct bcm2835_clk_desc {
1265 	bcm2835_clk_register clk_register;
1266 	const void *data;
1267 };
1268 
1269 /* assignment helper macros for different clock types */
1270 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1271 			    .data = __VA_ARGS__ }
1272 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1273 					  &(struct bcm2835_pll_data)	\
1274 					  {__VA_ARGS__})
1275 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1276 					  &(struct bcm2835_pll_divider_data) \
1277 					  {__VA_ARGS__})
1278 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1279 					  &(struct bcm2835_clock_data)	\
1280 					  {__VA_ARGS__})
1281 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1282 					  &(struct bcm2835_gate_data)	\
1283 					  {__VA_ARGS__})
1284 
1285 /* parent mux arrays plus helper macros */
1286 
1287 /* main oscillator parent mux */
1288 static const char *const bcm2835_clock_osc_parents[] = {
1289 	"gnd",
1290 	"xosc",
1291 	"testdebug0",
1292 	"testdebug1"
1293 };
1294 
1295 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1296 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1297 	.parents = bcm2835_clock_osc_parents,				\
1298 	__VA_ARGS__)
1299 
1300 /* main peripherial parent mux */
1301 static const char *const bcm2835_clock_per_parents[] = {
1302 	"gnd",
1303 	"xosc",
1304 	"testdebug0",
1305 	"testdebug1",
1306 	"plla_per",
1307 	"pllc_per",
1308 	"plld_per",
1309 	"pllh_aux",
1310 };
1311 
1312 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1313 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1314 	.parents = bcm2835_clock_per_parents,				\
1315 	__VA_ARGS__)
1316 
1317 /* main vpu parent mux */
1318 static const char *const bcm2835_clock_vpu_parents[] = {
1319 	"gnd",
1320 	"xosc",
1321 	"testdebug0",
1322 	"testdebug1",
1323 	"plla_core",
1324 	"pllc_core0",
1325 	"plld_core",
1326 	"pllh_aux",
1327 	"pllc_core1",
1328 	"pllc_core2",
1329 };
1330 
1331 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1332 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1333 	.parents = bcm2835_clock_vpu_parents,				\
1334 	__VA_ARGS__)
1335 
1336 /*
1337  * the real definition of all the pll, pll_dividers and clocks
1338  * these make use of the above REGISTER_* macros
1339  */
1340 static const struct bcm2835_clk_desc clk_desc_array[] = {
1341 	/* the PLL + PLL dividers */
1342 
1343 	/*
1344 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1345 	 * (Compact Camera Port 2) transmitter clock.
1346 	 *
1347 	 * It is in the PX LDO power domain, which is on when the
1348 	 * AUDIO domain is on.
1349 	 */
1350 	[BCM2835_PLLA]		= REGISTER_PLL(
1351 		.name = "plla",
1352 		.cm_ctrl_reg = CM_PLLA,
1353 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1354 		.frac_reg = A2W_PLLA_FRAC,
1355 		.ana_reg_base = A2W_PLLA_ANA0,
1356 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1357 		.lock_mask = CM_LOCK_FLOCKA,
1358 
1359 		.ana = &bcm2835_ana_default,
1360 
1361 		.min_rate = 600000000u,
1362 		.max_rate = 2400000000u,
1363 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1364 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1365 		.name = "plla_core",
1366 		.source_pll = "plla",
1367 		.cm_reg = CM_PLLA,
1368 		.a2w_reg = A2W_PLLA_CORE,
1369 		.load_mask = CM_PLLA_LOADCORE,
1370 		.hold_mask = CM_PLLA_HOLDCORE,
1371 		.fixed_divider = 1),
1372 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1373 		.name = "plla_per",
1374 		.source_pll = "plla",
1375 		.cm_reg = CM_PLLA,
1376 		.a2w_reg = A2W_PLLA_PER,
1377 		.load_mask = CM_PLLA_LOADPER,
1378 		.hold_mask = CM_PLLA_HOLDPER,
1379 		.fixed_divider = 1),
1380 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1381 		.name = "plla_dsi0",
1382 		.source_pll = "plla",
1383 		.cm_reg = CM_PLLA,
1384 		.a2w_reg = A2W_PLLA_DSI0,
1385 		.load_mask = CM_PLLA_LOADDSI0,
1386 		.hold_mask = CM_PLLA_HOLDDSI0,
1387 		.fixed_divider = 1),
1388 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1389 		.name = "plla_ccp2",
1390 		.source_pll = "plla",
1391 		.cm_reg = CM_PLLA,
1392 		.a2w_reg = A2W_PLLA_CCP2,
1393 		.load_mask = CM_PLLA_LOADCCP2,
1394 		.hold_mask = CM_PLLA_HOLDCCP2,
1395 		.fixed_divider = 1),
1396 
1397 	/* PLLB is used for the ARM's clock. */
1398 	[BCM2835_PLLB]		= REGISTER_PLL(
1399 		.name = "pllb",
1400 		.cm_ctrl_reg = CM_PLLB,
1401 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1402 		.frac_reg = A2W_PLLB_FRAC,
1403 		.ana_reg_base = A2W_PLLB_ANA0,
1404 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1405 		.lock_mask = CM_LOCK_FLOCKB,
1406 
1407 		.ana = &bcm2835_ana_default,
1408 
1409 		.min_rate = 600000000u,
1410 		.max_rate = 3000000000u,
1411 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1412 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1413 		.name = "pllb_arm",
1414 		.source_pll = "pllb",
1415 		.cm_reg = CM_PLLB,
1416 		.a2w_reg = A2W_PLLB_ARM,
1417 		.load_mask = CM_PLLB_LOADARM,
1418 		.hold_mask = CM_PLLB_HOLDARM,
1419 		.fixed_divider = 1),
1420 
1421 	/*
1422 	 * PLLC is the core PLL, used to drive the core VPU clock.
1423 	 *
1424 	 * It is in the PX LDO power domain, which is on when the
1425 	 * AUDIO domain is on.
1426 	 */
1427 	[BCM2835_PLLC]		= REGISTER_PLL(
1428 		.name = "pllc",
1429 		.cm_ctrl_reg = CM_PLLC,
1430 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1431 		.frac_reg = A2W_PLLC_FRAC,
1432 		.ana_reg_base = A2W_PLLC_ANA0,
1433 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1434 		.lock_mask = CM_LOCK_FLOCKC,
1435 
1436 		.ana = &bcm2835_ana_default,
1437 
1438 		.min_rate = 600000000u,
1439 		.max_rate = 3000000000u,
1440 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1441 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1442 		.name = "pllc_core0",
1443 		.source_pll = "pllc",
1444 		.cm_reg = CM_PLLC,
1445 		.a2w_reg = A2W_PLLC_CORE0,
1446 		.load_mask = CM_PLLC_LOADCORE0,
1447 		.hold_mask = CM_PLLC_HOLDCORE0,
1448 		.fixed_divider = 1),
1449 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1450 		.name = "pllc_core1",
1451 		.source_pll = "pllc",
1452 		.cm_reg = CM_PLLC,
1453 		.a2w_reg = A2W_PLLC_CORE1,
1454 		.load_mask = CM_PLLC_LOADCORE1,
1455 		.hold_mask = CM_PLLC_HOLDCORE1,
1456 		.fixed_divider = 1),
1457 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1458 		.name = "pllc_core2",
1459 		.source_pll = "pllc",
1460 		.cm_reg = CM_PLLC,
1461 		.a2w_reg = A2W_PLLC_CORE2,
1462 		.load_mask = CM_PLLC_LOADCORE2,
1463 		.hold_mask = CM_PLLC_HOLDCORE2,
1464 		.fixed_divider = 1),
1465 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1466 		.name = "pllc_per",
1467 		.source_pll = "pllc",
1468 		.cm_reg = CM_PLLC,
1469 		.a2w_reg = A2W_PLLC_PER,
1470 		.load_mask = CM_PLLC_LOADPER,
1471 		.hold_mask = CM_PLLC_HOLDPER,
1472 		.fixed_divider = 1),
1473 
1474 	/*
1475 	 * PLLD is the display PLL, used to drive DSI display panels.
1476 	 *
1477 	 * It is in the PX LDO power domain, which is on when the
1478 	 * AUDIO domain is on.
1479 	 */
1480 	[BCM2835_PLLD]		= REGISTER_PLL(
1481 		.name = "plld",
1482 		.cm_ctrl_reg = CM_PLLD,
1483 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1484 		.frac_reg = A2W_PLLD_FRAC,
1485 		.ana_reg_base = A2W_PLLD_ANA0,
1486 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1487 		.lock_mask = CM_LOCK_FLOCKD,
1488 
1489 		.ana = &bcm2835_ana_default,
1490 
1491 		.min_rate = 600000000u,
1492 		.max_rate = 2400000000u,
1493 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1494 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1495 		.name = "plld_core",
1496 		.source_pll = "plld",
1497 		.cm_reg = CM_PLLD,
1498 		.a2w_reg = A2W_PLLD_CORE,
1499 		.load_mask = CM_PLLD_LOADCORE,
1500 		.hold_mask = CM_PLLD_HOLDCORE,
1501 		.fixed_divider = 1),
1502 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1503 		.name = "plld_per",
1504 		.source_pll = "plld",
1505 		.cm_reg = CM_PLLD,
1506 		.a2w_reg = A2W_PLLD_PER,
1507 		.load_mask = CM_PLLD_LOADPER,
1508 		.hold_mask = CM_PLLD_HOLDPER,
1509 		.fixed_divider = 1),
1510 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1511 		.name = "plld_dsi0",
1512 		.source_pll = "plld",
1513 		.cm_reg = CM_PLLD,
1514 		.a2w_reg = A2W_PLLD_DSI0,
1515 		.load_mask = CM_PLLD_LOADDSI0,
1516 		.hold_mask = CM_PLLD_HOLDDSI0,
1517 		.fixed_divider = 1),
1518 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1519 		.name = "plld_dsi1",
1520 		.source_pll = "plld",
1521 		.cm_reg = CM_PLLD,
1522 		.a2w_reg = A2W_PLLD_DSI1,
1523 		.load_mask = CM_PLLD_LOADDSI1,
1524 		.hold_mask = CM_PLLD_HOLDDSI1,
1525 		.fixed_divider = 1),
1526 
1527 	/*
1528 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1529 	 * TV encoder.
1530 	 *
1531 	 * It is in the HDMI power domain.
1532 	 */
1533 	[BCM2835_PLLH]		= REGISTER_PLL(
1534 		"pllh",
1535 		.cm_ctrl_reg = CM_PLLH,
1536 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1537 		.frac_reg = A2W_PLLH_FRAC,
1538 		.ana_reg_base = A2W_PLLH_ANA0,
1539 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1540 		.lock_mask = CM_LOCK_FLOCKH,
1541 
1542 		.ana = &bcm2835_ana_pllh,
1543 
1544 		.min_rate = 600000000u,
1545 		.max_rate = 3000000000u,
1546 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1547 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1548 		.name = "pllh_rcal",
1549 		.source_pll = "pllh",
1550 		.cm_reg = CM_PLLH,
1551 		.a2w_reg = A2W_PLLH_RCAL,
1552 		.load_mask = CM_PLLH_LOADRCAL,
1553 		.hold_mask = 0,
1554 		.fixed_divider = 10),
1555 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1556 		.name = "pllh_aux",
1557 		.source_pll = "pllh",
1558 		.cm_reg = CM_PLLH,
1559 		.a2w_reg = A2W_PLLH_AUX,
1560 		.load_mask = CM_PLLH_LOADAUX,
1561 		.hold_mask = 0,
1562 		.fixed_divider = 10),
1563 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1564 		.name = "pllh_pix",
1565 		.source_pll = "pllh",
1566 		.cm_reg = CM_PLLH,
1567 		.a2w_reg = A2W_PLLH_PIX,
1568 		.load_mask = CM_PLLH_LOADPIX,
1569 		.hold_mask = 0,
1570 		.fixed_divider = 10),
1571 
1572 	/* the clocks */
1573 
1574 	/* clocks with oscillator parent mux */
1575 
1576 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1577 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1578 		.name = "otp",
1579 		.ctl_reg = CM_OTPCTL,
1580 		.div_reg = CM_OTPDIV,
1581 		.int_bits = 4,
1582 		.frac_bits = 0),
1583 	/*
1584 	 * Used for a 1Mhz clock for the system clocksource, and also used
1585 	 * bythe watchdog timer and the camera pulse generator.
1586 	 */
1587 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1588 		.name = "timer",
1589 		.ctl_reg = CM_TIMERCTL,
1590 		.div_reg = CM_TIMERDIV,
1591 		.int_bits = 6,
1592 		.frac_bits = 12),
1593 	/*
1594 	 * Clock for the temperature sensor.
1595 	 * Generally run at 2Mhz, max 5Mhz.
1596 	 */
1597 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1598 		.name = "tsens",
1599 		.ctl_reg = CM_TSENSCTL,
1600 		.div_reg = CM_TSENSDIV,
1601 		.int_bits = 5,
1602 		.frac_bits = 0),
1603 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1604 		.name = "tec",
1605 		.ctl_reg = CM_TECCTL,
1606 		.div_reg = CM_TECDIV,
1607 		.int_bits = 6,
1608 		.frac_bits = 0),
1609 
1610 	/* clocks with vpu parent mux */
1611 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1612 		.name = "h264",
1613 		.ctl_reg = CM_H264CTL,
1614 		.div_reg = CM_H264DIV,
1615 		.int_bits = 4,
1616 		.frac_bits = 8),
1617 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1618 		.name = "isp",
1619 		.ctl_reg = CM_ISPCTL,
1620 		.div_reg = CM_ISPDIV,
1621 		.int_bits = 4,
1622 		.frac_bits = 8),
1623 
1624 	/*
1625 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1626 	 * in the SDRAM controller can't be used.
1627 	 */
1628 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1629 		.name = "sdram",
1630 		.ctl_reg = CM_SDCCTL,
1631 		.div_reg = CM_SDCDIV,
1632 		.int_bits = 6,
1633 		.frac_bits = 0),
1634 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1635 		.name = "v3d",
1636 		.ctl_reg = CM_V3DCTL,
1637 		.div_reg = CM_V3DDIV,
1638 		.int_bits = 4,
1639 		.frac_bits = 8),
1640 	/*
1641 	 * VPU clock.  This doesn't have an enable bit, since it drives
1642 	 * the bus for everything else, and is special so it doesn't need
1643 	 * to be gated for rate changes.  It is also known as "clk_audio"
1644 	 * in various hardware documentation.
1645 	 */
1646 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1647 		.name = "vpu",
1648 		.ctl_reg = CM_VPUCTL,
1649 		.div_reg = CM_VPUDIV,
1650 		.int_bits = 12,
1651 		.frac_bits = 8,
1652 		.is_vpu_clock = true),
1653 
1654 	/* clocks with per parent mux */
1655 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1656 		.name = "aveo",
1657 		.ctl_reg = CM_AVEOCTL,
1658 		.div_reg = CM_AVEODIV,
1659 		.int_bits = 4,
1660 		.frac_bits = 0),
1661 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1662 		.name = "cam0",
1663 		.ctl_reg = CM_CAM0CTL,
1664 		.div_reg = CM_CAM0DIV,
1665 		.int_bits = 4,
1666 		.frac_bits = 8),
1667 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1668 		.name = "cam1",
1669 		.ctl_reg = CM_CAM1CTL,
1670 		.div_reg = CM_CAM1DIV,
1671 		.int_bits = 4,
1672 		.frac_bits = 8),
1673 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1674 		.name = "dft",
1675 		.ctl_reg = CM_DFTCTL,
1676 		.div_reg = CM_DFTDIV,
1677 		.int_bits = 5,
1678 		.frac_bits = 0),
1679 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1680 		.name = "dpi",
1681 		.ctl_reg = CM_DPICTL,
1682 		.div_reg = CM_DPIDIV,
1683 		.int_bits = 4,
1684 		.frac_bits = 8),
1685 
1686 	/* Arasan EMMC clock */
1687 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
1688 		.name = "emmc",
1689 		.ctl_reg = CM_EMMCCTL,
1690 		.div_reg = CM_EMMCDIV,
1691 		.int_bits = 4,
1692 		.frac_bits = 8),
1693 
1694 	/* General purpose (GPIO) clocks */
1695 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
1696 		.name = "gp0",
1697 		.ctl_reg = CM_GP0CTL,
1698 		.div_reg = CM_GP0DIV,
1699 		.int_bits = 12,
1700 		.frac_bits = 12,
1701 		.is_mash_clock = true),
1702 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
1703 		.name = "gp1",
1704 		.ctl_reg = CM_GP1CTL,
1705 		.div_reg = CM_GP1DIV,
1706 		.int_bits = 12,
1707 		.frac_bits = 12,
1708 		.is_mash_clock = true),
1709 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
1710 		.name = "gp2",
1711 		.ctl_reg = CM_GP2CTL,
1712 		.div_reg = CM_GP2DIV,
1713 		.int_bits = 12,
1714 		.frac_bits = 12),
1715 
1716 	/* HDMI state machine */
1717 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
1718 		.name = "hsm",
1719 		.ctl_reg = CM_HSMCTL,
1720 		.div_reg = CM_HSMDIV,
1721 		.int_bits = 4,
1722 		.frac_bits = 8),
1723 	[BCM2835_CLOCK_PCM]	= REGISTER_PER_CLK(
1724 		.name = "pcm",
1725 		.ctl_reg = CM_PCMCTL,
1726 		.div_reg = CM_PCMDIV,
1727 		.int_bits = 12,
1728 		.frac_bits = 12,
1729 		.is_mash_clock = true),
1730 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
1731 		.name = "pwm",
1732 		.ctl_reg = CM_PWMCTL,
1733 		.div_reg = CM_PWMDIV,
1734 		.int_bits = 12,
1735 		.frac_bits = 12,
1736 		.is_mash_clock = true),
1737 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
1738 		.name = "slim",
1739 		.ctl_reg = CM_SLIMCTL,
1740 		.div_reg = CM_SLIMDIV,
1741 		.int_bits = 12,
1742 		.frac_bits = 12,
1743 		.is_mash_clock = true),
1744 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
1745 		.name = "smi",
1746 		.ctl_reg = CM_SMICTL,
1747 		.div_reg = CM_SMIDIV,
1748 		.int_bits = 4,
1749 		.frac_bits = 8),
1750 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
1751 		.name = "uart",
1752 		.ctl_reg = CM_UARTCTL,
1753 		.div_reg = CM_UARTDIV,
1754 		.int_bits = 10,
1755 		.frac_bits = 12),
1756 
1757 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
1758 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
1759 		.name = "vec",
1760 		.ctl_reg = CM_VECCTL,
1761 		.div_reg = CM_VECDIV,
1762 		.int_bits = 4,
1763 		.frac_bits = 0),
1764 
1765 	/* dsi clocks */
1766 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
1767 		.name = "dsi0e",
1768 		.ctl_reg = CM_DSI0ECTL,
1769 		.div_reg = CM_DSI0EDIV,
1770 		.int_bits = 4,
1771 		.frac_bits = 8),
1772 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
1773 		.name = "dsi1e",
1774 		.ctl_reg = CM_DSI1ECTL,
1775 		.div_reg = CM_DSI1EDIV,
1776 		.int_bits = 4,
1777 		.frac_bits = 8),
1778 
1779 	/* the gates */
1780 
1781 	/*
1782 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1783 	 * you have the debug bit set in the power manager, which we
1784 	 * don't bother exposing) are individual gates off of the
1785 	 * non-stop vpu clock.
1786 	 */
1787 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
1788 		.name = "peri_image",
1789 		.parent = "vpu",
1790 		.ctl_reg = CM_PERIICTL),
1791 };
1792 
1793 static int bcm2835_clk_probe(struct platform_device *pdev)
1794 {
1795 	struct device *dev = &pdev->dev;
1796 	struct clk **clks;
1797 	struct bcm2835_cprman *cprman;
1798 	struct resource *res;
1799 	const struct bcm2835_clk_desc *desc;
1800 	const size_t asize = ARRAY_SIZE(clk_desc_array);
1801 	size_t i;
1802 
1803 	cprman = devm_kzalloc(dev,
1804 			      sizeof(*cprman) + asize * sizeof(*clks),
1805 			      GFP_KERNEL);
1806 	if (!cprman)
1807 		return -ENOMEM;
1808 
1809 	spin_lock_init(&cprman->regs_lock);
1810 	cprman->dev = dev;
1811 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1812 	cprman->regs = devm_ioremap_resource(dev, res);
1813 	if (IS_ERR(cprman->regs))
1814 		return PTR_ERR(cprman->regs);
1815 
1816 	cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1817 	if (!cprman->osc_name)
1818 		return -ENODEV;
1819 
1820 	platform_set_drvdata(pdev, cprman);
1821 
1822 	cprman->onecell.clk_num = asize;
1823 	cprman->onecell.clks = cprman->clks;
1824 	clks = cprman->clks;
1825 
1826 	for (i = 0; i < asize; i++) {
1827 		desc = &clk_desc_array[i];
1828 		if (desc->clk_register && desc->data)
1829 			clks[i] = desc->clk_register(cprman, desc->data);
1830 	}
1831 
1832 	return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
1833 				   &cprman->onecell);
1834 }
1835 
1836 static const struct of_device_id bcm2835_clk_of_match[] = {
1837 	{ .compatible = "brcm,bcm2835-cprman", },
1838 	{}
1839 };
1840 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1841 
1842 static struct platform_driver bcm2835_clk_driver = {
1843 	.driver = {
1844 		.name = "bcm2835-clk",
1845 		.of_match_table = bcm2835_clk_of_match,
1846 	},
1847 	.probe          = bcm2835_clk_probe,
1848 };
1849 
1850 builtin_platform_driver(bcm2835_clk_driver);
1851 
1852 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1853 MODULE_DESCRIPTION("BCM2835 clock driver");
1854 MODULE_LICENSE("GPL v2");
1855