xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36 
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
47 
48 #define CM_PASSWORD		0x5a000000
49 
50 #define CM_GNRICCTL		0x000
51 #define CM_GNRICDIV		0x004
52 # define CM_DIV_FRAC_BITS	12
53 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
54 
55 #define CM_VPUCTL		0x008
56 #define CM_VPUDIV		0x00c
57 #define CM_SYSCTL		0x010
58 #define CM_SYSDIV		0x014
59 #define CM_PERIACTL		0x018
60 #define CM_PERIADIV		0x01c
61 #define CM_PERIICTL		0x020
62 #define CM_PERIIDIV		0x024
63 #define CM_H264CTL		0x028
64 #define CM_H264DIV		0x02c
65 #define CM_ISPCTL		0x030
66 #define CM_ISPDIV		0x034
67 #define CM_V3DCTL		0x038
68 #define CM_V3DDIV		0x03c
69 #define CM_CAM0CTL		0x040
70 #define CM_CAM0DIV		0x044
71 #define CM_CAM1CTL		0x048
72 #define CM_CAM1DIV		0x04c
73 #define CM_CCP2CTL		0x050
74 #define CM_CCP2DIV		0x054
75 #define CM_DSI0ECTL		0x058
76 #define CM_DSI0EDIV		0x05c
77 #define CM_DSI0PCTL		0x060
78 #define CM_DSI0PDIV		0x064
79 #define CM_DPICTL		0x068
80 #define CM_DPIDIV		0x06c
81 #define CM_GP0CTL		0x070
82 #define CM_GP0DIV		0x074
83 #define CM_GP1CTL		0x078
84 #define CM_GP1DIV		0x07c
85 #define CM_GP2CTL		0x080
86 #define CM_GP2DIV		0x084
87 #define CM_HSMCTL		0x088
88 #define CM_HSMDIV		0x08c
89 #define CM_OTPCTL		0x090
90 #define CM_OTPDIV		0x094
91 #define CM_PCMCTL		0x098
92 #define CM_PCMDIV		0x09c
93 #define CM_PWMCTL		0x0a0
94 #define CM_PWMDIV		0x0a4
95 #define CM_SLIMCTL		0x0a8
96 #define CM_SLIMDIV		0x0ac
97 #define CM_SMICTL		0x0b0
98 #define CM_SMIDIV		0x0b4
99 /* no definition for 0x0b8  and 0x0bc */
100 #define CM_TCNTCTL		0x0c0
101 #define CM_TCNTDIV		0x0c4
102 #define CM_TECCTL		0x0c8
103 #define CM_TECDIV		0x0cc
104 #define CM_TD0CTL		0x0d0
105 #define CM_TD0DIV		0x0d4
106 #define CM_TD1CTL		0x0d8
107 #define CM_TD1DIV		0x0dc
108 #define CM_TSENSCTL		0x0e0
109 #define CM_TSENSDIV		0x0e4
110 #define CM_TIMERCTL		0x0e8
111 #define CM_TIMERDIV		0x0ec
112 #define CM_UARTCTL		0x0f0
113 #define CM_UARTDIV		0x0f4
114 #define CM_VECCTL		0x0f8
115 #define CM_VECDIV		0x0fc
116 #define CM_PULSECTL		0x190
117 #define CM_PULSEDIV		0x194
118 #define CM_SDCCTL		0x1a8
119 #define CM_SDCDIV		0x1ac
120 #define CM_ARMCTL		0x1b0
121 #define CM_AVEOCTL		0x1b8
122 #define CM_AVEODIV		0x1bc
123 #define CM_EMMCCTL		0x1c0
124 #define CM_EMMCDIV		0x1c4
125 
126 /* General bits for the CM_*CTL regs */
127 # define CM_ENABLE			BIT(4)
128 # define CM_KILL			BIT(5)
129 # define CM_GATE_BIT			6
130 # define CM_GATE			BIT(CM_GATE_BIT)
131 # define CM_BUSY			BIT(7)
132 # define CM_BUSYD			BIT(8)
133 # define CM_FRAC			BIT(9)
134 # define CM_SRC_SHIFT			0
135 # define CM_SRC_BITS			4
136 # define CM_SRC_MASK			0xf
137 # define CM_SRC_GND			0
138 # define CM_SRC_OSC			1
139 # define CM_SRC_TESTDEBUG0		2
140 # define CM_SRC_TESTDEBUG1		3
141 # define CM_SRC_PLLA_CORE		4
142 # define CM_SRC_PLLA_PER		4
143 # define CM_SRC_PLLC_CORE0		5
144 # define CM_SRC_PLLC_PER		5
145 # define CM_SRC_PLLC_CORE1		8
146 # define CM_SRC_PLLD_CORE		6
147 # define CM_SRC_PLLD_PER		6
148 # define CM_SRC_PLLH_AUX		7
149 # define CM_SRC_PLLC_CORE1		8
150 # define CM_SRC_PLLC_CORE2		9
151 
152 #define CM_OSCCOUNT		0x100
153 
154 #define CM_PLLA			0x104
155 # define CM_PLL_ANARST			BIT(8)
156 # define CM_PLLA_HOLDPER		BIT(7)
157 # define CM_PLLA_LOADPER		BIT(6)
158 # define CM_PLLA_HOLDCORE		BIT(5)
159 # define CM_PLLA_LOADCORE		BIT(4)
160 # define CM_PLLA_HOLDCCP2		BIT(3)
161 # define CM_PLLA_LOADCCP2		BIT(2)
162 # define CM_PLLA_HOLDDSI0		BIT(1)
163 # define CM_PLLA_LOADDSI0		BIT(0)
164 
165 #define CM_PLLC			0x108
166 # define CM_PLLC_HOLDPER		BIT(7)
167 # define CM_PLLC_LOADPER		BIT(6)
168 # define CM_PLLC_HOLDCORE2		BIT(5)
169 # define CM_PLLC_LOADCORE2		BIT(4)
170 # define CM_PLLC_HOLDCORE1		BIT(3)
171 # define CM_PLLC_LOADCORE1		BIT(2)
172 # define CM_PLLC_HOLDCORE0		BIT(1)
173 # define CM_PLLC_LOADCORE0		BIT(0)
174 
175 #define CM_PLLD			0x10c
176 # define CM_PLLD_HOLDPER		BIT(7)
177 # define CM_PLLD_LOADPER		BIT(6)
178 # define CM_PLLD_HOLDCORE		BIT(5)
179 # define CM_PLLD_LOADCORE		BIT(4)
180 # define CM_PLLD_HOLDDSI1		BIT(3)
181 # define CM_PLLD_LOADDSI1		BIT(2)
182 # define CM_PLLD_HOLDDSI0		BIT(1)
183 # define CM_PLLD_LOADDSI0		BIT(0)
184 
185 #define CM_PLLH			0x110
186 # define CM_PLLH_LOADRCAL		BIT(2)
187 # define CM_PLLH_LOADAUX		BIT(1)
188 # define CM_PLLH_LOADPIX		BIT(0)
189 
190 #define CM_LOCK			0x114
191 # define CM_LOCK_FLOCKH			BIT(12)
192 # define CM_LOCK_FLOCKD			BIT(11)
193 # define CM_LOCK_FLOCKC			BIT(10)
194 # define CM_LOCK_FLOCKB			BIT(9)
195 # define CM_LOCK_FLOCKA			BIT(8)
196 
197 #define CM_EVENT		0x118
198 #define CM_DSI1ECTL		0x158
199 #define CM_DSI1EDIV		0x15c
200 #define CM_DSI1PCTL		0x160
201 #define CM_DSI1PDIV		0x164
202 #define CM_DFTCTL		0x168
203 #define CM_DFTDIV		0x16c
204 
205 #define CM_PLLB			0x170
206 # define CM_PLLB_HOLDARM		BIT(1)
207 # define CM_PLLB_LOADARM		BIT(0)
208 
209 #define A2W_PLLA_CTRL		0x1100
210 #define A2W_PLLC_CTRL		0x1120
211 #define A2W_PLLD_CTRL		0x1140
212 #define A2W_PLLH_CTRL		0x1160
213 #define A2W_PLLB_CTRL		0x11e0
214 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
215 # define A2W_PLL_CTRL_PWRDN		BIT(16)
216 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
217 # define A2W_PLL_CTRL_PDIV_SHIFT	12
218 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
219 # define A2W_PLL_CTRL_NDIV_SHIFT	0
220 
221 #define A2W_PLLA_ANA0		0x1010
222 #define A2W_PLLC_ANA0		0x1030
223 #define A2W_PLLD_ANA0		0x1050
224 #define A2W_PLLH_ANA0		0x1070
225 #define A2W_PLLB_ANA0		0x10f0
226 
227 #define A2W_PLL_KA_SHIFT	7
228 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
229 #define A2W_PLL_KI_SHIFT	19
230 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
231 #define A2W_PLL_KP_SHIFT	15
232 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
233 
234 #define A2W_PLLH_KA_SHIFT	19
235 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
236 #define A2W_PLLH_KI_LOW_SHIFT	22
237 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
238 #define A2W_PLLH_KI_HIGH_SHIFT	0
239 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
240 #define A2W_PLLH_KP_SHIFT	1
241 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
242 
243 #define A2W_XOSC_CTRL		0x1190
244 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
245 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
246 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
247 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
248 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
249 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
250 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
251 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
252 
253 #define A2W_PLLA_FRAC		0x1200
254 #define A2W_PLLC_FRAC		0x1220
255 #define A2W_PLLD_FRAC		0x1240
256 #define A2W_PLLH_FRAC		0x1260
257 #define A2W_PLLB_FRAC		0x12e0
258 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
259 # define A2W_PLL_FRAC_BITS		20
260 
261 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
262 #define A2W_PLL_DIV_BITS		8
263 #define A2W_PLL_DIV_SHIFT		0
264 
265 #define A2W_PLLA_DSI0		0x1300
266 #define A2W_PLLA_CORE		0x1400
267 #define A2W_PLLA_PER		0x1500
268 #define A2W_PLLA_CCP2		0x1600
269 
270 #define A2W_PLLC_CORE2		0x1320
271 #define A2W_PLLC_CORE1		0x1420
272 #define A2W_PLLC_PER		0x1520
273 #define A2W_PLLC_CORE0		0x1620
274 
275 #define A2W_PLLD_DSI0		0x1340
276 #define A2W_PLLD_CORE		0x1440
277 #define A2W_PLLD_PER		0x1540
278 #define A2W_PLLD_DSI1		0x1640
279 
280 #define A2W_PLLH_AUX		0x1360
281 #define A2W_PLLH_RCAL		0x1460
282 #define A2W_PLLH_PIX		0x1560
283 #define A2W_PLLH_STS		0x1660
284 
285 #define A2W_PLLH_CTRLR		0x1960
286 #define A2W_PLLH_FRACR		0x1a60
287 #define A2W_PLLH_AUXR		0x1b60
288 #define A2W_PLLH_RCALR		0x1c60
289 #define A2W_PLLH_PIXR		0x1d60
290 #define A2W_PLLH_STSR		0x1e60
291 
292 #define A2W_PLLB_ARM		0x13e0
293 #define A2W_PLLB_SP0		0x14e0
294 #define A2W_PLLB_SP1		0x15e0
295 #define A2W_PLLB_SP2		0x16e0
296 
297 #define LOCK_TIMEOUT_NS		100000000
298 #define BCM2835_MAX_FB_RATE	1750000000u
299 
300 struct bcm2835_cprman {
301 	struct device *dev;
302 	void __iomem *regs;
303 	spinlock_t regs_lock; /* spinlock for all clocks */
304 	const char *osc_name;
305 
306 	/* Must be last */
307 	struct clk_hw_onecell_data onecell;
308 };
309 
310 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
311 {
312 	writel(CM_PASSWORD | val, cprman->regs + reg);
313 }
314 
315 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
316 {
317 	return readl(cprman->regs + reg);
318 }
319 
320 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
321 				  struct debugfs_reg32 *regs, size_t nregs,
322 				  struct dentry *dentry)
323 {
324 	struct dentry *regdump;
325 	struct debugfs_regset32 *regset;
326 
327 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
328 	if (!regset)
329 		return -ENOMEM;
330 
331 	regset->regs = regs;
332 	regset->nregs = nregs;
333 	regset->base = cprman->regs + base;
334 
335 	regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
336 					  regset);
337 
338 	return regdump ? 0 : -ENOMEM;
339 }
340 
341 /*
342  * These are fixed clocks. They're probably not all root clocks and it may
343  * be possible to turn them on and off but until this is mapped out better
344  * it's the only way they can be used.
345  */
346 void __init bcm2835_init_clocks(void)
347 {
348 	struct clk_hw *hw;
349 	int ret;
350 
351 	hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
352 	if (IS_ERR(hw))
353 		pr_err("apb_pclk not registered\n");
354 
355 	hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
356 	if (IS_ERR(hw))
357 		pr_err("uart0_pclk not registered\n");
358 	ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
359 	if (ret)
360 		pr_err("uart0_pclk alias not registered\n");
361 
362 	hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
363 	if (IS_ERR(hw))
364 		pr_err("uart1_pclk not registered\n");
365 	ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
366 	if (ret)
367 		pr_err("uart1_pclk alias not registered\n");
368 }
369 
370 struct bcm2835_pll_data {
371 	const char *name;
372 	u32 cm_ctrl_reg;
373 	u32 a2w_ctrl_reg;
374 	u32 frac_reg;
375 	u32 ana_reg_base;
376 	u32 reference_enable_mask;
377 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
378 	u32 lock_mask;
379 
380 	const struct bcm2835_pll_ana_bits *ana;
381 
382 	unsigned long min_rate;
383 	unsigned long max_rate;
384 	/*
385 	 * Highest rate for the VCO before we have to use the
386 	 * pre-divide-by-2.
387 	 */
388 	unsigned long max_fb_rate;
389 };
390 
391 struct bcm2835_pll_ana_bits {
392 	u32 mask0;
393 	u32 set0;
394 	u32 mask1;
395 	u32 set1;
396 	u32 mask3;
397 	u32 set3;
398 	u32 fb_prediv_mask;
399 };
400 
401 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
402 	.mask0 = 0,
403 	.set0 = 0,
404 	.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
405 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
406 	.mask3 = (u32)~A2W_PLL_KA_MASK,
407 	.set3 = (2 << A2W_PLL_KA_SHIFT),
408 	.fb_prediv_mask = BIT(14),
409 };
410 
411 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
412 	.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
413 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
414 	.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
415 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
416 	.mask3 = 0,
417 	.set3 = 0,
418 	.fb_prediv_mask = BIT(11),
419 };
420 
421 struct bcm2835_pll_divider_data {
422 	const char *name;
423 	const char *source_pll;
424 
425 	u32 cm_reg;
426 	u32 a2w_reg;
427 
428 	u32 load_mask;
429 	u32 hold_mask;
430 	u32 fixed_divider;
431 };
432 
433 struct bcm2835_clock_data {
434 	const char *name;
435 
436 	const char *const *parents;
437 	int num_mux_parents;
438 
439 	u32 ctl_reg;
440 	u32 div_reg;
441 
442 	/* Number of integer bits in the divider */
443 	u32 int_bits;
444 	/* Number of fractional bits in the divider */
445 	u32 frac_bits;
446 
447 	u32 flags;
448 
449 	bool is_vpu_clock;
450 	bool is_mash_clock;
451 };
452 
453 struct bcm2835_gate_data {
454 	const char *name;
455 	const char *parent;
456 
457 	u32 ctl_reg;
458 };
459 
460 struct bcm2835_pll {
461 	struct clk_hw hw;
462 	struct bcm2835_cprman *cprman;
463 	const struct bcm2835_pll_data *data;
464 };
465 
466 static int bcm2835_pll_is_on(struct clk_hw *hw)
467 {
468 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
469 	struct bcm2835_cprman *cprman = pll->cprman;
470 	const struct bcm2835_pll_data *data = pll->data;
471 
472 	return cprman_read(cprman, data->a2w_ctrl_reg) &
473 		A2W_PLL_CTRL_PRST_DISABLE;
474 }
475 
476 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
477 					     unsigned long parent_rate,
478 					     u32 *ndiv, u32 *fdiv)
479 {
480 	u64 div;
481 
482 	div = (u64)rate << A2W_PLL_FRAC_BITS;
483 	do_div(div, parent_rate);
484 
485 	*ndiv = div >> A2W_PLL_FRAC_BITS;
486 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
487 }
488 
489 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
490 					   u32 ndiv, u32 fdiv, u32 pdiv)
491 {
492 	u64 rate;
493 
494 	if (pdiv == 0)
495 		return 0;
496 
497 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
498 	do_div(rate, pdiv);
499 	return rate >> A2W_PLL_FRAC_BITS;
500 }
501 
502 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
503 				   unsigned long *parent_rate)
504 {
505 	u32 ndiv, fdiv;
506 
507 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
508 
509 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
510 }
511 
512 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
513 					  unsigned long parent_rate)
514 {
515 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
516 	struct bcm2835_cprman *cprman = pll->cprman;
517 	const struct bcm2835_pll_data *data = pll->data;
518 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
519 	u32 ndiv, pdiv, fdiv;
520 	bool using_prediv;
521 
522 	if (parent_rate == 0)
523 		return 0;
524 
525 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
526 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
527 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
528 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
529 		data->ana->fb_prediv_mask;
530 
531 	if (using_prediv)
532 		ndiv *= 2;
533 
534 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
535 }
536 
537 static void bcm2835_pll_off(struct clk_hw *hw)
538 {
539 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
540 	struct bcm2835_cprman *cprman = pll->cprman;
541 	const struct bcm2835_pll_data *data = pll->data;
542 
543 	spin_lock(&cprman->regs_lock);
544 	cprman_write(cprman, data->cm_ctrl_reg,
545 		     cprman_read(cprman, data->cm_ctrl_reg) |
546 		     CM_PLL_ANARST);
547 	cprman_write(cprman, data->a2w_ctrl_reg,
548 		     cprman_read(cprman, data->a2w_ctrl_reg) |
549 		     A2W_PLL_CTRL_PWRDN);
550 	spin_unlock(&cprman->regs_lock);
551 }
552 
553 static int bcm2835_pll_on(struct clk_hw *hw)
554 {
555 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
556 	struct bcm2835_cprman *cprman = pll->cprman;
557 	const struct bcm2835_pll_data *data = pll->data;
558 	ktime_t timeout;
559 
560 	cprman_write(cprman, data->a2w_ctrl_reg,
561 		     cprman_read(cprman, data->a2w_ctrl_reg) &
562 		     ~A2W_PLL_CTRL_PWRDN);
563 
564 	/* Take the PLL out of reset. */
565 	cprman_write(cprman, data->cm_ctrl_reg,
566 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
567 
568 	/* Wait for the PLL to lock. */
569 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
570 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
571 		if (ktime_after(ktime_get(), timeout)) {
572 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
573 				clk_hw_get_name(hw));
574 			return -ETIMEDOUT;
575 		}
576 
577 		cpu_relax();
578 	}
579 
580 	return 0;
581 }
582 
583 static void
584 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
585 {
586 	int i;
587 
588 	/*
589 	 * ANA register setup is done as a series of writes to
590 	 * ANA3-ANA0, in that order.  This lets us write all 4
591 	 * registers as a single cycle of the serdes interface (taking
592 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
593 	 * 3 individually through their partial-write registers, each
594 	 * would be their own serdes cycle.
595 	 */
596 	for (i = 3; i >= 0; i--)
597 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
598 }
599 
600 static int bcm2835_pll_set_rate(struct clk_hw *hw,
601 				unsigned long rate, unsigned long parent_rate)
602 {
603 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
604 	struct bcm2835_cprman *cprman = pll->cprman;
605 	const struct bcm2835_pll_data *data = pll->data;
606 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
607 	u32 ndiv, fdiv, a2w_ctl;
608 	u32 ana[4];
609 	int i;
610 
611 	if (rate < data->min_rate || rate > data->max_rate) {
612 		dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
613 			clk_hw_get_name(hw), rate,
614 			data->min_rate, data->max_rate);
615 		return -EINVAL;
616 	}
617 
618 	if (rate > data->max_fb_rate) {
619 		use_fb_prediv = true;
620 		rate /= 2;
621 	} else {
622 		use_fb_prediv = false;
623 	}
624 
625 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
626 
627 	for (i = 3; i >= 0; i--)
628 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
629 
630 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
631 
632 	ana[0] &= ~data->ana->mask0;
633 	ana[0] |= data->ana->set0;
634 	ana[1] &= ~data->ana->mask1;
635 	ana[1] |= data->ana->set1;
636 	ana[3] &= ~data->ana->mask3;
637 	ana[3] |= data->ana->set3;
638 
639 	if (was_using_prediv && !use_fb_prediv) {
640 		ana[1] &= ~data->ana->fb_prediv_mask;
641 		do_ana_setup_first = true;
642 	} else if (!was_using_prediv && use_fb_prediv) {
643 		ana[1] |= data->ana->fb_prediv_mask;
644 		do_ana_setup_first = false;
645 	} else {
646 		do_ana_setup_first = true;
647 	}
648 
649 	/* Unmask the reference clock from the oscillator. */
650 	cprman_write(cprman, A2W_XOSC_CTRL,
651 		     cprman_read(cprman, A2W_XOSC_CTRL) |
652 		     data->reference_enable_mask);
653 
654 	if (do_ana_setup_first)
655 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
656 
657 	/* Set the PLL multiplier from the oscillator. */
658 	cprman_write(cprman, data->frac_reg, fdiv);
659 
660 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
661 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
662 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
663 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
664 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
665 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
666 
667 	if (!do_ana_setup_first)
668 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
669 
670 	return 0;
671 }
672 
673 static int bcm2835_pll_debug_init(struct clk_hw *hw,
674 				  struct dentry *dentry)
675 {
676 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
677 	struct bcm2835_cprman *cprman = pll->cprman;
678 	const struct bcm2835_pll_data *data = pll->data;
679 	struct debugfs_reg32 *regs;
680 
681 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
682 	if (!regs)
683 		return -ENOMEM;
684 
685 	regs[0].name = "cm_ctrl";
686 	regs[0].offset = data->cm_ctrl_reg;
687 	regs[1].name = "a2w_ctrl";
688 	regs[1].offset = data->a2w_ctrl_reg;
689 	regs[2].name = "frac";
690 	regs[2].offset = data->frac_reg;
691 	regs[3].name = "ana0";
692 	regs[3].offset = data->ana_reg_base + 0 * 4;
693 	regs[4].name = "ana1";
694 	regs[4].offset = data->ana_reg_base + 1 * 4;
695 	regs[5].name = "ana2";
696 	regs[5].offset = data->ana_reg_base + 2 * 4;
697 	regs[6].name = "ana3";
698 	regs[6].offset = data->ana_reg_base + 3 * 4;
699 
700 	return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
701 }
702 
703 static const struct clk_ops bcm2835_pll_clk_ops = {
704 	.is_prepared = bcm2835_pll_is_on,
705 	.prepare = bcm2835_pll_on,
706 	.unprepare = bcm2835_pll_off,
707 	.recalc_rate = bcm2835_pll_get_rate,
708 	.set_rate = bcm2835_pll_set_rate,
709 	.round_rate = bcm2835_pll_round_rate,
710 	.debug_init = bcm2835_pll_debug_init,
711 };
712 
713 struct bcm2835_pll_divider {
714 	struct clk_divider div;
715 	struct bcm2835_cprman *cprman;
716 	const struct bcm2835_pll_divider_data *data;
717 };
718 
719 static struct bcm2835_pll_divider *
720 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
721 {
722 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
723 }
724 
725 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
726 {
727 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
728 	struct bcm2835_cprman *cprman = divider->cprman;
729 	const struct bcm2835_pll_divider_data *data = divider->data;
730 
731 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
732 }
733 
734 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
735 					   unsigned long rate,
736 					   unsigned long *parent_rate)
737 {
738 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
739 }
740 
741 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
742 						  unsigned long parent_rate)
743 {
744 	return clk_divider_ops.recalc_rate(hw, parent_rate);
745 }
746 
747 static void bcm2835_pll_divider_off(struct clk_hw *hw)
748 {
749 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
750 	struct bcm2835_cprman *cprman = divider->cprman;
751 	const struct bcm2835_pll_divider_data *data = divider->data;
752 
753 	spin_lock(&cprman->regs_lock);
754 	cprman_write(cprman, data->cm_reg,
755 		     (cprman_read(cprman, data->cm_reg) &
756 		      ~data->load_mask) | data->hold_mask);
757 	cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
758 	spin_unlock(&cprman->regs_lock);
759 }
760 
761 static int bcm2835_pll_divider_on(struct clk_hw *hw)
762 {
763 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
764 	struct bcm2835_cprman *cprman = divider->cprman;
765 	const struct bcm2835_pll_divider_data *data = divider->data;
766 
767 	spin_lock(&cprman->regs_lock);
768 	cprman_write(cprman, data->a2w_reg,
769 		     cprman_read(cprman, data->a2w_reg) &
770 		     ~A2W_PLL_CHANNEL_DISABLE);
771 
772 	cprman_write(cprman, data->cm_reg,
773 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
774 	spin_unlock(&cprman->regs_lock);
775 
776 	return 0;
777 }
778 
779 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
780 					unsigned long rate,
781 					unsigned long parent_rate)
782 {
783 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
784 	struct bcm2835_cprman *cprman = divider->cprman;
785 	const struct bcm2835_pll_divider_data *data = divider->data;
786 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
787 
788 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
789 
790 	div = min(div, max_div);
791 	if (div == max_div)
792 		div = 0;
793 
794 	cprman_write(cprman, data->a2w_reg, div);
795 	cm = cprman_read(cprman, data->cm_reg);
796 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
797 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
798 
799 	return 0;
800 }
801 
802 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
803 					  struct dentry *dentry)
804 {
805 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
806 	struct bcm2835_cprman *cprman = divider->cprman;
807 	const struct bcm2835_pll_divider_data *data = divider->data;
808 	struct debugfs_reg32 *regs;
809 
810 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
811 	if (!regs)
812 		return -ENOMEM;
813 
814 	regs[0].name = "cm";
815 	regs[0].offset = data->cm_reg;
816 	regs[1].name = "a2w";
817 	regs[1].offset = data->a2w_reg;
818 
819 	return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
820 }
821 
822 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
823 	.is_prepared = bcm2835_pll_divider_is_on,
824 	.prepare = bcm2835_pll_divider_on,
825 	.unprepare = bcm2835_pll_divider_off,
826 	.recalc_rate = bcm2835_pll_divider_get_rate,
827 	.set_rate = bcm2835_pll_divider_set_rate,
828 	.round_rate = bcm2835_pll_divider_round_rate,
829 	.debug_init = bcm2835_pll_divider_debug_init,
830 };
831 
832 /*
833  * The CM dividers do fixed-point division, so we can't use the
834  * generic integer divider code like the PLL dividers do (and we can't
835  * fake it by having some fixed shifts preceding it in the clock tree,
836  * because we'd run out of bits in a 32-bit unsigned long).
837  */
838 struct bcm2835_clock {
839 	struct clk_hw hw;
840 	struct bcm2835_cprman *cprman;
841 	const struct bcm2835_clock_data *data;
842 };
843 
844 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
845 {
846 	return container_of(hw, struct bcm2835_clock, hw);
847 }
848 
849 static int bcm2835_clock_is_on(struct clk_hw *hw)
850 {
851 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
852 	struct bcm2835_cprman *cprman = clock->cprman;
853 	const struct bcm2835_clock_data *data = clock->data;
854 
855 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
856 }
857 
858 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
859 				    unsigned long rate,
860 				    unsigned long parent_rate,
861 				    bool round_up)
862 {
863 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
864 	const struct bcm2835_clock_data *data = clock->data;
865 	u32 unused_frac_mask =
866 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
867 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
868 	u64 rem;
869 	u32 div, mindiv, maxdiv;
870 
871 	rem = do_div(temp, rate);
872 	div = temp;
873 
874 	/* Round up and mask off the unused bits */
875 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
876 		div += unused_frac_mask + 1;
877 	div &= ~unused_frac_mask;
878 
879 	/* different clamping limits apply for a mash clock */
880 	if (data->is_mash_clock) {
881 		/* clamp to min divider of 2 */
882 		mindiv = 2 << CM_DIV_FRAC_BITS;
883 		/* clamp to the highest possible integer divider */
884 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
885 	} else {
886 		/* clamp to min divider of 1 */
887 		mindiv = 1 << CM_DIV_FRAC_BITS;
888 		/* clamp to the highest possible fractional divider */
889 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
890 				 CM_DIV_FRAC_BITS - data->frac_bits);
891 	}
892 
893 	/* apply the clamping  limits */
894 	div = max_t(u32, div, mindiv);
895 	div = min_t(u32, div, maxdiv);
896 
897 	return div;
898 }
899 
900 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
901 					    unsigned long parent_rate,
902 					    u32 div)
903 {
904 	const struct bcm2835_clock_data *data = clock->data;
905 	u64 temp;
906 
907 	/*
908 	 * The divisor is a 12.12 fixed point field, but only some of
909 	 * the bits are populated in any given clock.
910 	 */
911 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
912 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
913 
914 	if (div == 0)
915 		return 0;
916 
917 	temp = (u64)parent_rate << data->frac_bits;
918 
919 	do_div(temp, div);
920 
921 	return temp;
922 }
923 
924 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
925 					    unsigned long parent_rate)
926 {
927 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
928 	struct bcm2835_cprman *cprman = clock->cprman;
929 	const struct bcm2835_clock_data *data = clock->data;
930 	u32 div = cprman_read(cprman, data->div_reg);
931 
932 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
933 }
934 
935 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
936 {
937 	struct bcm2835_cprman *cprman = clock->cprman;
938 	const struct bcm2835_clock_data *data = clock->data;
939 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
940 
941 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
942 		if (ktime_after(ktime_get(), timeout)) {
943 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
944 				clk_hw_get_name(&clock->hw));
945 			return;
946 		}
947 		cpu_relax();
948 	}
949 }
950 
951 static void bcm2835_clock_off(struct clk_hw *hw)
952 {
953 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
954 	struct bcm2835_cprman *cprman = clock->cprman;
955 	const struct bcm2835_clock_data *data = clock->data;
956 
957 	spin_lock(&cprman->regs_lock);
958 	cprman_write(cprman, data->ctl_reg,
959 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
960 	spin_unlock(&cprman->regs_lock);
961 
962 	/* BUSY will remain high until the divider completes its cycle. */
963 	bcm2835_clock_wait_busy(clock);
964 }
965 
966 static int bcm2835_clock_on(struct clk_hw *hw)
967 {
968 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
969 	struct bcm2835_cprman *cprman = clock->cprman;
970 	const struct bcm2835_clock_data *data = clock->data;
971 
972 	spin_lock(&cprman->regs_lock);
973 	cprman_write(cprman, data->ctl_reg,
974 		     cprman_read(cprman, data->ctl_reg) |
975 		     CM_ENABLE |
976 		     CM_GATE);
977 	spin_unlock(&cprman->regs_lock);
978 
979 	return 0;
980 }
981 
982 static int bcm2835_clock_set_rate(struct clk_hw *hw,
983 				  unsigned long rate, unsigned long parent_rate)
984 {
985 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
986 	struct bcm2835_cprman *cprman = clock->cprman;
987 	const struct bcm2835_clock_data *data = clock->data;
988 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
989 	u32 ctl;
990 
991 	spin_lock(&cprman->regs_lock);
992 
993 	/*
994 	 * Setting up frac support
995 	 *
996 	 * In principle it is recommended to stop/start the clock first,
997 	 * but as we set CLK_SET_RATE_GATE during registration of the
998 	 * clock this requirement should be take care of by the
999 	 * clk-framework.
1000 	 */
1001 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1002 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1003 	cprman_write(cprman, data->ctl_reg, ctl);
1004 
1005 	cprman_write(cprman, data->div_reg, div);
1006 
1007 	spin_unlock(&cprman->regs_lock);
1008 
1009 	return 0;
1010 }
1011 
1012 static bool
1013 bcm2835_clk_is_pllc(struct clk_hw *hw)
1014 {
1015 	if (!hw)
1016 		return false;
1017 
1018 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1019 }
1020 
1021 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1022 					struct clk_rate_request *req)
1023 {
1024 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1025 	struct clk_hw *parent, *best_parent = NULL;
1026 	bool current_parent_is_pllc;
1027 	unsigned long rate, best_rate = 0;
1028 	unsigned long prate, best_prate = 0;
1029 	size_t i;
1030 	u32 div;
1031 
1032 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1033 
1034 	/*
1035 	 * Select parent clock that results in the closest but lower rate
1036 	 */
1037 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1038 		parent = clk_hw_get_parent_by_index(hw, i);
1039 		if (!parent)
1040 			continue;
1041 
1042 		/*
1043 		 * Don't choose a PLLC-derived clock as our parent
1044 		 * unless it had been manually set that way.  PLLC's
1045 		 * frequency gets adjusted by the firmware due to
1046 		 * over-temp or under-voltage conditions, without
1047 		 * prior notification to our clock consumer.
1048 		 */
1049 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1050 			continue;
1051 
1052 		prate = clk_hw_get_rate(parent);
1053 		div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
1054 		rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
1055 		if (rate > best_rate && rate <= req->rate) {
1056 			best_parent = parent;
1057 			best_prate = prate;
1058 			best_rate = rate;
1059 		}
1060 	}
1061 
1062 	if (!best_parent)
1063 		return -EINVAL;
1064 
1065 	req->best_parent_hw = best_parent;
1066 	req->best_parent_rate = best_prate;
1067 
1068 	req->rate = best_rate;
1069 
1070 	return 0;
1071 }
1072 
1073 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1074 {
1075 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1076 	struct bcm2835_cprman *cprman = clock->cprman;
1077 	const struct bcm2835_clock_data *data = clock->data;
1078 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1079 
1080 	cprman_write(cprman, data->ctl_reg, src);
1081 	return 0;
1082 }
1083 
1084 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1085 {
1086 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1087 	struct bcm2835_cprman *cprman = clock->cprman;
1088 	const struct bcm2835_clock_data *data = clock->data;
1089 	u32 src = cprman_read(cprman, data->ctl_reg);
1090 
1091 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1092 }
1093 
1094 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1095 	{
1096 		.name = "ctl",
1097 		.offset = 0,
1098 	},
1099 	{
1100 		.name = "div",
1101 		.offset = 4,
1102 	},
1103 };
1104 
1105 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1106 				    struct dentry *dentry)
1107 {
1108 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1109 	struct bcm2835_cprman *cprman = clock->cprman;
1110 	const struct bcm2835_clock_data *data = clock->data;
1111 
1112 	return bcm2835_debugfs_regset(
1113 		cprman, data->ctl_reg,
1114 		bcm2835_debugfs_clock_reg32,
1115 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1116 		dentry);
1117 }
1118 
1119 static const struct clk_ops bcm2835_clock_clk_ops = {
1120 	.is_prepared = bcm2835_clock_is_on,
1121 	.prepare = bcm2835_clock_on,
1122 	.unprepare = bcm2835_clock_off,
1123 	.recalc_rate = bcm2835_clock_get_rate,
1124 	.set_rate = bcm2835_clock_set_rate,
1125 	.determine_rate = bcm2835_clock_determine_rate,
1126 	.set_parent = bcm2835_clock_set_parent,
1127 	.get_parent = bcm2835_clock_get_parent,
1128 	.debug_init = bcm2835_clock_debug_init,
1129 };
1130 
1131 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1132 {
1133 	return true;
1134 }
1135 
1136 /*
1137  * The VPU clock can never be disabled (it doesn't have an ENABLE
1138  * bit), so it gets its own set of clock ops.
1139  */
1140 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1141 	.is_prepared = bcm2835_vpu_clock_is_on,
1142 	.recalc_rate = bcm2835_clock_get_rate,
1143 	.set_rate = bcm2835_clock_set_rate,
1144 	.determine_rate = bcm2835_clock_determine_rate,
1145 	.set_parent = bcm2835_clock_set_parent,
1146 	.get_parent = bcm2835_clock_get_parent,
1147 	.debug_init = bcm2835_clock_debug_init,
1148 };
1149 
1150 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1151 					   const struct bcm2835_pll_data *data)
1152 {
1153 	struct bcm2835_pll *pll;
1154 	struct clk_init_data init;
1155 	int ret;
1156 
1157 	memset(&init, 0, sizeof(init));
1158 
1159 	/* All of the PLLs derive from the external oscillator. */
1160 	init.parent_names = &cprman->osc_name;
1161 	init.num_parents = 1;
1162 	init.name = data->name;
1163 	init.ops = &bcm2835_pll_clk_ops;
1164 	init.flags = CLK_IGNORE_UNUSED;
1165 
1166 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1167 	if (!pll)
1168 		return NULL;
1169 
1170 	pll->cprman = cprman;
1171 	pll->data = data;
1172 	pll->hw.init = &init;
1173 
1174 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1175 	if (ret)
1176 		return NULL;
1177 	return &pll->hw;
1178 }
1179 
1180 static struct clk_hw *
1181 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1182 			     const struct bcm2835_pll_divider_data *data)
1183 {
1184 	struct bcm2835_pll_divider *divider;
1185 	struct clk_init_data init;
1186 	const char *divider_name;
1187 	int ret;
1188 
1189 	if (data->fixed_divider != 1) {
1190 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1191 					      "%s_prediv", data->name);
1192 		if (!divider_name)
1193 			return NULL;
1194 	} else {
1195 		divider_name = data->name;
1196 	}
1197 
1198 	memset(&init, 0, sizeof(init));
1199 
1200 	init.parent_names = &data->source_pll;
1201 	init.num_parents = 1;
1202 	init.name = divider_name;
1203 	init.ops = &bcm2835_pll_divider_clk_ops;
1204 	init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1205 
1206 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1207 	if (!divider)
1208 		return NULL;
1209 
1210 	divider->div.reg = cprman->regs + data->a2w_reg;
1211 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1212 	divider->div.width = A2W_PLL_DIV_BITS;
1213 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1214 	divider->div.lock = &cprman->regs_lock;
1215 	divider->div.hw.init = &init;
1216 	divider->div.table = NULL;
1217 
1218 	divider->cprman = cprman;
1219 	divider->data = data;
1220 
1221 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1222 	if (ret)
1223 		return ERR_PTR(ret);
1224 
1225 	/*
1226 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1227 	 * is what our consumers are actually using.
1228 	 */
1229 	if (data->fixed_divider != 1) {
1230 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1231 						    divider_name,
1232 						    CLK_SET_RATE_PARENT,
1233 						    1,
1234 						    data->fixed_divider);
1235 	}
1236 
1237 	return &divider->div.hw;
1238 }
1239 
1240 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1241 					  const struct bcm2835_clock_data *data)
1242 {
1243 	struct bcm2835_clock *clock;
1244 	struct clk_init_data init;
1245 	const char *parents[1 << CM_SRC_BITS];
1246 	size_t i;
1247 	int ret;
1248 
1249 	/*
1250 	 * Replace our "xosc" references with the oscillator's
1251 	 * actual name.
1252 	 */
1253 	for (i = 0; i < data->num_mux_parents; i++) {
1254 		if (strcmp(data->parents[i], "xosc") == 0)
1255 			parents[i] = cprman->osc_name;
1256 		else
1257 			parents[i] = data->parents[i];
1258 	}
1259 
1260 	memset(&init, 0, sizeof(init));
1261 	init.parent_names = parents;
1262 	init.num_parents = data->num_mux_parents;
1263 	init.name = data->name;
1264 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1265 
1266 	if (data->is_vpu_clock) {
1267 		init.ops = &bcm2835_vpu_clock_clk_ops;
1268 	} else {
1269 		init.ops = &bcm2835_clock_clk_ops;
1270 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1271 
1272 		/* If the clock wasn't actually enabled at boot, it's not
1273 		 * critical.
1274 		 */
1275 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1276 			init.flags &= ~CLK_IS_CRITICAL;
1277 	}
1278 
1279 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1280 	if (!clock)
1281 		return NULL;
1282 
1283 	clock->cprman = cprman;
1284 	clock->data = data;
1285 	clock->hw.init = &init;
1286 
1287 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1288 	if (ret)
1289 		return ERR_PTR(ret);
1290 	return &clock->hw;
1291 }
1292 
1293 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1294 					 const struct bcm2835_gate_data *data)
1295 {
1296 	return clk_register_gate(cprman->dev, data->name, data->parent,
1297 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1298 				 cprman->regs + data->ctl_reg,
1299 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1300 }
1301 
1302 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1303 					       const void *data);
1304 struct bcm2835_clk_desc {
1305 	bcm2835_clk_register clk_register;
1306 	const void *data;
1307 };
1308 
1309 /* assignment helper macros for different clock types */
1310 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1311 			    .data = __VA_ARGS__ }
1312 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1313 					  &(struct bcm2835_pll_data)	\
1314 					  {__VA_ARGS__})
1315 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1316 					  &(struct bcm2835_pll_divider_data) \
1317 					  {__VA_ARGS__})
1318 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1319 					  &(struct bcm2835_clock_data)	\
1320 					  {__VA_ARGS__})
1321 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1322 					  &(struct bcm2835_gate_data)	\
1323 					  {__VA_ARGS__})
1324 
1325 /* parent mux arrays plus helper macros */
1326 
1327 /* main oscillator parent mux */
1328 static const char *const bcm2835_clock_osc_parents[] = {
1329 	"gnd",
1330 	"xosc",
1331 	"testdebug0",
1332 	"testdebug1"
1333 };
1334 
1335 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1336 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1337 	.parents = bcm2835_clock_osc_parents,				\
1338 	__VA_ARGS__)
1339 
1340 /* main peripherial parent mux */
1341 static const char *const bcm2835_clock_per_parents[] = {
1342 	"gnd",
1343 	"xosc",
1344 	"testdebug0",
1345 	"testdebug1",
1346 	"plla_per",
1347 	"pllc_per",
1348 	"plld_per",
1349 	"pllh_aux",
1350 };
1351 
1352 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1353 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1354 	.parents = bcm2835_clock_per_parents,				\
1355 	__VA_ARGS__)
1356 
1357 /* main vpu parent mux */
1358 static const char *const bcm2835_clock_vpu_parents[] = {
1359 	"gnd",
1360 	"xosc",
1361 	"testdebug0",
1362 	"testdebug1",
1363 	"plla_core",
1364 	"pllc_core0",
1365 	"plld_core",
1366 	"pllh_aux",
1367 	"pllc_core1",
1368 	"pllc_core2",
1369 };
1370 
1371 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1372 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1373 	.parents = bcm2835_clock_vpu_parents,				\
1374 	__VA_ARGS__)
1375 
1376 /*
1377  * the real definition of all the pll, pll_dividers and clocks
1378  * these make use of the above REGISTER_* macros
1379  */
1380 static const struct bcm2835_clk_desc clk_desc_array[] = {
1381 	/* the PLL + PLL dividers */
1382 
1383 	/*
1384 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1385 	 * (Compact Camera Port 2) transmitter clock.
1386 	 *
1387 	 * It is in the PX LDO power domain, which is on when the
1388 	 * AUDIO domain is on.
1389 	 */
1390 	[BCM2835_PLLA]		= REGISTER_PLL(
1391 		.name = "plla",
1392 		.cm_ctrl_reg = CM_PLLA,
1393 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1394 		.frac_reg = A2W_PLLA_FRAC,
1395 		.ana_reg_base = A2W_PLLA_ANA0,
1396 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1397 		.lock_mask = CM_LOCK_FLOCKA,
1398 
1399 		.ana = &bcm2835_ana_default,
1400 
1401 		.min_rate = 600000000u,
1402 		.max_rate = 2400000000u,
1403 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1404 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1405 		.name = "plla_core",
1406 		.source_pll = "plla",
1407 		.cm_reg = CM_PLLA,
1408 		.a2w_reg = A2W_PLLA_CORE,
1409 		.load_mask = CM_PLLA_LOADCORE,
1410 		.hold_mask = CM_PLLA_HOLDCORE,
1411 		.fixed_divider = 1),
1412 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1413 		.name = "plla_per",
1414 		.source_pll = "plla",
1415 		.cm_reg = CM_PLLA,
1416 		.a2w_reg = A2W_PLLA_PER,
1417 		.load_mask = CM_PLLA_LOADPER,
1418 		.hold_mask = CM_PLLA_HOLDPER,
1419 		.fixed_divider = 1),
1420 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1421 		.name = "plla_dsi0",
1422 		.source_pll = "plla",
1423 		.cm_reg = CM_PLLA,
1424 		.a2w_reg = A2W_PLLA_DSI0,
1425 		.load_mask = CM_PLLA_LOADDSI0,
1426 		.hold_mask = CM_PLLA_HOLDDSI0,
1427 		.fixed_divider = 1),
1428 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1429 		.name = "plla_ccp2",
1430 		.source_pll = "plla",
1431 		.cm_reg = CM_PLLA,
1432 		.a2w_reg = A2W_PLLA_CCP2,
1433 		.load_mask = CM_PLLA_LOADCCP2,
1434 		.hold_mask = CM_PLLA_HOLDCCP2,
1435 		.fixed_divider = 1),
1436 
1437 	/* PLLB is used for the ARM's clock. */
1438 	[BCM2835_PLLB]		= REGISTER_PLL(
1439 		.name = "pllb",
1440 		.cm_ctrl_reg = CM_PLLB,
1441 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1442 		.frac_reg = A2W_PLLB_FRAC,
1443 		.ana_reg_base = A2W_PLLB_ANA0,
1444 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1445 		.lock_mask = CM_LOCK_FLOCKB,
1446 
1447 		.ana = &bcm2835_ana_default,
1448 
1449 		.min_rate = 600000000u,
1450 		.max_rate = 3000000000u,
1451 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1452 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1453 		.name = "pllb_arm",
1454 		.source_pll = "pllb",
1455 		.cm_reg = CM_PLLB,
1456 		.a2w_reg = A2W_PLLB_ARM,
1457 		.load_mask = CM_PLLB_LOADARM,
1458 		.hold_mask = CM_PLLB_HOLDARM,
1459 		.fixed_divider = 1),
1460 
1461 	/*
1462 	 * PLLC is the core PLL, used to drive the core VPU clock.
1463 	 *
1464 	 * It is in the PX LDO power domain, which is on when the
1465 	 * AUDIO domain is on.
1466 	 */
1467 	[BCM2835_PLLC]		= REGISTER_PLL(
1468 		.name = "pllc",
1469 		.cm_ctrl_reg = CM_PLLC,
1470 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1471 		.frac_reg = A2W_PLLC_FRAC,
1472 		.ana_reg_base = A2W_PLLC_ANA0,
1473 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1474 		.lock_mask = CM_LOCK_FLOCKC,
1475 
1476 		.ana = &bcm2835_ana_default,
1477 
1478 		.min_rate = 600000000u,
1479 		.max_rate = 3000000000u,
1480 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1481 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1482 		.name = "pllc_core0",
1483 		.source_pll = "pllc",
1484 		.cm_reg = CM_PLLC,
1485 		.a2w_reg = A2W_PLLC_CORE0,
1486 		.load_mask = CM_PLLC_LOADCORE0,
1487 		.hold_mask = CM_PLLC_HOLDCORE0,
1488 		.fixed_divider = 1),
1489 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1490 		.name = "pllc_core1",
1491 		.source_pll = "pllc",
1492 		.cm_reg = CM_PLLC,
1493 		.a2w_reg = A2W_PLLC_CORE1,
1494 		.load_mask = CM_PLLC_LOADCORE1,
1495 		.hold_mask = CM_PLLC_HOLDCORE1,
1496 		.fixed_divider = 1),
1497 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1498 		.name = "pllc_core2",
1499 		.source_pll = "pllc",
1500 		.cm_reg = CM_PLLC,
1501 		.a2w_reg = A2W_PLLC_CORE2,
1502 		.load_mask = CM_PLLC_LOADCORE2,
1503 		.hold_mask = CM_PLLC_HOLDCORE2,
1504 		.fixed_divider = 1),
1505 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1506 		.name = "pllc_per",
1507 		.source_pll = "pllc",
1508 		.cm_reg = CM_PLLC,
1509 		.a2w_reg = A2W_PLLC_PER,
1510 		.load_mask = CM_PLLC_LOADPER,
1511 		.hold_mask = CM_PLLC_HOLDPER,
1512 		.fixed_divider = 1),
1513 
1514 	/*
1515 	 * PLLD is the display PLL, used to drive DSI display panels.
1516 	 *
1517 	 * It is in the PX LDO power domain, which is on when the
1518 	 * AUDIO domain is on.
1519 	 */
1520 	[BCM2835_PLLD]		= REGISTER_PLL(
1521 		.name = "plld",
1522 		.cm_ctrl_reg = CM_PLLD,
1523 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1524 		.frac_reg = A2W_PLLD_FRAC,
1525 		.ana_reg_base = A2W_PLLD_ANA0,
1526 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1527 		.lock_mask = CM_LOCK_FLOCKD,
1528 
1529 		.ana = &bcm2835_ana_default,
1530 
1531 		.min_rate = 600000000u,
1532 		.max_rate = 2400000000u,
1533 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1534 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1535 		.name = "plld_core",
1536 		.source_pll = "plld",
1537 		.cm_reg = CM_PLLD,
1538 		.a2w_reg = A2W_PLLD_CORE,
1539 		.load_mask = CM_PLLD_LOADCORE,
1540 		.hold_mask = CM_PLLD_HOLDCORE,
1541 		.fixed_divider = 1),
1542 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1543 		.name = "plld_per",
1544 		.source_pll = "plld",
1545 		.cm_reg = CM_PLLD,
1546 		.a2w_reg = A2W_PLLD_PER,
1547 		.load_mask = CM_PLLD_LOADPER,
1548 		.hold_mask = CM_PLLD_HOLDPER,
1549 		.fixed_divider = 1),
1550 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1551 		.name = "plld_dsi0",
1552 		.source_pll = "plld",
1553 		.cm_reg = CM_PLLD,
1554 		.a2w_reg = A2W_PLLD_DSI0,
1555 		.load_mask = CM_PLLD_LOADDSI0,
1556 		.hold_mask = CM_PLLD_HOLDDSI0,
1557 		.fixed_divider = 1),
1558 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1559 		.name = "plld_dsi1",
1560 		.source_pll = "plld",
1561 		.cm_reg = CM_PLLD,
1562 		.a2w_reg = A2W_PLLD_DSI1,
1563 		.load_mask = CM_PLLD_LOADDSI1,
1564 		.hold_mask = CM_PLLD_HOLDDSI1,
1565 		.fixed_divider = 1),
1566 
1567 	/*
1568 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1569 	 * TV encoder.
1570 	 *
1571 	 * It is in the HDMI power domain.
1572 	 */
1573 	[BCM2835_PLLH]		= REGISTER_PLL(
1574 		"pllh",
1575 		.cm_ctrl_reg = CM_PLLH,
1576 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1577 		.frac_reg = A2W_PLLH_FRAC,
1578 		.ana_reg_base = A2W_PLLH_ANA0,
1579 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1580 		.lock_mask = CM_LOCK_FLOCKH,
1581 
1582 		.ana = &bcm2835_ana_pllh,
1583 
1584 		.min_rate = 600000000u,
1585 		.max_rate = 3000000000u,
1586 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1587 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1588 		.name = "pllh_rcal",
1589 		.source_pll = "pllh",
1590 		.cm_reg = CM_PLLH,
1591 		.a2w_reg = A2W_PLLH_RCAL,
1592 		.load_mask = CM_PLLH_LOADRCAL,
1593 		.hold_mask = 0,
1594 		.fixed_divider = 10),
1595 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1596 		.name = "pllh_aux",
1597 		.source_pll = "pllh",
1598 		.cm_reg = CM_PLLH,
1599 		.a2w_reg = A2W_PLLH_AUX,
1600 		.load_mask = CM_PLLH_LOADAUX,
1601 		.hold_mask = 0,
1602 		.fixed_divider = 10),
1603 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1604 		.name = "pllh_pix",
1605 		.source_pll = "pllh",
1606 		.cm_reg = CM_PLLH,
1607 		.a2w_reg = A2W_PLLH_PIX,
1608 		.load_mask = CM_PLLH_LOADPIX,
1609 		.hold_mask = 0,
1610 		.fixed_divider = 10),
1611 
1612 	/* the clocks */
1613 
1614 	/* clocks with oscillator parent mux */
1615 
1616 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1617 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1618 		.name = "otp",
1619 		.ctl_reg = CM_OTPCTL,
1620 		.div_reg = CM_OTPDIV,
1621 		.int_bits = 4,
1622 		.frac_bits = 0),
1623 	/*
1624 	 * Used for a 1Mhz clock for the system clocksource, and also used
1625 	 * bythe watchdog timer and the camera pulse generator.
1626 	 */
1627 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1628 		.name = "timer",
1629 		.ctl_reg = CM_TIMERCTL,
1630 		.div_reg = CM_TIMERDIV,
1631 		.int_bits = 6,
1632 		.frac_bits = 12),
1633 	/*
1634 	 * Clock for the temperature sensor.
1635 	 * Generally run at 2Mhz, max 5Mhz.
1636 	 */
1637 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1638 		.name = "tsens",
1639 		.ctl_reg = CM_TSENSCTL,
1640 		.div_reg = CM_TSENSDIV,
1641 		.int_bits = 5,
1642 		.frac_bits = 0),
1643 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1644 		.name = "tec",
1645 		.ctl_reg = CM_TECCTL,
1646 		.div_reg = CM_TECDIV,
1647 		.int_bits = 6,
1648 		.frac_bits = 0),
1649 
1650 	/* clocks with vpu parent mux */
1651 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1652 		.name = "h264",
1653 		.ctl_reg = CM_H264CTL,
1654 		.div_reg = CM_H264DIV,
1655 		.int_bits = 4,
1656 		.frac_bits = 8),
1657 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1658 		.name = "isp",
1659 		.ctl_reg = CM_ISPCTL,
1660 		.div_reg = CM_ISPDIV,
1661 		.int_bits = 4,
1662 		.frac_bits = 8),
1663 
1664 	/*
1665 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1666 	 * in the SDRAM controller can't be used.
1667 	 */
1668 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1669 		.name = "sdram",
1670 		.ctl_reg = CM_SDCCTL,
1671 		.div_reg = CM_SDCDIV,
1672 		.int_bits = 6,
1673 		.frac_bits = 0),
1674 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1675 		.name = "v3d",
1676 		.ctl_reg = CM_V3DCTL,
1677 		.div_reg = CM_V3DDIV,
1678 		.int_bits = 4,
1679 		.frac_bits = 8),
1680 	/*
1681 	 * VPU clock.  This doesn't have an enable bit, since it drives
1682 	 * the bus for everything else, and is special so it doesn't need
1683 	 * to be gated for rate changes.  It is also known as "clk_audio"
1684 	 * in various hardware documentation.
1685 	 */
1686 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1687 		.name = "vpu",
1688 		.ctl_reg = CM_VPUCTL,
1689 		.div_reg = CM_VPUDIV,
1690 		.int_bits = 12,
1691 		.frac_bits = 8,
1692 		.flags = CLK_IS_CRITICAL,
1693 		.is_vpu_clock = true),
1694 
1695 	/* clocks with per parent mux */
1696 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1697 		.name = "aveo",
1698 		.ctl_reg = CM_AVEOCTL,
1699 		.div_reg = CM_AVEODIV,
1700 		.int_bits = 4,
1701 		.frac_bits = 0),
1702 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1703 		.name = "cam0",
1704 		.ctl_reg = CM_CAM0CTL,
1705 		.div_reg = CM_CAM0DIV,
1706 		.int_bits = 4,
1707 		.frac_bits = 8),
1708 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1709 		.name = "cam1",
1710 		.ctl_reg = CM_CAM1CTL,
1711 		.div_reg = CM_CAM1DIV,
1712 		.int_bits = 4,
1713 		.frac_bits = 8),
1714 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1715 		.name = "dft",
1716 		.ctl_reg = CM_DFTCTL,
1717 		.div_reg = CM_DFTDIV,
1718 		.int_bits = 5,
1719 		.frac_bits = 0),
1720 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1721 		.name = "dpi",
1722 		.ctl_reg = CM_DPICTL,
1723 		.div_reg = CM_DPIDIV,
1724 		.int_bits = 4,
1725 		.frac_bits = 8),
1726 
1727 	/* Arasan EMMC clock */
1728 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
1729 		.name = "emmc",
1730 		.ctl_reg = CM_EMMCCTL,
1731 		.div_reg = CM_EMMCDIV,
1732 		.int_bits = 4,
1733 		.frac_bits = 8),
1734 
1735 	/* General purpose (GPIO) clocks */
1736 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
1737 		.name = "gp0",
1738 		.ctl_reg = CM_GP0CTL,
1739 		.div_reg = CM_GP0DIV,
1740 		.int_bits = 12,
1741 		.frac_bits = 12,
1742 		.is_mash_clock = true),
1743 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
1744 		.name = "gp1",
1745 		.ctl_reg = CM_GP1CTL,
1746 		.div_reg = CM_GP1DIV,
1747 		.int_bits = 12,
1748 		.frac_bits = 12,
1749 		.flags = CLK_IS_CRITICAL,
1750 		.is_mash_clock = true),
1751 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
1752 		.name = "gp2",
1753 		.ctl_reg = CM_GP2CTL,
1754 		.div_reg = CM_GP2DIV,
1755 		.int_bits = 12,
1756 		.frac_bits = 12,
1757 		.flags = CLK_IS_CRITICAL),
1758 
1759 	/* HDMI state machine */
1760 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
1761 		.name = "hsm",
1762 		.ctl_reg = CM_HSMCTL,
1763 		.div_reg = CM_HSMDIV,
1764 		.int_bits = 4,
1765 		.frac_bits = 8),
1766 	[BCM2835_CLOCK_PCM]	= REGISTER_PER_CLK(
1767 		.name = "pcm",
1768 		.ctl_reg = CM_PCMCTL,
1769 		.div_reg = CM_PCMDIV,
1770 		.int_bits = 12,
1771 		.frac_bits = 12,
1772 		.is_mash_clock = true),
1773 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
1774 		.name = "pwm",
1775 		.ctl_reg = CM_PWMCTL,
1776 		.div_reg = CM_PWMDIV,
1777 		.int_bits = 12,
1778 		.frac_bits = 12,
1779 		.is_mash_clock = true),
1780 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
1781 		.name = "slim",
1782 		.ctl_reg = CM_SLIMCTL,
1783 		.div_reg = CM_SLIMDIV,
1784 		.int_bits = 12,
1785 		.frac_bits = 12,
1786 		.is_mash_clock = true),
1787 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
1788 		.name = "smi",
1789 		.ctl_reg = CM_SMICTL,
1790 		.div_reg = CM_SMIDIV,
1791 		.int_bits = 4,
1792 		.frac_bits = 8),
1793 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
1794 		.name = "uart",
1795 		.ctl_reg = CM_UARTCTL,
1796 		.div_reg = CM_UARTDIV,
1797 		.int_bits = 10,
1798 		.frac_bits = 12),
1799 
1800 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
1801 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
1802 		.name = "vec",
1803 		.ctl_reg = CM_VECCTL,
1804 		.div_reg = CM_VECDIV,
1805 		.int_bits = 4,
1806 		.frac_bits = 0),
1807 
1808 	/* dsi clocks */
1809 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
1810 		.name = "dsi0e",
1811 		.ctl_reg = CM_DSI0ECTL,
1812 		.div_reg = CM_DSI0EDIV,
1813 		.int_bits = 4,
1814 		.frac_bits = 8),
1815 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
1816 		.name = "dsi1e",
1817 		.ctl_reg = CM_DSI1ECTL,
1818 		.div_reg = CM_DSI1EDIV,
1819 		.int_bits = 4,
1820 		.frac_bits = 8),
1821 
1822 	/* the gates */
1823 
1824 	/*
1825 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1826 	 * you have the debug bit set in the power manager, which we
1827 	 * don't bother exposing) are individual gates off of the
1828 	 * non-stop vpu clock.
1829 	 */
1830 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
1831 		.name = "peri_image",
1832 		.parent = "vpu",
1833 		.ctl_reg = CM_PERIICTL),
1834 };
1835 
1836 /*
1837  * Permanently take a reference on the parent of the SDRAM clock.
1838  *
1839  * While the SDRAM is being driven by its dedicated PLL most of the
1840  * time, there is a little loop running in the firmware that
1841  * periodically switches the SDRAM to using our CM clock to do PVT
1842  * recalibration, with the assumption that the previously configured
1843  * SDRAM parent is still enabled and running.
1844  */
1845 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
1846 {
1847 	struct clk *parent = clk_get_parent(sdc);
1848 
1849 	if (IS_ERR(parent))
1850 		return PTR_ERR(parent);
1851 
1852 	return clk_prepare_enable(parent);
1853 }
1854 
1855 static int bcm2835_clk_probe(struct platform_device *pdev)
1856 {
1857 	struct device *dev = &pdev->dev;
1858 	struct clk_hw **hws;
1859 	struct bcm2835_cprman *cprman;
1860 	struct resource *res;
1861 	const struct bcm2835_clk_desc *desc;
1862 	const size_t asize = ARRAY_SIZE(clk_desc_array);
1863 	size_t i;
1864 	int ret;
1865 
1866 	cprman = devm_kzalloc(dev, sizeof(*cprman) +
1867 			      sizeof(*cprman->onecell.hws) * asize,
1868 			      GFP_KERNEL);
1869 	if (!cprman)
1870 		return -ENOMEM;
1871 
1872 	spin_lock_init(&cprman->regs_lock);
1873 	cprman->dev = dev;
1874 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1875 	cprman->regs = devm_ioremap_resource(dev, res);
1876 	if (IS_ERR(cprman->regs))
1877 		return PTR_ERR(cprman->regs);
1878 
1879 	cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1880 	if (!cprman->osc_name)
1881 		return -ENODEV;
1882 
1883 	platform_set_drvdata(pdev, cprman);
1884 
1885 	cprman->onecell.num = asize;
1886 	hws = cprman->onecell.hws;
1887 
1888 	for (i = 0; i < asize; i++) {
1889 		desc = &clk_desc_array[i];
1890 		if (desc->clk_register && desc->data)
1891 			hws[i] = desc->clk_register(cprman, desc->data);
1892 	}
1893 
1894 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
1895 	if (ret)
1896 		return ret;
1897 
1898 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
1899 				      &cprman->onecell);
1900 }
1901 
1902 static const struct of_device_id bcm2835_clk_of_match[] = {
1903 	{ .compatible = "brcm,bcm2835-cprman", },
1904 	{}
1905 };
1906 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1907 
1908 static struct platform_driver bcm2835_clk_driver = {
1909 	.driver = {
1910 		.name = "bcm2835-clk",
1911 		.of_match_table = bcm2835_clk_of_match,
1912 	},
1913 	.probe          = bcm2835_clk_probe,
1914 };
1915 
1916 builtin_platform_driver(bcm2835_clk_driver);
1917 
1918 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1919 MODULE_DESCRIPTION("BCM2835 clock driver");
1920 MODULE_LICENSE("GPL v2");
1921