xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision de2bdb3d)
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36 
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
47 
48 #define CM_PASSWORD		0x5a000000
49 
50 #define CM_GNRICCTL		0x000
51 #define CM_GNRICDIV		0x004
52 # define CM_DIV_FRAC_BITS	12
53 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
54 
55 #define CM_VPUCTL		0x008
56 #define CM_VPUDIV		0x00c
57 #define CM_SYSCTL		0x010
58 #define CM_SYSDIV		0x014
59 #define CM_PERIACTL		0x018
60 #define CM_PERIADIV		0x01c
61 #define CM_PERIICTL		0x020
62 #define CM_PERIIDIV		0x024
63 #define CM_H264CTL		0x028
64 #define CM_H264DIV		0x02c
65 #define CM_ISPCTL		0x030
66 #define CM_ISPDIV		0x034
67 #define CM_V3DCTL		0x038
68 #define CM_V3DDIV		0x03c
69 #define CM_CAM0CTL		0x040
70 #define CM_CAM0DIV		0x044
71 #define CM_CAM1CTL		0x048
72 #define CM_CAM1DIV		0x04c
73 #define CM_CCP2CTL		0x050
74 #define CM_CCP2DIV		0x054
75 #define CM_DSI0ECTL		0x058
76 #define CM_DSI0EDIV		0x05c
77 #define CM_DSI0PCTL		0x060
78 #define CM_DSI0PDIV		0x064
79 #define CM_DPICTL		0x068
80 #define CM_DPIDIV		0x06c
81 #define CM_GP0CTL		0x070
82 #define CM_GP0DIV		0x074
83 #define CM_GP1CTL		0x078
84 #define CM_GP1DIV		0x07c
85 #define CM_GP2CTL		0x080
86 #define CM_GP2DIV		0x084
87 #define CM_HSMCTL		0x088
88 #define CM_HSMDIV		0x08c
89 #define CM_OTPCTL		0x090
90 #define CM_OTPDIV		0x094
91 #define CM_PCMCTL		0x098
92 #define CM_PCMDIV		0x09c
93 #define CM_PWMCTL		0x0a0
94 #define CM_PWMDIV		0x0a4
95 #define CM_SLIMCTL		0x0a8
96 #define CM_SLIMDIV		0x0ac
97 #define CM_SMICTL		0x0b0
98 #define CM_SMIDIV		0x0b4
99 /* no definition for 0x0b8  and 0x0bc */
100 #define CM_TCNTCTL		0x0c0
101 #define CM_TCNTDIV		0x0c4
102 #define CM_TECCTL		0x0c8
103 #define CM_TECDIV		0x0cc
104 #define CM_TD0CTL		0x0d0
105 #define CM_TD0DIV		0x0d4
106 #define CM_TD1CTL		0x0d8
107 #define CM_TD1DIV		0x0dc
108 #define CM_TSENSCTL		0x0e0
109 #define CM_TSENSDIV		0x0e4
110 #define CM_TIMERCTL		0x0e8
111 #define CM_TIMERDIV		0x0ec
112 #define CM_UARTCTL		0x0f0
113 #define CM_UARTDIV		0x0f4
114 #define CM_VECCTL		0x0f8
115 #define CM_VECDIV		0x0fc
116 #define CM_PULSECTL		0x190
117 #define CM_PULSEDIV		0x194
118 #define CM_SDCCTL		0x1a8
119 #define CM_SDCDIV		0x1ac
120 #define CM_ARMCTL		0x1b0
121 #define CM_AVEOCTL		0x1b8
122 #define CM_AVEODIV		0x1bc
123 #define CM_EMMCCTL		0x1c0
124 #define CM_EMMCDIV		0x1c4
125 
126 /* General bits for the CM_*CTL regs */
127 # define CM_ENABLE			BIT(4)
128 # define CM_KILL			BIT(5)
129 # define CM_GATE_BIT			6
130 # define CM_GATE			BIT(CM_GATE_BIT)
131 # define CM_BUSY			BIT(7)
132 # define CM_BUSYD			BIT(8)
133 # define CM_FRAC			BIT(9)
134 # define CM_SRC_SHIFT			0
135 # define CM_SRC_BITS			4
136 # define CM_SRC_MASK			0xf
137 # define CM_SRC_GND			0
138 # define CM_SRC_OSC			1
139 # define CM_SRC_TESTDEBUG0		2
140 # define CM_SRC_TESTDEBUG1		3
141 # define CM_SRC_PLLA_CORE		4
142 # define CM_SRC_PLLA_PER		4
143 # define CM_SRC_PLLC_CORE0		5
144 # define CM_SRC_PLLC_PER		5
145 # define CM_SRC_PLLC_CORE1		8
146 # define CM_SRC_PLLD_CORE		6
147 # define CM_SRC_PLLD_PER		6
148 # define CM_SRC_PLLH_AUX		7
149 # define CM_SRC_PLLC_CORE1		8
150 # define CM_SRC_PLLC_CORE2		9
151 
152 #define CM_OSCCOUNT		0x100
153 
154 #define CM_PLLA			0x104
155 # define CM_PLL_ANARST			BIT(8)
156 # define CM_PLLA_HOLDPER		BIT(7)
157 # define CM_PLLA_LOADPER		BIT(6)
158 # define CM_PLLA_HOLDCORE		BIT(5)
159 # define CM_PLLA_LOADCORE		BIT(4)
160 # define CM_PLLA_HOLDCCP2		BIT(3)
161 # define CM_PLLA_LOADCCP2		BIT(2)
162 # define CM_PLLA_HOLDDSI0		BIT(1)
163 # define CM_PLLA_LOADDSI0		BIT(0)
164 
165 #define CM_PLLC			0x108
166 # define CM_PLLC_HOLDPER		BIT(7)
167 # define CM_PLLC_LOADPER		BIT(6)
168 # define CM_PLLC_HOLDCORE2		BIT(5)
169 # define CM_PLLC_LOADCORE2		BIT(4)
170 # define CM_PLLC_HOLDCORE1		BIT(3)
171 # define CM_PLLC_LOADCORE1		BIT(2)
172 # define CM_PLLC_HOLDCORE0		BIT(1)
173 # define CM_PLLC_LOADCORE0		BIT(0)
174 
175 #define CM_PLLD			0x10c
176 # define CM_PLLD_HOLDPER		BIT(7)
177 # define CM_PLLD_LOADPER		BIT(6)
178 # define CM_PLLD_HOLDCORE		BIT(5)
179 # define CM_PLLD_LOADCORE		BIT(4)
180 # define CM_PLLD_HOLDDSI1		BIT(3)
181 # define CM_PLLD_LOADDSI1		BIT(2)
182 # define CM_PLLD_HOLDDSI0		BIT(1)
183 # define CM_PLLD_LOADDSI0		BIT(0)
184 
185 #define CM_PLLH			0x110
186 # define CM_PLLH_LOADRCAL		BIT(2)
187 # define CM_PLLH_LOADAUX		BIT(1)
188 # define CM_PLLH_LOADPIX		BIT(0)
189 
190 #define CM_LOCK			0x114
191 # define CM_LOCK_FLOCKH			BIT(12)
192 # define CM_LOCK_FLOCKD			BIT(11)
193 # define CM_LOCK_FLOCKC			BIT(10)
194 # define CM_LOCK_FLOCKB			BIT(9)
195 # define CM_LOCK_FLOCKA			BIT(8)
196 
197 #define CM_EVENT		0x118
198 #define CM_DSI1ECTL		0x158
199 #define CM_DSI1EDIV		0x15c
200 #define CM_DSI1PCTL		0x160
201 #define CM_DSI1PDIV		0x164
202 #define CM_DFTCTL		0x168
203 #define CM_DFTDIV		0x16c
204 
205 #define CM_PLLB			0x170
206 # define CM_PLLB_HOLDARM		BIT(1)
207 # define CM_PLLB_LOADARM		BIT(0)
208 
209 #define A2W_PLLA_CTRL		0x1100
210 #define A2W_PLLC_CTRL		0x1120
211 #define A2W_PLLD_CTRL		0x1140
212 #define A2W_PLLH_CTRL		0x1160
213 #define A2W_PLLB_CTRL		0x11e0
214 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
215 # define A2W_PLL_CTRL_PWRDN		BIT(16)
216 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
217 # define A2W_PLL_CTRL_PDIV_SHIFT	12
218 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
219 # define A2W_PLL_CTRL_NDIV_SHIFT	0
220 
221 #define A2W_PLLA_ANA0		0x1010
222 #define A2W_PLLC_ANA0		0x1030
223 #define A2W_PLLD_ANA0		0x1050
224 #define A2W_PLLH_ANA0		0x1070
225 #define A2W_PLLB_ANA0		0x10f0
226 
227 #define A2W_PLL_KA_SHIFT	7
228 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
229 #define A2W_PLL_KI_SHIFT	19
230 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
231 #define A2W_PLL_KP_SHIFT	15
232 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
233 
234 #define A2W_PLLH_KA_SHIFT	19
235 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
236 #define A2W_PLLH_KI_LOW_SHIFT	22
237 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
238 #define A2W_PLLH_KI_HIGH_SHIFT	0
239 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
240 #define A2W_PLLH_KP_SHIFT	1
241 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
242 
243 #define A2W_XOSC_CTRL		0x1190
244 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
245 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
246 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
247 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
248 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
249 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
250 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
251 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
252 
253 #define A2W_PLLA_FRAC		0x1200
254 #define A2W_PLLC_FRAC		0x1220
255 #define A2W_PLLD_FRAC		0x1240
256 #define A2W_PLLH_FRAC		0x1260
257 #define A2W_PLLB_FRAC		0x12e0
258 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
259 # define A2W_PLL_FRAC_BITS		20
260 
261 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
262 #define A2W_PLL_DIV_BITS		8
263 #define A2W_PLL_DIV_SHIFT		0
264 
265 #define A2W_PLLA_DSI0		0x1300
266 #define A2W_PLLA_CORE		0x1400
267 #define A2W_PLLA_PER		0x1500
268 #define A2W_PLLA_CCP2		0x1600
269 
270 #define A2W_PLLC_CORE2		0x1320
271 #define A2W_PLLC_CORE1		0x1420
272 #define A2W_PLLC_PER		0x1520
273 #define A2W_PLLC_CORE0		0x1620
274 
275 #define A2W_PLLD_DSI0		0x1340
276 #define A2W_PLLD_CORE		0x1440
277 #define A2W_PLLD_PER		0x1540
278 #define A2W_PLLD_DSI1		0x1640
279 
280 #define A2W_PLLH_AUX		0x1360
281 #define A2W_PLLH_RCAL		0x1460
282 #define A2W_PLLH_PIX		0x1560
283 #define A2W_PLLH_STS		0x1660
284 
285 #define A2W_PLLH_CTRLR		0x1960
286 #define A2W_PLLH_FRACR		0x1a60
287 #define A2W_PLLH_AUXR		0x1b60
288 #define A2W_PLLH_RCALR		0x1c60
289 #define A2W_PLLH_PIXR		0x1d60
290 #define A2W_PLLH_STSR		0x1e60
291 
292 #define A2W_PLLB_ARM		0x13e0
293 #define A2W_PLLB_SP0		0x14e0
294 #define A2W_PLLB_SP1		0x15e0
295 #define A2W_PLLB_SP2		0x16e0
296 
297 #define LOCK_TIMEOUT_NS		100000000
298 #define BCM2835_MAX_FB_RATE	1750000000u
299 
300 struct bcm2835_cprman {
301 	struct device *dev;
302 	void __iomem *regs;
303 	spinlock_t regs_lock; /* spinlock for all clocks */
304 	const char *osc_name;
305 
306 	/* Must be last */
307 	struct clk_hw_onecell_data onecell;
308 };
309 
310 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
311 {
312 	writel(CM_PASSWORD | val, cprman->regs + reg);
313 }
314 
315 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
316 {
317 	return readl(cprman->regs + reg);
318 }
319 
320 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
321 				  struct debugfs_reg32 *regs, size_t nregs,
322 				  struct dentry *dentry)
323 {
324 	struct dentry *regdump;
325 	struct debugfs_regset32 *regset;
326 
327 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
328 	if (!regset)
329 		return -ENOMEM;
330 
331 	regset->regs = regs;
332 	regset->nregs = nregs;
333 	regset->base = cprman->regs + base;
334 
335 	regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
336 					  regset);
337 
338 	return regdump ? 0 : -ENOMEM;
339 }
340 
341 /*
342  * These are fixed clocks. They're probably not all root clocks and it may
343  * be possible to turn them on and off but until this is mapped out better
344  * it's the only way they can be used.
345  */
346 void __init bcm2835_init_clocks(void)
347 {
348 	struct clk_hw *hw;
349 	int ret;
350 
351 	hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
352 	if (IS_ERR(hw))
353 		pr_err("apb_pclk not registered\n");
354 
355 	hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
356 	if (IS_ERR(hw))
357 		pr_err("uart0_pclk not registered\n");
358 	ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
359 	if (ret)
360 		pr_err("uart0_pclk alias not registered\n");
361 
362 	hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
363 	if (IS_ERR(hw))
364 		pr_err("uart1_pclk not registered\n");
365 	ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
366 	if (ret)
367 		pr_err("uart1_pclk alias not registered\n");
368 }
369 
370 struct bcm2835_pll_data {
371 	const char *name;
372 	u32 cm_ctrl_reg;
373 	u32 a2w_ctrl_reg;
374 	u32 frac_reg;
375 	u32 ana_reg_base;
376 	u32 reference_enable_mask;
377 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
378 	u32 lock_mask;
379 
380 	const struct bcm2835_pll_ana_bits *ana;
381 
382 	unsigned long min_rate;
383 	unsigned long max_rate;
384 	/*
385 	 * Highest rate for the VCO before we have to use the
386 	 * pre-divide-by-2.
387 	 */
388 	unsigned long max_fb_rate;
389 };
390 
391 struct bcm2835_pll_ana_bits {
392 	u32 mask0;
393 	u32 set0;
394 	u32 mask1;
395 	u32 set1;
396 	u32 mask3;
397 	u32 set3;
398 	u32 fb_prediv_mask;
399 };
400 
401 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
402 	.mask0 = 0,
403 	.set0 = 0,
404 	.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
405 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
406 	.mask3 = (u32)~A2W_PLL_KA_MASK,
407 	.set3 = (2 << A2W_PLL_KA_SHIFT),
408 	.fb_prediv_mask = BIT(14),
409 };
410 
411 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
412 	.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
413 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
414 	.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
415 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
416 	.mask3 = 0,
417 	.set3 = 0,
418 	.fb_prediv_mask = BIT(11),
419 };
420 
421 struct bcm2835_pll_divider_data {
422 	const char *name;
423 	const char *source_pll;
424 
425 	u32 cm_reg;
426 	u32 a2w_reg;
427 
428 	u32 load_mask;
429 	u32 hold_mask;
430 	u32 fixed_divider;
431 };
432 
433 struct bcm2835_clock_data {
434 	const char *name;
435 
436 	const char *const *parents;
437 	int num_mux_parents;
438 
439 	u32 ctl_reg;
440 	u32 div_reg;
441 
442 	/* Number of integer bits in the divider */
443 	u32 int_bits;
444 	/* Number of fractional bits in the divider */
445 	u32 frac_bits;
446 
447 	u32 flags;
448 
449 	bool is_vpu_clock;
450 	bool is_mash_clock;
451 };
452 
453 struct bcm2835_gate_data {
454 	const char *name;
455 	const char *parent;
456 
457 	u32 ctl_reg;
458 };
459 
460 struct bcm2835_pll {
461 	struct clk_hw hw;
462 	struct bcm2835_cprman *cprman;
463 	const struct bcm2835_pll_data *data;
464 };
465 
466 static int bcm2835_pll_is_on(struct clk_hw *hw)
467 {
468 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
469 	struct bcm2835_cprman *cprman = pll->cprman;
470 	const struct bcm2835_pll_data *data = pll->data;
471 
472 	return cprman_read(cprman, data->a2w_ctrl_reg) &
473 		A2W_PLL_CTRL_PRST_DISABLE;
474 }
475 
476 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
477 					     unsigned long parent_rate,
478 					     u32 *ndiv, u32 *fdiv)
479 {
480 	u64 div;
481 
482 	div = (u64)rate << A2W_PLL_FRAC_BITS;
483 	do_div(div, parent_rate);
484 
485 	*ndiv = div >> A2W_PLL_FRAC_BITS;
486 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
487 }
488 
489 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
490 					   u32 ndiv, u32 fdiv, u32 pdiv)
491 {
492 	u64 rate;
493 
494 	if (pdiv == 0)
495 		return 0;
496 
497 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
498 	do_div(rate, pdiv);
499 	return rate >> A2W_PLL_FRAC_BITS;
500 }
501 
502 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
503 				   unsigned long *parent_rate)
504 {
505 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
506 	const struct bcm2835_pll_data *data = pll->data;
507 	u32 ndiv, fdiv;
508 
509 	rate = clamp(rate, data->min_rate, data->max_rate);
510 
511 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
512 
513 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
514 }
515 
516 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
517 					  unsigned long parent_rate)
518 {
519 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
520 	struct bcm2835_cprman *cprman = pll->cprman;
521 	const struct bcm2835_pll_data *data = pll->data;
522 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
523 	u32 ndiv, pdiv, fdiv;
524 	bool using_prediv;
525 
526 	if (parent_rate == 0)
527 		return 0;
528 
529 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
530 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
531 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
532 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
533 		data->ana->fb_prediv_mask;
534 
535 	if (using_prediv)
536 		ndiv *= 2;
537 
538 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
539 }
540 
541 static void bcm2835_pll_off(struct clk_hw *hw)
542 {
543 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
544 	struct bcm2835_cprman *cprman = pll->cprman;
545 	const struct bcm2835_pll_data *data = pll->data;
546 
547 	spin_lock(&cprman->regs_lock);
548 	cprman_write(cprman, data->cm_ctrl_reg,
549 		     cprman_read(cprman, data->cm_ctrl_reg) |
550 		     CM_PLL_ANARST);
551 	cprman_write(cprman, data->a2w_ctrl_reg,
552 		     cprman_read(cprman, data->a2w_ctrl_reg) |
553 		     A2W_PLL_CTRL_PWRDN);
554 	spin_unlock(&cprman->regs_lock);
555 }
556 
557 static int bcm2835_pll_on(struct clk_hw *hw)
558 {
559 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
560 	struct bcm2835_cprman *cprman = pll->cprman;
561 	const struct bcm2835_pll_data *data = pll->data;
562 	ktime_t timeout;
563 
564 	cprman_write(cprman, data->a2w_ctrl_reg,
565 		     cprman_read(cprman, data->a2w_ctrl_reg) &
566 		     ~A2W_PLL_CTRL_PWRDN);
567 
568 	/* Take the PLL out of reset. */
569 	cprman_write(cprman, data->cm_ctrl_reg,
570 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
571 
572 	/* Wait for the PLL to lock. */
573 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
574 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
575 		if (ktime_after(ktime_get(), timeout)) {
576 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
577 				clk_hw_get_name(hw));
578 			return -ETIMEDOUT;
579 		}
580 
581 		cpu_relax();
582 	}
583 
584 	return 0;
585 }
586 
587 static void
588 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
589 {
590 	int i;
591 
592 	/*
593 	 * ANA register setup is done as a series of writes to
594 	 * ANA3-ANA0, in that order.  This lets us write all 4
595 	 * registers as a single cycle of the serdes interface (taking
596 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
597 	 * 3 individually through their partial-write registers, each
598 	 * would be their own serdes cycle.
599 	 */
600 	for (i = 3; i >= 0; i--)
601 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
602 }
603 
604 static int bcm2835_pll_set_rate(struct clk_hw *hw,
605 				unsigned long rate, unsigned long parent_rate)
606 {
607 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
608 	struct bcm2835_cprman *cprman = pll->cprman;
609 	const struct bcm2835_pll_data *data = pll->data;
610 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
611 	u32 ndiv, fdiv, a2w_ctl;
612 	u32 ana[4];
613 	int i;
614 
615 	if (rate > data->max_fb_rate) {
616 		use_fb_prediv = true;
617 		rate /= 2;
618 	} else {
619 		use_fb_prediv = false;
620 	}
621 
622 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
623 
624 	for (i = 3; i >= 0; i--)
625 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
626 
627 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
628 
629 	ana[0] &= ~data->ana->mask0;
630 	ana[0] |= data->ana->set0;
631 	ana[1] &= ~data->ana->mask1;
632 	ana[1] |= data->ana->set1;
633 	ana[3] &= ~data->ana->mask3;
634 	ana[3] |= data->ana->set3;
635 
636 	if (was_using_prediv && !use_fb_prediv) {
637 		ana[1] &= ~data->ana->fb_prediv_mask;
638 		do_ana_setup_first = true;
639 	} else if (!was_using_prediv && use_fb_prediv) {
640 		ana[1] |= data->ana->fb_prediv_mask;
641 		do_ana_setup_first = false;
642 	} else {
643 		do_ana_setup_first = true;
644 	}
645 
646 	/* Unmask the reference clock from the oscillator. */
647 	cprman_write(cprman, A2W_XOSC_CTRL,
648 		     cprman_read(cprman, A2W_XOSC_CTRL) |
649 		     data->reference_enable_mask);
650 
651 	if (do_ana_setup_first)
652 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
653 
654 	/* Set the PLL multiplier from the oscillator. */
655 	cprman_write(cprman, data->frac_reg, fdiv);
656 
657 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
658 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
659 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
660 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
661 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
662 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
663 
664 	if (!do_ana_setup_first)
665 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
666 
667 	return 0;
668 }
669 
670 static int bcm2835_pll_debug_init(struct clk_hw *hw,
671 				  struct dentry *dentry)
672 {
673 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
674 	struct bcm2835_cprman *cprman = pll->cprman;
675 	const struct bcm2835_pll_data *data = pll->data;
676 	struct debugfs_reg32 *regs;
677 
678 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
679 	if (!regs)
680 		return -ENOMEM;
681 
682 	regs[0].name = "cm_ctrl";
683 	regs[0].offset = data->cm_ctrl_reg;
684 	regs[1].name = "a2w_ctrl";
685 	regs[1].offset = data->a2w_ctrl_reg;
686 	regs[2].name = "frac";
687 	regs[2].offset = data->frac_reg;
688 	regs[3].name = "ana0";
689 	regs[3].offset = data->ana_reg_base + 0 * 4;
690 	regs[4].name = "ana1";
691 	regs[4].offset = data->ana_reg_base + 1 * 4;
692 	regs[5].name = "ana2";
693 	regs[5].offset = data->ana_reg_base + 2 * 4;
694 	regs[6].name = "ana3";
695 	regs[6].offset = data->ana_reg_base + 3 * 4;
696 
697 	return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
698 }
699 
700 static const struct clk_ops bcm2835_pll_clk_ops = {
701 	.is_prepared = bcm2835_pll_is_on,
702 	.prepare = bcm2835_pll_on,
703 	.unprepare = bcm2835_pll_off,
704 	.recalc_rate = bcm2835_pll_get_rate,
705 	.set_rate = bcm2835_pll_set_rate,
706 	.round_rate = bcm2835_pll_round_rate,
707 	.debug_init = bcm2835_pll_debug_init,
708 };
709 
710 struct bcm2835_pll_divider {
711 	struct clk_divider div;
712 	struct bcm2835_cprman *cprman;
713 	const struct bcm2835_pll_divider_data *data;
714 };
715 
716 static struct bcm2835_pll_divider *
717 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
718 {
719 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
720 }
721 
722 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
723 {
724 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
725 	struct bcm2835_cprman *cprman = divider->cprman;
726 	const struct bcm2835_pll_divider_data *data = divider->data;
727 
728 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
729 }
730 
731 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
732 					   unsigned long rate,
733 					   unsigned long *parent_rate)
734 {
735 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
736 }
737 
738 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
739 						  unsigned long parent_rate)
740 {
741 	return clk_divider_ops.recalc_rate(hw, parent_rate);
742 }
743 
744 static void bcm2835_pll_divider_off(struct clk_hw *hw)
745 {
746 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
747 	struct bcm2835_cprman *cprman = divider->cprman;
748 	const struct bcm2835_pll_divider_data *data = divider->data;
749 
750 	spin_lock(&cprman->regs_lock);
751 	cprman_write(cprman, data->cm_reg,
752 		     (cprman_read(cprman, data->cm_reg) &
753 		      ~data->load_mask) | data->hold_mask);
754 	cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
755 	spin_unlock(&cprman->regs_lock);
756 }
757 
758 static int bcm2835_pll_divider_on(struct clk_hw *hw)
759 {
760 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
761 	struct bcm2835_cprman *cprman = divider->cprman;
762 	const struct bcm2835_pll_divider_data *data = divider->data;
763 
764 	spin_lock(&cprman->regs_lock);
765 	cprman_write(cprman, data->a2w_reg,
766 		     cprman_read(cprman, data->a2w_reg) &
767 		     ~A2W_PLL_CHANNEL_DISABLE);
768 
769 	cprman_write(cprman, data->cm_reg,
770 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
771 	spin_unlock(&cprman->regs_lock);
772 
773 	return 0;
774 }
775 
776 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
777 					unsigned long rate,
778 					unsigned long parent_rate)
779 {
780 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
781 	struct bcm2835_cprman *cprman = divider->cprman;
782 	const struct bcm2835_pll_divider_data *data = divider->data;
783 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
784 
785 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
786 
787 	div = min(div, max_div);
788 	if (div == max_div)
789 		div = 0;
790 
791 	cprman_write(cprman, data->a2w_reg, div);
792 	cm = cprman_read(cprman, data->cm_reg);
793 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
794 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
795 
796 	return 0;
797 }
798 
799 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
800 					  struct dentry *dentry)
801 {
802 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
803 	struct bcm2835_cprman *cprman = divider->cprman;
804 	const struct bcm2835_pll_divider_data *data = divider->data;
805 	struct debugfs_reg32 *regs;
806 
807 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
808 	if (!regs)
809 		return -ENOMEM;
810 
811 	regs[0].name = "cm";
812 	regs[0].offset = data->cm_reg;
813 	regs[1].name = "a2w";
814 	regs[1].offset = data->a2w_reg;
815 
816 	return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
817 }
818 
819 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
820 	.is_prepared = bcm2835_pll_divider_is_on,
821 	.prepare = bcm2835_pll_divider_on,
822 	.unprepare = bcm2835_pll_divider_off,
823 	.recalc_rate = bcm2835_pll_divider_get_rate,
824 	.set_rate = bcm2835_pll_divider_set_rate,
825 	.round_rate = bcm2835_pll_divider_round_rate,
826 	.debug_init = bcm2835_pll_divider_debug_init,
827 };
828 
829 /*
830  * The CM dividers do fixed-point division, so we can't use the
831  * generic integer divider code like the PLL dividers do (and we can't
832  * fake it by having some fixed shifts preceding it in the clock tree,
833  * because we'd run out of bits in a 32-bit unsigned long).
834  */
835 struct bcm2835_clock {
836 	struct clk_hw hw;
837 	struct bcm2835_cprman *cprman;
838 	const struct bcm2835_clock_data *data;
839 };
840 
841 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
842 {
843 	return container_of(hw, struct bcm2835_clock, hw);
844 }
845 
846 static int bcm2835_clock_is_on(struct clk_hw *hw)
847 {
848 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
849 	struct bcm2835_cprman *cprman = clock->cprman;
850 	const struct bcm2835_clock_data *data = clock->data;
851 
852 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
853 }
854 
855 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
856 				    unsigned long rate,
857 				    unsigned long parent_rate,
858 				    bool round_up)
859 {
860 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
861 	const struct bcm2835_clock_data *data = clock->data;
862 	u32 unused_frac_mask =
863 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
864 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
865 	u64 rem;
866 	u32 div, mindiv, maxdiv;
867 
868 	rem = do_div(temp, rate);
869 	div = temp;
870 
871 	/* Round up and mask off the unused bits */
872 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
873 		div += unused_frac_mask + 1;
874 	div &= ~unused_frac_mask;
875 
876 	/* different clamping limits apply for a mash clock */
877 	if (data->is_mash_clock) {
878 		/* clamp to min divider of 2 */
879 		mindiv = 2 << CM_DIV_FRAC_BITS;
880 		/* clamp to the highest possible integer divider */
881 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
882 	} else {
883 		/* clamp to min divider of 1 */
884 		mindiv = 1 << CM_DIV_FRAC_BITS;
885 		/* clamp to the highest possible fractional divider */
886 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
887 				 CM_DIV_FRAC_BITS - data->frac_bits);
888 	}
889 
890 	/* apply the clamping  limits */
891 	div = max_t(u32, div, mindiv);
892 	div = min_t(u32, div, maxdiv);
893 
894 	return div;
895 }
896 
897 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
898 					    unsigned long parent_rate,
899 					    u32 div)
900 {
901 	const struct bcm2835_clock_data *data = clock->data;
902 	u64 temp;
903 
904 	/*
905 	 * The divisor is a 12.12 fixed point field, but only some of
906 	 * the bits are populated in any given clock.
907 	 */
908 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
909 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
910 
911 	if (div == 0)
912 		return 0;
913 
914 	temp = (u64)parent_rate << data->frac_bits;
915 
916 	do_div(temp, div);
917 
918 	return temp;
919 }
920 
921 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
922 					    unsigned long parent_rate)
923 {
924 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
925 	struct bcm2835_cprman *cprman = clock->cprman;
926 	const struct bcm2835_clock_data *data = clock->data;
927 	u32 div = cprman_read(cprman, data->div_reg);
928 
929 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
930 }
931 
932 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
933 {
934 	struct bcm2835_cprman *cprman = clock->cprman;
935 	const struct bcm2835_clock_data *data = clock->data;
936 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
937 
938 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
939 		if (ktime_after(ktime_get(), timeout)) {
940 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
941 				clk_hw_get_name(&clock->hw));
942 			return;
943 		}
944 		cpu_relax();
945 	}
946 }
947 
948 static void bcm2835_clock_off(struct clk_hw *hw)
949 {
950 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
951 	struct bcm2835_cprman *cprman = clock->cprman;
952 	const struct bcm2835_clock_data *data = clock->data;
953 
954 	spin_lock(&cprman->regs_lock);
955 	cprman_write(cprman, data->ctl_reg,
956 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
957 	spin_unlock(&cprman->regs_lock);
958 
959 	/* BUSY will remain high until the divider completes its cycle. */
960 	bcm2835_clock_wait_busy(clock);
961 }
962 
963 static int bcm2835_clock_on(struct clk_hw *hw)
964 {
965 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
966 	struct bcm2835_cprman *cprman = clock->cprman;
967 	const struct bcm2835_clock_data *data = clock->data;
968 
969 	spin_lock(&cprman->regs_lock);
970 	cprman_write(cprman, data->ctl_reg,
971 		     cprman_read(cprman, data->ctl_reg) |
972 		     CM_ENABLE |
973 		     CM_GATE);
974 	spin_unlock(&cprman->regs_lock);
975 
976 	return 0;
977 }
978 
979 static int bcm2835_clock_set_rate(struct clk_hw *hw,
980 				  unsigned long rate, unsigned long parent_rate)
981 {
982 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
983 	struct bcm2835_cprman *cprman = clock->cprman;
984 	const struct bcm2835_clock_data *data = clock->data;
985 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
986 	u32 ctl;
987 
988 	spin_lock(&cprman->regs_lock);
989 
990 	/*
991 	 * Setting up frac support
992 	 *
993 	 * In principle it is recommended to stop/start the clock first,
994 	 * but as we set CLK_SET_RATE_GATE during registration of the
995 	 * clock this requirement should be take care of by the
996 	 * clk-framework.
997 	 */
998 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
999 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1000 	cprman_write(cprman, data->ctl_reg, ctl);
1001 
1002 	cprman_write(cprman, data->div_reg, div);
1003 
1004 	spin_unlock(&cprman->regs_lock);
1005 
1006 	return 0;
1007 }
1008 
1009 static bool
1010 bcm2835_clk_is_pllc(struct clk_hw *hw)
1011 {
1012 	if (!hw)
1013 		return false;
1014 
1015 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1016 }
1017 
1018 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1019 					struct clk_rate_request *req)
1020 {
1021 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1022 	struct clk_hw *parent, *best_parent = NULL;
1023 	bool current_parent_is_pllc;
1024 	unsigned long rate, best_rate = 0;
1025 	unsigned long prate, best_prate = 0;
1026 	size_t i;
1027 	u32 div;
1028 
1029 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1030 
1031 	/*
1032 	 * Select parent clock that results in the closest but lower rate
1033 	 */
1034 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1035 		parent = clk_hw_get_parent_by_index(hw, i);
1036 		if (!parent)
1037 			continue;
1038 
1039 		/*
1040 		 * Don't choose a PLLC-derived clock as our parent
1041 		 * unless it had been manually set that way.  PLLC's
1042 		 * frequency gets adjusted by the firmware due to
1043 		 * over-temp or under-voltage conditions, without
1044 		 * prior notification to our clock consumer.
1045 		 */
1046 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1047 			continue;
1048 
1049 		prate = clk_hw_get_rate(parent);
1050 		div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
1051 		rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
1052 		if (rate > best_rate && rate <= req->rate) {
1053 			best_parent = parent;
1054 			best_prate = prate;
1055 			best_rate = rate;
1056 		}
1057 	}
1058 
1059 	if (!best_parent)
1060 		return -EINVAL;
1061 
1062 	req->best_parent_hw = best_parent;
1063 	req->best_parent_rate = best_prate;
1064 
1065 	req->rate = best_rate;
1066 
1067 	return 0;
1068 }
1069 
1070 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1071 {
1072 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1073 	struct bcm2835_cprman *cprman = clock->cprman;
1074 	const struct bcm2835_clock_data *data = clock->data;
1075 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1076 
1077 	cprman_write(cprman, data->ctl_reg, src);
1078 	return 0;
1079 }
1080 
1081 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1082 {
1083 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1084 	struct bcm2835_cprman *cprman = clock->cprman;
1085 	const struct bcm2835_clock_data *data = clock->data;
1086 	u32 src = cprman_read(cprman, data->ctl_reg);
1087 
1088 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1089 }
1090 
1091 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1092 	{
1093 		.name = "ctl",
1094 		.offset = 0,
1095 	},
1096 	{
1097 		.name = "div",
1098 		.offset = 4,
1099 	},
1100 };
1101 
1102 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1103 				    struct dentry *dentry)
1104 {
1105 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1106 	struct bcm2835_cprman *cprman = clock->cprman;
1107 	const struct bcm2835_clock_data *data = clock->data;
1108 
1109 	return bcm2835_debugfs_regset(
1110 		cprman, data->ctl_reg,
1111 		bcm2835_debugfs_clock_reg32,
1112 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1113 		dentry);
1114 }
1115 
1116 static const struct clk_ops bcm2835_clock_clk_ops = {
1117 	.is_prepared = bcm2835_clock_is_on,
1118 	.prepare = bcm2835_clock_on,
1119 	.unprepare = bcm2835_clock_off,
1120 	.recalc_rate = bcm2835_clock_get_rate,
1121 	.set_rate = bcm2835_clock_set_rate,
1122 	.determine_rate = bcm2835_clock_determine_rate,
1123 	.set_parent = bcm2835_clock_set_parent,
1124 	.get_parent = bcm2835_clock_get_parent,
1125 	.debug_init = bcm2835_clock_debug_init,
1126 };
1127 
1128 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1129 {
1130 	return true;
1131 }
1132 
1133 /*
1134  * The VPU clock can never be disabled (it doesn't have an ENABLE
1135  * bit), so it gets its own set of clock ops.
1136  */
1137 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1138 	.is_prepared = bcm2835_vpu_clock_is_on,
1139 	.recalc_rate = bcm2835_clock_get_rate,
1140 	.set_rate = bcm2835_clock_set_rate,
1141 	.determine_rate = bcm2835_clock_determine_rate,
1142 	.set_parent = bcm2835_clock_set_parent,
1143 	.get_parent = bcm2835_clock_get_parent,
1144 	.debug_init = bcm2835_clock_debug_init,
1145 };
1146 
1147 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1148 					   const struct bcm2835_pll_data *data)
1149 {
1150 	struct bcm2835_pll *pll;
1151 	struct clk_init_data init;
1152 	int ret;
1153 
1154 	memset(&init, 0, sizeof(init));
1155 
1156 	/* All of the PLLs derive from the external oscillator. */
1157 	init.parent_names = &cprman->osc_name;
1158 	init.num_parents = 1;
1159 	init.name = data->name;
1160 	init.ops = &bcm2835_pll_clk_ops;
1161 	init.flags = CLK_IGNORE_UNUSED;
1162 
1163 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1164 	if (!pll)
1165 		return NULL;
1166 
1167 	pll->cprman = cprman;
1168 	pll->data = data;
1169 	pll->hw.init = &init;
1170 
1171 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1172 	if (ret)
1173 		return NULL;
1174 	return &pll->hw;
1175 }
1176 
1177 static struct clk_hw *
1178 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1179 			     const struct bcm2835_pll_divider_data *data)
1180 {
1181 	struct bcm2835_pll_divider *divider;
1182 	struct clk_init_data init;
1183 	const char *divider_name;
1184 	int ret;
1185 
1186 	if (data->fixed_divider != 1) {
1187 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1188 					      "%s_prediv", data->name);
1189 		if (!divider_name)
1190 			return NULL;
1191 	} else {
1192 		divider_name = data->name;
1193 	}
1194 
1195 	memset(&init, 0, sizeof(init));
1196 
1197 	init.parent_names = &data->source_pll;
1198 	init.num_parents = 1;
1199 	init.name = divider_name;
1200 	init.ops = &bcm2835_pll_divider_clk_ops;
1201 	init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1202 
1203 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1204 	if (!divider)
1205 		return NULL;
1206 
1207 	divider->div.reg = cprman->regs + data->a2w_reg;
1208 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1209 	divider->div.width = A2W_PLL_DIV_BITS;
1210 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1211 	divider->div.lock = &cprman->regs_lock;
1212 	divider->div.hw.init = &init;
1213 	divider->div.table = NULL;
1214 
1215 	divider->cprman = cprman;
1216 	divider->data = data;
1217 
1218 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1219 	if (ret)
1220 		return ERR_PTR(ret);
1221 
1222 	/*
1223 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1224 	 * is what our consumers are actually using.
1225 	 */
1226 	if (data->fixed_divider != 1) {
1227 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1228 						    divider_name,
1229 						    CLK_SET_RATE_PARENT,
1230 						    1,
1231 						    data->fixed_divider);
1232 	}
1233 
1234 	return &divider->div.hw;
1235 }
1236 
1237 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1238 					  const struct bcm2835_clock_data *data)
1239 {
1240 	struct bcm2835_clock *clock;
1241 	struct clk_init_data init;
1242 	const char *parents[1 << CM_SRC_BITS];
1243 	size_t i;
1244 	int ret;
1245 
1246 	/*
1247 	 * Replace our "xosc" references with the oscillator's
1248 	 * actual name.
1249 	 */
1250 	for (i = 0; i < data->num_mux_parents; i++) {
1251 		if (strcmp(data->parents[i], "xosc") == 0)
1252 			parents[i] = cprman->osc_name;
1253 		else
1254 			parents[i] = data->parents[i];
1255 	}
1256 
1257 	memset(&init, 0, sizeof(init));
1258 	init.parent_names = parents;
1259 	init.num_parents = data->num_mux_parents;
1260 	init.name = data->name;
1261 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1262 
1263 	if (data->is_vpu_clock) {
1264 		init.ops = &bcm2835_vpu_clock_clk_ops;
1265 	} else {
1266 		init.ops = &bcm2835_clock_clk_ops;
1267 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1268 
1269 		/* If the clock wasn't actually enabled at boot, it's not
1270 		 * critical.
1271 		 */
1272 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1273 			init.flags &= ~CLK_IS_CRITICAL;
1274 	}
1275 
1276 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1277 	if (!clock)
1278 		return NULL;
1279 
1280 	clock->cprman = cprman;
1281 	clock->data = data;
1282 	clock->hw.init = &init;
1283 
1284 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1285 	if (ret)
1286 		return ERR_PTR(ret);
1287 	return &clock->hw;
1288 }
1289 
1290 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1291 					 const struct bcm2835_gate_data *data)
1292 {
1293 	return clk_register_gate(cprman->dev, data->name, data->parent,
1294 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1295 				 cprman->regs + data->ctl_reg,
1296 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1297 }
1298 
1299 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1300 					       const void *data);
1301 struct bcm2835_clk_desc {
1302 	bcm2835_clk_register clk_register;
1303 	const void *data;
1304 };
1305 
1306 /* assignment helper macros for different clock types */
1307 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1308 			    .data = __VA_ARGS__ }
1309 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1310 					  &(struct bcm2835_pll_data)	\
1311 					  {__VA_ARGS__})
1312 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1313 					  &(struct bcm2835_pll_divider_data) \
1314 					  {__VA_ARGS__})
1315 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1316 					  &(struct bcm2835_clock_data)	\
1317 					  {__VA_ARGS__})
1318 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1319 					  &(struct bcm2835_gate_data)	\
1320 					  {__VA_ARGS__})
1321 
1322 /* parent mux arrays plus helper macros */
1323 
1324 /* main oscillator parent mux */
1325 static const char *const bcm2835_clock_osc_parents[] = {
1326 	"gnd",
1327 	"xosc",
1328 	"testdebug0",
1329 	"testdebug1"
1330 };
1331 
1332 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1333 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1334 	.parents = bcm2835_clock_osc_parents,				\
1335 	__VA_ARGS__)
1336 
1337 /* main peripherial parent mux */
1338 static const char *const bcm2835_clock_per_parents[] = {
1339 	"gnd",
1340 	"xosc",
1341 	"testdebug0",
1342 	"testdebug1",
1343 	"plla_per",
1344 	"pllc_per",
1345 	"plld_per",
1346 	"pllh_aux",
1347 };
1348 
1349 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1350 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1351 	.parents = bcm2835_clock_per_parents,				\
1352 	__VA_ARGS__)
1353 
1354 /* main vpu parent mux */
1355 static const char *const bcm2835_clock_vpu_parents[] = {
1356 	"gnd",
1357 	"xosc",
1358 	"testdebug0",
1359 	"testdebug1",
1360 	"plla_core",
1361 	"pllc_core0",
1362 	"plld_core",
1363 	"pllh_aux",
1364 	"pllc_core1",
1365 	"pllc_core2",
1366 };
1367 
1368 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1369 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1370 	.parents = bcm2835_clock_vpu_parents,				\
1371 	__VA_ARGS__)
1372 
1373 /*
1374  * the real definition of all the pll, pll_dividers and clocks
1375  * these make use of the above REGISTER_* macros
1376  */
1377 static const struct bcm2835_clk_desc clk_desc_array[] = {
1378 	/* the PLL + PLL dividers */
1379 
1380 	/*
1381 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1382 	 * (Compact Camera Port 2) transmitter clock.
1383 	 *
1384 	 * It is in the PX LDO power domain, which is on when the
1385 	 * AUDIO domain is on.
1386 	 */
1387 	[BCM2835_PLLA]		= REGISTER_PLL(
1388 		.name = "plla",
1389 		.cm_ctrl_reg = CM_PLLA,
1390 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1391 		.frac_reg = A2W_PLLA_FRAC,
1392 		.ana_reg_base = A2W_PLLA_ANA0,
1393 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1394 		.lock_mask = CM_LOCK_FLOCKA,
1395 
1396 		.ana = &bcm2835_ana_default,
1397 
1398 		.min_rate = 600000000u,
1399 		.max_rate = 2400000000u,
1400 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1401 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1402 		.name = "plla_core",
1403 		.source_pll = "plla",
1404 		.cm_reg = CM_PLLA,
1405 		.a2w_reg = A2W_PLLA_CORE,
1406 		.load_mask = CM_PLLA_LOADCORE,
1407 		.hold_mask = CM_PLLA_HOLDCORE,
1408 		.fixed_divider = 1),
1409 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1410 		.name = "plla_per",
1411 		.source_pll = "plla",
1412 		.cm_reg = CM_PLLA,
1413 		.a2w_reg = A2W_PLLA_PER,
1414 		.load_mask = CM_PLLA_LOADPER,
1415 		.hold_mask = CM_PLLA_HOLDPER,
1416 		.fixed_divider = 1),
1417 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1418 		.name = "plla_dsi0",
1419 		.source_pll = "plla",
1420 		.cm_reg = CM_PLLA,
1421 		.a2w_reg = A2W_PLLA_DSI0,
1422 		.load_mask = CM_PLLA_LOADDSI0,
1423 		.hold_mask = CM_PLLA_HOLDDSI0,
1424 		.fixed_divider = 1),
1425 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1426 		.name = "plla_ccp2",
1427 		.source_pll = "plla",
1428 		.cm_reg = CM_PLLA,
1429 		.a2w_reg = A2W_PLLA_CCP2,
1430 		.load_mask = CM_PLLA_LOADCCP2,
1431 		.hold_mask = CM_PLLA_HOLDCCP2,
1432 		.fixed_divider = 1),
1433 
1434 	/* PLLB is used for the ARM's clock. */
1435 	[BCM2835_PLLB]		= REGISTER_PLL(
1436 		.name = "pllb",
1437 		.cm_ctrl_reg = CM_PLLB,
1438 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1439 		.frac_reg = A2W_PLLB_FRAC,
1440 		.ana_reg_base = A2W_PLLB_ANA0,
1441 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1442 		.lock_mask = CM_LOCK_FLOCKB,
1443 
1444 		.ana = &bcm2835_ana_default,
1445 
1446 		.min_rate = 600000000u,
1447 		.max_rate = 3000000000u,
1448 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1449 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1450 		.name = "pllb_arm",
1451 		.source_pll = "pllb",
1452 		.cm_reg = CM_PLLB,
1453 		.a2w_reg = A2W_PLLB_ARM,
1454 		.load_mask = CM_PLLB_LOADARM,
1455 		.hold_mask = CM_PLLB_HOLDARM,
1456 		.fixed_divider = 1),
1457 
1458 	/*
1459 	 * PLLC is the core PLL, used to drive the core VPU clock.
1460 	 *
1461 	 * It is in the PX LDO power domain, which is on when the
1462 	 * AUDIO domain is on.
1463 	 */
1464 	[BCM2835_PLLC]		= REGISTER_PLL(
1465 		.name = "pllc",
1466 		.cm_ctrl_reg = CM_PLLC,
1467 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1468 		.frac_reg = A2W_PLLC_FRAC,
1469 		.ana_reg_base = A2W_PLLC_ANA0,
1470 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1471 		.lock_mask = CM_LOCK_FLOCKC,
1472 
1473 		.ana = &bcm2835_ana_default,
1474 
1475 		.min_rate = 600000000u,
1476 		.max_rate = 3000000000u,
1477 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1478 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1479 		.name = "pllc_core0",
1480 		.source_pll = "pllc",
1481 		.cm_reg = CM_PLLC,
1482 		.a2w_reg = A2W_PLLC_CORE0,
1483 		.load_mask = CM_PLLC_LOADCORE0,
1484 		.hold_mask = CM_PLLC_HOLDCORE0,
1485 		.fixed_divider = 1),
1486 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1487 		.name = "pllc_core1",
1488 		.source_pll = "pllc",
1489 		.cm_reg = CM_PLLC,
1490 		.a2w_reg = A2W_PLLC_CORE1,
1491 		.load_mask = CM_PLLC_LOADCORE1,
1492 		.hold_mask = CM_PLLC_HOLDCORE1,
1493 		.fixed_divider = 1),
1494 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1495 		.name = "pllc_core2",
1496 		.source_pll = "pllc",
1497 		.cm_reg = CM_PLLC,
1498 		.a2w_reg = A2W_PLLC_CORE2,
1499 		.load_mask = CM_PLLC_LOADCORE2,
1500 		.hold_mask = CM_PLLC_HOLDCORE2,
1501 		.fixed_divider = 1),
1502 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1503 		.name = "pllc_per",
1504 		.source_pll = "pllc",
1505 		.cm_reg = CM_PLLC,
1506 		.a2w_reg = A2W_PLLC_PER,
1507 		.load_mask = CM_PLLC_LOADPER,
1508 		.hold_mask = CM_PLLC_HOLDPER,
1509 		.fixed_divider = 1),
1510 
1511 	/*
1512 	 * PLLD is the display PLL, used to drive DSI display panels.
1513 	 *
1514 	 * It is in the PX LDO power domain, which is on when the
1515 	 * AUDIO domain is on.
1516 	 */
1517 	[BCM2835_PLLD]		= REGISTER_PLL(
1518 		.name = "plld",
1519 		.cm_ctrl_reg = CM_PLLD,
1520 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1521 		.frac_reg = A2W_PLLD_FRAC,
1522 		.ana_reg_base = A2W_PLLD_ANA0,
1523 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1524 		.lock_mask = CM_LOCK_FLOCKD,
1525 
1526 		.ana = &bcm2835_ana_default,
1527 
1528 		.min_rate = 600000000u,
1529 		.max_rate = 2400000000u,
1530 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1531 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1532 		.name = "plld_core",
1533 		.source_pll = "plld",
1534 		.cm_reg = CM_PLLD,
1535 		.a2w_reg = A2W_PLLD_CORE,
1536 		.load_mask = CM_PLLD_LOADCORE,
1537 		.hold_mask = CM_PLLD_HOLDCORE,
1538 		.fixed_divider = 1),
1539 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1540 		.name = "plld_per",
1541 		.source_pll = "plld",
1542 		.cm_reg = CM_PLLD,
1543 		.a2w_reg = A2W_PLLD_PER,
1544 		.load_mask = CM_PLLD_LOADPER,
1545 		.hold_mask = CM_PLLD_HOLDPER,
1546 		.fixed_divider = 1),
1547 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1548 		.name = "plld_dsi0",
1549 		.source_pll = "plld",
1550 		.cm_reg = CM_PLLD,
1551 		.a2w_reg = A2W_PLLD_DSI0,
1552 		.load_mask = CM_PLLD_LOADDSI0,
1553 		.hold_mask = CM_PLLD_HOLDDSI0,
1554 		.fixed_divider = 1),
1555 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1556 		.name = "plld_dsi1",
1557 		.source_pll = "plld",
1558 		.cm_reg = CM_PLLD,
1559 		.a2w_reg = A2W_PLLD_DSI1,
1560 		.load_mask = CM_PLLD_LOADDSI1,
1561 		.hold_mask = CM_PLLD_HOLDDSI1,
1562 		.fixed_divider = 1),
1563 
1564 	/*
1565 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1566 	 * TV encoder.
1567 	 *
1568 	 * It is in the HDMI power domain.
1569 	 */
1570 	[BCM2835_PLLH]		= REGISTER_PLL(
1571 		"pllh",
1572 		.cm_ctrl_reg = CM_PLLH,
1573 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1574 		.frac_reg = A2W_PLLH_FRAC,
1575 		.ana_reg_base = A2W_PLLH_ANA0,
1576 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1577 		.lock_mask = CM_LOCK_FLOCKH,
1578 
1579 		.ana = &bcm2835_ana_pllh,
1580 
1581 		.min_rate = 600000000u,
1582 		.max_rate = 3000000000u,
1583 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1584 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1585 		.name = "pllh_rcal",
1586 		.source_pll = "pllh",
1587 		.cm_reg = CM_PLLH,
1588 		.a2w_reg = A2W_PLLH_RCAL,
1589 		.load_mask = CM_PLLH_LOADRCAL,
1590 		.hold_mask = 0,
1591 		.fixed_divider = 10),
1592 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1593 		.name = "pllh_aux",
1594 		.source_pll = "pllh",
1595 		.cm_reg = CM_PLLH,
1596 		.a2w_reg = A2W_PLLH_AUX,
1597 		.load_mask = CM_PLLH_LOADAUX,
1598 		.hold_mask = 0,
1599 		.fixed_divider = 10),
1600 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1601 		.name = "pllh_pix",
1602 		.source_pll = "pllh",
1603 		.cm_reg = CM_PLLH,
1604 		.a2w_reg = A2W_PLLH_PIX,
1605 		.load_mask = CM_PLLH_LOADPIX,
1606 		.hold_mask = 0,
1607 		.fixed_divider = 10),
1608 
1609 	/* the clocks */
1610 
1611 	/* clocks with oscillator parent mux */
1612 
1613 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1614 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1615 		.name = "otp",
1616 		.ctl_reg = CM_OTPCTL,
1617 		.div_reg = CM_OTPDIV,
1618 		.int_bits = 4,
1619 		.frac_bits = 0),
1620 	/*
1621 	 * Used for a 1Mhz clock for the system clocksource, and also used
1622 	 * bythe watchdog timer and the camera pulse generator.
1623 	 */
1624 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1625 		.name = "timer",
1626 		.ctl_reg = CM_TIMERCTL,
1627 		.div_reg = CM_TIMERDIV,
1628 		.int_bits = 6,
1629 		.frac_bits = 12),
1630 	/*
1631 	 * Clock for the temperature sensor.
1632 	 * Generally run at 2Mhz, max 5Mhz.
1633 	 */
1634 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1635 		.name = "tsens",
1636 		.ctl_reg = CM_TSENSCTL,
1637 		.div_reg = CM_TSENSDIV,
1638 		.int_bits = 5,
1639 		.frac_bits = 0),
1640 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1641 		.name = "tec",
1642 		.ctl_reg = CM_TECCTL,
1643 		.div_reg = CM_TECDIV,
1644 		.int_bits = 6,
1645 		.frac_bits = 0),
1646 
1647 	/* clocks with vpu parent mux */
1648 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1649 		.name = "h264",
1650 		.ctl_reg = CM_H264CTL,
1651 		.div_reg = CM_H264DIV,
1652 		.int_bits = 4,
1653 		.frac_bits = 8),
1654 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1655 		.name = "isp",
1656 		.ctl_reg = CM_ISPCTL,
1657 		.div_reg = CM_ISPDIV,
1658 		.int_bits = 4,
1659 		.frac_bits = 8),
1660 
1661 	/*
1662 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1663 	 * in the SDRAM controller can't be used.
1664 	 */
1665 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1666 		.name = "sdram",
1667 		.ctl_reg = CM_SDCCTL,
1668 		.div_reg = CM_SDCDIV,
1669 		.int_bits = 6,
1670 		.frac_bits = 0),
1671 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1672 		.name = "v3d",
1673 		.ctl_reg = CM_V3DCTL,
1674 		.div_reg = CM_V3DDIV,
1675 		.int_bits = 4,
1676 		.frac_bits = 8),
1677 	/*
1678 	 * VPU clock.  This doesn't have an enable bit, since it drives
1679 	 * the bus for everything else, and is special so it doesn't need
1680 	 * to be gated for rate changes.  It is also known as "clk_audio"
1681 	 * in various hardware documentation.
1682 	 */
1683 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1684 		.name = "vpu",
1685 		.ctl_reg = CM_VPUCTL,
1686 		.div_reg = CM_VPUDIV,
1687 		.int_bits = 12,
1688 		.frac_bits = 8,
1689 		.flags = CLK_IS_CRITICAL,
1690 		.is_vpu_clock = true),
1691 
1692 	/* clocks with per parent mux */
1693 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1694 		.name = "aveo",
1695 		.ctl_reg = CM_AVEOCTL,
1696 		.div_reg = CM_AVEODIV,
1697 		.int_bits = 4,
1698 		.frac_bits = 0),
1699 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1700 		.name = "cam0",
1701 		.ctl_reg = CM_CAM0CTL,
1702 		.div_reg = CM_CAM0DIV,
1703 		.int_bits = 4,
1704 		.frac_bits = 8),
1705 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1706 		.name = "cam1",
1707 		.ctl_reg = CM_CAM1CTL,
1708 		.div_reg = CM_CAM1DIV,
1709 		.int_bits = 4,
1710 		.frac_bits = 8),
1711 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1712 		.name = "dft",
1713 		.ctl_reg = CM_DFTCTL,
1714 		.div_reg = CM_DFTDIV,
1715 		.int_bits = 5,
1716 		.frac_bits = 0),
1717 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1718 		.name = "dpi",
1719 		.ctl_reg = CM_DPICTL,
1720 		.div_reg = CM_DPIDIV,
1721 		.int_bits = 4,
1722 		.frac_bits = 8),
1723 
1724 	/* Arasan EMMC clock */
1725 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
1726 		.name = "emmc",
1727 		.ctl_reg = CM_EMMCCTL,
1728 		.div_reg = CM_EMMCDIV,
1729 		.int_bits = 4,
1730 		.frac_bits = 8),
1731 
1732 	/* General purpose (GPIO) clocks */
1733 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
1734 		.name = "gp0",
1735 		.ctl_reg = CM_GP0CTL,
1736 		.div_reg = CM_GP0DIV,
1737 		.int_bits = 12,
1738 		.frac_bits = 12,
1739 		.is_mash_clock = true),
1740 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
1741 		.name = "gp1",
1742 		.ctl_reg = CM_GP1CTL,
1743 		.div_reg = CM_GP1DIV,
1744 		.int_bits = 12,
1745 		.frac_bits = 12,
1746 		.flags = CLK_IS_CRITICAL,
1747 		.is_mash_clock = true),
1748 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
1749 		.name = "gp2",
1750 		.ctl_reg = CM_GP2CTL,
1751 		.div_reg = CM_GP2DIV,
1752 		.int_bits = 12,
1753 		.frac_bits = 12,
1754 		.flags = CLK_IS_CRITICAL),
1755 
1756 	/* HDMI state machine */
1757 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
1758 		.name = "hsm",
1759 		.ctl_reg = CM_HSMCTL,
1760 		.div_reg = CM_HSMDIV,
1761 		.int_bits = 4,
1762 		.frac_bits = 8),
1763 	[BCM2835_CLOCK_PCM]	= REGISTER_PER_CLK(
1764 		.name = "pcm",
1765 		.ctl_reg = CM_PCMCTL,
1766 		.div_reg = CM_PCMDIV,
1767 		.int_bits = 12,
1768 		.frac_bits = 12,
1769 		.is_mash_clock = true),
1770 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
1771 		.name = "pwm",
1772 		.ctl_reg = CM_PWMCTL,
1773 		.div_reg = CM_PWMDIV,
1774 		.int_bits = 12,
1775 		.frac_bits = 12,
1776 		.is_mash_clock = true),
1777 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
1778 		.name = "slim",
1779 		.ctl_reg = CM_SLIMCTL,
1780 		.div_reg = CM_SLIMDIV,
1781 		.int_bits = 12,
1782 		.frac_bits = 12,
1783 		.is_mash_clock = true),
1784 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
1785 		.name = "smi",
1786 		.ctl_reg = CM_SMICTL,
1787 		.div_reg = CM_SMIDIV,
1788 		.int_bits = 4,
1789 		.frac_bits = 8),
1790 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
1791 		.name = "uart",
1792 		.ctl_reg = CM_UARTCTL,
1793 		.div_reg = CM_UARTDIV,
1794 		.int_bits = 10,
1795 		.frac_bits = 12),
1796 
1797 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
1798 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
1799 		.name = "vec",
1800 		.ctl_reg = CM_VECCTL,
1801 		.div_reg = CM_VECDIV,
1802 		.int_bits = 4,
1803 		.frac_bits = 0),
1804 
1805 	/* dsi clocks */
1806 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
1807 		.name = "dsi0e",
1808 		.ctl_reg = CM_DSI0ECTL,
1809 		.div_reg = CM_DSI0EDIV,
1810 		.int_bits = 4,
1811 		.frac_bits = 8),
1812 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
1813 		.name = "dsi1e",
1814 		.ctl_reg = CM_DSI1ECTL,
1815 		.div_reg = CM_DSI1EDIV,
1816 		.int_bits = 4,
1817 		.frac_bits = 8),
1818 
1819 	/* the gates */
1820 
1821 	/*
1822 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1823 	 * you have the debug bit set in the power manager, which we
1824 	 * don't bother exposing) are individual gates off of the
1825 	 * non-stop vpu clock.
1826 	 */
1827 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
1828 		.name = "peri_image",
1829 		.parent = "vpu",
1830 		.ctl_reg = CM_PERIICTL),
1831 };
1832 
1833 /*
1834  * Permanently take a reference on the parent of the SDRAM clock.
1835  *
1836  * While the SDRAM is being driven by its dedicated PLL most of the
1837  * time, there is a little loop running in the firmware that
1838  * periodically switches the SDRAM to using our CM clock to do PVT
1839  * recalibration, with the assumption that the previously configured
1840  * SDRAM parent is still enabled and running.
1841  */
1842 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
1843 {
1844 	struct clk *parent = clk_get_parent(sdc);
1845 
1846 	if (IS_ERR(parent))
1847 		return PTR_ERR(parent);
1848 
1849 	return clk_prepare_enable(parent);
1850 }
1851 
1852 static int bcm2835_clk_probe(struct platform_device *pdev)
1853 {
1854 	struct device *dev = &pdev->dev;
1855 	struct clk_hw **hws;
1856 	struct bcm2835_cprman *cprman;
1857 	struct resource *res;
1858 	const struct bcm2835_clk_desc *desc;
1859 	const size_t asize = ARRAY_SIZE(clk_desc_array);
1860 	size_t i;
1861 	int ret;
1862 
1863 	cprman = devm_kzalloc(dev, sizeof(*cprman) +
1864 			      sizeof(*cprman->onecell.hws) * asize,
1865 			      GFP_KERNEL);
1866 	if (!cprman)
1867 		return -ENOMEM;
1868 
1869 	spin_lock_init(&cprman->regs_lock);
1870 	cprman->dev = dev;
1871 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1872 	cprman->regs = devm_ioremap_resource(dev, res);
1873 	if (IS_ERR(cprman->regs))
1874 		return PTR_ERR(cprman->regs);
1875 
1876 	cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1877 	if (!cprman->osc_name)
1878 		return -ENODEV;
1879 
1880 	platform_set_drvdata(pdev, cprman);
1881 
1882 	cprman->onecell.num = asize;
1883 	hws = cprman->onecell.hws;
1884 
1885 	for (i = 0; i < asize; i++) {
1886 		desc = &clk_desc_array[i];
1887 		if (desc->clk_register && desc->data)
1888 			hws[i] = desc->clk_register(cprman, desc->data);
1889 	}
1890 
1891 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
1892 	if (ret)
1893 		return ret;
1894 
1895 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
1896 				      &cprman->onecell);
1897 }
1898 
1899 static const struct of_device_id bcm2835_clk_of_match[] = {
1900 	{ .compatible = "brcm,bcm2835-cprman", },
1901 	{}
1902 };
1903 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1904 
1905 static struct platform_driver bcm2835_clk_driver = {
1906 	.driver = {
1907 		.name = "bcm2835-clk",
1908 		.of_match_table = bcm2835_clk_of_match,
1909 	},
1910 	.probe          = bcm2835_clk_probe,
1911 };
1912 
1913 builtin_platform_driver(bcm2835_clk_driver);
1914 
1915 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1916 MODULE_DESCRIPTION("BCM2835 clock driver");
1917 MODULE_LICENSE("GPL v2");
1918