1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2010,2015 Broadcom 4 * Copyright (C) 2012 Stephen Warren 5 */ 6 7 /** 8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) 9 * 10 * The clock tree on the 2835 has several levels. There's a root 11 * oscillator running at 19.2Mhz. After the oscillator there are 5 12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", 13 * and "HDMI displays". Those 5 PLLs each can divide their output to 14 * produce up to 4 channels. Finally, there is the level of clocks to 15 * be consumed by other hardware components (like "H264" or "HDMI 16 * state machine"), which divide off of some subset of the PLL 17 * channels. 18 * 19 * All of the clocks in the tree are exposed in the DT, because the DT 20 * may want to make assignments of the final layer of clocks to the 21 * PLL channels, and some components of the hardware will actually 22 * skip layers of the tree (for example, the pixel clock comes 23 * directly from the PLLH PIX channel without using a CM_*CTL clock 24 * generator). 25 */ 26 27 #include <linux/clk-provider.h> 28 #include <linux/clkdev.h> 29 #include <linux/clk.h> 30 #include <linux/debugfs.h> 31 #include <linux/delay.h> 32 #include <linux/io.h> 33 #include <linux/module.h> 34 #include <linux/of_device.h> 35 #include <linux/platform_device.h> 36 #include <linux/slab.h> 37 #include <dt-bindings/clock/bcm2835.h> 38 39 #define CM_PASSWORD 0x5a000000 40 41 #define CM_GNRICCTL 0x000 42 #define CM_GNRICDIV 0x004 43 # define CM_DIV_FRAC_BITS 12 44 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0) 45 46 #define CM_VPUCTL 0x008 47 #define CM_VPUDIV 0x00c 48 #define CM_SYSCTL 0x010 49 #define CM_SYSDIV 0x014 50 #define CM_PERIACTL 0x018 51 #define CM_PERIADIV 0x01c 52 #define CM_PERIICTL 0x020 53 #define CM_PERIIDIV 0x024 54 #define CM_H264CTL 0x028 55 #define CM_H264DIV 0x02c 56 #define CM_ISPCTL 0x030 57 #define CM_ISPDIV 0x034 58 #define CM_V3DCTL 0x038 59 #define CM_V3DDIV 0x03c 60 #define CM_CAM0CTL 0x040 61 #define CM_CAM0DIV 0x044 62 #define CM_CAM1CTL 0x048 63 #define CM_CAM1DIV 0x04c 64 #define CM_CCP2CTL 0x050 65 #define CM_CCP2DIV 0x054 66 #define CM_DSI0ECTL 0x058 67 #define CM_DSI0EDIV 0x05c 68 #define CM_DSI0PCTL 0x060 69 #define CM_DSI0PDIV 0x064 70 #define CM_DPICTL 0x068 71 #define CM_DPIDIV 0x06c 72 #define CM_GP0CTL 0x070 73 #define CM_GP0DIV 0x074 74 #define CM_GP1CTL 0x078 75 #define CM_GP1DIV 0x07c 76 #define CM_GP2CTL 0x080 77 #define CM_GP2DIV 0x084 78 #define CM_HSMCTL 0x088 79 #define CM_HSMDIV 0x08c 80 #define CM_OTPCTL 0x090 81 #define CM_OTPDIV 0x094 82 #define CM_PCMCTL 0x098 83 #define CM_PCMDIV 0x09c 84 #define CM_PWMCTL 0x0a0 85 #define CM_PWMDIV 0x0a4 86 #define CM_SLIMCTL 0x0a8 87 #define CM_SLIMDIV 0x0ac 88 #define CM_SMICTL 0x0b0 89 #define CM_SMIDIV 0x0b4 90 /* no definition for 0x0b8 and 0x0bc */ 91 #define CM_TCNTCTL 0x0c0 92 # define CM_TCNT_SRC1_SHIFT 12 93 #define CM_TCNTCNT 0x0c4 94 #define CM_TECCTL 0x0c8 95 #define CM_TECDIV 0x0cc 96 #define CM_TD0CTL 0x0d0 97 #define CM_TD0DIV 0x0d4 98 #define CM_TD1CTL 0x0d8 99 #define CM_TD1DIV 0x0dc 100 #define CM_TSENSCTL 0x0e0 101 #define CM_TSENSDIV 0x0e4 102 #define CM_TIMERCTL 0x0e8 103 #define CM_TIMERDIV 0x0ec 104 #define CM_UARTCTL 0x0f0 105 #define CM_UARTDIV 0x0f4 106 #define CM_VECCTL 0x0f8 107 #define CM_VECDIV 0x0fc 108 #define CM_PULSECTL 0x190 109 #define CM_PULSEDIV 0x194 110 #define CM_SDCCTL 0x1a8 111 #define CM_SDCDIV 0x1ac 112 #define CM_ARMCTL 0x1b0 113 #define CM_AVEOCTL 0x1b8 114 #define CM_AVEODIV 0x1bc 115 #define CM_EMMCCTL 0x1c0 116 #define CM_EMMCDIV 0x1c4 117 #define CM_EMMC2CTL 0x1d0 118 #define CM_EMMC2DIV 0x1d4 119 120 /* General bits for the CM_*CTL regs */ 121 # define CM_ENABLE BIT(4) 122 # define CM_KILL BIT(5) 123 # define CM_GATE_BIT 6 124 # define CM_GATE BIT(CM_GATE_BIT) 125 # define CM_BUSY BIT(7) 126 # define CM_BUSYD BIT(8) 127 # define CM_FRAC BIT(9) 128 # define CM_SRC_SHIFT 0 129 # define CM_SRC_BITS 4 130 # define CM_SRC_MASK 0xf 131 # define CM_SRC_GND 0 132 # define CM_SRC_OSC 1 133 # define CM_SRC_TESTDEBUG0 2 134 # define CM_SRC_TESTDEBUG1 3 135 # define CM_SRC_PLLA_CORE 4 136 # define CM_SRC_PLLA_PER 4 137 # define CM_SRC_PLLC_CORE0 5 138 # define CM_SRC_PLLC_PER 5 139 # define CM_SRC_PLLC_CORE1 8 140 # define CM_SRC_PLLD_CORE 6 141 # define CM_SRC_PLLD_PER 6 142 # define CM_SRC_PLLH_AUX 7 143 # define CM_SRC_PLLC_CORE1 8 144 # define CM_SRC_PLLC_CORE2 9 145 146 #define CM_OSCCOUNT 0x100 147 148 #define CM_PLLA 0x104 149 # define CM_PLL_ANARST BIT(8) 150 # define CM_PLLA_HOLDPER BIT(7) 151 # define CM_PLLA_LOADPER BIT(6) 152 # define CM_PLLA_HOLDCORE BIT(5) 153 # define CM_PLLA_LOADCORE BIT(4) 154 # define CM_PLLA_HOLDCCP2 BIT(3) 155 # define CM_PLLA_LOADCCP2 BIT(2) 156 # define CM_PLLA_HOLDDSI0 BIT(1) 157 # define CM_PLLA_LOADDSI0 BIT(0) 158 159 #define CM_PLLC 0x108 160 # define CM_PLLC_HOLDPER BIT(7) 161 # define CM_PLLC_LOADPER BIT(6) 162 # define CM_PLLC_HOLDCORE2 BIT(5) 163 # define CM_PLLC_LOADCORE2 BIT(4) 164 # define CM_PLLC_HOLDCORE1 BIT(3) 165 # define CM_PLLC_LOADCORE1 BIT(2) 166 # define CM_PLLC_HOLDCORE0 BIT(1) 167 # define CM_PLLC_LOADCORE0 BIT(0) 168 169 #define CM_PLLD 0x10c 170 # define CM_PLLD_HOLDPER BIT(7) 171 # define CM_PLLD_LOADPER BIT(6) 172 # define CM_PLLD_HOLDCORE BIT(5) 173 # define CM_PLLD_LOADCORE BIT(4) 174 # define CM_PLLD_HOLDDSI1 BIT(3) 175 # define CM_PLLD_LOADDSI1 BIT(2) 176 # define CM_PLLD_HOLDDSI0 BIT(1) 177 # define CM_PLLD_LOADDSI0 BIT(0) 178 179 #define CM_PLLH 0x110 180 # define CM_PLLH_LOADRCAL BIT(2) 181 # define CM_PLLH_LOADAUX BIT(1) 182 # define CM_PLLH_LOADPIX BIT(0) 183 184 #define CM_LOCK 0x114 185 # define CM_LOCK_FLOCKH BIT(12) 186 # define CM_LOCK_FLOCKD BIT(11) 187 # define CM_LOCK_FLOCKC BIT(10) 188 # define CM_LOCK_FLOCKB BIT(9) 189 # define CM_LOCK_FLOCKA BIT(8) 190 191 #define CM_EVENT 0x118 192 #define CM_DSI1ECTL 0x158 193 #define CM_DSI1EDIV 0x15c 194 #define CM_DSI1PCTL 0x160 195 #define CM_DSI1PDIV 0x164 196 #define CM_DFTCTL 0x168 197 #define CM_DFTDIV 0x16c 198 199 #define CM_PLLB 0x170 200 # define CM_PLLB_HOLDARM BIT(1) 201 # define CM_PLLB_LOADARM BIT(0) 202 203 #define A2W_PLLA_CTRL 0x1100 204 #define A2W_PLLC_CTRL 0x1120 205 #define A2W_PLLD_CTRL 0x1140 206 #define A2W_PLLH_CTRL 0x1160 207 #define A2W_PLLB_CTRL 0x11e0 208 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) 209 # define A2W_PLL_CTRL_PWRDN BIT(16) 210 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 211 # define A2W_PLL_CTRL_PDIV_SHIFT 12 212 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff 213 # define A2W_PLL_CTRL_NDIV_SHIFT 0 214 215 #define A2W_PLLA_ANA0 0x1010 216 #define A2W_PLLC_ANA0 0x1030 217 #define A2W_PLLD_ANA0 0x1050 218 #define A2W_PLLH_ANA0 0x1070 219 #define A2W_PLLB_ANA0 0x10f0 220 221 #define A2W_PLL_KA_SHIFT 7 222 #define A2W_PLL_KA_MASK GENMASK(9, 7) 223 #define A2W_PLL_KI_SHIFT 19 224 #define A2W_PLL_KI_MASK GENMASK(21, 19) 225 #define A2W_PLL_KP_SHIFT 15 226 #define A2W_PLL_KP_MASK GENMASK(18, 15) 227 228 #define A2W_PLLH_KA_SHIFT 19 229 #define A2W_PLLH_KA_MASK GENMASK(21, 19) 230 #define A2W_PLLH_KI_LOW_SHIFT 22 231 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) 232 #define A2W_PLLH_KI_HIGH_SHIFT 0 233 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) 234 #define A2W_PLLH_KP_SHIFT 1 235 #define A2W_PLLH_KP_MASK GENMASK(4, 1) 236 237 #define A2W_XOSC_CTRL 0x1190 238 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) 239 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) 240 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) 241 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) 242 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) 243 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) 244 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) 245 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) 246 247 #define A2W_PLLA_FRAC 0x1200 248 #define A2W_PLLC_FRAC 0x1220 249 #define A2W_PLLD_FRAC 0x1240 250 #define A2W_PLLH_FRAC 0x1260 251 #define A2W_PLLB_FRAC 0x12e0 252 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) 253 # define A2W_PLL_FRAC_BITS 20 254 255 #define A2W_PLL_CHANNEL_DISABLE BIT(8) 256 #define A2W_PLL_DIV_BITS 8 257 #define A2W_PLL_DIV_SHIFT 0 258 259 #define A2W_PLLA_DSI0 0x1300 260 #define A2W_PLLA_CORE 0x1400 261 #define A2W_PLLA_PER 0x1500 262 #define A2W_PLLA_CCP2 0x1600 263 264 #define A2W_PLLC_CORE2 0x1320 265 #define A2W_PLLC_CORE1 0x1420 266 #define A2W_PLLC_PER 0x1520 267 #define A2W_PLLC_CORE0 0x1620 268 269 #define A2W_PLLD_DSI0 0x1340 270 #define A2W_PLLD_CORE 0x1440 271 #define A2W_PLLD_PER 0x1540 272 #define A2W_PLLD_DSI1 0x1640 273 274 #define A2W_PLLH_AUX 0x1360 275 #define A2W_PLLH_RCAL 0x1460 276 #define A2W_PLLH_PIX 0x1560 277 #define A2W_PLLH_STS 0x1660 278 279 #define A2W_PLLH_CTRLR 0x1960 280 #define A2W_PLLH_FRACR 0x1a60 281 #define A2W_PLLH_AUXR 0x1b60 282 #define A2W_PLLH_RCALR 0x1c60 283 #define A2W_PLLH_PIXR 0x1d60 284 #define A2W_PLLH_STSR 0x1e60 285 286 #define A2W_PLLB_ARM 0x13e0 287 #define A2W_PLLB_SP0 0x14e0 288 #define A2W_PLLB_SP1 0x15e0 289 #define A2W_PLLB_SP2 0x16e0 290 291 #define LOCK_TIMEOUT_NS 100000000 292 #define BCM2835_MAX_FB_RATE 1750000000u 293 294 #define SOC_BCM2835 BIT(0) 295 #define SOC_BCM2711 BIT(1) 296 #define SOC_ALL (SOC_BCM2835 | SOC_BCM2711) 297 298 /* 299 * Names of clocks used within the driver that need to be replaced 300 * with an external parent's name. This array is in the order that 301 * the clocks node in the DT references external clocks. 302 */ 303 static const char *const cprman_parent_names[] = { 304 "xosc", 305 "dsi0_byte", 306 "dsi0_ddr2", 307 "dsi0_ddr", 308 "dsi1_byte", 309 "dsi1_ddr2", 310 "dsi1_ddr", 311 }; 312 313 struct bcm2835_cprman { 314 struct device *dev; 315 void __iomem *regs; 316 spinlock_t regs_lock; /* spinlock for all clocks */ 317 unsigned int soc; 318 319 /* 320 * Real names of cprman clock parents looked up through 321 * of_clk_get_parent_name(), which will be used in the 322 * parent_names[] arrays for clock registration. 323 */ 324 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)]; 325 326 /* Must be last */ 327 struct clk_hw_onecell_data onecell; 328 }; 329 330 struct cprman_plat_data { 331 unsigned int soc; 332 }; 333 334 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) 335 { 336 writel(CM_PASSWORD | val, cprman->regs + reg); 337 } 338 339 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) 340 { 341 return readl(cprman->regs + reg); 342 } 343 344 /* Does a cycle of measuring a clock through the TCNT clock, which may 345 * source from many other clocks in the system. 346 */ 347 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman, 348 u32 tcnt_mux) 349 { 350 u32 osccount = 19200; /* 1ms */ 351 u32 count; 352 ktime_t timeout; 353 354 spin_lock(&cprman->regs_lock); 355 356 cprman_write(cprman, CM_TCNTCTL, CM_KILL); 357 358 cprman_write(cprman, CM_TCNTCTL, 359 (tcnt_mux & CM_SRC_MASK) | 360 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT); 361 362 cprman_write(cprman, CM_OSCCOUNT, osccount); 363 364 /* do a kind delay at the start */ 365 mdelay(1); 366 367 /* Finish off whatever is left of OSCCOUNT */ 368 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 369 while (cprman_read(cprman, CM_OSCCOUNT)) { 370 if (ktime_after(ktime_get(), timeout)) { 371 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n"); 372 count = 0; 373 goto out; 374 } 375 cpu_relax(); 376 } 377 378 /* Wait for BUSY to clear. */ 379 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 380 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) { 381 if (ktime_after(ktime_get(), timeout)) { 382 dev_err(cprman->dev, "timeout waiting for !BUSY\n"); 383 count = 0; 384 goto out; 385 } 386 cpu_relax(); 387 } 388 389 count = cprman_read(cprman, CM_TCNTCNT); 390 391 cprman_write(cprman, CM_TCNTCTL, 0); 392 393 out: 394 spin_unlock(&cprman->regs_lock); 395 396 return count * 1000; 397 } 398 399 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base, 400 const struct debugfs_reg32 *regs, 401 size_t nregs, struct dentry *dentry) 402 { 403 struct debugfs_regset32 *regset; 404 405 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL); 406 if (!regset) 407 return; 408 409 regset->regs = regs; 410 regset->nregs = nregs; 411 regset->base = cprman->regs + base; 412 413 debugfs_create_regset32("regdump", S_IRUGO, dentry, regset); 414 } 415 416 struct bcm2835_pll_data { 417 const char *name; 418 u32 cm_ctrl_reg; 419 u32 a2w_ctrl_reg; 420 u32 frac_reg; 421 u32 ana_reg_base; 422 u32 reference_enable_mask; 423 /* Bit in CM_LOCK to indicate when the PLL has locked. */ 424 u32 lock_mask; 425 u32 flags; 426 427 const struct bcm2835_pll_ana_bits *ana; 428 429 unsigned long min_rate; 430 unsigned long max_rate; 431 /* 432 * Highest rate for the VCO before we have to use the 433 * pre-divide-by-2. 434 */ 435 unsigned long max_fb_rate; 436 }; 437 438 struct bcm2835_pll_ana_bits { 439 u32 mask0; 440 u32 set0; 441 u32 mask1; 442 u32 set1; 443 u32 mask3; 444 u32 set3; 445 u32 fb_prediv_mask; 446 }; 447 448 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { 449 .mask0 = 0, 450 .set0 = 0, 451 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK, 452 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), 453 .mask3 = A2W_PLL_KA_MASK, 454 .set3 = (2 << A2W_PLL_KA_SHIFT), 455 .fb_prediv_mask = BIT(14), 456 }; 457 458 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { 459 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK, 460 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), 461 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK, 462 .set1 = (6 << A2W_PLLH_KP_SHIFT), 463 .mask3 = 0, 464 .set3 = 0, 465 .fb_prediv_mask = BIT(11), 466 }; 467 468 struct bcm2835_pll_divider_data { 469 const char *name; 470 const char *source_pll; 471 472 u32 cm_reg; 473 u32 a2w_reg; 474 475 u32 load_mask; 476 u32 hold_mask; 477 u32 fixed_divider; 478 u32 flags; 479 }; 480 481 struct bcm2835_clock_data { 482 const char *name; 483 484 const char *const *parents; 485 int num_mux_parents; 486 487 /* Bitmap encoding which parents accept rate change propagation. */ 488 unsigned int set_rate_parent; 489 490 u32 ctl_reg; 491 u32 div_reg; 492 493 /* Number of integer bits in the divider */ 494 u32 int_bits; 495 /* Number of fractional bits in the divider */ 496 u32 frac_bits; 497 498 u32 flags; 499 500 bool is_vpu_clock; 501 bool is_mash_clock; 502 bool low_jitter; 503 504 u32 tcnt_mux; 505 }; 506 507 struct bcm2835_gate_data { 508 const char *name; 509 const char *parent; 510 511 u32 ctl_reg; 512 }; 513 514 struct bcm2835_pll { 515 struct clk_hw hw; 516 struct bcm2835_cprman *cprman; 517 const struct bcm2835_pll_data *data; 518 }; 519 520 static int bcm2835_pll_is_on(struct clk_hw *hw) 521 { 522 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 523 struct bcm2835_cprman *cprman = pll->cprman; 524 const struct bcm2835_pll_data *data = pll->data; 525 526 return cprman_read(cprman, data->a2w_ctrl_reg) & 527 A2W_PLL_CTRL_PRST_DISABLE; 528 } 529 530 static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman, 531 const struct bcm2835_pll_data *data) 532 { 533 /* 534 * On BCM2711 there isn't a pre-divisor available in the PLL feedback 535 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed 536 * for to for VCO RANGE bits. 537 */ 538 if (cprman->soc & SOC_BCM2711) 539 return 0; 540 541 return data->ana->fb_prediv_mask; 542 } 543 544 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, 545 unsigned long parent_rate, 546 u32 *ndiv, u32 *fdiv) 547 { 548 u64 div; 549 550 div = (u64)rate << A2W_PLL_FRAC_BITS; 551 do_div(div, parent_rate); 552 553 *ndiv = div >> A2W_PLL_FRAC_BITS; 554 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); 555 } 556 557 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, 558 u32 ndiv, u32 fdiv, u32 pdiv) 559 { 560 u64 rate; 561 562 if (pdiv == 0) 563 return 0; 564 565 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); 566 do_div(rate, pdiv); 567 return rate >> A2W_PLL_FRAC_BITS; 568 } 569 570 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, 571 unsigned long *parent_rate) 572 { 573 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 574 const struct bcm2835_pll_data *data = pll->data; 575 u32 ndiv, fdiv; 576 577 rate = clamp(rate, data->min_rate, data->max_rate); 578 579 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); 580 581 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); 582 } 583 584 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, 585 unsigned long parent_rate) 586 { 587 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 588 struct bcm2835_cprman *cprman = pll->cprman; 589 const struct bcm2835_pll_data *data = pll->data; 590 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); 591 u32 ndiv, pdiv, fdiv; 592 bool using_prediv; 593 594 if (parent_rate == 0) 595 return 0; 596 597 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; 598 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; 599 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; 600 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & 601 bcm2835_pll_get_prediv_mask(cprman, data); 602 603 if (using_prediv) { 604 ndiv *= 2; 605 fdiv *= 2; 606 } 607 608 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); 609 } 610 611 static void bcm2835_pll_off(struct clk_hw *hw) 612 { 613 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 614 struct bcm2835_cprman *cprman = pll->cprman; 615 const struct bcm2835_pll_data *data = pll->data; 616 617 spin_lock(&cprman->regs_lock); 618 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST); 619 cprman_write(cprman, data->a2w_ctrl_reg, 620 cprman_read(cprman, data->a2w_ctrl_reg) | 621 A2W_PLL_CTRL_PWRDN); 622 spin_unlock(&cprman->regs_lock); 623 } 624 625 static int bcm2835_pll_on(struct clk_hw *hw) 626 { 627 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 628 struct bcm2835_cprman *cprman = pll->cprman; 629 const struct bcm2835_pll_data *data = pll->data; 630 ktime_t timeout; 631 632 cprman_write(cprman, data->a2w_ctrl_reg, 633 cprman_read(cprman, data->a2w_ctrl_reg) & 634 ~A2W_PLL_CTRL_PWRDN); 635 636 /* Take the PLL out of reset. */ 637 spin_lock(&cprman->regs_lock); 638 cprman_write(cprman, data->cm_ctrl_reg, 639 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); 640 spin_unlock(&cprman->regs_lock); 641 642 /* Wait for the PLL to lock. */ 643 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 644 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { 645 if (ktime_after(ktime_get(), timeout)) { 646 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 647 clk_hw_get_name(hw)); 648 return -ETIMEDOUT; 649 } 650 651 cpu_relax(); 652 } 653 654 cprman_write(cprman, data->a2w_ctrl_reg, 655 cprman_read(cprman, data->a2w_ctrl_reg) | 656 A2W_PLL_CTRL_PRST_DISABLE); 657 658 return 0; 659 } 660 661 static void 662 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) 663 { 664 int i; 665 666 /* 667 * ANA register setup is done as a series of writes to 668 * ANA3-ANA0, in that order. This lets us write all 4 669 * registers as a single cycle of the serdes interface (taking 670 * 100 xosc clocks), whereas if we were to update ana0, 1, and 671 * 3 individually through their partial-write registers, each 672 * would be their own serdes cycle. 673 */ 674 for (i = 3; i >= 0; i--) 675 cprman_write(cprman, ana_reg_base + i * 4, ana[i]); 676 } 677 678 static int bcm2835_pll_set_rate(struct clk_hw *hw, 679 unsigned long rate, unsigned long parent_rate) 680 { 681 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 682 struct bcm2835_cprman *cprman = pll->cprman; 683 const struct bcm2835_pll_data *data = pll->data; 684 u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data); 685 bool was_using_prediv, use_fb_prediv, do_ana_setup_first; 686 u32 ndiv, fdiv, a2w_ctl; 687 u32 ana[4]; 688 int i; 689 690 if (rate > data->max_fb_rate) { 691 use_fb_prediv = true; 692 rate /= 2; 693 } else { 694 use_fb_prediv = false; 695 } 696 697 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); 698 699 for (i = 3; i >= 0; i--) 700 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); 701 702 was_using_prediv = ana[1] & prediv_mask; 703 704 ana[0] &= ~data->ana->mask0; 705 ana[0] |= data->ana->set0; 706 ana[1] &= ~data->ana->mask1; 707 ana[1] |= data->ana->set1; 708 ana[3] &= ~data->ana->mask3; 709 ana[3] |= data->ana->set3; 710 711 if (was_using_prediv && !use_fb_prediv) { 712 ana[1] &= ~prediv_mask; 713 do_ana_setup_first = true; 714 } else if (!was_using_prediv && use_fb_prediv) { 715 ana[1] |= prediv_mask; 716 do_ana_setup_first = false; 717 } else { 718 do_ana_setup_first = true; 719 } 720 721 /* Unmask the reference clock from the oscillator. */ 722 spin_lock(&cprman->regs_lock); 723 cprman_write(cprman, A2W_XOSC_CTRL, 724 cprman_read(cprman, A2W_XOSC_CTRL) | 725 data->reference_enable_mask); 726 spin_unlock(&cprman->regs_lock); 727 728 if (do_ana_setup_first) 729 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 730 731 /* Set the PLL multiplier from the oscillator. */ 732 cprman_write(cprman, data->frac_reg, fdiv); 733 734 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); 735 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; 736 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; 737 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; 738 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; 739 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); 740 741 if (!do_ana_setup_first) 742 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 743 744 return 0; 745 } 746 747 static void bcm2835_pll_debug_init(struct clk_hw *hw, 748 struct dentry *dentry) 749 { 750 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 751 struct bcm2835_cprman *cprman = pll->cprman; 752 const struct bcm2835_pll_data *data = pll->data; 753 struct debugfs_reg32 *regs; 754 755 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL); 756 if (!regs) 757 return; 758 759 regs[0].name = "cm_ctrl"; 760 regs[0].offset = data->cm_ctrl_reg; 761 regs[1].name = "a2w_ctrl"; 762 regs[1].offset = data->a2w_ctrl_reg; 763 regs[2].name = "frac"; 764 regs[2].offset = data->frac_reg; 765 regs[3].name = "ana0"; 766 regs[3].offset = data->ana_reg_base + 0 * 4; 767 regs[4].name = "ana1"; 768 regs[4].offset = data->ana_reg_base + 1 * 4; 769 regs[5].name = "ana2"; 770 regs[5].offset = data->ana_reg_base + 2 * 4; 771 regs[6].name = "ana3"; 772 regs[6].offset = data->ana_reg_base + 3 * 4; 773 774 bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry); 775 } 776 777 static const struct clk_ops bcm2835_pll_clk_ops = { 778 .is_prepared = bcm2835_pll_is_on, 779 .prepare = bcm2835_pll_on, 780 .unprepare = bcm2835_pll_off, 781 .recalc_rate = bcm2835_pll_get_rate, 782 .set_rate = bcm2835_pll_set_rate, 783 .round_rate = bcm2835_pll_round_rate, 784 .debug_init = bcm2835_pll_debug_init, 785 }; 786 787 struct bcm2835_pll_divider { 788 struct clk_divider div; 789 struct bcm2835_cprman *cprman; 790 const struct bcm2835_pll_divider_data *data; 791 }; 792 793 static struct bcm2835_pll_divider * 794 bcm2835_pll_divider_from_hw(struct clk_hw *hw) 795 { 796 return container_of(hw, struct bcm2835_pll_divider, div.hw); 797 } 798 799 static int bcm2835_pll_divider_is_on(struct clk_hw *hw) 800 { 801 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 802 struct bcm2835_cprman *cprman = divider->cprman; 803 const struct bcm2835_pll_divider_data *data = divider->data; 804 805 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); 806 } 807 808 static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw, 809 struct clk_rate_request *req) 810 { 811 return clk_divider_ops.determine_rate(hw, req); 812 } 813 814 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, 815 unsigned long parent_rate) 816 { 817 return clk_divider_ops.recalc_rate(hw, parent_rate); 818 } 819 820 static void bcm2835_pll_divider_off(struct clk_hw *hw) 821 { 822 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 823 struct bcm2835_cprman *cprman = divider->cprman; 824 const struct bcm2835_pll_divider_data *data = divider->data; 825 826 spin_lock(&cprman->regs_lock); 827 cprman_write(cprman, data->cm_reg, 828 (cprman_read(cprman, data->cm_reg) & 829 ~data->load_mask) | data->hold_mask); 830 cprman_write(cprman, data->a2w_reg, 831 cprman_read(cprman, data->a2w_reg) | 832 A2W_PLL_CHANNEL_DISABLE); 833 spin_unlock(&cprman->regs_lock); 834 } 835 836 static int bcm2835_pll_divider_on(struct clk_hw *hw) 837 { 838 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 839 struct bcm2835_cprman *cprman = divider->cprman; 840 const struct bcm2835_pll_divider_data *data = divider->data; 841 842 spin_lock(&cprman->regs_lock); 843 cprman_write(cprman, data->a2w_reg, 844 cprman_read(cprman, data->a2w_reg) & 845 ~A2W_PLL_CHANNEL_DISABLE); 846 847 cprman_write(cprman, data->cm_reg, 848 cprman_read(cprman, data->cm_reg) & ~data->hold_mask); 849 spin_unlock(&cprman->regs_lock); 850 851 return 0; 852 } 853 854 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, 855 unsigned long rate, 856 unsigned long parent_rate) 857 { 858 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 859 struct bcm2835_cprman *cprman = divider->cprman; 860 const struct bcm2835_pll_divider_data *data = divider->data; 861 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS; 862 863 div = DIV_ROUND_UP_ULL(parent_rate, rate); 864 865 div = min(div, max_div); 866 if (div == max_div) 867 div = 0; 868 869 cprman_write(cprman, data->a2w_reg, div); 870 cm = cprman_read(cprman, data->cm_reg); 871 cprman_write(cprman, data->cm_reg, cm | data->load_mask); 872 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); 873 874 return 0; 875 } 876 877 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw, 878 struct dentry *dentry) 879 { 880 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 881 struct bcm2835_cprman *cprman = divider->cprman; 882 const struct bcm2835_pll_divider_data *data = divider->data; 883 struct debugfs_reg32 *regs; 884 885 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL); 886 if (!regs) 887 return; 888 889 regs[0].name = "cm"; 890 regs[0].offset = data->cm_reg; 891 regs[1].name = "a2w"; 892 regs[1].offset = data->a2w_reg; 893 894 bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry); 895 } 896 897 static const struct clk_ops bcm2835_pll_divider_clk_ops = { 898 .is_prepared = bcm2835_pll_divider_is_on, 899 .prepare = bcm2835_pll_divider_on, 900 .unprepare = bcm2835_pll_divider_off, 901 .recalc_rate = bcm2835_pll_divider_get_rate, 902 .set_rate = bcm2835_pll_divider_set_rate, 903 .determine_rate = bcm2835_pll_divider_determine_rate, 904 .debug_init = bcm2835_pll_divider_debug_init, 905 }; 906 907 /* 908 * The CM dividers do fixed-point division, so we can't use the 909 * generic integer divider code like the PLL dividers do (and we can't 910 * fake it by having some fixed shifts preceding it in the clock tree, 911 * because we'd run out of bits in a 32-bit unsigned long). 912 */ 913 struct bcm2835_clock { 914 struct clk_hw hw; 915 struct bcm2835_cprman *cprman; 916 const struct bcm2835_clock_data *data; 917 }; 918 919 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) 920 { 921 return container_of(hw, struct bcm2835_clock, hw); 922 } 923 924 static int bcm2835_clock_is_on(struct clk_hw *hw) 925 { 926 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 927 struct bcm2835_cprman *cprman = clock->cprman; 928 const struct bcm2835_clock_data *data = clock->data; 929 930 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; 931 } 932 933 static u32 bcm2835_clock_choose_div(struct clk_hw *hw, 934 unsigned long rate, 935 unsigned long parent_rate) 936 { 937 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 938 const struct bcm2835_clock_data *data = clock->data; 939 u32 unused_frac_mask = 940 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1; 941 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; 942 u64 rem; 943 u32 div, mindiv, maxdiv; 944 945 rem = do_div(temp, rate); 946 div = temp; 947 div &= ~unused_frac_mask; 948 949 /* different clamping limits apply for a mash clock */ 950 if (data->is_mash_clock) { 951 /* clamp to min divider of 2 */ 952 mindiv = 2 << CM_DIV_FRAC_BITS; 953 /* clamp to the highest possible integer divider */ 954 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS; 955 } else { 956 /* clamp to min divider of 1 */ 957 mindiv = 1 << CM_DIV_FRAC_BITS; 958 /* clamp to the highest possible fractional divider */ 959 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, 960 CM_DIV_FRAC_BITS - data->frac_bits); 961 } 962 963 /* apply the clamping limits */ 964 div = max_t(u32, div, mindiv); 965 div = min_t(u32, div, maxdiv); 966 967 return div; 968 } 969 970 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, 971 unsigned long parent_rate, 972 u32 div) 973 { 974 const struct bcm2835_clock_data *data = clock->data; 975 u64 temp; 976 977 if (data->int_bits == 0 && data->frac_bits == 0) 978 return parent_rate; 979 980 /* 981 * The divisor is a 12.12 fixed point field, but only some of 982 * the bits are populated in any given clock. 983 */ 984 div >>= CM_DIV_FRAC_BITS - data->frac_bits; 985 div &= (1 << (data->int_bits + data->frac_bits)) - 1; 986 987 if (div == 0) 988 return 0; 989 990 temp = (u64)parent_rate << data->frac_bits; 991 992 do_div(temp, div); 993 994 return temp; 995 } 996 997 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, 998 unsigned long parent_rate) 999 { 1000 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1001 struct bcm2835_cprman *cprman = clock->cprman; 1002 const struct bcm2835_clock_data *data = clock->data; 1003 u32 div; 1004 1005 if (data->int_bits == 0 && data->frac_bits == 0) 1006 return parent_rate; 1007 1008 div = cprman_read(cprman, data->div_reg); 1009 1010 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); 1011 } 1012 1013 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) 1014 { 1015 struct bcm2835_cprman *cprman = clock->cprman; 1016 const struct bcm2835_clock_data *data = clock->data; 1017 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 1018 1019 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { 1020 if (ktime_after(ktime_get(), timeout)) { 1021 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 1022 clk_hw_get_name(&clock->hw)); 1023 return; 1024 } 1025 cpu_relax(); 1026 } 1027 } 1028 1029 static void bcm2835_clock_off(struct clk_hw *hw) 1030 { 1031 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1032 struct bcm2835_cprman *cprman = clock->cprman; 1033 const struct bcm2835_clock_data *data = clock->data; 1034 1035 spin_lock(&cprman->regs_lock); 1036 cprman_write(cprman, data->ctl_reg, 1037 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); 1038 spin_unlock(&cprman->regs_lock); 1039 1040 /* BUSY will remain high until the divider completes its cycle. */ 1041 bcm2835_clock_wait_busy(clock); 1042 } 1043 1044 static int bcm2835_clock_on(struct clk_hw *hw) 1045 { 1046 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1047 struct bcm2835_cprman *cprman = clock->cprman; 1048 const struct bcm2835_clock_data *data = clock->data; 1049 1050 spin_lock(&cprman->regs_lock); 1051 cprman_write(cprman, data->ctl_reg, 1052 cprman_read(cprman, data->ctl_reg) | 1053 CM_ENABLE | 1054 CM_GATE); 1055 spin_unlock(&cprman->regs_lock); 1056 1057 /* Debug code to measure the clock once it's turned on to see 1058 * if it's ticking at the rate we expect. 1059 */ 1060 if (data->tcnt_mux && false) { 1061 dev_info(cprman->dev, 1062 "clk %s: rate %ld, measure %ld\n", 1063 data->name, 1064 clk_hw_get_rate(hw), 1065 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux)); 1066 } 1067 1068 return 0; 1069 } 1070 1071 static int bcm2835_clock_set_rate(struct clk_hw *hw, 1072 unsigned long rate, unsigned long parent_rate) 1073 { 1074 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1075 struct bcm2835_cprman *cprman = clock->cprman; 1076 const struct bcm2835_clock_data *data = clock->data; 1077 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate); 1078 u32 ctl; 1079 1080 spin_lock(&cprman->regs_lock); 1081 1082 /* 1083 * Setting up frac support 1084 * 1085 * In principle it is recommended to stop/start the clock first, 1086 * but as we set CLK_SET_RATE_GATE during registration of the 1087 * clock this requirement should be take care of by the 1088 * clk-framework. 1089 */ 1090 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC; 1091 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0; 1092 cprman_write(cprman, data->ctl_reg, ctl); 1093 1094 cprman_write(cprman, data->div_reg, div); 1095 1096 spin_unlock(&cprman->regs_lock); 1097 1098 return 0; 1099 } 1100 1101 static bool 1102 bcm2835_clk_is_pllc(struct clk_hw *hw) 1103 { 1104 if (!hw) 1105 return false; 1106 1107 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0; 1108 } 1109 1110 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw, 1111 int parent_idx, 1112 unsigned long rate, 1113 u32 *div, 1114 unsigned long *prate, 1115 unsigned long *avgrate) 1116 { 1117 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1118 struct bcm2835_cprman *cprman = clock->cprman; 1119 const struct bcm2835_clock_data *data = clock->data; 1120 unsigned long best_rate = 0; 1121 u32 curdiv, mindiv, maxdiv; 1122 struct clk_hw *parent; 1123 1124 parent = clk_hw_get_parent_by_index(hw, parent_idx); 1125 1126 if (!(BIT(parent_idx) & data->set_rate_parent)) { 1127 *prate = clk_hw_get_rate(parent); 1128 *div = bcm2835_clock_choose_div(hw, rate, *prate); 1129 1130 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div); 1131 1132 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) { 1133 unsigned long high, low; 1134 u32 int_div = *div & ~CM_DIV_FRAC_MASK; 1135 1136 high = bcm2835_clock_rate_from_divisor(clock, *prate, 1137 int_div); 1138 int_div += CM_DIV_FRAC_MASK + 1; 1139 low = bcm2835_clock_rate_from_divisor(clock, *prate, 1140 int_div); 1141 1142 /* 1143 * Return a value which is the maximum deviation 1144 * below the ideal rate, for use as a metric. 1145 */ 1146 return *avgrate - max(*avgrate - low, high - *avgrate); 1147 } 1148 return *avgrate; 1149 } 1150 1151 if (data->frac_bits) 1152 dev_warn(cprman->dev, 1153 "frac bits are not used when propagating rate change"); 1154 1155 /* clamp to min divider of 2 if we're dealing with a mash clock */ 1156 mindiv = data->is_mash_clock ? 2 : 1; 1157 maxdiv = BIT(data->int_bits) - 1; 1158 1159 /* TODO: Be smart, and only test a subset of the available divisors. */ 1160 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) { 1161 unsigned long tmp_rate; 1162 1163 tmp_rate = clk_hw_round_rate(parent, rate * curdiv); 1164 tmp_rate /= curdiv; 1165 if (curdiv == mindiv || 1166 (tmp_rate > best_rate && tmp_rate <= rate)) 1167 best_rate = tmp_rate; 1168 1169 if (best_rate == rate) 1170 break; 1171 } 1172 1173 *div = curdiv << CM_DIV_FRAC_BITS; 1174 *prate = curdiv * best_rate; 1175 *avgrate = best_rate; 1176 1177 return best_rate; 1178 } 1179 1180 static int bcm2835_clock_determine_rate(struct clk_hw *hw, 1181 struct clk_rate_request *req) 1182 { 1183 struct clk_hw *parent, *best_parent = NULL; 1184 bool current_parent_is_pllc; 1185 unsigned long rate, best_rate = 0; 1186 unsigned long prate, best_prate = 0; 1187 unsigned long avgrate, best_avgrate = 0; 1188 size_t i; 1189 u32 div; 1190 1191 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw)); 1192 1193 /* 1194 * Select parent clock that results in the closest but lower rate 1195 */ 1196 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) { 1197 parent = clk_hw_get_parent_by_index(hw, i); 1198 if (!parent) 1199 continue; 1200 1201 /* 1202 * Don't choose a PLLC-derived clock as our parent 1203 * unless it had been manually set that way. PLLC's 1204 * frequency gets adjusted by the firmware due to 1205 * over-temp or under-voltage conditions, without 1206 * prior notification to our clock consumer. 1207 */ 1208 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc) 1209 continue; 1210 1211 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate, 1212 &div, &prate, 1213 &avgrate); 1214 if (abs(req->rate - rate) < abs(req->rate - best_rate)) { 1215 best_parent = parent; 1216 best_prate = prate; 1217 best_rate = rate; 1218 best_avgrate = avgrate; 1219 } 1220 } 1221 1222 if (!best_parent) 1223 return -EINVAL; 1224 1225 req->best_parent_hw = best_parent; 1226 req->best_parent_rate = best_prate; 1227 1228 req->rate = best_avgrate; 1229 1230 return 0; 1231 } 1232 1233 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index) 1234 { 1235 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1236 struct bcm2835_cprman *cprman = clock->cprman; 1237 const struct bcm2835_clock_data *data = clock->data; 1238 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK; 1239 1240 cprman_write(cprman, data->ctl_reg, src); 1241 return 0; 1242 } 1243 1244 static u8 bcm2835_clock_get_parent(struct clk_hw *hw) 1245 { 1246 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1247 struct bcm2835_cprman *cprman = clock->cprman; 1248 const struct bcm2835_clock_data *data = clock->data; 1249 u32 src = cprman_read(cprman, data->ctl_reg); 1250 1251 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT; 1252 } 1253 1254 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = { 1255 { 1256 .name = "ctl", 1257 .offset = 0, 1258 }, 1259 { 1260 .name = "div", 1261 .offset = 4, 1262 }, 1263 }; 1264 1265 static void bcm2835_clock_debug_init(struct clk_hw *hw, 1266 struct dentry *dentry) 1267 { 1268 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1269 struct bcm2835_cprman *cprman = clock->cprman; 1270 const struct bcm2835_clock_data *data = clock->data; 1271 1272 bcm2835_debugfs_regset(cprman, data->ctl_reg, 1273 bcm2835_debugfs_clock_reg32, 1274 ARRAY_SIZE(bcm2835_debugfs_clock_reg32), 1275 dentry); 1276 } 1277 1278 static const struct clk_ops bcm2835_clock_clk_ops = { 1279 .is_prepared = bcm2835_clock_is_on, 1280 .prepare = bcm2835_clock_on, 1281 .unprepare = bcm2835_clock_off, 1282 .recalc_rate = bcm2835_clock_get_rate, 1283 .set_rate = bcm2835_clock_set_rate, 1284 .determine_rate = bcm2835_clock_determine_rate, 1285 .set_parent = bcm2835_clock_set_parent, 1286 .get_parent = bcm2835_clock_get_parent, 1287 .debug_init = bcm2835_clock_debug_init, 1288 }; 1289 1290 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) 1291 { 1292 return true; 1293 } 1294 1295 /* 1296 * The VPU clock can never be disabled (it doesn't have an ENABLE 1297 * bit), so it gets its own set of clock ops. 1298 */ 1299 static const struct clk_ops bcm2835_vpu_clock_clk_ops = { 1300 .is_prepared = bcm2835_vpu_clock_is_on, 1301 .recalc_rate = bcm2835_clock_get_rate, 1302 .set_rate = bcm2835_clock_set_rate, 1303 .determine_rate = bcm2835_clock_determine_rate, 1304 .set_parent = bcm2835_clock_set_parent, 1305 .get_parent = bcm2835_clock_get_parent, 1306 .debug_init = bcm2835_clock_debug_init, 1307 }; 1308 1309 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman, 1310 const void *data) 1311 { 1312 const struct bcm2835_pll_data *pll_data = data; 1313 struct bcm2835_pll *pll; 1314 struct clk_init_data init; 1315 int ret; 1316 1317 memset(&init, 0, sizeof(init)); 1318 1319 /* All of the PLLs derive from the external oscillator. */ 1320 init.parent_names = &cprman->real_parent_names[0]; 1321 init.num_parents = 1; 1322 init.name = pll_data->name; 1323 init.ops = &bcm2835_pll_clk_ops; 1324 init.flags = pll_data->flags | CLK_IGNORE_UNUSED; 1325 1326 pll = kzalloc(sizeof(*pll), GFP_KERNEL); 1327 if (!pll) 1328 return NULL; 1329 1330 pll->cprman = cprman; 1331 pll->data = pll_data; 1332 pll->hw.init = &init; 1333 1334 ret = devm_clk_hw_register(cprman->dev, &pll->hw); 1335 if (ret) { 1336 kfree(pll); 1337 return NULL; 1338 } 1339 return &pll->hw; 1340 } 1341 1342 static struct clk_hw * 1343 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, 1344 const void *data) 1345 { 1346 const struct bcm2835_pll_divider_data *divider_data = data; 1347 struct bcm2835_pll_divider *divider; 1348 struct clk_init_data init; 1349 const char *divider_name; 1350 int ret; 1351 1352 if (divider_data->fixed_divider != 1) { 1353 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, 1354 "%s_prediv", divider_data->name); 1355 if (!divider_name) 1356 return NULL; 1357 } else { 1358 divider_name = divider_data->name; 1359 } 1360 1361 memset(&init, 0, sizeof(init)); 1362 1363 init.parent_names = ÷r_data->source_pll; 1364 init.num_parents = 1; 1365 init.name = divider_name; 1366 init.ops = &bcm2835_pll_divider_clk_ops; 1367 init.flags = divider_data->flags | CLK_IGNORE_UNUSED; 1368 1369 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); 1370 if (!divider) 1371 return NULL; 1372 1373 divider->div.reg = cprman->regs + divider_data->a2w_reg; 1374 divider->div.shift = A2W_PLL_DIV_SHIFT; 1375 divider->div.width = A2W_PLL_DIV_BITS; 1376 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO; 1377 divider->div.lock = &cprman->regs_lock; 1378 divider->div.hw.init = &init; 1379 divider->div.table = NULL; 1380 1381 divider->cprman = cprman; 1382 divider->data = divider_data; 1383 1384 ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw); 1385 if (ret) 1386 return ERR_PTR(ret); 1387 1388 /* 1389 * PLLH's channels have a fixed divide by 10 afterwards, which 1390 * is what our consumers are actually using. 1391 */ 1392 if (divider_data->fixed_divider != 1) { 1393 return clk_hw_register_fixed_factor(cprman->dev, 1394 divider_data->name, 1395 divider_name, 1396 CLK_SET_RATE_PARENT, 1397 1, 1398 divider_data->fixed_divider); 1399 } 1400 1401 return ÷r->div.hw; 1402 } 1403 1404 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman, 1405 const void *data) 1406 { 1407 const struct bcm2835_clock_data *clock_data = data; 1408 struct bcm2835_clock *clock; 1409 struct clk_init_data init; 1410 const char *parents[1 << CM_SRC_BITS]; 1411 size_t i; 1412 int ret; 1413 1414 /* 1415 * Replace our strings referencing parent clocks with the 1416 * actual clock-output-name of the parent. 1417 */ 1418 for (i = 0; i < clock_data->num_mux_parents; i++) { 1419 parents[i] = clock_data->parents[i]; 1420 1421 ret = match_string(cprman_parent_names, 1422 ARRAY_SIZE(cprman_parent_names), 1423 parents[i]); 1424 if (ret >= 0) 1425 parents[i] = cprman->real_parent_names[ret]; 1426 } 1427 1428 memset(&init, 0, sizeof(init)); 1429 init.parent_names = parents; 1430 init.num_parents = clock_data->num_mux_parents; 1431 init.name = clock_data->name; 1432 init.flags = clock_data->flags | CLK_IGNORE_UNUSED; 1433 1434 /* 1435 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate 1436 * rate changes on at least of the parents. 1437 */ 1438 if (clock_data->set_rate_parent) 1439 init.flags |= CLK_SET_RATE_PARENT; 1440 1441 if (clock_data->is_vpu_clock) { 1442 init.ops = &bcm2835_vpu_clock_clk_ops; 1443 } else { 1444 init.ops = &bcm2835_clock_clk_ops; 1445 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; 1446 1447 /* If the clock wasn't actually enabled at boot, it's not 1448 * critical. 1449 */ 1450 if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE)) 1451 init.flags &= ~CLK_IS_CRITICAL; 1452 } 1453 1454 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); 1455 if (!clock) 1456 return NULL; 1457 1458 clock->cprman = cprman; 1459 clock->data = clock_data; 1460 clock->hw.init = &init; 1461 1462 ret = devm_clk_hw_register(cprman->dev, &clock->hw); 1463 if (ret) 1464 return ERR_PTR(ret); 1465 return &clock->hw; 1466 } 1467 1468 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman, 1469 const void *data) 1470 { 1471 const struct bcm2835_gate_data *gate_data = data; 1472 1473 return clk_hw_register_gate(cprman->dev, gate_data->name, 1474 gate_data->parent, 1475 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, 1476 cprman->regs + gate_data->ctl_reg, 1477 CM_GATE_BIT, 0, &cprman->regs_lock); 1478 } 1479 1480 struct bcm2835_clk_desc { 1481 struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman, 1482 const void *data); 1483 unsigned int supported; 1484 const void *data; 1485 }; 1486 1487 /* assignment helper macros for different clock types */ 1488 #define _REGISTER(f, s, ...) { .clk_register = f, \ 1489 .supported = s, \ 1490 .data = __VA_ARGS__ } 1491 #define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \ 1492 s, \ 1493 &(struct bcm2835_pll_data) \ 1494 {__VA_ARGS__}) 1495 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \ 1496 s, \ 1497 &(struct bcm2835_pll_divider_data) \ 1498 {__VA_ARGS__}) 1499 #define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \ 1500 s, \ 1501 &(struct bcm2835_clock_data) \ 1502 {__VA_ARGS__}) 1503 #define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \ 1504 s, \ 1505 &(struct bcm2835_gate_data) \ 1506 {__VA_ARGS__}) 1507 1508 /* parent mux arrays plus helper macros */ 1509 1510 /* main oscillator parent mux */ 1511 static const char *const bcm2835_clock_osc_parents[] = { 1512 "gnd", 1513 "xosc", 1514 "testdebug0", 1515 "testdebug1" 1516 }; 1517 1518 #define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \ 1519 s, \ 1520 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \ 1521 .parents = bcm2835_clock_osc_parents, \ 1522 __VA_ARGS__) 1523 1524 /* main peripherial parent mux */ 1525 static const char *const bcm2835_clock_per_parents[] = { 1526 "gnd", 1527 "xosc", 1528 "testdebug0", 1529 "testdebug1", 1530 "plla_per", 1531 "pllc_per", 1532 "plld_per", 1533 "pllh_aux", 1534 }; 1535 1536 #define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \ 1537 s, \ 1538 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \ 1539 .parents = bcm2835_clock_per_parents, \ 1540 __VA_ARGS__) 1541 1542 /* 1543 * Restrict clock sources for the PCM peripheral to the oscillator and 1544 * PLLD_PER because other source may have varying rates or be switched 1545 * off. 1546 * 1547 * Prevent other sources from being selected by replacing their names in 1548 * the list of potential parents with dummy entries (entry index is 1549 * significant). 1550 */ 1551 static const char *const bcm2835_pcm_per_parents[] = { 1552 "-", 1553 "xosc", 1554 "-", 1555 "-", 1556 "-", 1557 "-", 1558 "plld_per", 1559 "-", 1560 }; 1561 1562 #define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \ 1563 s, \ 1564 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \ 1565 .parents = bcm2835_pcm_per_parents, \ 1566 __VA_ARGS__) 1567 1568 /* main vpu parent mux */ 1569 static const char *const bcm2835_clock_vpu_parents[] = { 1570 "gnd", 1571 "xosc", 1572 "testdebug0", 1573 "testdebug1", 1574 "plla_core", 1575 "pllc_core0", 1576 "plld_core", 1577 "pllh_aux", 1578 "pllc_core1", 1579 "pllc_core2", 1580 }; 1581 1582 #define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \ 1583 s, \ 1584 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \ 1585 .parents = bcm2835_clock_vpu_parents, \ 1586 __VA_ARGS__) 1587 1588 /* 1589 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI 1590 * analog PHY. The _inv variants are generated internally to cprman, 1591 * but we don't use them so they aren't hooked up. 1592 */ 1593 static const char *const bcm2835_clock_dsi0_parents[] = { 1594 "gnd", 1595 "xosc", 1596 "testdebug0", 1597 "testdebug1", 1598 "dsi0_ddr", 1599 "dsi0_ddr_inv", 1600 "dsi0_ddr2", 1601 "dsi0_ddr2_inv", 1602 "dsi0_byte", 1603 "dsi0_byte_inv", 1604 }; 1605 1606 static const char *const bcm2835_clock_dsi1_parents[] = { 1607 "gnd", 1608 "xosc", 1609 "testdebug0", 1610 "testdebug1", 1611 "dsi1_ddr", 1612 "dsi1_ddr_inv", 1613 "dsi1_ddr2", 1614 "dsi1_ddr2_inv", 1615 "dsi1_byte", 1616 "dsi1_byte_inv", 1617 }; 1618 1619 #define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \ 1620 s, \ 1621 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \ 1622 .parents = bcm2835_clock_dsi0_parents, \ 1623 __VA_ARGS__) 1624 1625 #define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \ 1626 s, \ 1627 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \ 1628 .parents = bcm2835_clock_dsi1_parents, \ 1629 __VA_ARGS__) 1630 1631 /* 1632 * the real definition of all the pll, pll_dividers and clocks 1633 * these make use of the above REGISTER_* macros 1634 */ 1635 static const struct bcm2835_clk_desc clk_desc_array[] = { 1636 /* the PLL + PLL dividers */ 1637 1638 /* 1639 * PLLA is the auxiliary PLL, used to drive the CCP2 1640 * (Compact Camera Port 2) transmitter clock. 1641 * 1642 * It is in the PX LDO power domain, which is on when the 1643 * AUDIO domain is on. 1644 */ 1645 [BCM2835_PLLA] = REGISTER_PLL( 1646 SOC_ALL, 1647 .name = "plla", 1648 .cm_ctrl_reg = CM_PLLA, 1649 .a2w_ctrl_reg = A2W_PLLA_CTRL, 1650 .frac_reg = A2W_PLLA_FRAC, 1651 .ana_reg_base = A2W_PLLA_ANA0, 1652 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, 1653 .lock_mask = CM_LOCK_FLOCKA, 1654 1655 .ana = &bcm2835_ana_default, 1656 1657 .min_rate = 600000000u, 1658 .max_rate = 2400000000u, 1659 .max_fb_rate = BCM2835_MAX_FB_RATE), 1660 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV( 1661 SOC_ALL, 1662 .name = "plla_core", 1663 .source_pll = "plla", 1664 .cm_reg = CM_PLLA, 1665 .a2w_reg = A2W_PLLA_CORE, 1666 .load_mask = CM_PLLA_LOADCORE, 1667 .hold_mask = CM_PLLA_HOLDCORE, 1668 .fixed_divider = 1, 1669 .flags = CLK_SET_RATE_PARENT), 1670 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV( 1671 SOC_ALL, 1672 .name = "plla_per", 1673 .source_pll = "plla", 1674 .cm_reg = CM_PLLA, 1675 .a2w_reg = A2W_PLLA_PER, 1676 .load_mask = CM_PLLA_LOADPER, 1677 .hold_mask = CM_PLLA_HOLDPER, 1678 .fixed_divider = 1, 1679 .flags = CLK_SET_RATE_PARENT), 1680 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV( 1681 SOC_ALL, 1682 .name = "plla_dsi0", 1683 .source_pll = "plla", 1684 .cm_reg = CM_PLLA, 1685 .a2w_reg = A2W_PLLA_DSI0, 1686 .load_mask = CM_PLLA_LOADDSI0, 1687 .hold_mask = CM_PLLA_HOLDDSI0, 1688 .fixed_divider = 1), 1689 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV( 1690 SOC_ALL, 1691 .name = "plla_ccp2", 1692 .source_pll = "plla", 1693 .cm_reg = CM_PLLA, 1694 .a2w_reg = A2W_PLLA_CCP2, 1695 .load_mask = CM_PLLA_LOADCCP2, 1696 .hold_mask = CM_PLLA_HOLDCCP2, 1697 .fixed_divider = 1, 1698 .flags = CLK_SET_RATE_PARENT), 1699 1700 /* PLLB is used for the ARM's clock. */ 1701 [BCM2835_PLLB] = REGISTER_PLL( 1702 SOC_ALL, 1703 .name = "pllb", 1704 .cm_ctrl_reg = CM_PLLB, 1705 .a2w_ctrl_reg = A2W_PLLB_CTRL, 1706 .frac_reg = A2W_PLLB_FRAC, 1707 .ana_reg_base = A2W_PLLB_ANA0, 1708 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE, 1709 .lock_mask = CM_LOCK_FLOCKB, 1710 1711 .ana = &bcm2835_ana_default, 1712 1713 .min_rate = 600000000u, 1714 .max_rate = 3000000000u, 1715 .max_fb_rate = BCM2835_MAX_FB_RATE, 1716 .flags = CLK_GET_RATE_NOCACHE), 1717 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV( 1718 SOC_ALL, 1719 .name = "pllb_arm", 1720 .source_pll = "pllb", 1721 .cm_reg = CM_PLLB, 1722 .a2w_reg = A2W_PLLB_ARM, 1723 .load_mask = CM_PLLB_LOADARM, 1724 .hold_mask = CM_PLLB_HOLDARM, 1725 .fixed_divider = 1, 1726 .flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE), 1727 1728 /* 1729 * PLLC is the core PLL, used to drive the core VPU clock. 1730 * 1731 * It is in the PX LDO power domain, which is on when the 1732 * AUDIO domain is on. 1733 */ 1734 [BCM2835_PLLC] = REGISTER_PLL( 1735 SOC_ALL, 1736 .name = "pllc", 1737 .cm_ctrl_reg = CM_PLLC, 1738 .a2w_ctrl_reg = A2W_PLLC_CTRL, 1739 .frac_reg = A2W_PLLC_FRAC, 1740 .ana_reg_base = A2W_PLLC_ANA0, 1741 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1742 .lock_mask = CM_LOCK_FLOCKC, 1743 1744 .ana = &bcm2835_ana_default, 1745 1746 .min_rate = 600000000u, 1747 .max_rate = 3000000000u, 1748 .max_fb_rate = BCM2835_MAX_FB_RATE), 1749 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV( 1750 SOC_ALL, 1751 .name = "pllc_core0", 1752 .source_pll = "pllc", 1753 .cm_reg = CM_PLLC, 1754 .a2w_reg = A2W_PLLC_CORE0, 1755 .load_mask = CM_PLLC_LOADCORE0, 1756 .hold_mask = CM_PLLC_HOLDCORE0, 1757 .fixed_divider = 1, 1758 .flags = CLK_SET_RATE_PARENT), 1759 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV( 1760 SOC_ALL, 1761 .name = "pllc_core1", 1762 .source_pll = "pllc", 1763 .cm_reg = CM_PLLC, 1764 .a2w_reg = A2W_PLLC_CORE1, 1765 .load_mask = CM_PLLC_LOADCORE1, 1766 .hold_mask = CM_PLLC_HOLDCORE1, 1767 .fixed_divider = 1, 1768 .flags = CLK_SET_RATE_PARENT), 1769 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV( 1770 SOC_ALL, 1771 .name = "pllc_core2", 1772 .source_pll = "pllc", 1773 .cm_reg = CM_PLLC, 1774 .a2w_reg = A2W_PLLC_CORE2, 1775 .load_mask = CM_PLLC_LOADCORE2, 1776 .hold_mask = CM_PLLC_HOLDCORE2, 1777 .fixed_divider = 1, 1778 .flags = CLK_SET_RATE_PARENT), 1779 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV( 1780 SOC_ALL, 1781 .name = "pllc_per", 1782 .source_pll = "pllc", 1783 .cm_reg = CM_PLLC, 1784 .a2w_reg = A2W_PLLC_PER, 1785 .load_mask = CM_PLLC_LOADPER, 1786 .hold_mask = CM_PLLC_HOLDPER, 1787 .fixed_divider = 1, 1788 .flags = CLK_SET_RATE_PARENT), 1789 1790 /* 1791 * PLLD is the display PLL, used to drive DSI display panels. 1792 * 1793 * It is in the PX LDO power domain, which is on when the 1794 * AUDIO domain is on. 1795 */ 1796 [BCM2835_PLLD] = REGISTER_PLL( 1797 SOC_ALL, 1798 .name = "plld", 1799 .cm_ctrl_reg = CM_PLLD, 1800 .a2w_ctrl_reg = A2W_PLLD_CTRL, 1801 .frac_reg = A2W_PLLD_FRAC, 1802 .ana_reg_base = A2W_PLLD_ANA0, 1803 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, 1804 .lock_mask = CM_LOCK_FLOCKD, 1805 1806 .ana = &bcm2835_ana_default, 1807 1808 .min_rate = 600000000u, 1809 .max_rate = 2400000000u, 1810 .max_fb_rate = BCM2835_MAX_FB_RATE), 1811 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV( 1812 SOC_ALL, 1813 .name = "plld_core", 1814 .source_pll = "plld", 1815 .cm_reg = CM_PLLD, 1816 .a2w_reg = A2W_PLLD_CORE, 1817 .load_mask = CM_PLLD_LOADCORE, 1818 .hold_mask = CM_PLLD_HOLDCORE, 1819 .fixed_divider = 1, 1820 .flags = CLK_SET_RATE_PARENT), 1821 /* 1822 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core. 1823 * Otherwise this could cause firmware lookups. That's why we mark 1824 * it as critical. 1825 */ 1826 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV( 1827 SOC_ALL, 1828 .name = "plld_per", 1829 .source_pll = "plld", 1830 .cm_reg = CM_PLLD, 1831 .a2w_reg = A2W_PLLD_PER, 1832 .load_mask = CM_PLLD_LOADPER, 1833 .hold_mask = CM_PLLD_HOLDPER, 1834 .fixed_divider = 1, 1835 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT), 1836 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV( 1837 SOC_ALL, 1838 .name = "plld_dsi0", 1839 .source_pll = "plld", 1840 .cm_reg = CM_PLLD, 1841 .a2w_reg = A2W_PLLD_DSI0, 1842 .load_mask = CM_PLLD_LOADDSI0, 1843 .hold_mask = CM_PLLD_HOLDDSI0, 1844 .fixed_divider = 1), 1845 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV( 1846 SOC_ALL, 1847 .name = "plld_dsi1", 1848 .source_pll = "plld", 1849 .cm_reg = CM_PLLD, 1850 .a2w_reg = A2W_PLLD_DSI1, 1851 .load_mask = CM_PLLD_LOADDSI1, 1852 .hold_mask = CM_PLLD_HOLDDSI1, 1853 .fixed_divider = 1), 1854 1855 /* 1856 * PLLH is used to supply the pixel clock or the AUX clock for the 1857 * TV encoder. 1858 * 1859 * It is in the HDMI power domain. 1860 */ 1861 [BCM2835_PLLH] = REGISTER_PLL( 1862 SOC_BCM2835, 1863 "pllh", 1864 .cm_ctrl_reg = CM_PLLH, 1865 .a2w_ctrl_reg = A2W_PLLH_CTRL, 1866 .frac_reg = A2W_PLLH_FRAC, 1867 .ana_reg_base = A2W_PLLH_ANA0, 1868 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1869 .lock_mask = CM_LOCK_FLOCKH, 1870 1871 .ana = &bcm2835_ana_pllh, 1872 1873 .min_rate = 600000000u, 1874 .max_rate = 3000000000u, 1875 .max_fb_rate = BCM2835_MAX_FB_RATE), 1876 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV( 1877 SOC_BCM2835, 1878 .name = "pllh_rcal", 1879 .source_pll = "pllh", 1880 .cm_reg = CM_PLLH, 1881 .a2w_reg = A2W_PLLH_RCAL, 1882 .load_mask = CM_PLLH_LOADRCAL, 1883 .hold_mask = 0, 1884 .fixed_divider = 10, 1885 .flags = CLK_SET_RATE_PARENT), 1886 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV( 1887 SOC_BCM2835, 1888 .name = "pllh_aux", 1889 .source_pll = "pllh", 1890 .cm_reg = CM_PLLH, 1891 .a2w_reg = A2W_PLLH_AUX, 1892 .load_mask = CM_PLLH_LOADAUX, 1893 .hold_mask = 0, 1894 .fixed_divider = 1, 1895 .flags = CLK_SET_RATE_PARENT), 1896 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV( 1897 SOC_BCM2835, 1898 .name = "pllh_pix", 1899 .source_pll = "pllh", 1900 .cm_reg = CM_PLLH, 1901 .a2w_reg = A2W_PLLH_PIX, 1902 .load_mask = CM_PLLH_LOADPIX, 1903 .hold_mask = 0, 1904 .fixed_divider = 10, 1905 .flags = CLK_SET_RATE_PARENT), 1906 1907 /* the clocks */ 1908 1909 /* clocks with oscillator parent mux */ 1910 1911 /* One Time Programmable Memory clock. Maximum 10Mhz. */ 1912 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK( 1913 SOC_ALL, 1914 .name = "otp", 1915 .ctl_reg = CM_OTPCTL, 1916 .div_reg = CM_OTPDIV, 1917 .int_bits = 4, 1918 .frac_bits = 0, 1919 .tcnt_mux = 6), 1920 /* 1921 * Used for a 1Mhz clock for the system clocksource, and also used 1922 * bythe watchdog timer and the camera pulse generator. 1923 */ 1924 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK( 1925 SOC_ALL, 1926 .name = "timer", 1927 .ctl_reg = CM_TIMERCTL, 1928 .div_reg = CM_TIMERDIV, 1929 .int_bits = 6, 1930 .frac_bits = 12), 1931 /* 1932 * Clock for the temperature sensor. 1933 * Generally run at 2Mhz, max 5Mhz. 1934 */ 1935 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK( 1936 SOC_ALL, 1937 .name = "tsens", 1938 .ctl_reg = CM_TSENSCTL, 1939 .div_reg = CM_TSENSDIV, 1940 .int_bits = 5, 1941 .frac_bits = 0), 1942 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK( 1943 SOC_ALL, 1944 .name = "tec", 1945 .ctl_reg = CM_TECCTL, 1946 .div_reg = CM_TECDIV, 1947 .int_bits = 6, 1948 .frac_bits = 0), 1949 1950 /* clocks with vpu parent mux */ 1951 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK( 1952 SOC_ALL, 1953 .name = "h264", 1954 .ctl_reg = CM_H264CTL, 1955 .div_reg = CM_H264DIV, 1956 .int_bits = 4, 1957 .frac_bits = 8, 1958 .tcnt_mux = 1), 1959 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK( 1960 SOC_ALL, 1961 .name = "isp", 1962 .ctl_reg = CM_ISPCTL, 1963 .div_reg = CM_ISPDIV, 1964 .int_bits = 4, 1965 .frac_bits = 8, 1966 .tcnt_mux = 2), 1967 1968 /* 1969 * Secondary SDRAM clock. Used for low-voltage modes when the PLL 1970 * in the SDRAM controller can't be used. 1971 */ 1972 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK( 1973 SOC_ALL, 1974 .name = "sdram", 1975 .ctl_reg = CM_SDCCTL, 1976 .div_reg = CM_SDCDIV, 1977 .int_bits = 6, 1978 .frac_bits = 0, 1979 .tcnt_mux = 3), 1980 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK( 1981 SOC_ALL, 1982 .name = "v3d", 1983 .ctl_reg = CM_V3DCTL, 1984 .div_reg = CM_V3DDIV, 1985 .int_bits = 4, 1986 .frac_bits = 8, 1987 .tcnt_mux = 4), 1988 /* 1989 * VPU clock. This doesn't have an enable bit, since it drives 1990 * the bus for everything else, and is special so it doesn't need 1991 * to be gated for rate changes. It is also known as "clk_audio" 1992 * in various hardware documentation. 1993 */ 1994 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK( 1995 SOC_ALL, 1996 .name = "vpu", 1997 .ctl_reg = CM_VPUCTL, 1998 .div_reg = CM_VPUDIV, 1999 .int_bits = 12, 2000 .frac_bits = 8, 2001 .flags = CLK_IS_CRITICAL, 2002 .is_vpu_clock = true, 2003 .tcnt_mux = 5), 2004 2005 /* clocks with per parent mux */ 2006 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK( 2007 SOC_ALL, 2008 .name = "aveo", 2009 .ctl_reg = CM_AVEOCTL, 2010 .div_reg = CM_AVEODIV, 2011 .int_bits = 4, 2012 .frac_bits = 0, 2013 .tcnt_mux = 38), 2014 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK( 2015 SOC_ALL, 2016 .name = "cam0", 2017 .ctl_reg = CM_CAM0CTL, 2018 .div_reg = CM_CAM0DIV, 2019 .int_bits = 4, 2020 .frac_bits = 8, 2021 .tcnt_mux = 14), 2022 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK( 2023 SOC_ALL, 2024 .name = "cam1", 2025 .ctl_reg = CM_CAM1CTL, 2026 .div_reg = CM_CAM1DIV, 2027 .int_bits = 4, 2028 .frac_bits = 8, 2029 .tcnt_mux = 15), 2030 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK( 2031 SOC_ALL, 2032 .name = "dft", 2033 .ctl_reg = CM_DFTCTL, 2034 .div_reg = CM_DFTDIV, 2035 .int_bits = 5, 2036 .frac_bits = 0), 2037 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK( 2038 SOC_ALL, 2039 .name = "dpi", 2040 .ctl_reg = CM_DPICTL, 2041 .div_reg = CM_DPIDIV, 2042 .int_bits = 4, 2043 .frac_bits = 8, 2044 .tcnt_mux = 17), 2045 2046 /* Arasan EMMC clock */ 2047 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK( 2048 SOC_ALL, 2049 .name = "emmc", 2050 .ctl_reg = CM_EMMCCTL, 2051 .div_reg = CM_EMMCDIV, 2052 .int_bits = 4, 2053 .frac_bits = 8, 2054 .tcnt_mux = 39), 2055 2056 /* EMMC2 clock (only available for BCM2711) */ 2057 [BCM2711_CLOCK_EMMC2] = REGISTER_PER_CLK( 2058 SOC_BCM2711, 2059 .name = "emmc2", 2060 .ctl_reg = CM_EMMC2CTL, 2061 .div_reg = CM_EMMC2DIV, 2062 .int_bits = 4, 2063 .frac_bits = 8, 2064 .tcnt_mux = 42), 2065 2066 /* General purpose (GPIO) clocks */ 2067 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK( 2068 SOC_ALL, 2069 .name = "gp0", 2070 .ctl_reg = CM_GP0CTL, 2071 .div_reg = CM_GP0DIV, 2072 .int_bits = 12, 2073 .frac_bits = 12, 2074 .is_mash_clock = true, 2075 .tcnt_mux = 20), 2076 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK( 2077 SOC_ALL, 2078 .name = "gp1", 2079 .ctl_reg = CM_GP1CTL, 2080 .div_reg = CM_GP1DIV, 2081 .int_bits = 12, 2082 .frac_bits = 12, 2083 .flags = CLK_IS_CRITICAL, 2084 .is_mash_clock = true, 2085 .tcnt_mux = 21), 2086 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK( 2087 SOC_ALL, 2088 .name = "gp2", 2089 .ctl_reg = CM_GP2CTL, 2090 .div_reg = CM_GP2DIV, 2091 .int_bits = 12, 2092 .frac_bits = 12, 2093 .flags = CLK_IS_CRITICAL), 2094 2095 /* HDMI state machine */ 2096 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK( 2097 SOC_ALL, 2098 .name = "hsm", 2099 .ctl_reg = CM_HSMCTL, 2100 .div_reg = CM_HSMDIV, 2101 .int_bits = 4, 2102 .frac_bits = 8, 2103 .tcnt_mux = 22), 2104 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK( 2105 SOC_ALL, 2106 .name = "pcm", 2107 .ctl_reg = CM_PCMCTL, 2108 .div_reg = CM_PCMDIV, 2109 .int_bits = 12, 2110 .frac_bits = 12, 2111 .is_mash_clock = true, 2112 .low_jitter = true, 2113 .tcnt_mux = 23), 2114 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK( 2115 SOC_ALL, 2116 .name = "pwm", 2117 .ctl_reg = CM_PWMCTL, 2118 .div_reg = CM_PWMDIV, 2119 .int_bits = 12, 2120 .frac_bits = 12, 2121 .is_mash_clock = true, 2122 .tcnt_mux = 24), 2123 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK( 2124 SOC_ALL, 2125 .name = "slim", 2126 .ctl_reg = CM_SLIMCTL, 2127 .div_reg = CM_SLIMDIV, 2128 .int_bits = 12, 2129 .frac_bits = 12, 2130 .is_mash_clock = true, 2131 .tcnt_mux = 25), 2132 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK( 2133 SOC_ALL, 2134 .name = "smi", 2135 .ctl_reg = CM_SMICTL, 2136 .div_reg = CM_SMIDIV, 2137 .int_bits = 4, 2138 .frac_bits = 8, 2139 .tcnt_mux = 27), 2140 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK( 2141 SOC_ALL, 2142 .name = "uart", 2143 .ctl_reg = CM_UARTCTL, 2144 .div_reg = CM_UARTDIV, 2145 .int_bits = 10, 2146 .frac_bits = 12, 2147 .tcnt_mux = 28), 2148 2149 /* TV encoder clock. Only operating frequency is 108Mhz. */ 2150 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK( 2151 SOC_ALL, 2152 .name = "vec", 2153 .ctl_reg = CM_VECCTL, 2154 .div_reg = CM_VECDIV, 2155 .int_bits = 4, 2156 .frac_bits = 0, 2157 /* 2158 * Allow rate change propagation only on PLLH_AUX which is 2159 * assigned index 7 in the parent array. 2160 */ 2161 .set_rate_parent = BIT(7), 2162 .tcnt_mux = 29), 2163 2164 /* dsi clocks */ 2165 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK( 2166 SOC_ALL, 2167 .name = "dsi0e", 2168 .ctl_reg = CM_DSI0ECTL, 2169 .div_reg = CM_DSI0EDIV, 2170 .int_bits = 4, 2171 .frac_bits = 8, 2172 .tcnt_mux = 18), 2173 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK( 2174 SOC_ALL, 2175 .name = "dsi1e", 2176 .ctl_reg = CM_DSI1ECTL, 2177 .div_reg = CM_DSI1EDIV, 2178 .int_bits = 4, 2179 .frac_bits = 8, 2180 .tcnt_mux = 19), 2181 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK( 2182 SOC_ALL, 2183 .name = "dsi0p", 2184 .ctl_reg = CM_DSI0PCTL, 2185 .div_reg = CM_DSI0PDIV, 2186 .int_bits = 0, 2187 .frac_bits = 0, 2188 .tcnt_mux = 12), 2189 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK( 2190 SOC_ALL, 2191 .name = "dsi1p", 2192 .ctl_reg = CM_DSI1PCTL, 2193 .div_reg = CM_DSI1PDIV, 2194 .int_bits = 0, 2195 .frac_bits = 0, 2196 .tcnt_mux = 13), 2197 2198 /* the gates */ 2199 2200 /* 2201 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if 2202 * you have the debug bit set in the power manager, which we 2203 * don't bother exposing) are individual gates off of the 2204 * non-stop vpu clock. 2205 */ 2206 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE( 2207 SOC_ALL, 2208 .name = "peri_image", 2209 .parent = "vpu", 2210 .ctl_reg = CM_PERIICTL), 2211 }; 2212 2213 /* 2214 * Permanently take a reference on the parent of the SDRAM clock. 2215 * 2216 * While the SDRAM is being driven by its dedicated PLL most of the 2217 * time, there is a little loop running in the firmware that 2218 * periodically switches the SDRAM to using our CM clock to do PVT 2219 * recalibration, with the assumption that the previously configured 2220 * SDRAM parent is still enabled and running. 2221 */ 2222 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc) 2223 { 2224 struct clk *parent = clk_get_parent(sdc); 2225 2226 if (IS_ERR(parent)) 2227 return PTR_ERR(parent); 2228 2229 return clk_prepare_enable(parent); 2230 } 2231 2232 static int bcm2835_clk_probe(struct platform_device *pdev) 2233 { 2234 struct device *dev = &pdev->dev; 2235 struct clk_hw **hws; 2236 struct bcm2835_cprman *cprman; 2237 const struct bcm2835_clk_desc *desc; 2238 const size_t asize = ARRAY_SIZE(clk_desc_array); 2239 const struct cprman_plat_data *pdata; 2240 size_t i; 2241 int ret; 2242 2243 pdata = of_device_get_match_data(&pdev->dev); 2244 if (!pdata) 2245 return -ENODEV; 2246 2247 cprman = devm_kzalloc(dev, 2248 struct_size(cprman, onecell.hws, asize), 2249 GFP_KERNEL); 2250 if (!cprman) 2251 return -ENOMEM; 2252 2253 spin_lock_init(&cprman->regs_lock); 2254 cprman->dev = dev; 2255 cprman->regs = devm_platform_ioremap_resource(pdev, 0); 2256 if (IS_ERR(cprman->regs)) 2257 return PTR_ERR(cprman->regs); 2258 2259 memcpy(cprman->real_parent_names, cprman_parent_names, 2260 sizeof(cprman_parent_names)); 2261 of_clk_parent_fill(dev->of_node, cprman->real_parent_names, 2262 ARRAY_SIZE(cprman_parent_names)); 2263 2264 /* 2265 * Make sure the external oscillator has been registered. 2266 * 2267 * The other (DSI) clocks are not present on older device 2268 * trees, which we still need to support for backwards 2269 * compatibility. 2270 */ 2271 if (!cprman->real_parent_names[0]) 2272 return -ENODEV; 2273 2274 platform_set_drvdata(pdev, cprman); 2275 2276 cprman->onecell.num = asize; 2277 cprman->soc = pdata->soc; 2278 hws = cprman->onecell.hws; 2279 2280 for (i = 0; i < asize; i++) { 2281 desc = &clk_desc_array[i]; 2282 if (desc->clk_register && desc->data && 2283 (desc->supported & pdata->soc)) { 2284 hws[i] = desc->clk_register(cprman, desc->data); 2285 } 2286 } 2287 2288 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk); 2289 if (ret) 2290 return ret; 2291 2292 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, 2293 &cprman->onecell); 2294 } 2295 2296 static const struct cprman_plat_data cprman_bcm2835_plat_data = { 2297 .soc = SOC_BCM2835, 2298 }; 2299 2300 static const struct cprman_plat_data cprman_bcm2711_plat_data = { 2301 .soc = SOC_BCM2711, 2302 }; 2303 2304 static const struct of_device_id bcm2835_clk_of_match[] = { 2305 { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data }, 2306 { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data }, 2307 {} 2308 }; 2309 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); 2310 2311 static struct platform_driver bcm2835_clk_driver = { 2312 .driver = { 2313 .name = "bcm2835-clk", 2314 .of_match_table = bcm2835_clk_of_match, 2315 }, 2316 .probe = bcm2835_clk_probe, 2317 }; 2318 2319 builtin_platform_driver(bcm2835_clk_driver); 2320 2321 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); 2322 MODULE_DESCRIPTION("BCM2835 clock driver"); 2323 MODULE_LICENSE("GPL"); 2324