xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision ce746d43)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6 
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26 
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35 #include <linux/platform_device.h>
36 #include <linux/slab.h>
37 #include <dt-bindings/clock/bcm2835.h>
38 
39 #define CM_PASSWORD		0x5a000000
40 
41 #define CM_GNRICCTL		0x000
42 #define CM_GNRICDIV		0x004
43 # define CM_DIV_FRAC_BITS	12
44 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
45 
46 #define CM_VPUCTL		0x008
47 #define CM_VPUDIV		0x00c
48 #define CM_SYSCTL		0x010
49 #define CM_SYSDIV		0x014
50 #define CM_PERIACTL		0x018
51 #define CM_PERIADIV		0x01c
52 #define CM_PERIICTL		0x020
53 #define CM_PERIIDIV		0x024
54 #define CM_H264CTL		0x028
55 #define CM_H264DIV		0x02c
56 #define CM_ISPCTL		0x030
57 #define CM_ISPDIV		0x034
58 #define CM_V3DCTL		0x038
59 #define CM_V3DDIV		0x03c
60 #define CM_CAM0CTL		0x040
61 #define CM_CAM0DIV		0x044
62 #define CM_CAM1CTL		0x048
63 #define CM_CAM1DIV		0x04c
64 #define CM_CCP2CTL		0x050
65 #define CM_CCP2DIV		0x054
66 #define CM_DSI0ECTL		0x058
67 #define CM_DSI0EDIV		0x05c
68 #define CM_DSI0PCTL		0x060
69 #define CM_DSI0PDIV		0x064
70 #define CM_DPICTL		0x068
71 #define CM_DPIDIV		0x06c
72 #define CM_GP0CTL		0x070
73 #define CM_GP0DIV		0x074
74 #define CM_GP1CTL		0x078
75 #define CM_GP1DIV		0x07c
76 #define CM_GP2CTL		0x080
77 #define CM_GP2DIV		0x084
78 #define CM_HSMCTL		0x088
79 #define CM_HSMDIV		0x08c
80 #define CM_OTPCTL		0x090
81 #define CM_OTPDIV		0x094
82 #define CM_PCMCTL		0x098
83 #define CM_PCMDIV		0x09c
84 #define CM_PWMCTL		0x0a0
85 #define CM_PWMDIV		0x0a4
86 #define CM_SLIMCTL		0x0a8
87 #define CM_SLIMDIV		0x0ac
88 #define CM_SMICTL		0x0b0
89 #define CM_SMIDIV		0x0b4
90 /* no definition for 0x0b8  and 0x0bc */
91 #define CM_TCNTCTL		0x0c0
92 # define CM_TCNT_SRC1_SHIFT		12
93 #define CM_TCNTCNT		0x0c4
94 #define CM_TECCTL		0x0c8
95 #define CM_TECDIV		0x0cc
96 #define CM_TD0CTL		0x0d0
97 #define CM_TD0DIV		0x0d4
98 #define CM_TD1CTL		0x0d8
99 #define CM_TD1DIV		0x0dc
100 #define CM_TSENSCTL		0x0e0
101 #define CM_TSENSDIV		0x0e4
102 #define CM_TIMERCTL		0x0e8
103 #define CM_TIMERDIV		0x0ec
104 #define CM_UARTCTL		0x0f0
105 #define CM_UARTDIV		0x0f4
106 #define CM_VECCTL		0x0f8
107 #define CM_VECDIV		0x0fc
108 #define CM_PULSECTL		0x190
109 #define CM_PULSEDIV		0x194
110 #define CM_SDCCTL		0x1a8
111 #define CM_SDCDIV		0x1ac
112 #define CM_ARMCTL		0x1b0
113 #define CM_AVEOCTL		0x1b8
114 #define CM_AVEODIV		0x1bc
115 #define CM_EMMCCTL		0x1c0
116 #define CM_EMMCDIV		0x1c4
117 #define CM_EMMC2CTL		0x1d0
118 #define CM_EMMC2DIV		0x1d4
119 
120 /* General bits for the CM_*CTL regs */
121 # define CM_ENABLE			BIT(4)
122 # define CM_KILL			BIT(5)
123 # define CM_GATE_BIT			6
124 # define CM_GATE			BIT(CM_GATE_BIT)
125 # define CM_BUSY			BIT(7)
126 # define CM_BUSYD			BIT(8)
127 # define CM_FRAC			BIT(9)
128 # define CM_SRC_SHIFT			0
129 # define CM_SRC_BITS			4
130 # define CM_SRC_MASK			0xf
131 # define CM_SRC_GND			0
132 # define CM_SRC_OSC			1
133 # define CM_SRC_TESTDEBUG0		2
134 # define CM_SRC_TESTDEBUG1		3
135 # define CM_SRC_PLLA_CORE		4
136 # define CM_SRC_PLLA_PER		4
137 # define CM_SRC_PLLC_CORE0		5
138 # define CM_SRC_PLLC_PER		5
139 # define CM_SRC_PLLC_CORE1		8
140 # define CM_SRC_PLLD_CORE		6
141 # define CM_SRC_PLLD_PER		6
142 # define CM_SRC_PLLH_AUX		7
143 # define CM_SRC_PLLC_CORE1		8
144 # define CM_SRC_PLLC_CORE2		9
145 
146 #define CM_OSCCOUNT		0x100
147 
148 #define CM_PLLA			0x104
149 # define CM_PLL_ANARST			BIT(8)
150 # define CM_PLLA_HOLDPER		BIT(7)
151 # define CM_PLLA_LOADPER		BIT(6)
152 # define CM_PLLA_HOLDCORE		BIT(5)
153 # define CM_PLLA_LOADCORE		BIT(4)
154 # define CM_PLLA_HOLDCCP2		BIT(3)
155 # define CM_PLLA_LOADCCP2		BIT(2)
156 # define CM_PLLA_HOLDDSI0		BIT(1)
157 # define CM_PLLA_LOADDSI0		BIT(0)
158 
159 #define CM_PLLC			0x108
160 # define CM_PLLC_HOLDPER		BIT(7)
161 # define CM_PLLC_LOADPER		BIT(6)
162 # define CM_PLLC_HOLDCORE2		BIT(5)
163 # define CM_PLLC_LOADCORE2		BIT(4)
164 # define CM_PLLC_HOLDCORE1		BIT(3)
165 # define CM_PLLC_LOADCORE1		BIT(2)
166 # define CM_PLLC_HOLDCORE0		BIT(1)
167 # define CM_PLLC_LOADCORE0		BIT(0)
168 
169 #define CM_PLLD			0x10c
170 # define CM_PLLD_HOLDPER		BIT(7)
171 # define CM_PLLD_LOADPER		BIT(6)
172 # define CM_PLLD_HOLDCORE		BIT(5)
173 # define CM_PLLD_LOADCORE		BIT(4)
174 # define CM_PLLD_HOLDDSI1		BIT(3)
175 # define CM_PLLD_LOADDSI1		BIT(2)
176 # define CM_PLLD_HOLDDSI0		BIT(1)
177 # define CM_PLLD_LOADDSI0		BIT(0)
178 
179 #define CM_PLLH			0x110
180 # define CM_PLLH_LOADRCAL		BIT(2)
181 # define CM_PLLH_LOADAUX		BIT(1)
182 # define CM_PLLH_LOADPIX		BIT(0)
183 
184 #define CM_LOCK			0x114
185 # define CM_LOCK_FLOCKH			BIT(12)
186 # define CM_LOCK_FLOCKD			BIT(11)
187 # define CM_LOCK_FLOCKC			BIT(10)
188 # define CM_LOCK_FLOCKB			BIT(9)
189 # define CM_LOCK_FLOCKA			BIT(8)
190 
191 #define CM_EVENT		0x118
192 #define CM_DSI1ECTL		0x158
193 #define CM_DSI1EDIV		0x15c
194 #define CM_DSI1PCTL		0x160
195 #define CM_DSI1PDIV		0x164
196 #define CM_DFTCTL		0x168
197 #define CM_DFTDIV		0x16c
198 
199 #define CM_PLLB			0x170
200 # define CM_PLLB_HOLDARM		BIT(1)
201 # define CM_PLLB_LOADARM		BIT(0)
202 
203 #define A2W_PLLA_CTRL		0x1100
204 #define A2W_PLLC_CTRL		0x1120
205 #define A2W_PLLD_CTRL		0x1140
206 #define A2W_PLLH_CTRL		0x1160
207 #define A2W_PLLB_CTRL		0x11e0
208 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
209 # define A2W_PLL_CTRL_PWRDN		BIT(16)
210 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
211 # define A2W_PLL_CTRL_PDIV_SHIFT	12
212 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
213 # define A2W_PLL_CTRL_NDIV_SHIFT	0
214 
215 #define A2W_PLLA_ANA0		0x1010
216 #define A2W_PLLC_ANA0		0x1030
217 #define A2W_PLLD_ANA0		0x1050
218 #define A2W_PLLH_ANA0		0x1070
219 #define A2W_PLLB_ANA0		0x10f0
220 
221 #define A2W_PLL_KA_SHIFT	7
222 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
223 #define A2W_PLL_KI_SHIFT	19
224 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
225 #define A2W_PLL_KP_SHIFT	15
226 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
227 
228 #define A2W_PLLH_KA_SHIFT	19
229 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
230 #define A2W_PLLH_KI_LOW_SHIFT	22
231 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
232 #define A2W_PLLH_KI_HIGH_SHIFT	0
233 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
234 #define A2W_PLLH_KP_SHIFT	1
235 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
236 
237 #define A2W_XOSC_CTRL		0x1190
238 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
239 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
240 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
241 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
242 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
243 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
244 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
245 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
246 
247 #define A2W_PLLA_FRAC		0x1200
248 #define A2W_PLLC_FRAC		0x1220
249 #define A2W_PLLD_FRAC		0x1240
250 #define A2W_PLLH_FRAC		0x1260
251 #define A2W_PLLB_FRAC		0x12e0
252 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
253 # define A2W_PLL_FRAC_BITS		20
254 
255 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
256 #define A2W_PLL_DIV_BITS		8
257 #define A2W_PLL_DIV_SHIFT		0
258 
259 #define A2W_PLLA_DSI0		0x1300
260 #define A2W_PLLA_CORE		0x1400
261 #define A2W_PLLA_PER		0x1500
262 #define A2W_PLLA_CCP2		0x1600
263 
264 #define A2W_PLLC_CORE2		0x1320
265 #define A2W_PLLC_CORE1		0x1420
266 #define A2W_PLLC_PER		0x1520
267 #define A2W_PLLC_CORE0		0x1620
268 
269 #define A2W_PLLD_DSI0		0x1340
270 #define A2W_PLLD_CORE		0x1440
271 #define A2W_PLLD_PER		0x1540
272 #define A2W_PLLD_DSI1		0x1640
273 
274 #define A2W_PLLH_AUX		0x1360
275 #define A2W_PLLH_RCAL		0x1460
276 #define A2W_PLLH_PIX		0x1560
277 #define A2W_PLLH_STS		0x1660
278 
279 #define A2W_PLLH_CTRLR		0x1960
280 #define A2W_PLLH_FRACR		0x1a60
281 #define A2W_PLLH_AUXR		0x1b60
282 #define A2W_PLLH_RCALR		0x1c60
283 #define A2W_PLLH_PIXR		0x1d60
284 #define A2W_PLLH_STSR		0x1e60
285 
286 #define A2W_PLLB_ARM		0x13e0
287 #define A2W_PLLB_SP0		0x14e0
288 #define A2W_PLLB_SP1		0x15e0
289 #define A2W_PLLB_SP2		0x16e0
290 
291 #define LOCK_TIMEOUT_NS		100000000
292 #define BCM2835_MAX_FB_RATE	1750000000u
293 
294 #define SOC_BCM2835		BIT(0)
295 #define SOC_BCM2711		BIT(1)
296 #define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
297 
298 /*
299  * Names of clocks used within the driver that need to be replaced
300  * with an external parent's name.  This array is in the order that
301  * the clocks node in the DT references external clocks.
302  */
303 static const char *const cprman_parent_names[] = {
304 	"xosc",
305 	"dsi0_byte",
306 	"dsi0_ddr2",
307 	"dsi0_ddr",
308 	"dsi1_byte",
309 	"dsi1_ddr2",
310 	"dsi1_ddr",
311 };
312 
313 struct bcm2835_cprman {
314 	struct device *dev;
315 	void __iomem *regs;
316 	spinlock_t regs_lock; /* spinlock for all clocks */
317 
318 	/*
319 	 * Real names of cprman clock parents looked up through
320 	 * of_clk_get_parent_name(), which will be used in the
321 	 * parent_names[] arrays for clock registration.
322 	 */
323 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
324 
325 	/* Must be last */
326 	struct clk_hw_onecell_data onecell;
327 };
328 
329 struct cprman_plat_data {
330 	unsigned int soc;
331 };
332 
333 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334 {
335 	writel(CM_PASSWORD | val, cprman->regs + reg);
336 }
337 
338 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339 {
340 	return readl(cprman->regs + reg);
341 }
342 
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344  * source from many other clocks in the system.
345  */
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347 					      u32 tcnt_mux)
348 {
349 	u32 osccount = 19200; /* 1ms */
350 	u32 count;
351 	ktime_t timeout;
352 
353 	spin_lock(&cprman->regs_lock);
354 
355 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356 
357 	cprman_write(cprman, CM_TCNTCTL,
358 		     (tcnt_mux & CM_SRC_MASK) |
359 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360 
361 	cprman_write(cprman, CM_OSCCOUNT, osccount);
362 
363 	/* do a kind delay at the start */
364 	mdelay(1);
365 
366 	/* Finish off whatever is left of OSCCOUNT */
367 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368 	while (cprman_read(cprman, CM_OSCCOUNT)) {
369 		if (ktime_after(ktime_get(), timeout)) {
370 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371 			count = 0;
372 			goto out;
373 		}
374 		cpu_relax();
375 	}
376 
377 	/* Wait for BUSY to clear. */
378 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380 		if (ktime_after(ktime_get(), timeout)) {
381 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382 			count = 0;
383 			goto out;
384 		}
385 		cpu_relax();
386 	}
387 
388 	count = cprman_read(cprman, CM_TCNTCNT);
389 
390 	cprman_write(cprman, CM_TCNTCTL, 0);
391 
392 out:
393 	spin_unlock(&cprman->regs_lock);
394 
395 	return count * 1000;
396 }
397 
398 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399 				   const struct debugfs_reg32 *regs,
400 				   size_t nregs, struct dentry *dentry)
401 {
402 	struct debugfs_regset32 *regset;
403 
404 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
405 	if (!regset)
406 		return;
407 
408 	regset->regs = regs;
409 	regset->nregs = nregs;
410 	regset->base = cprman->regs + base;
411 
412 	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
413 }
414 
415 struct bcm2835_pll_data {
416 	const char *name;
417 	u32 cm_ctrl_reg;
418 	u32 a2w_ctrl_reg;
419 	u32 frac_reg;
420 	u32 ana_reg_base;
421 	u32 reference_enable_mask;
422 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
423 	u32 lock_mask;
424 	u32 flags;
425 
426 	const struct bcm2835_pll_ana_bits *ana;
427 
428 	unsigned long min_rate;
429 	unsigned long max_rate;
430 	/*
431 	 * Highest rate for the VCO before we have to use the
432 	 * pre-divide-by-2.
433 	 */
434 	unsigned long max_fb_rate;
435 };
436 
437 struct bcm2835_pll_ana_bits {
438 	u32 mask0;
439 	u32 set0;
440 	u32 mask1;
441 	u32 set1;
442 	u32 mask3;
443 	u32 set3;
444 	u32 fb_prediv_mask;
445 };
446 
447 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
448 	.mask0 = 0,
449 	.set0 = 0,
450 	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
451 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
452 	.mask3 = A2W_PLL_KA_MASK,
453 	.set3 = (2 << A2W_PLL_KA_SHIFT),
454 	.fb_prediv_mask = BIT(14),
455 };
456 
457 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
458 	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
459 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
460 	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
461 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
462 	.mask3 = 0,
463 	.set3 = 0,
464 	.fb_prediv_mask = BIT(11),
465 };
466 
467 struct bcm2835_pll_divider_data {
468 	const char *name;
469 	const char *source_pll;
470 
471 	u32 cm_reg;
472 	u32 a2w_reg;
473 
474 	u32 load_mask;
475 	u32 hold_mask;
476 	u32 fixed_divider;
477 	u32 flags;
478 };
479 
480 struct bcm2835_clock_data {
481 	const char *name;
482 
483 	const char *const *parents;
484 	int num_mux_parents;
485 
486 	/* Bitmap encoding which parents accept rate change propagation. */
487 	unsigned int set_rate_parent;
488 
489 	u32 ctl_reg;
490 	u32 div_reg;
491 
492 	/* Number of integer bits in the divider */
493 	u32 int_bits;
494 	/* Number of fractional bits in the divider */
495 	u32 frac_bits;
496 
497 	u32 flags;
498 
499 	bool is_vpu_clock;
500 	bool is_mash_clock;
501 	bool low_jitter;
502 
503 	u32 tcnt_mux;
504 };
505 
506 struct bcm2835_gate_data {
507 	const char *name;
508 	const char *parent;
509 
510 	u32 ctl_reg;
511 };
512 
513 struct bcm2835_pll {
514 	struct clk_hw hw;
515 	struct bcm2835_cprman *cprman;
516 	const struct bcm2835_pll_data *data;
517 };
518 
519 static int bcm2835_pll_is_on(struct clk_hw *hw)
520 {
521 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
522 	struct bcm2835_cprman *cprman = pll->cprman;
523 	const struct bcm2835_pll_data *data = pll->data;
524 
525 	return cprman_read(cprman, data->a2w_ctrl_reg) &
526 		A2W_PLL_CTRL_PRST_DISABLE;
527 }
528 
529 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
530 					     unsigned long parent_rate,
531 					     u32 *ndiv, u32 *fdiv)
532 {
533 	u64 div;
534 
535 	div = (u64)rate << A2W_PLL_FRAC_BITS;
536 	do_div(div, parent_rate);
537 
538 	*ndiv = div >> A2W_PLL_FRAC_BITS;
539 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
540 }
541 
542 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
543 					   u32 ndiv, u32 fdiv, u32 pdiv)
544 {
545 	u64 rate;
546 
547 	if (pdiv == 0)
548 		return 0;
549 
550 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
551 	do_div(rate, pdiv);
552 	return rate >> A2W_PLL_FRAC_BITS;
553 }
554 
555 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
556 				   unsigned long *parent_rate)
557 {
558 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
559 	const struct bcm2835_pll_data *data = pll->data;
560 	u32 ndiv, fdiv;
561 
562 	rate = clamp(rate, data->min_rate, data->max_rate);
563 
564 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
565 
566 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
567 }
568 
569 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
570 					  unsigned long parent_rate)
571 {
572 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
573 	struct bcm2835_cprman *cprman = pll->cprman;
574 	const struct bcm2835_pll_data *data = pll->data;
575 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
576 	u32 ndiv, pdiv, fdiv;
577 	bool using_prediv;
578 
579 	if (parent_rate == 0)
580 		return 0;
581 
582 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
583 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
584 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
585 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
586 		data->ana->fb_prediv_mask;
587 
588 	if (using_prediv) {
589 		ndiv *= 2;
590 		fdiv *= 2;
591 	}
592 
593 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
594 }
595 
596 static void bcm2835_pll_off(struct clk_hw *hw)
597 {
598 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
599 	struct bcm2835_cprman *cprman = pll->cprman;
600 	const struct bcm2835_pll_data *data = pll->data;
601 
602 	spin_lock(&cprman->regs_lock);
603 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
604 	cprman_write(cprman, data->a2w_ctrl_reg,
605 		     cprman_read(cprman, data->a2w_ctrl_reg) |
606 		     A2W_PLL_CTRL_PWRDN);
607 	spin_unlock(&cprman->regs_lock);
608 }
609 
610 static int bcm2835_pll_on(struct clk_hw *hw)
611 {
612 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
613 	struct bcm2835_cprman *cprman = pll->cprman;
614 	const struct bcm2835_pll_data *data = pll->data;
615 	ktime_t timeout;
616 
617 	cprman_write(cprman, data->a2w_ctrl_reg,
618 		     cprman_read(cprman, data->a2w_ctrl_reg) &
619 		     ~A2W_PLL_CTRL_PWRDN);
620 
621 	/* Take the PLL out of reset. */
622 	spin_lock(&cprman->regs_lock);
623 	cprman_write(cprman, data->cm_ctrl_reg,
624 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
625 	spin_unlock(&cprman->regs_lock);
626 
627 	/* Wait for the PLL to lock. */
628 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
629 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
630 		if (ktime_after(ktime_get(), timeout)) {
631 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
632 				clk_hw_get_name(hw));
633 			return -ETIMEDOUT;
634 		}
635 
636 		cpu_relax();
637 	}
638 
639 	cprman_write(cprman, data->a2w_ctrl_reg,
640 		     cprman_read(cprman, data->a2w_ctrl_reg) |
641 		     A2W_PLL_CTRL_PRST_DISABLE);
642 
643 	return 0;
644 }
645 
646 static void
647 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
648 {
649 	int i;
650 
651 	/*
652 	 * ANA register setup is done as a series of writes to
653 	 * ANA3-ANA0, in that order.  This lets us write all 4
654 	 * registers as a single cycle of the serdes interface (taking
655 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
656 	 * 3 individually through their partial-write registers, each
657 	 * would be their own serdes cycle.
658 	 */
659 	for (i = 3; i >= 0; i--)
660 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
661 }
662 
663 static int bcm2835_pll_set_rate(struct clk_hw *hw,
664 				unsigned long rate, unsigned long parent_rate)
665 {
666 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
667 	struct bcm2835_cprman *cprman = pll->cprman;
668 	const struct bcm2835_pll_data *data = pll->data;
669 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
670 	u32 ndiv, fdiv, a2w_ctl;
671 	u32 ana[4];
672 	int i;
673 
674 	if (rate > data->max_fb_rate) {
675 		use_fb_prediv = true;
676 		rate /= 2;
677 	} else {
678 		use_fb_prediv = false;
679 	}
680 
681 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
682 
683 	for (i = 3; i >= 0; i--)
684 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
685 
686 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
687 
688 	ana[0] &= ~data->ana->mask0;
689 	ana[0] |= data->ana->set0;
690 	ana[1] &= ~data->ana->mask1;
691 	ana[1] |= data->ana->set1;
692 	ana[3] &= ~data->ana->mask3;
693 	ana[3] |= data->ana->set3;
694 
695 	if (was_using_prediv && !use_fb_prediv) {
696 		ana[1] &= ~data->ana->fb_prediv_mask;
697 		do_ana_setup_first = true;
698 	} else if (!was_using_prediv && use_fb_prediv) {
699 		ana[1] |= data->ana->fb_prediv_mask;
700 		do_ana_setup_first = false;
701 	} else {
702 		do_ana_setup_first = true;
703 	}
704 
705 	/* Unmask the reference clock from the oscillator. */
706 	spin_lock(&cprman->regs_lock);
707 	cprman_write(cprman, A2W_XOSC_CTRL,
708 		     cprman_read(cprman, A2W_XOSC_CTRL) |
709 		     data->reference_enable_mask);
710 	spin_unlock(&cprman->regs_lock);
711 
712 	if (do_ana_setup_first)
713 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
714 
715 	/* Set the PLL multiplier from the oscillator. */
716 	cprman_write(cprman, data->frac_reg, fdiv);
717 
718 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
719 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
720 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
721 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
722 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
723 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
724 
725 	if (!do_ana_setup_first)
726 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
727 
728 	return 0;
729 }
730 
731 static void bcm2835_pll_debug_init(struct clk_hw *hw,
732 				  struct dentry *dentry)
733 {
734 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
735 	struct bcm2835_cprman *cprman = pll->cprman;
736 	const struct bcm2835_pll_data *data = pll->data;
737 	struct debugfs_reg32 *regs;
738 
739 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
740 	if (!regs)
741 		return;
742 
743 	regs[0].name = "cm_ctrl";
744 	regs[0].offset = data->cm_ctrl_reg;
745 	regs[1].name = "a2w_ctrl";
746 	regs[1].offset = data->a2w_ctrl_reg;
747 	regs[2].name = "frac";
748 	regs[2].offset = data->frac_reg;
749 	regs[3].name = "ana0";
750 	regs[3].offset = data->ana_reg_base + 0 * 4;
751 	regs[4].name = "ana1";
752 	regs[4].offset = data->ana_reg_base + 1 * 4;
753 	regs[5].name = "ana2";
754 	regs[5].offset = data->ana_reg_base + 2 * 4;
755 	regs[6].name = "ana3";
756 	regs[6].offset = data->ana_reg_base + 3 * 4;
757 
758 	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
759 }
760 
761 static const struct clk_ops bcm2835_pll_clk_ops = {
762 	.is_prepared = bcm2835_pll_is_on,
763 	.prepare = bcm2835_pll_on,
764 	.unprepare = bcm2835_pll_off,
765 	.recalc_rate = bcm2835_pll_get_rate,
766 	.set_rate = bcm2835_pll_set_rate,
767 	.round_rate = bcm2835_pll_round_rate,
768 	.debug_init = bcm2835_pll_debug_init,
769 };
770 
771 struct bcm2835_pll_divider {
772 	struct clk_divider div;
773 	struct bcm2835_cprman *cprman;
774 	const struct bcm2835_pll_divider_data *data;
775 };
776 
777 static struct bcm2835_pll_divider *
778 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
779 {
780 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
781 }
782 
783 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
784 {
785 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
786 	struct bcm2835_cprman *cprman = divider->cprman;
787 	const struct bcm2835_pll_divider_data *data = divider->data;
788 
789 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
790 }
791 
792 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
793 					   unsigned long rate,
794 					   unsigned long *parent_rate)
795 {
796 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
797 }
798 
799 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
800 						  unsigned long parent_rate)
801 {
802 	return clk_divider_ops.recalc_rate(hw, parent_rate);
803 }
804 
805 static void bcm2835_pll_divider_off(struct clk_hw *hw)
806 {
807 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
808 	struct bcm2835_cprman *cprman = divider->cprman;
809 	const struct bcm2835_pll_divider_data *data = divider->data;
810 
811 	spin_lock(&cprman->regs_lock);
812 	cprman_write(cprman, data->cm_reg,
813 		     (cprman_read(cprman, data->cm_reg) &
814 		      ~data->load_mask) | data->hold_mask);
815 	cprman_write(cprman, data->a2w_reg,
816 		     cprman_read(cprman, data->a2w_reg) |
817 		     A2W_PLL_CHANNEL_DISABLE);
818 	spin_unlock(&cprman->regs_lock);
819 }
820 
821 static int bcm2835_pll_divider_on(struct clk_hw *hw)
822 {
823 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
824 	struct bcm2835_cprman *cprman = divider->cprman;
825 	const struct bcm2835_pll_divider_data *data = divider->data;
826 
827 	spin_lock(&cprman->regs_lock);
828 	cprman_write(cprman, data->a2w_reg,
829 		     cprman_read(cprman, data->a2w_reg) &
830 		     ~A2W_PLL_CHANNEL_DISABLE);
831 
832 	cprman_write(cprman, data->cm_reg,
833 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
834 	spin_unlock(&cprman->regs_lock);
835 
836 	return 0;
837 }
838 
839 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
840 					unsigned long rate,
841 					unsigned long parent_rate)
842 {
843 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
844 	struct bcm2835_cprman *cprman = divider->cprman;
845 	const struct bcm2835_pll_divider_data *data = divider->data;
846 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
847 
848 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
849 
850 	div = min(div, max_div);
851 	if (div == max_div)
852 		div = 0;
853 
854 	cprman_write(cprman, data->a2w_reg, div);
855 	cm = cprman_read(cprman, data->cm_reg);
856 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
857 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
858 
859 	return 0;
860 }
861 
862 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
863 					   struct dentry *dentry)
864 {
865 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
866 	struct bcm2835_cprman *cprman = divider->cprman;
867 	const struct bcm2835_pll_divider_data *data = divider->data;
868 	struct debugfs_reg32 *regs;
869 
870 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
871 	if (!regs)
872 		return;
873 
874 	regs[0].name = "cm";
875 	regs[0].offset = data->cm_reg;
876 	regs[1].name = "a2w";
877 	regs[1].offset = data->a2w_reg;
878 
879 	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
880 }
881 
882 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
883 	.is_prepared = bcm2835_pll_divider_is_on,
884 	.prepare = bcm2835_pll_divider_on,
885 	.unprepare = bcm2835_pll_divider_off,
886 	.recalc_rate = bcm2835_pll_divider_get_rate,
887 	.set_rate = bcm2835_pll_divider_set_rate,
888 	.round_rate = bcm2835_pll_divider_round_rate,
889 	.debug_init = bcm2835_pll_divider_debug_init,
890 };
891 
892 /*
893  * The CM dividers do fixed-point division, so we can't use the
894  * generic integer divider code like the PLL dividers do (and we can't
895  * fake it by having some fixed shifts preceding it in the clock tree,
896  * because we'd run out of bits in a 32-bit unsigned long).
897  */
898 struct bcm2835_clock {
899 	struct clk_hw hw;
900 	struct bcm2835_cprman *cprman;
901 	const struct bcm2835_clock_data *data;
902 };
903 
904 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
905 {
906 	return container_of(hw, struct bcm2835_clock, hw);
907 }
908 
909 static int bcm2835_clock_is_on(struct clk_hw *hw)
910 {
911 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
912 	struct bcm2835_cprman *cprman = clock->cprman;
913 	const struct bcm2835_clock_data *data = clock->data;
914 
915 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
916 }
917 
918 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
919 				    unsigned long rate,
920 				    unsigned long parent_rate,
921 				    bool round_up)
922 {
923 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
924 	const struct bcm2835_clock_data *data = clock->data;
925 	u32 unused_frac_mask =
926 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
927 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
928 	u64 rem;
929 	u32 div, mindiv, maxdiv;
930 
931 	rem = do_div(temp, rate);
932 	div = temp;
933 
934 	/* Round up and mask off the unused bits */
935 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
936 		div += unused_frac_mask + 1;
937 	div &= ~unused_frac_mask;
938 
939 	/* different clamping limits apply for a mash clock */
940 	if (data->is_mash_clock) {
941 		/* clamp to min divider of 2 */
942 		mindiv = 2 << CM_DIV_FRAC_BITS;
943 		/* clamp to the highest possible integer divider */
944 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
945 	} else {
946 		/* clamp to min divider of 1 */
947 		mindiv = 1 << CM_DIV_FRAC_BITS;
948 		/* clamp to the highest possible fractional divider */
949 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
950 				 CM_DIV_FRAC_BITS - data->frac_bits);
951 	}
952 
953 	/* apply the clamping  limits */
954 	div = max_t(u32, div, mindiv);
955 	div = min_t(u32, div, maxdiv);
956 
957 	return div;
958 }
959 
960 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
961 					    unsigned long parent_rate,
962 					    u32 div)
963 {
964 	const struct bcm2835_clock_data *data = clock->data;
965 	u64 temp;
966 
967 	if (data->int_bits == 0 && data->frac_bits == 0)
968 		return parent_rate;
969 
970 	/*
971 	 * The divisor is a 12.12 fixed point field, but only some of
972 	 * the bits are populated in any given clock.
973 	 */
974 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
975 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
976 
977 	if (div == 0)
978 		return 0;
979 
980 	temp = (u64)parent_rate << data->frac_bits;
981 
982 	do_div(temp, div);
983 
984 	return temp;
985 }
986 
987 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
988 					    unsigned long parent_rate)
989 {
990 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
991 	struct bcm2835_cprman *cprman = clock->cprman;
992 	const struct bcm2835_clock_data *data = clock->data;
993 	u32 div;
994 
995 	if (data->int_bits == 0 && data->frac_bits == 0)
996 		return parent_rate;
997 
998 	div = cprman_read(cprman, data->div_reg);
999 
1000 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1001 }
1002 
1003 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1004 {
1005 	struct bcm2835_cprman *cprman = clock->cprman;
1006 	const struct bcm2835_clock_data *data = clock->data;
1007 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1008 
1009 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1010 		if (ktime_after(ktime_get(), timeout)) {
1011 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1012 				clk_hw_get_name(&clock->hw));
1013 			return;
1014 		}
1015 		cpu_relax();
1016 	}
1017 }
1018 
1019 static void bcm2835_clock_off(struct clk_hw *hw)
1020 {
1021 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1022 	struct bcm2835_cprman *cprman = clock->cprman;
1023 	const struct bcm2835_clock_data *data = clock->data;
1024 
1025 	spin_lock(&cprman->regs_lock);
1026 	cprman_write(cprman, data->ctl_reg,
1027 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1028 	spin_unlock(&cprman->regs_lock);
1029 
1030 	/* BUSY will remain high until the divider completes its cycle. */
1031 	bcm2835_clock_wait_busy(clock);
1032 }
1033 
1034 static int bcm2835_clock_on(struct clk_hw *hw)
1035 {
1036 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1037 	struct bcm2835_cprman *cprman = clock->cprman;
1038 	const struct bcm2835_clock_data *data = clock->data;
1039 
1040 	spin_lock(&cprman->regs_lock);
1041 	cprman_write(cprman, data->ctl_reg,
1042 		     cprman_read(cprman, data->ctl_reg) |
1043 		     CM_ENABLE |
1044 		     CM_GATE);
1045 	spin_unlock(&cprman->regs_lock);
1046 
1047 	/* Debug code to measure the clock once it's turned on to see
1048 	 * if it's ticking at the rate we expect.
1049 	 */
1050 	if (data->tcnt_mux && false) {
1051 		dev_info(cprman->dev,
1052 			 "clk %s: rate %ld, measure %ld\n",
1053 			 data->name,
1054 			 clk_hw_get_rate(hw),
1055 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1062 				  unsigned long rate, unsigned long parent_rate)
1063 {
1064 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1065 	struct bcm2835_cprman *cprman = clock->cprman;
1066 	const struct bcm2835_clock_data *data = clock->data;
1067 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1068 	u32 ctl;
1069 
1070 	spin_lock(&cprman->regs_lock);
1071 
1072 	/*
1073 	 * Setting up frac support
1074 	 *
1075 	 * In principle it is recommended to stop/start the clock first,
1076 	 * but as we set CLK_SET_RATE_GATE during registration of the
1077 	 * clock this requirement should be take care of by the
1078 	 * clk-framework.
1079 	 */
1080 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1081 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1082 	cprman_write(cprman, data->ctl_reg, ctl);
1083 
1084 	cprman_write(cprman, data->div_reg, div);
1085 
1086 	spin_unlock(&cprman->regs_lock);
1087 
1088 	return 0;
1089 }
1090 
1091 static bool
1092 bcm2835_clk_is_pllc(struct clk_hw *hw)
1093 {
1094 	if (!hw)
1095 		return false;
1096 
1097 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1098 }
1099 
1100 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1101 							int parent_idx,
1102 							unsigned long rate,
1103 							u32 *div,
1104 							unsigned long *prate,
1105 							unsigned long *avgrate)
1106 {
1107 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1108 	struct bcm2835_cprman *cprman = clock->cprman;
1109 	const struct bcm2835_clock_data *data = clock->data;
1110 	unsigned long best_rate = 0;
1111 	u32 curdiv, mindiv, maxdiv;
1112 	struct clk_hw *parent;
1113 
1114 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1115 
1116 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1117 		*prate = clk_hw_get_rate(parent);
1118 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1119 
1120 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1121 
1122 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1123 			unsigned long high, low;
1124 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1125 
1126 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1127 							       int_div);
1128 			int_div += CM_DIV_FRAC_MASK + 1;
1129 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1130 							      int_div);
1131 
1132 			/*
1133 			 * Return a value which is the maximum deviation
1134 			 * below the ideal rate, for use as a metric.
1135 			 */
1136 			return *avgrate - max(*avgrate - low, high - *avgrate);
1137 		}
1138 		return *avgrate;
1139 	}
1140 
1141 	if (data->frac_bits)
1142 		dev_warn(cprman->dev,
1143 			"frac bits are not used when propagating rate change");
1144 
1145 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1146 	mindiv = data->is_mash_clock ? 2 : 1;
1147 	maxdiv = BIT(data->int_bits) - 1;
1148 
1149 	/* TODO: Be smart, and only test a subset of the available divisors. */
1150 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1151 		unsigned long tmp_rate;
1152 
1153 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1154 		tmp_rate /= curdiv;
1155 		if (curdiv == mindiv ||
1156 		    (tmp_rate > best_rate && tmp_rate <= rate))
1157 			best_rate = tmp_rate;
1158 
1159 		if (best_rate == rate)
1160 			break;
1161 	}
1162 
1163 	*div = curdiv << CM_DIV_FRAC_BITS;
1164 	*prate = curdiv * best_rate;
1165 	*avgrate = best_rate;
1166 
1167 	return best_rate;
1168 }
1169 
1170 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1171 					struct clk_rate_request *req)
1172 {
1173 	struct clk_hw *parent, *best_parent = NULL;
1174 	bool current_parent_is_pllc;
1175 	unsigned long rate, best_rate = 0;
1176 	unsigned long prate, best_prate = 0;
1177 	unsigned long avgrate, best_avgrate = 0;
1178 	size_t i;
1179 	u32 div;
1180 
1181 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1182 
1183 	/*
1184 	 * Select parent clock that results in the closest but lower rate
1185 	 */
1186 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1187 		parent = clk_hw_get_parent_by_index(hw, i);
1188 		if (!parent)
1189 			continue;
1190 
1191 		/*
1192 		 * Don't choose a PLLC-derived clock as our parent
1193 		 * unless it had been manually set that way.  PLLC's
1194 		 * frequency gets adjusted by the firmware due to
1195 		 * over-temp or under-voltage conditions, without
1196 		 * prior notification to our clock consumer.
1197 		 */
1198 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1199 			continue;
1200 
1201 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1202 							  &div, &prate,
1203 							  &avgrate);
1204 		if (rate > best_rate && rate <= req->rate) {
1205 			best_parent = parent;
1206 			best_prate = prate;
1207 			best_rate = rate;
1208 			best_avgrate = avgrate;
1209 		}
1210 	}
1211 
1212 	if (!best_parent)
1213 		return -EINVAL;
1214 
1215 	req->best_parent_hw = best_parent;
1216 	req->best_parent_rate = best_prate;
1217 
1218 	req->rate = best_avgrate;
1219 
1220 	return 0;
1221 }
1222 
1223 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1224 {
1225 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1226 	struct bcm2835_cprman *cprman = clock->cprman;
1227 	const struct bcm2835_clock_data *data = clock->data;
1228 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1229 
1230 	cprman_write(cprman, data->ctl_reg, src);
1231 	return 0;
1232 }
1233 
1234 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1235 {
1236 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1237 	struct bcm2835_cprman *cprman = clock->cprman;
1238 	const struct bcm2835_clock_data *data = clock->data;
1239 	u32 src = cprman_read(cprman, data->ctl_reg);
1240 
1241 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1242 }
1243 
1244 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1245 	{
1246 		.name = "ctl",
1247 		.offset = 0,
1248 	},
1249 	{
1250 		.name = "div",
1251 		.offset = 4,
1252 	},
1253 };
1254 
1255 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1256 				    struct dentry *dentry)
1257 {
1258 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1259 	struct bcm2835_cprman *cprman = clock->cprman;
1260 	const struct bcm2835_clock_data *data = clock->data;
1261 
1262 	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1263 		bcm2835_debugfs_clock_reg32,
1264 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1265 		dentry);
1266 }
1267 
1268 static const struct clk_ops bcm2835_clock_clk_ops = {
1269 	.is_prepared = bcm2835_clock_is_on,
1270 	.prepare = bcm2835_clock_on,
1271 	.unprepare = bcm2835_clock_off,
1272 	.recalc_rate = bcm2835_clock_get_rate,
1273 	.set_rate = bcm2835_clock_set_rate,
1274 	.determine_rate = bcm2835_clock_determine_rate,
1275 	.set_parent = bcm2835_clock_set_parent,
1276 	.get_parent = bcm2835_clock_get_parent,
1277 	.debug_init = bcm2835_clock_debug_init,
1278 };
1279 
1280 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1281 {
1282 	return true;
1283 }
1284 
1285 /*
1286  * The VPU clock can never be disabled (it doesn't have an ENABLE
1287  * bit), so it gets its own set of clock ops.
1288  */
1289 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1290 	.is_prepared = bcm2835_vpu_clock_is_on,
1291 	.recalc_rate = bcm2835_clock_get_rate,
1292 	.set_rate = bcm2835_clock_set_rate,
1293 	.determine_rate = bcm2835_clock_determine_rate,
1294 	.set_parent = bcm2835_clock_set_parent,
1295 	.get_parent = bcm2835_clock_get_parent,
1296 	.debug_init = bcm2835_clock_debug_init,
1297 };
1298 
1299 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1300 					   const void *data)
1301 {
1302 	const struct bcm2835_pll_data *pll_data = data;
1303 	struct bcm2835_pll *pll;
1304 	struct clk_init_data init;
1305 	int ret;
1306 
1307 	memset(&init, 0, sizeof(init));
1308 
1309 	/* All of the PLLs derive from the external oscillator. */
1310 	init.parent_names = &cprman->real_parent_names[0];
1311 	init.num_parents = 1;
1312 	init.name = pll_data->name;
1313 	init.ops = &bcm2835_pll_clk_ops;
1314 	init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1315 
1316 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1317 	if (!pll)
1318 		return NULL;
1319 
1320 	pll->cprman = cprman;
1321 	pll->data = pll_data;
1322 	pll->hw.init = &init;
1323 
1324 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1325 	if (ret)
1326 		return NULL;
1327 	return &pll->hw;
1328 }
1329 
1330 static struct clk_hw *
1331 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1332 			     const void *data)
1333 {
1334 	const struct bcm2835_pll_divider_data *divider_data = data;
1335 	struct bcm2835_pll_divider *divider;
1336 	struct clk_init_data init;
1337 	const char *divider_name;
1338 	int ret;
1339 
1340 	if (divider_data->fixed_divider != 1) {
1341 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1342 					      "%s_prediv", divider_data->name);
1343 		if (!divider_name)
1344 			return NULL;
1345 	} else {
1346 		divider_name = divider_data->name;
1347 	}
1348 
1349 	memset(&init, 0, sizeof(init));
1350 
1351 	init.parent_names = &divider_data->source_pll;
1352 	init.num_parents = 1;
1353 	init.name = divider_name;
1354 	init.ops = &bcm2835_pll_divider_clk_ops;
1355 	init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1356 
1357 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1358 	if (!divider)
1359 		return NULL;
1360 
1361 	divider->div.reg = cprman->regs + divider_data->a2w_reg;
1362 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1363 	divider->div.width = A2W_PLL_DIV_BITS;
1364 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1365 	divider->div.lock = &cprman->regs_lock;
1366 	divider->div.hw.init = &init;
1367 	divider->div.table = NULL;
1368 
1369 	divider->cprman = cprman;
1370 	divider->data = divider_data;
1371 
1372 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1373 	if (ret)
1374 		return ERR_PTR(ret);
1375 
1376 	/*
1377 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1378 	 * is what our consumers are actually using.
1379 	 */
1380 	if (divider_data->fixed_divider != 1) {
1381 		return clk_hw_register_fixed_factor(cprman->dev,
1382 						    divider_data->name,
1383 						    divider_name,
1384 						    CLK_SET_RATE_PARENT,
1385 						    1,
1386 						    divider_data->fixed_divider);
1387 	}
1388 
1389 	return &divider->div.hw;
1390 }
1391 
1392 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1393 					     const void *data)
1394 {
1395 	const struct bcm2835_clock_data *clock_data = data;
1396 	struct bcm2835_clock *clock;
1397 	struct clk_init_data init;
1398 	const char *parents[1 << CM_SRC_BITS];
1399 	size_t i;
1400 	int ret;
1401 
1402 	/*
1403 	 * Replace our strings referencing parent clocks with the
1404 	 * actual clock-output-name of the parent.
1405 	 */
1406 	for (i = 0; i < clock_data->num_mux_parents; i++) {
1407 		parents[i] = clock_data->parents[i];
1408 
1409 		ret = match_string(cprman_parent_names,
1410 				   ARRAY_SIZE(cprman_parent_names),
1411 				   parents[i]);
1412 		if (ret >= 0)
1413 			parents[i] = cprman->real_parent_names[ret];
1414 	}
1415 
1416 	memset(&init, 0, sizeof(init));
1417 	init.parent_names = parents;
1418 	init.num_parents = clock_data->num_mux_parents;
1419 	init.name = clock_data->name;
1420 	init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1421 
1422 	/*
1423 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1424 	 * rate changes on at least of the parents.
1425 	 */
1426 	if (clock_data->set_rate_parent)
1427 		init.flags |= CLK_SET_RATE_PARENT;
1428 
1429 	if (clock_data->is_vpu_clock) {
1430 		init.ops = &bcm2835_vpu_clock_clk_ops;
1431 	} else {
1432 		init.ops = &bcm2835_clock_clk_ops;
1433 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1434 
1435 		/* If the clock wasn't actually enabled at boot, it's not
1436 		 * critical.
1437 		 */
1438 		if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1439 			init.flags &= ~CLK_IS_CRITICAL;
1440 	}
1441 
1442 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1443 	if (!clock)
1444 		return NULL;
1445 
1446 	clock->cprman = cprman;
1447 	clock->data = clock_data;
1448 	clock->hw.init = &init;
1449 
1450 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1451 	if (ret)
1452 		return ERR_PTR(ret);
1453 	return &clock->hw;
1454 }
1455 
1456 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1457 					    const void *data)
1458 {
1459 	const struct bcm2835_gate_data *gate_data = data;
1460 
1461 	return clk_hw_register_gate(cprman->dev, gate_data->name,
1462 				    gate_data->parent,
1463 				    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1464 				    cprman->regs + gate_data->ctl_reg,
1465 				    CM_GATE_BIT, 0, &cprman->regs_lock);
1466 }
1467 
1468 struct bcm2835_clk_desc {
1469 	struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1470 				       const void *data);
1471 	unsigned int supported;
1472 	const void *data;
1473 };
1474 
1475 /* assignment helper macros for different clock types */
1476 #define _REGISTER(f, s, ...) { .clk_register = f, \
1477 			       .supported = s,				\
1478 			       .data = __VA_ARGS__ }
1479 #define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1480 					  s,				\
1481 					  &(struct bcm2835_pll_data)	\
1482 					  {__VA_ARGS__})
1483 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1484 					   s,				  \
1485 					   &(struct bcm2835_pll_divider_data) \
1486 					   {__VA_ARGS__})
1487 #define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1488 					  s,				\
1489 					  &(struct bcm2835_clock_data)	\
1490 					  {__VA_ARGS__})
1491 #define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1492 					  s,				\
1493 					  &(struct bcm2835_gate_data)	\
1494 					  {__VA_ARGS__})
1495 
1496 /* parent mux arrays plus helper macros */
1497 
1498 /* main oscillator parent mux */
1499 static const char *const bcm2835_clock_osc_parents[] = {
1500 	"gnd",
1501 	"xosc",
1502 	"testdebug0",
1503 	"testdebug1"
1504 };
1505 
1506 #define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1507 	s,								\
1508 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1509 	.parents = bcm2835_clock_osc_parents,				\
1510 	__VA_ARGS__)
1511 
1512 /* main peripherial parent mux */
1513 static const char *const bcm2835_clock_per_parents[] = {
1514 	"gnd",
1515 	"xosc",
1516 	"testdebug0",
1517 	"testdebug1",
1518 	"plla_per",
1519 	"pllc_per",
1520 	"plld_per",
1521 	"pllh_aux",
1522 };
1523 
1524 #define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1525 	s,								\
1526 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1527 	.parents = bcm2835_clock_per_parents,				\
1528 	__VA_ARGS__)
1529 
1530 /*
1531  * Restrict clock sources for the PCM peripheral to the oscillator and
1532  * PLLD_PER because other source may have varying rates or be switched
1533  * off.
1534  *
1535  * Prevent other sources from being selected by replacing their names in
1536  * the list of potential parents with dummy entries (entry index is
1537  * significant).
1538  */
1539 static const char *const bcm2835_pcm_per_parents[] = {
1540 	"-",
1541 	"xosc",
1542 	"-",
1543 	"-",
1544 	"-",
1545 	"-",
1546 	"plld_per",
1547 	"-",
1548 };
1549 
1550 #define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1551 	s,								\
1552 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1553 	.parents = bcm2835_pcm_per_parents,				\
1554 	__VA_ARGS__)
1555 
1556 /* main vpu parent mux */
1557 static const char *const bcm2835_clock_vpu_parents[] = {
1558 	"gnd",
1559 	"xosc",
1560 	"testdebug0",
1561 	"testdebug1",
1562 	"plla_core",
1563 	"pllc_core0",
1564 	"plld_core",
1565 	"pllh_aux",
1566 	"pllc_core1",
1567 	"pllc_core2",
1568 };
1569 
1570 #define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1571 	s,								\
1572 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1573 	.parents = bcm2835_clock_vpu_parents,				\
1574 	__VA_ARGS__)
1575 
1576 /*
1577  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1578  * analog PHY.  The _inv variants are generated internally to cprman,
1579  * but we don't use them so they aren't hooked up.
1580  */
1581 static const char *const bcm2835_clock_dsi0_parents[] = {
1582 	"gnd",
1583 	"xosc",
1584 	"testdebug0",
1585 	"testdebug1",
1586 	"dsi0_ddr",
1587 	"dsi0_ddr_inv",
1588 	"dsi0_ddr2",
1589 	"dsi0_ddr2_inv",
1590 	"dsi0_byte",
1591 	"dsi0_byte_inv",
1592 };
1593 
1594 static const char *const bcm2835_clock_dsi1_parents[] = {
1595 	"gnd",
1596 	"xosc",
1597 	"testdebug0",
1598 	"testdebug1",
1599 	"dsi1_ddr",
1600 	"dsi1_ddr_inv",
1601 	"dsi1_ddr2",
1602 	"dsi1_ddr2_inv",
1603 	"dsi1_byte",
1604 	"dsi1_byte_inv",
1605 };
1606 
1607 #define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1608 	s,								\
1609 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1610 	.parents = bcm2835_clock_dsi0_parents,				\
1611 	__VA_ARGS__)
1612 
1613 #define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1614 	s,								\
1615 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1616 	.parents = bcm2835_clock_dsi1_parents,				\
1617 	__VA_ARGS__)
1618 
1619 /*
1620  * the real definition of all the pll, pll_dividers and clocks
1621  * these make use of the above REGISTER_* macros
1622  */
1623 static const struct bcm2835_clk_desc clk_desc_array[] = {
1624 	/* the PLL + PLL dividers */
1625 
1626 	/*
1627 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1628 	 * (Compact Camera Port 2) transmitter clock.
1629 	 *
1630 	 * It is in the PX LDO power domain, which is on when the
1631 	 * AUDIO domain is on.
1632 	 */
1633 	[BCM2835_PLLA]		= REGISTER_PLL(
1634 		SOC_ALL,
1635 		.name = "plla",
1636 		.cm_ctrl_reg = CM_PLLA,
1637 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1638 		.frac_reg = A2W_PLLA_FRAC,
1639 		.ana_reg_base = A2W_PLLA_ANA0,
1640 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1641 		.lock_mask = CM_LOCK_FLOCKA,
1642 
1643 		.ana = &bcm2835_ana_default,
1644 
1645 		.min_rate = 600000000u,
1646 		.max_rate = 2400000000u,
1647 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1648 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1649 		SOC_ALL,
1650 		.name = "plla_core",
1651 		.source_pll = "plla",
1652 		.cm_reg = CM_PLLA,
1653 		.a2w_reg = A2W_PLLA_CORE,
1654 		.load_mask = CM_PLLA_LOADCORE,
1655 		.hold_mask = CM_PLLA_HOLDCORE,
1656 		.fixed_divider = 1,
1657 		.flags = CLK_SET_RATE_PARENT),
1658 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1659 		SOC_ALL,
1660 		.name = "plla_per",
1661 		.source_pll = "plla",
1662 		.cm_reg = CM_PLLA,
1663 		.a2w_reg = A2W_PLLA_PER,
1664 		.load_mask = CM_PLLA_LOADPER,
1665 		.hold_mask = CM_PLLA_HOLDPER,
1666 		.fixed_divider = 1,
1667 		.flags = CLK_SET_RATE_PARENT),
1668 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1669 		SOC_ALL,
1670 		.name = "plla_dsi0",
1671 		.source_pll = "plla",
1672 		.cm_reg = CM_PLLA,
1673 		.a2w_reg = A2W_PLLA_DSI0,
1674 		.load_mask = CM_PLLA_LOADDSI0,
1675 		.hold_mask = CM_PLLA_HOLDDSI0,
1676 		.fixed_divider = 1),
1677 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1678 		SOC_ALL,
1679 		.name = "plla_ccp2",
1680 		.source_pll = "plla",
1681 		.cm_reg = CM_PLLA,
1682 		.a2w_reg = A2W_PLLA_CCP2,
1683 		.load_mask = CM_PLLA_LOADCCP2,
1684 		.hold_mask = CM_PLLA_HOLDCCP2,
1685 		.fixed_divider = 1,
1686 		.flags = CLK_SET_RATE_PARENT),
1687 
1688 	/* PLLB is used for the ARM's clock. */
1689 	[BCM2835_PLLB]		= REGISTER_PLL(
1690 		SOC_ALL,
1691 		.name = "pllb",
1692 		.cm_ctrl_reg = CM_PLLB,
1693 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1694 		.frac_reg = A2W_PLLB_FRAC,
1695 		.ana_reg_base = A2W_PLLB_ANA0,
1696 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1697 		.lock_mask = CM_LOCK_FLOCKB,
1698 
1699 		.ana = &bcm2835_ana_default,
1700 
1701 		.min_rate = 600000000u,
1702 		.max_rate = 3000000000u,
1703 		.max_fb_rate = BCM2835_MAX_FB_RATE,
1704 		.flags = CLK_GET_RATE_NOCACHE),
1705 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1706 		SOC_ALL,
1707 		.name = "pllb_arm",
1708 		.source_pll = "pllb",
1709 		.cm_reg = CM_PLLB,
1710 		.a2w_reg = A2W_PLLB_ARM,
1711 		.load_mask = CM_PLLB_LOADARM,
1712 		.hold_mask = CM_PLLB_HOLDARM,
1713 		.fixed_divider = 1,
1714 		.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1715 
1716 	/*
1717 	 * PLLC is the core PLL, used to drive the core VPU clock.
1718 	 *
1719 	 * It is in the PX LDO power domain, which is on when the
1720 	 * AUDIO domain is on.
1721 	 */
1722 	[BCM2835_PLLC]		= REGISTER_PLL(
1723 		SOC_ALL,
1724 		.name = "pllc",
1725 		.cm_ctrl_reg = CM_PLLC,
1726 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1727 		.frac_reg = A2W_PLLC_FRAC,
1728 		.ana_reg_base = A2W_PLLC_ANA0,
1729 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1730 		.lock_mask = CM_LOCK_FLOCKC,
1731 
1732 		.ana = &bcm2835_ana_default,
1733 
1734 		.min_rate = 600000000u,
1735 		.max_rate = 3000000000u,
1736 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1737 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1738 		SOC_ALL,
1739 		.name = "pllc_core0",
1740 		.source_pll = "pllc",
1741 		.cm_reg = CM_PLLC,
1742 		.a2w_reg = A2W_PLLC_CORE0,
1743 		.load_mask = CM_PLLC_LOADCORE0,
1744 		.hold_mask = CM_PLLC_HOLDCORE0,
1745 		.fixed_divider = 1,
1746 		.flags = CLK_SET_RATE_PARENT),
1747 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1748 		SOC_ALL,
1749 		.name = "pllc_core1",
1750 		.source_pll = "pllc",
1751 		.cm_reg = CM_PLLC,
1752 		.a2w_reg = A2W_PLLC_CORE1,
1753 		.load_mask = CM_PLLC_LOADCORE1,
1754 		.hold_mask = CM_PLLC_HOLDCORE1,
1755 		.fixed_divider = 1,
1756 		.flags = CLK_SET_RATE_PARENT),
1757 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1758 		SOC_ALL,
1759 		.name = "pllc_core2",
1760 		.source_pll = "pllc",
1761 		.cm_reg = CM_PLLC,
1762 		.a2w_reg = A2W_PLLC_CORE2,
1763 		.load_mask = CM_PLLC_LOADCORE2,
1764 		.hold_mask = CM_PLLC_HOLDCORE2,
1765 		.fixed_divider = 1,
1766 		.flags = CLK_SET_RATE_PARENT),
1767 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1768 		SOC_ALL,
1769 		.name = "pllc_per",
1770 		.source_pll = "pllc",
1771 		.cm_reg = CM_PLLC,
1772 		.a2w_reg = A2W_PLLC_PER,
1773 		.load_mask = CM_PLLC_LOADPER,
1774 		.hold_mask = CM_PLLC_HOLDPER,
1775 		.fixed_divider = 1,
1776 		.flags = CLK_SET_RATE_PARENT),
1777 
1778 	/*
1779 	 * PLLD is the display PLL, used to drive DSI display panels.
1780 	 *
1781 	 * It is in the PX LDO power domain, which is on when the
1782 	 * AUDIO domain is on.
1783 	 */
1784 	[BCM2835_PLLD]		= REGISTER_PLL(
1785 		SOC_ALL,
1786 		.name = "plld",
1787 		.cm_ctrl_reg = CM_PLLD,
1788 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1789 		.frac_reg = A2W_PLLD_FRAC,
1790 		.ana_reg_base = A2W_PLLD_ANA0,
1791 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1792 		.lock_mask = CM_LOCK_FLOCKD,
1793 
1794 		.ana = &bcm2835_ana_default,
1795 
1796 		.min_rate = 600000000u,
1797 		.max_rate = 2400000000u,
1798 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1799 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1800 		SOC_ALL,
1801 		.name = "plld_core",
1802 		.source_pll = "plld",
1803 		.cm_reg = CM_PLLD,
1804 		.a2w_reg = A2W_PLLD_CORE,
1805 		.load_mask = CM_PLLD_LOADCORE,
1806 		.hold_mask = CM_PLLD_HOLDCORE,
1807 		.fixed_divider = 1,
1808 		.flags = CLK_SET_RATE_PARENT),
1809 	/*
1810 	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1811 	 * Otherwise this could cause firmware lookups. That's why we mark
1812 	 * it as critical.
1813 	 */
1814 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1815 		SOC_ALL,
1816 		.name = "plld_per",
1817 		.source_pll = "plld",
1818 		.cm_reg = CM_PLLD,
1819 		.a2w_reg = A2W_PLLD_PER,
1820 		.load_mask = CM_PLLD_LOADPER,
1821 		.hold_mask = CM_PLLD_HOLDPER,
1822 		.fixed_divider = 1,
1823 		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1824 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1825 		SOC_ALL,
1826 		.name = "plld_dsi0",
1827 		.source_pll = "plld",
1828 		.cm_reg = CM_PLLD,
1829 		.a2w_reg = A2W_PLLD_DSI0,
1830 		.load_mask = CM_PLLD_LOADDSI0,
1831 		.hold_mask = CM_PLLD_HOLDDSI0,
1832 		.fixed_divider = 1),
1833 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1834 		SOC_ALL,
1835 		.name = "plld_dsi1",
1836 		.source_pll = "plld",
1837 		.cm_reg = CM_PLLD,
1838 		.a2w_reg = A2W_PLLD_DSI1,
1839 		.load_mask = CM_PLLD_LOADDSI1,
1840 		.hold_mask = CM_PLLD_HOLDDSI1,
1841 		.fixed_divider = 1),
1842 
1843 	/*
1844 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1845 	 * TV encoder.
1846 	 *
1847 	 * It is in the HDMI power domain.
1848 	 */
1849 	[BCM2835_PLLH]		= REGISTER_PLL(
1850 		SOC_BCM2835,
1851 		"pllh",
1852 		.cm_ctrl_reg = CM_PLLH,
1853 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1854 		.frac_reg = A2W_PLLH_FRAC,
1855 		.ana_reg_base = A2W_PLLH_ANA0,
1856 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1857 		.lock_mask = CM_LOCK_FLOCKH,
1858 
1859 		.ana = &bcm2835_ana_pllh,
1860 
1861 		.min_rate = 600000000u,
1862 		.max_rate = 3000000000u,
1863 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1864 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1865 		SOC_BCM2835,
1866 		.name = "pllh_rcal",
1867 		.source_pll = "pllh",
1868 		.cm_reg = CM_PLLH,
1869 		.a2w_reg = A2W_PLLH_RCAL,
1870 		.load_mask = CM_PLLH_LOADRCAL,
1871 		.hold_mask = 0,
1872 		.fixed_divider = 10,
1873 		.flags = CLK_SET_RATE_PARENT),
1874 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1875 		SOC_BCM2835,
1876 		.name = "pllh_aux",
1877 		.source_pll = "pllh",
1878 		.cm_reg = CM_PLLH,
1879 		.a2w_reg = A2W_PLLH_AUX,
1880 		.load_mask = CM_PLLH_LOADAUX,
1881 		.hold_mask = 0,
1882 		.fixed_divider = 1,
1883 		.flags = CLK_SET_RATE_PARENT),
1884 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1885 		SOC_BCM2835,
1886 		.name = "pllh_pix",
1887 		.source_pll = "pllh",
1888 		.cm_reg = CM_PLLH,
1889 		.a2w_reg = A2W_PLLH_PIX,
1890 		.load_mask = CM_PLLH_LOADPIX,
1891 		.hold_mask = 0,
1892 		.fixed_divider = 10,
1893 		.flags = CLK_SET_RATE_PARENT),
1894 
1895 	/* the clocks */
1896 
1897 	/* clocks with oscillator parent mux */
1898 
1899 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1900 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1901 		SOC_ALL,
1902 		.name = "otp",
1903 		.ctl_reg = CM_OTPCTL,
1904 		.div_reg = CM_OTPDIV,
1905 		.int_bits = 4,
1906 		.frac_bits = 0,
1907 		.tcnt_mux = 6),
1908 	/*
1909 	 * Used for a 1Mhz clock for the system clocksource, and also used
1910 	 * bythe watchdog timer and the camera pulse generator.
1911 	 */
1912 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1913 		SOC_ALL,
1914 		.name = "timer",
1915 		.ctl_reg = CM_TIMERCTL,
1916 		.div_reg = CM_TIMERDIV,
1917 		.int_bits = 6,
1918 		.frac_bits = 12),
1919 	/*
1920 	 * Clock for the temperature sensor.
1921 	 * Generally run at 2Mhz, max 5Mhz.
1922 	 */
1923 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1924 		SOC_ALL,
1925 		.name = "tsens",
1926 		.ctl_reg = CM_TSENSCTL,
1927 		.div_reg = CM_TSENSDIV,
1928 		.int_bits = 5,
1929 		.frac_bits = 0),
1930 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1931 		SOC_ALL,
1932 		.name = "tec",
1933 		.ctl_reg = CM_TECCTL,
1934 		.div_reg = CM_TECDIV,
1935 		.int_bits = 6,
1936 		.frac_bits = 0),
1937 
1938 	/* clocks with vpu parent mux */
1939 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1940 		SOC_ALL,
1941 		.name = "h264",
1942 		.ctl_reg = CM_H264CTL,
1943 		.div_reg = CM_H264DIV,
1944 		.int_bits = 4,
1945 		.frac_bits = 8,
1946 		.tcnt_mux = 1),
1947 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1948 		SOC_ALL,
1949 		.name = "isp",
1950 		.ctl_reg = CM_ISPCTL,
1951 		.div_reg = CM_ISPDIV,
1952 		.int_bits = 4,
1953 		.frac_bits = 8,
1954 		.tcnt_mux = 2),
1955 
1956 	/*
1957 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1958 	 * in the SDRAM controller can't be used.
1959 	 */
1960 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1961 		SOC_ALL,
1962 		.name = "sdram",
1963 		.ctl_reg = CM_SDCCTL,
1964 		.div_reg = CM_SDCDIV,
1965 		.int_bits = 6,
1966 		.frac_bits = 0,
1967 		.tcnt_mux = 3),
1968 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1969 		SOC_ALL,
1970 		.name = "v3d",
1971 		.ctl_reg = CM_V3DCTL,
1972 		.div_reg = CM_V3DDIV,
1973 		.int_bits = 4,
1974 		.frac_bits = 8,
1975 		.tcnt_mux = 4),
1976 	/*
1977 	 * VPU clock.  This doesn't have an enable bit, since it drives
1978 	 * the bus for everything else, and is special so it doesn't need
1979 	 * to be gated for rate changes.  It is also known as "clk_audio"
1980 	 * in various hardware documentation.
1981 	 */
1982 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1983 		SOC_ALL,
1984 		.name = "vpu",
1985 		.ctl_reg = CM_VPUCTL,
1986 		.div_reg = CM_VPUDIV,
1987 		.int_bits = 12,
1988 		.frac_bits = 8,
1989 		.flags = CLK_IS_CRITICAL,
1990 		.is_vpu_clock = true,
1991 		.tcnt_mux = 5),
1992 
1993 	/* clocks with per parent mux */
1994 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1995 		SOC_ALL,
1996 		.name = "aveo",
1997 		.ctl_reg = CM_AVEOCTL,
1998 		.div_reg = CM_AVEODIV,
1999 		.int_bits = 4,
2000 		.frac_bits = 0,
2001 		.tcnt_mux = 38),
2002 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
2003 		SOC_ALL,
2004 		.name = "cam0",
2005 		.ctl_reg = CM_CAM0CTL,
2006 		.div_reg = CM_CAM0DIV,
2007 		.int_bits = 4,
2008 		.frac_bits = 8,
2009 		.tcnt_mux = 14),
2010 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
2011 		SOC_ALL,
2012 		.name = "cam1",
2013 		.ctl_reg = CM_CAM1CTL,
2014 		.div_reg = CM_CAM1DIV,
2015 		.int_bits = 4,
2016 		.frac_bits = 8,
2017 		.tcnt_mux = 15),
2018 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
2019 		SOC_ALL,
2020 		.name = "dft",
2021 		.ctl_reg = CM_DFTCTL,
2022 		.div_reg = CM_DFTDIV,
2023 		.int_bits = 5,
2024 		.frac_bits = 0),
2025 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
2026 		SOC_ALL,
2027 		.name = "dpi",
2028 		.ctl_reg = CM_DPICTL,
2029 		.div_reg = CM_DPIDIV,
2030 		.int_bits = 4,
2031 		.frac_bits = 8,
2032 		.tcnt_mux = 17),
2033 
2034 	/* Arasan EMMC clock */
2035 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2036 		SOC_ALL,
2037 		.name = "emmc",
2038 		.ctl_reg = CM_EMMCCTL,
2039 		.div_reg = CM_EMMCDIV,
2040 		.int_bits = 4,
2041 		.frac_bits = 8,
2042 		.tcnt_mux = 39),
2043 
2044 	/* EMMC2 clock (only available for BCM2711) */
2045 	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2046 		SOC_BCM2711,
2047 		.name = "emmc2",
2048 		.ctl_reg = CM_EMMC2CTL,
2049 		.div_reg = CM_EMMC2DIV,
2050 		.int_bits = 4,
2051 		.frac_bits = 8,
2052 		.tcnt_mux = 42),
2053 
2054 	/* General purpose (GPIO) clocks */
2055 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2056 		SOC_ALL,
2057 		.name = "gp0",
2058 		.ctl_reg = CM_GP0CTL,
2059 		.div_reg = CM_GP0DIV,
2060 		.int_bits = 12,
2061 		.frac_bits = 12,
2062 		.is_mash_clock = true,
2063 		.tcnt_mux = 20),
2064 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2065 		SOC_ALL,
2066 		.name = "gp1",
2067 		.ctl_reg = CM_GP1CTL,
2068 		.div_reg = CM_GP1DIV,
2069 		.int_bits = 12,
2070 		.frac_bits = 12,
2071 		.flags = CLK_IS_CRITICAL,
2072 		.is_mash_clock = true,
2073 		.tcnt_mux = 21),
2074 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2075 		SOC_ALL,
2076 		.name = "gp2",
2077 		.ctl_reg = CM_GP2CTL,
2078 		.div_reg = CM_GP2DIV,
2079 		.int_bits = 12,
2080 		.frac_bits = 12,
2081 		.flags = CLK_IS_CRITICAL),
2082 
2083 	/* HDMI state machine */
2084 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2085 		SOC_ALL,
2086 		.name = "hsm",
2087 		.ctl_reg = CM_HSMCTL,
2088 		.div_reg = CM_HSMDIV,
2089 		.int_bits = 4,
2090 		.frac_bits = 8,
2091 		.tcnt_mux = 22),
2092 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2093 		SOC_ALL,
2094 		.name = "pcm",
2095 		.ctl_reg = CM_PCMCTL,
2096 		.div_reg = CM_PCMDIV,
2097 		.int_bits = 12,
2098 		.frac_bits = 12,
2099 		.is_mash_clock = true,
2100 		.low_jitter = true,
2101 		.tcnt_mux = 23),
2102 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2103 		SOC_ALL,
2104 		.name = "pwm",
2105 		.ctl_reg = CM_PWMCTL,
2106 		.div_reg = CM_PWMDIV,
2107 		.int_bits = 12,
2108 		.frac_bits = 12,
2109 		.is_mash_clock = true,
2110 		.tcnt_mux = 24),
2111 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2112 		SOC_ALL,
2113 		.name = "slim",
2114 		.ctl_reg = CM_SLIMCTL,
2115 		.div_reg = CM_SLIMDIV,
2116 		.int_bits = 12,
2117 		.frac_bits = 12,
2118 		.is_mash_clock = true,
2119 		.tcnt_mux = 25),
2120 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2121 		SOC_ALL,
2122 		.name = "smi",
2123 		.ctl_reg = CM_SMICTL,
2124 		.div_reg = CM_SMIDIV,
2125 		.int_bits = 4,
2126 		.frac_bits = 8,
2127 		.tcnt_mux = 27),
2128 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2129 		SOC_ALL,
2130 		.name = "uart",
2131 		.ctl_reg = CM_UARTCTL,
2132 		.div_reg = CM_UARTDIV,
2133 		.int_bits = 10,
2134 		.frac_bits = 12,
2135 		.tcnt_mux = 28),
2136 
2137 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2138 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2139 		SOC_ALL,
2140 		.name = "vec",
2141 		.ctl_reg = CM_VECCTL,
2142 		.div_reg = CM_VECDIV,
2143 		.int_bits = 4,
2144 		.frac_bits = 0,
2145 		/*
2146 		 * Allow rate change propagation only on PLLH_AUX which is
2147 		 * assigned index 7 in the parent array.
2148 		 */
2149 		.set_rate_parent = BIT(7),
2150 		.tcnt_mux = 29),
2151 
2152 	/* dsi clocks */
2153 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2154 		SOC_ALL,
2155 		.name = "dsi0e",
2156 		.ctl_reg = CM_DSI0ECTL,
2157 		.div_reg = CM_DSI0EDIV,
2158 		.int_bits = 4,
2159 		.frac_bits = 8,
2160 		.tcnt_mux = 18),
2161 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2162 		SOC_ALL,
2163 		.name = "dsi1e",
2164 		.ctl_reg = CM_DSI1ECTL,
2165 		.div_reg = CM_DSI1EDIV,
2166 		.int_bits = 4,
2167 		.frac_bits = 8,
2168 		.tcnt_mux = 19),
2169 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2170 		SOC_ALL,
2171 		.name = "dsi0p",
2172 		.ctl_reg = CM_DSI0PCTL,
2173 		.div_reg = CM_DSI0PDIV,
2174 		.int_bits = 0,
2175 		.frac_bits = 0,
2176 		.tcnt_mux = 12),
2177 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2178 		SOC_ALL,
2179 		.name = "dsi1p",
2180 		.ctl_reg = CM_DSI1PCTL,
2181 		.div_reg = CM_DSI1PDIV,
2182 		.int_bits = 0,
2183 		.frac_bits = 0,
2184 		.tcnt_mux = 13),
2185 
2186 	/* the gates */
2187 
2188 	/*
2189 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2190 	 * you have the debug bit set in the power manager, which we
2191 	 * don't bother exposing) are individual gates off of the
2192 	 * non-stop vpu clock.
2193 	 */
2194 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2195 		SOC_ALL,
2196 		.name = "peri_image",
2197 		.parent = "vpu",
2198 		.ctl_reg = CM_PERIICTL),
2199 };
2200 
2201 /*
2202  * Permanently take a reference on the parent of the SDRAM clock.
2203  *
2204  * While the SDRAM is being driven by its dedicated PLL most of the
2205  * time, there is a little loop running in the firmware that
2206  * periodically switches the SDRAM to using our CM clock to do PVT
2207  * recalibration, with the assumption that the previously configured
2208  * SDRAM parent is still enabled and running.
2209  */
2210 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2211 {
2212 	struct clk *parent = clk_get_parent(sdc);
2213 
2214 	if (IS_ERR(parent))
2215 		return PTR_ERR(parent);
2216 
2217 	return clk_prepare_enable(parent);
2218 }
2219 
2220 static int bcm2835_clk_probe(struct platform_device *pdev)
2221 {
2222 	struct device *dev = &pdev->dev;
2223 	struct clk_hw **hws;
2224 	struct bcm2835_cprman *cprman;
2225 	const struct bcm2835_clk_desc *desc;
2226 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2227 	const struct cprman_plat_data *pdata;
2228 	size_t i;
2229 	int ret;
2230 
2231 	pdata = of_device_get_match_data(&pdev->dev);
2232 	if (!pdata)
2233 		return -ENODEV;
2234 
2235 	cprman = devm_kzalloc(dev,
2236 			      struct_size(cprman, onecell.hws, asize),
2237 			      GFP_KERNEL);
2238 	if (!cprman)
2239 		return -ENOMEM;
2240 
2241 	spin_lock_init(&cprman->regs_lock);
2242 	cprman->dev = dev;
2243 	cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2244 	if (IS_ERR(cprman->regs))
2245 		return PTR_ERR(cprman->regs);
2246 
2247 	memcpy(cprman->real_parent_names, cprman_parent_names,
2248 	       sizeof(cprman_parent_names));
2249 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2250 			   ARRAY_SIZE(cprman_parent_names));
2251 
2252 	/*
2253 	 * Make sure the external oscillator has been registered.
2254 	 *
2255 	 * The other (DSI) clocks are not present on older device
2256 	 * trees, which we still need to support for backwards
2257 	 * compatibility.
2258 	 */
2259 	if (!cprman->real_parent_names[0])
2260 		return -ENODEV;
2261 
2262 	platform_set_drvdata(pdev, cprman);
2263 
2264 	cprman->onecell.num = asize;
2265 	hws = cprman->onecell.hws;
2266 
2267 	for (i = 0; i < asize; i++) {
2268 		desc = &clk_desc_array[i];
2269 		if (desc->clk_register && desc->data &&
2270 		    (desc->supported & pdata->soc)) {
2271 			hws[i] = desc->clk_register(cprman, desc->data);
2272 		}
2273 	}
2274 
2275 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2276 	if (ret)
2277 		return ret;
2278 
2279 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2280 				      &cprman->onecell);
2281 }
2282 
2283 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2284 	.soc = SOC_BCM2835,
2285 };
2286 
2287 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2288 	.soc = SOC_BCM2711,
2289 };
2290 
2291 static const struct of_device_id bcm2835_clk_of_match[] = {
2292 	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2293 	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2294 	{}
2295 };
2296 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2297 
2298 static struct platform_driver bcm2835_clk_driver = {
2299 	.driver = {
2300 		.name = "bcm2835-clk",
2301 		.of_match_table = bcm2835_clk_of_match,
2302 	},
2303 	.probe          = bcm2835_clk_probe,
2304 };
2305 
2306 builtin_platform_driver(bcm2835_clk_driver);
2307 
2308 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2309 MODULE_DESCRIPTION("BCM2835 clock driver");
2310 MODULE_LICENSE("GPL");
2311