xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6 
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26 
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/module.h>
34 #include <linux/of.h>
35 #include <linux/platform_device.h>
36 #include <linux/slab.h>
37 #include <dt-bindings/clock/bcm2835.h>
38 
39 #define CM_PASSWORD		0x5a000000
40 
41 #define CM_GNRICCTL		0x000
42 #define CM_GNRICDIV		0x004
43 # define CM_DIV_FRAC_BITS	12
44 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
45 
46 #define CM_VPUCTL		0x008
47 #define CM_VPUDIV		0x00c
48 #define CM_SYSCTL		0x010
49 #define CM_SYSDIV		0x014
50 #define CM_PERIACTL		0x018
51 #define CM_PERIADIV		0x01c
52 #define CM_PERIICTL		0x020
53 #define CM_PERIIDIV		0x024
54 #define CM_H264CTL		0x028
55 #define CM_H264DIV		0x02c
56 #define CM_ISPCTL		0x030
57 #define CM_ISPDIV		0x034
58 #define CM_V3DCTL		0x038
59 #define CM_V3DDIV		0x03c
60 #define CM_CAM0CTL		0x040
61 #define CM_CAM0DIV		0x044
62 #define CM_CAM1CTL		0x048
63 #define CM_CAM1DIV		0x04c
64 #define CM_CCP2CTL		0x050
65 #define CM_CCP2DIV		0x054
66 #define CM_DSI0ECTL		0x058
67 #define CM_DSI0EDIV		0x05c
68 #define CM_DSI0PCTL		0x060
69 #define CM_DSI0PDIV		0x064
70 #define CM_DPICTL		0x068
71 #define CM_DPIDIV		0x06c
72 #define CM_GP0CTL		0x070
73 #define CM_GP0DIV		0x074
74 #define CM_GP1CTL		0x078
75 #define CM_GP1DIV		0x07c
76 #define CM_GP2CTL		0x080
77 #define CM_GP2DIV		0x084
78 #define CM_HSMCTL		0x088
79 #define CM_HSMDIV		0x08c
80 #define CM_OTPCTL		0x090
81 #define CM_OTPDIV		0x094
82 #define CM_PCMCTL		0x098
83 #define CM_PCMDIV		0x09c
84 #define CM_PWMCTL		0x0a0
85 #define CM_PWMDIV		0x0a4
86 #define CM_SLIMCTL		0x0a8
87 #define CM_SLIMDIV		0x0ac
88 #define CM_SMICTL		0x0b0
89 #define CM_SMIDIV		0x0b4
90 /* no definition for 0x0b8  and 0x0bc */
91 #define CM_TCNTCTL		0x0c0
92 # define CM_TCNT_SRC1_SHIFT		12
93 #define CM_TCNTCNT		0x0c4
94 #define CM_TECCTL		0x0c8
95 #define CM_TECDIV		0x0cc
96 #define CM_TD0CTL		0x0d0
97 #define CM_TD0DIV		0x0d4
98 #define CM_TD1CTL		0x0d8
99 #define CM_TD1DIV		0x0dc
100 #define CM_TSENSCTL		0x0e0
101 #define CM_TSENSDIV		0x0e4
102 #define CM_TIMERCTL		0x0e8
103 #define CM_TIMERDIV		0x0ec
104 #define CM_UARTCTL		0x0f0
105 #define CM_UARTDIV		0x0f4
106 #define CM_VECCTL		0x0f8
107 #define CM_VECDIV		0x0fc
108 #define CM_PULSECTL		0x190
109 #define CM_PULSEDIV		0x194
110 #define CM_SDCCTL		0x1a8
111 #define CM_SDCDIV		0x1ac
112 #define CM_ARMCTL		0x1b0
113 #define CM_AVEOCTL		0x1b8
114 #define CM_AVEODIV		0x1bc
115 #define CM_EMMCCTL		0x1c0
116 #define CM_EMMCDIV		0x1c4
117 
118 /* General bits for the CM_*CTL regs */
119 # define CM_ENABLE			BIT(4)
120 # define CM_KILL			BIT(5)
121 # define CM_GATE_BIT			6
122 # define CM_GATE			BIT(CM_GATE_BIT)
123 # define CM_BUSY			BIT(7)
124 # define CM_BUSYD			BIT(8)
125 # define CM_FRAC			BIT(9)
126 # define CM_SRC_SHIFT			0
127 # define CM_SRC_BITS			4
128 # define CM_SRC_MASK			0xf
129 # define CM_SRC_GND			0
130 # define CM_SRC_OSC			1
131 # define CM_SRC_TESTDEBUG0		2
132 # define CM_SRC_TESTDEBUG1		3
133 # define CM_SRC_PLLA_CORE		4
134 # define CM_SRC_PLLA_PER		4
135 # define CM_SRC_PLLC_CORE0		5
136 # define CM_SRC_PLLC_PER		5
137 # define CM_SRC_PLLC_CORE1		8
138 # define CM_SRC_PLLD_CORE		6
139 # define CM_SRC_PLLD_PER		6
140 # define CM_SRC_PLLH_AUX		7
141 # define CM_SRC_PLLC_CORE1		8
142 # define CM_SRC_PLLC_CORE2		9
143 
144 #define CM_OSCCOUNT		0x100
145 
146 #define CM_PLLA			0x104
147 # define CM_PLL_ANARST			BIT(8)
148 # define CM_PLLA_HOLDPER		BIT(7)
149 # define CM_PLLA_LOADPER		BIT(6)
150 # define CM_PLLA_HOLDCORE		BIT(5)
151 # define CM_PLLA_LOADCORE		BIT(4)
152 # define CM_PLLA_HOLDCCP2		BIT(3)
153 # define CM_PLLA_LOADCCP2		BIT(2)
154 # define CM_PLLA_HOLDDSI0		BIT(1)
155 # define CM_PLLA_LOADDSI0		BIT(0)
156 
157 #define CM_PLLC			0x108
158 # define CM_PLLC_HOLDPER		BIT(7)
159 # define CM_PLLC_LOADPER		BIT(6)
160 # define CM_PLLC_HOLDCORE2		BIT(5)
161 # define CM_PLLC_LOADCORE2		BIT(4)
162 # define CM_PLLC_HOLDCORE1		BIT(3)
163 # define CM_PLLC_LOADCORE1		BIT(2)
164 # define CM_PLLC_HOLDCORE0		BIT(1)
165 # define CM_PLLC_LOADCORE0		BIT(0)
166 
167 #define CM_PLLD			0x10c
168 # define CM_PLLD_HOLDPER		BIT(7)
169 # define CM_PLLD_LOADPER		BIT(6)
170 # define CM_PLLD_HOLDCORE		BIT(5)
171 # define CM_PLLD_LOADCORE		BIT(4)
172 # define CM_PLLD_HOLDDSI1		BIT(3)
173 # define CM_PLLD_LOADDSI1		BIT(2)
174 # define CM_PLLD_HOLDDSI0		BIT(1)
175 # define CM_PLLD_LOADDSI0		BIT(0)
176 
177 #define CM_PLLH			0x110
178 # define CM_PLLH_LOADRCAL		BIT(2)
179 # define CM_PLLH_LOADAUX		BIT(1)
180 # define CM_PLLH_LOADPIX		BIT(0)
181 
182 #define CM_LOCK			0x114
183 # define CM_LOCK_FLOCKH			BIT(12)
184 # define CM_LOCK_FLOCKD			BIT(11)
185 # define CM_LOCK_FLOCKC			BIT(10)
186 # define CM_LOCK_FLOCKB			BIT(9)
187 # define CM_LOCK_FLOCKA			BIT(8)
188 
189 #define CM_EVENT		0x118
190 #define CM_DSI1ECTL		0x158
191 #define CM_DSI1EDIV		0x15c
192 #define CM_DSI1PCTL		0x160
193 #define CM_DSI1PDIV		0x164
194 #define CM_DFTCTL		0x168
195 #define CM_DFTDIV		0x16c
196 
197 #define CM_PLLB			0x170
198 # define CM_PLLB_HOLDARM		BIT(1)
199 # define CM_PLLB_LOADARM		BIT(0)
200 
201 #define A2W_PLLA_CTRL		0x1100
202 #define A2W_PLLC_CTRL		0x1120
203 #define A2W_PLLD_CTRL		0x1140
204 #define A2W_PLLH_CTRL		0x1160
205 #define A2W_PLLB_CTRL		0x11e0
206 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
207 # define A2W_PLL_CTRL_PWRDN		BIT(16)
208 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
209 # define A2W_PLL_CTRL_PDIV_SHIFT	12
210 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
211 # define A2W_PLL_CTRL_NDIV_SHIFT	0
212 
213 #define A2W_PLLA_ANA0		0x1010
214 #define A2W_PLLC_ANA0		0x1030
215 #define A2W_PLLD_ANA0		0x1050
216 #define A2W_PLLH_ANA0		0x1070
217 #define A2W_PLLB_ANA0		0x10f0
218 
219 #define A2W_PLL_KA_SHIFT	7
220 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
221 #define A2W_PLL_KI_SHIFT	19
222 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
223 #define A2W_PLL_KP_SHIFT	15
224 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
225 
226 #define A2W_PLLH_KA_SHIFT	19
227 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
228 #define A2W_PLLH_KI_LOW_SHIFT	22
229 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
230 #define A2W_PLLH_KI_HIGH_SHIFT	0
231 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
232 #define A2W_PLLH_KP_SHIFT	1
233 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
234 
235 #define A2W_XOSC_CTRL		0x1190
236 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
237 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
238 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
239 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
240 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
241 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
242 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
243 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
244 
245 #define A2W_PLLA_FRAC		0x1200
246 #define A2W_PLLC_FRAC		0x1220
247 #define A2W_PLLD_FRAC		0x1240
248 #define A2W_PLLH_FRAC		0x1260
249 #define A2W_PLLB_FRAC		0x12e0
250 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
251 # define A2W_PLL_FRAC_BITS		20
252 
253 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
254 #define A2W_PLL_DIV_BITS		8
255 #define A2W_PLL_DIV_SHIFT		0
256 
257 #define A2W_PLLA_DSI0		0x1300
258 #define A2W_PLLA_CORE		0x1400
259 #define A2W_PLLA_PER		0x1500
260 #define A2W_PLLA_CCP2		0x1600
261 
262 #define A2W_PLLC_CORE2		0x1320
263 #define A2W_PLLC_CORE1		0x1420
264 #define A2W_PLLC_PER		0x1520
265 #define A2W_PLLC_CORE0		0x1620
266 
267 #define A2W_PLLD_DSI0		0x1340
268 #define A2W_PLLD_CORE		0x1440
269 #define A2W_PLLD_PER		0x1540
270 #define A2W_PLLD_DSI1		0x1640
271 
272 #define A2W_PLLH_AUX		0x1360
273 #define A2W_PLLH_RCAL		0x1460
274 #define A2W_PLLH_PIX		0x1560
275 #define A2W_PLLH_STS		0x1660
276 
277 #define A2W_PLLH_CTRLR		0x1960
278 #define A2W_PLLH_FRACR		0x1a60
279 #define A2W_PLLH_AUXR		0x1b60
280 #define A2W_PLLH_RCALR		0x1c60
281 #define A2W_PLLH_PIXR		0x1d60
282 #define A2W_PLLH_STSR		0x1e60
283 
284 #define A2W_PLLB_ARM		0x13e0
285 #define A2W_PLLB_SP0		0x14e0
286 #define A2W_PLLB_SP1		0x15e0
287 #define A2W_PLLB_SP2		0x16e0
288 
289 #define LOCK_TIMEOUT_NS		100000000
290 #define BCM2835_MAX_FB_RATE	1750000000u
291 
292 /*
293  * Names of clocks used within the driver that need to be replaced
294  * with an external parent's name.  This array is in the order that
295  * the clocks node in the DT references external clocks.
296  */
297 static const char *const cprman_parent_names[] = {
298 	"xosc",
299 	"dsi0_byte",
300 	"dsi0_ddr2",
301 	"dsi0_ddr",
302 	"dsi1_byte",
303 	"dsi1_ddr2",
304 	"dsi1_ddr",
305 };
306 
307 struct bcm2835_cprman {
308 	struct device *dev;
309 	void __iomem *regs;
310 	spinlock_t regs_lock; /* spinlock for all clocks */
311 
312 	/*
313 	 * Real names of cprman clock parents looked up through
314 	 * of_clk_get_parent_name(), which will be used in the
315 	 * parent_names[] arrays for clock registration.
316 	 */
317 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
318 
319 	/* Must be last */
320 	struct clk_hw_onecell_data onecell;
321 };
322 
323 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
324 {
325 	writel(CM_PASSWORD | val, cprman->regs + reg);
326 }
327 
328 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
329 {
330 	return readl(cprman->regs + reg);
331 }
332 
333 /* Does a cycle of measuring a clock through the TCNT clock, which may
334  * source from many other clocks in the system.
335  */
336 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
337 					      u32 tcnt_mux)
338 {
339 	u32 osccount = 19200; /* 1ms */
340 	u32 count;
341 	ktime_t timeout;
342 
343 	spin_lock(&cprman->regs_lock);
344 
345 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
346 
347 	cprman_write(cprman, CM_TCNTCTL,
348 		     (tcnt_mux & CM_SRC_MASK) |
349 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
350 
351 	cprman_write(cprman, CM_OSCCOUNT, osccount);
352 
353 	/* do a kind delay at the start */
354 	mdelay(1);
355 
356 	/* Finish off whatever is left of OSCCOUNT */
357 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
358 	while (cprman_read(cprman, CM_OSCCOUNT)) {
359 		if (ktime_after(ktime_get(), timeout)) {
360 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
361 			count = 0;
362 			goto out;
363 		}
364 		cpu_relax();
365 	}
366 
367 	/* Wait for BUSY to clear. */
368 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
369 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
370 		if (ktime_after(ktime_get(), timeout)) {
371 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
372 			count = 0;
373 			goto out;
374 		}
375 		cpu_relax();
376 	}
377 
378 	count = cprman_read(cprman, CM_TCNTCNT);
379 
380 	cprman_write(cprman, CM_TCNTCTL, 0);
381 
382 out:
383 	spin_unlock(&cprman->regs_lock);
384 
385 	return count * 1000;
386 }
387 
388 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
389 				  struct debugfs_reg32 *regs, size_t nregs,
390 				  struct dentry *dentry)
391 {
392 	struct debugfs_regset32 *regset;
393 
394 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
395 	if (!regset)
396 		return;
397 
398 	regset->regs = regs;
399 	regset->nregs = nregs;
400 	regset->base = cprman->regs + base;
401 
402 	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
403 }
404 
405 struct bcm2835_pll_data {
406 	const char *name;
407 	u32 cm_ctrl_reg;
408 	u32 a2w_ctrl_reg;
409 	u32 frac_reg;
410 	u32 ana_reg_base;
411 	u32 reference_enable_mask;
412 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
413 	u32 lock_mask;
414 
415 	const struct bcm2835_pll_ana_bits *ana;
416 
417 	unsigned long min_rate;
418 	unsigned long max_rate;
419 	/*
420 	 * Highest rate for the VCO before we have to use the
421 	 * pre-divide-by-2.
422 	 */
423 	unsigned long max_fb_rate;
424 };
425 
426 struct bcm2835_pll_ana_bits {
427 	u32 mask0;
428 	u32 set0;
429 	u32 mask1;
430 	u32 set1;
431 	u32 mask3;
432 	u32 set3;
433 	u32 fb_prediv_mask;
434 };
435 
436 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
437 	.mask0 = 0,
438 	.set0 = 0,
439 	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
440 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
441 	.mask3 = A2W_PLL_KA_MASK,
442 	.set3 = (2 << A2W_PLL_KA_SHIFT),
443 	.fb_prediv_mask = BIT(14),
444 };
445 
446 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
447 	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
448 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
449 	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
450 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
451 	.mask3 = 0,
452 	.set3 = 0,
453 	.fb_prediv_mask = BIT(11),
454 };
455 
456 struct bcm2835_pll_divider_data {
457 	const char *name;
458 	const char *source_pll;
459 
460 	u32 cm_reg;
461 	u32 a2w_reg;
462 
463 	u32 load_mask;
464 	u32 hold_mask;
465 	u32 fixed_divider;
466 	u32 flags;
467 };
468 
469 struct bcm2835_clock_data {
470 	const char *name;
471 
472 	const char *const *parents;
473 	int num_mux_parents;
474 
475 	/* Bitmap encoding which parents accept rate change propagation. */
476 	unsigned int set_rate_parent;
477 
478 	u32 ctl_reg;
479 	u32 div_reg;
480 
481 	/* Number of integer bits in the divider */
482 	u32 int_bits;
483 	/* Number of fractional bits in the divider */
484 	u32 frac_bits;
485 
486 	u32 flags;
487 
488 	bool is_vpu_clock;
489 	bool is_mash_clock;
490 	bool low_jitter;
491 
492 	u32 tcnt_mux;
493 };
494 
495 struct bcm2835_gate_data {
496 	const char *name;
497 	const char *parent;
498 
499 	u32 ctl_reg;
500 };
501 
502 struct bcm2835_pll {
503 	struct clk_hw hw;
504 	struct bcm2835_cprman *cprman;
505 	const struct bcm2835_pll_data *data;
506 };
507 
508 static int bcm2835_pll_is_on(struct clk_hw *hw)
509 {
510 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
511 	struct bcm2835_cprman *cprman = pll->cprman;
512 	const struct bcm2835_pll_data *data = pll->data;
513 
514 	return cprman_read(cprman, data->a2w_ctrl_reg) &
515 		A2W_PLL_CTRL_PRST_DISABLE;
516 }
517 
518 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
519 					     unsigned long parent_rate,
520 					     u32 *ndiv, u32 *fdiv)
521 {
522 	u64 div;
523 
524 	div = (u64)rate << A2W_PLL_FRAC_BITS;
525 	do_div(div, parent_rate);
526 
527 	*ndiv = div >> A2W_PLL_FRAC_BITS;
528 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
529 }
530 
531 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
532 					   u32 ndiv, u32 fdiv, u32 pdiv)
533 {
534 	u64 rate;
535 
536 	if (pdiv == 0)
537 		return 0;
538 
539 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
540 	do_div(rate, pdiv);
541 	return rate >> A2W_PLL_FRAC_BITS;
542 }
543 
544 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
545 				   unsigned long *parent_rate)
546 {
547 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
548 	const struct bcm2835_pll_data *data = pll->data;
549 	u32 ndiv, fdiv;
550 
551 	rate = clamp(rate, data->min_rate, data->max_rate);
552 
553 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
554 
555 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
556 }
557 
558 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
559 					  unsigned long parent_rate)
560 {
561 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
562 	struct bcm2835_cprman *cprman = pll->cprman;
563 	const struct bcm2835_pll_data *data = pll->data;
564 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
565 	u32 ndiv, pdiv, fdiv;
566 	bool using_prediv;
567 
568 	if (parent_rate == 0)
569 		return 0;
570 
571 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
572 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
573 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
574 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
575 		data->ana->fb_prediv_mask;
576 
577 	if (using_prediv) {
578 		ndiv *= 2;
579 		fdiv *= 2;
580 	}
581 
582 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
583 }
584 
585 static void bcm2835_pll_off(struct clk_hw *hw)
586 {
587 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
588 	struct bcm2835_cprman *cprman = pll->cprman;
589 	const struct bcm2835_pll_data *data = pll->data;
590 
591 	spin_lock(&cprman->regs_lock);
592 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
593 	cprman_write(cprman, data->a2w_ctrl_reg,
594 		     cprman_read(cprman, data->a2w_ctrl_reg) |
595 		     A2W_PLL_CTRL_PWRDN);
596 	spin_unlock(&cprman->regs_lock);
597 }
598 
599 static int bcm2835_pll_on(struct clk_hw *hw)
600 {
601 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
602 	struct bcm2835_cprman *cprman = pll->cprman;
603 	const struct bcm2835_pll_data *data = pll->data;
604 	ktime_t timeout;
605 
606 	cprman_write(cprman, data->a2w_ctrl_reg,
607 		     cprman_read(cprman, data->a2w_ctrl_reg) &
608 		     ~A2W_PLL_CTRL_PWRDN);
609 
610 	/* Take the PLL out of reset. */
611 	spin_lock(&cprman->regs_lock);
612 	cprman_write(cprman, data->cm_ctrl_reg,
613 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
614 	spin_unlock(&cprman->regs_lock);
615 
616 	/* Wait for the PLL to lock. */
617 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
618 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
619 		if (ktime_after(ktime_get(), timeout)) {
620 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
621 				clk_hw_get_name(hw));
622 			return -ETIMEDOUT;
623 		}
624 
625 		cpu_relax();
626 	}
627 
628 	cprman_write(cprman, data->a2w_ctrl_reg,
629 		     cprman_read(cprman, data->a2w_ctrl_reg) |
630 		     A2W_PLL_CTRL_PRST_DISABLE);
631 
632 	return 0;
633 }
634 
635 static void
636 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
637 {
638 	int i;
639 
640 	/*
641 	 * ANA register setup is done as a series of writes to
642 	 * ANA3-ANA0, in that order.  This lets us write all 4
643 	 * registers as a single cycle of the serdes interface (taking
644 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
645 	 * 3 individually through their partial-write registers, each
646 	 * would be their own serdes cycle.
647 	 */
648 	for (i = 3; i >= 0; i--)
649 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
650 }
651 
652 static int bcm2835_pll_set_rate(struct clk_hw *hw,
653 				unsigned long rate, unsigned long parent_rate)
654 {
655 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
656 	struct bcm2835_cprman *cprman = pll->cprman;
657 	const struct bcm2835_pll_data *data = pll->data;
658 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
659 	u32 ndiv, fdiv, a2w_ctl;
660 	u32 ana[4];
661 	int i;
662 
663 	if (rate > data->max_fb_rate) {
664 		use_fb_prediv = true;
665 		rate /= 2;
666 	} else {
667 		use_fb_prediv = false;
668 	}
669 
670 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
671 
672 	for (i = 3; i >= 0; i--)
673 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
674 
675 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
676 
677 	ana[0] &= ~data->ana->mask0;
678 	ana[0] |= data->ana->set0;
679 	ana[1] &= ~data->ana->mask1;
680 	ana[1] |= data->ana->set1;
681 	ana[3] &= ~data->ana->mask3;
682 	ana[3] |= data->ana->set3;
683 
684 	if (was_using_prediv && !use_fb_prediv) {
685 		ana[1] &= ~data->ana->fb_prediv_mask;
686 		do_ana_setup_first = true;
687 	} else if (!was_using_prediv && use_fb_prediv) {
688 		ana[1] |= data->ana->fb_prediv_mask;
689 		do_ana_setup_first = false;
690 	} else {
691 		do_ana_setup_first = true;
692 	}
693 
694 	/* Unmask the reference clock from the oscillator. */
695 	spin_lock(&cprman->regs_lock);
696 	cprman_write(cprman, A2W_XOSC_CTRL,
697 		     cprman_read(cprman, A2W_XOSC_CTRL) |
698 		     data->reference_enable_mask);
699 	spin_unlock(&cprman->regs_lock);
700 
701 	if (do_ana_setup_first)
702 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
703 
704 	/* Set the PLL multiplier from the oscillator. */
705 	cprman_write(cprman, data->frac_reg, fdiv);
706 
707 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
708 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
709 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
710 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
711 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
712 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
713 
714 	if (!do_ana_setup_first)
715 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
716 
717 	return 0;
718 }
719 
720 static void bcm2835_pll_debug_init(struct clk_hw *hw,
721 				  struct dentry *dentry)
722 {
723 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
724 	struct bcm2835_cprman *cprman = pll->cprman;
725 	const struct bcm2835_pll_data *data = pll->data;
726 	struct debugfs_reg32 *regs;
727 
728 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
729 	if (!regs)
730 		return;
731 
732 	regs[0].name = "cm_ctrl";
733 	regs[0].offset = data->cm_ctrl_reg;
734 	regs[1].name = "a2w_ctrl";
735 	regs[1].offset = data->a2w_ctrl_reg;
736 	regs[2].name = "frac";
737 	regs[2].offset = data->frac_reg;
738 	regs[3].name = "ana0";
739 	regs[3].offset = data->ana_reg_base + 0 * 4;
740 	regs[4].name = "ana1";
741 	regs[4].offset = data->ana_reg_base + 1 * 4;
742 	regs[5].name = "ana2";
743 	regs[5].offset = data->ana_reg_base + 2 * 4;
744 	regs[6].name = "ana3";
745 	regs[6].offset = data->ana_reg_base + 3 * 4;
746 
747 	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
748 }
749 
750 static const struct clk_ops bcm2835_pll_clk_ops = {
751 	.is_prepared = bcm2835_pll_is_on,
752 	.prepare = bcm2835_pll_on,
753 	.unprepare = bcm2835_pll_off,
754 	.recalc_rate = bcm2835_pll_get_rate,
755 	.set_rate = bcm2835_pll_set_rate,
756 	.round_rate = bcm2835_pll_round_rate,
757 	.debug_init = bcm2835_pll_debug_init,
758 };
759 
760 struct bcm2835_pll_divider {
761 	struct clk_divider div;
762 	struct bcm2835_cprman *cprman;
763 	const struct bcm2835_pll_divider_data *data;
764 };
765 
766 static struct bcm2835_pll_divider *
767 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
768 {
769 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
770 }
771 
772 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
773 {
774 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
775 	struct bcm2835_cprman *cprman = divider->cprman;
776 	const struct bcm2835_pll_divider_data *data = divider->data;
777 
778 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
779 }
780 
781 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
782 					   unsigned long rate,
783 					   unsigned long *parent_rate)
784 {
785 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
786 }
787 
788 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
789 						  unsigned long parent_rate)
790 {
791 	return clk_divider_ops.recalc_rate(hw, parent_rate);
792 }
793 
794 static void bcm2835_pll_divider_off(struct clk_hw *hw)
795 {
796 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
797 	struct bcm2835_cprman *cprman = divider->cprman;
798 	const struct bcm2835_pll_divider_data *data = divider->data;
799 
800 	spin_lock(&cprman->regs_lock);
801 	cprman_write(cprman, data->cm_reg,
802 		     (cprman_read(cprman, data->cm_reg) &
803 		      ~data->load_mask) | data->hold_mask);
804 	cprman_write(cprman, data->a2w_reg,
805 		     cprman_read(cprman, data->a2w_reg) |
806 		     A2W_PLL_CHANNEL_DISABLE);
807 	spin_unlock(&cprman->regs_lock);
808 }
809 
810 static int bcm2835_pll_divider_on(struct clk_hw *hw)
811 {
812 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
813 	struct bcm2835_cprman *cprman = divider->cprman;
814 	const struct bcm2835_pll_divider_data *data = divider->data;
815 
816 	spin_lock(&cprman->regs_lock);
817 	cprman_write(cprman, data->a2w_reg,
818 		     cprman_read(cprman, data->a2w_reg) &
819 		     ~A2W_PLL_CHANNEL_DISABLE);
820 
821 	cprman_write(cprman, data->cm_reg,
822 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
823 	spin_unlock(&cprman->regs_lock);
824 
825 	return 0;
826 }
827 
828 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
829 					unsigned long rate,
830 					unsigned long parent_rate)
831 {
832 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
833 	struct bcm2835_cprman *cprman = divider->cprman;
834 	const struct bcm2835_pll_divider_data *data = divider->data;
835 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
836 
837 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
838 
839 	div = min(div, max_div);
840 	if (div == max_div)
841 		div = 0;
842 
843 	cprman_write(cprman, data->a2w_reg, div);
844 	cm = cprman_read(cprman, data->cm_reg);
845 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
846 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
847 
848 	return 0;
849 }
850 
851 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
852 					   struct dentry *dentry)
853 {
854 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
855 	struct bcm2835_cprman *cprman = divider->cprman;
856 	const struct bcm2835_pll_divider_data *data = divider->data;
857 	struct debugfs_reg32 *regs;
858 
859 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
860 	if (!regs)
861 		return;
862 
863 	regs[0].name = "cm";
864 	regs[0].offset = data->cm_reg;
865 	regs[1].name = "a2w";
866 	regs[1].offset = data->a2w_reg;
867 
868 	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
869 }
870 
871 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
872 	.is_prepared = bcm2835_pll_divider_is_on,
873 	.prepare = bcm2835_pll_divider_on,
874 	.unprepare = bcm2835_pll_divider_off,
875 	.recalc_rate = bcm2835_pll_divider_get_rate,
876 	.set_rate = bcm2835_pll_divider_set_rate,
877 	.round_rate = bcm2835_pll_divider_round_rate,
878 	.debug_init = bcm2835_pll_divider_debug_init,
879 };
880 
881 /*
882  * The CM dividers do fixed-point division, so we can't use the
883  * generic integer divider code like the PLL dividers do (and we can't
884  * fake it by having some fixed shifts preceding it in the clock tree,
885  * because we'd run out of bits in a 32-bit unsigned long).
886  */
887 struct bcm2835_clock {
888 	struct clk_hw hw;
889 	struct bcm2835_cprman *cprman;
890 	const struct bcm2835_clock_data *data;
891 };
892 
893 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
894 {
895 	return container_of(hw, struct bcm2835_clock, hw);
896 }
897 
898 static int bcm2835_clock_is_on(struct clk_hw *hw)
899 {
900 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
901 	struct bcm2835_cprman *cprman = clock->cprman;
902 	const struct bcm2835_clock_data *data = clock->data;
903 
904 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
905 }
906 
907 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
908 				    unsigned long rate,
909 				    unsigned long parent_rate,
910 				    bool round_up)
911 {
912 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
913 	const struct bcm2835_clock_data *data = clock->data;
914 	u32 unused_frac_mask =
915 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
916 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
917 	u64 rem;
918 	u32 div, mindiv, maxdiv;
919 
920 	rem = do_div(temp, rate);
921 	div = temp;
922 
923 	/* Round up and mask off the unused bits */
924 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
925 		div += unused_frac_mask + 1;
926 	div &= ~unused_frac_mask;
927 
928 	/* different clamping limits apply for a mash clock */
929 	if (data->is_mash_clock) {
930 		/* clamp to min divider of 2 */
931 		mindiv = 2 << CM_DIV_FRAC_BITS;
932 		/* clamp to the highest possible integer divider */
933 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
934 	} else {
935 		/* clamp to min divider of 1 */
936 		mindiv = 1 << CM_DIV_FRAC_BITS;
937 		/* clamp to the highest possible fractional divider */
938 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
939 				 CM_DIV_FRAC_BITS - data->frac_bits);
940 	}
941 
942 	/* apply the clamping  limits */
943 	div = max_t(u32, div, mindiv);
944 	div = min_t(u32, div, maxdiv);
945 
946 	return div;
947 }
948 
949 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
950 					    unsigned long parent_rate,
951 					    u32 div)
952 {
953 	const struct bcm2835_clock_data *data = clock->data;
954 	u64 temp;
955 
956 	if (data->int_bits == 0 && data->frac_bits == 0)
957 		return parent_rate;
958 
959 	/*
960 	 * The divisor is a 12.12 fixed point field, but only some of
961 	 * the bits are populated in any given clock.
962 	 */
963 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
964 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
965 
966 	if (div == 0)
967 		return 0;
968 
969 	temp = (u64)parent_rate << data->frac_bits;
970 
971 	do_div(temp, div);
972 
973 	return temp;
974 }
975 
976 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
977 					    unsigned long parent_rate)
978 {
979 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
980 	struct bcm2835_cprman *cprman = clock->cprman;
981 	const struct bcm2835_clock_data *data = clock->data;
982 	u32 div;
983 
984 	if (data->int_bits == 0 && data->frac_bits == 0)
985 		return parent_rate;
986 
987 	div = cprman_read(cprman, data->div_reg);
988 
989 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
990 }
991 
992 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
993 {
994 	struct bcm2835_cprman *cprman = clock->cprman;
995 	const struct bcm2835_clock_data *data = clock->data;
996 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
997 
998 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
999 		if (ktime_after(ktime_get(), timeout)) {
1000 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1001 				clk_hw_get_name(&clock->hw));
1002 			return;
1003 		}
1004 		cpu_relax();
1005 	}
1006 }
1007 
1008 static void bcm2835_clock_off(struct clk_hw *hw)
1009 {
1010 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1011 	struct bcm2835_cprman *cprman = clock->cprman;
1012 	const struct bcm2835_clock_data *data = clock->data;
1013 
1014 	spin_lock(&cprman->regs_lock);
1015 	cprman_write(cprman, data->ctl_reg,
1016 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1017 	spin_unlock(&cprman->regs_lock);
1018 
1019 	/* BUSY will remain high until the divider completes its cycle. */
1020 	bcm2835_clock_wait_busy(clock);
1021 }
1022 
1023 static int bcm2835_clock_on(struct clk_hw *hw)
1024 {
1025 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1026 	struct bcm2835_cprman *cprman = clock->cprman;
1027 	const struct bcm2835_clock_data *data = clock->data;
1028 
1029 	spin_lock(&cprman->regs_lock);
1030 	cprman_write(cprman, data->ctl_reg,
1031 		     cprman_read(cprman, data->ctl_reg) |
1032 		     CM_ENABLE |
1033 		     CM_GATE);
1034 	spin_unlock(&cprman->regs_lock);
1035 
1036 	/* Debug code to measure the clock once it's turned on to see
1037 	 * if it's ticking at the rate we expect.
1038 	 */
1039 	if (data->tcnt_mux && false) {
1040 		dev_info(cprman->dev,
1041 			 "clk %s: rate %ld, measure %ld\n",
1042 			 data->name,
1043 			 clk_hw_get_rate(hw),
1044 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1051 				  unsigned long rate, unsigned long parent_rate)
1052 {
1053 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1054 	struct bcm2835_cprman *cprman = clock->cprman;
1055 	const struct bcm2835_clock_data *data = clock->data;
1056 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1057 	u32 ctl;
1058 
1059 	spin_lock(&cprman->regs_lock);
1060 
1061 	/*
1062 	 * Setting up frac support
1063 	 *
1064 	 * In principle it is recommended to stop/start the clock first,
1065 	 * but as we set CLK_SET_RATE_GATE during registration of the
1066 	 * clock this requirement should be take care of by the
1067 	 * clk-framework.
1068 	 */
1069 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1070 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1071 	cprman_write(cprman, data->ctl_reg, ctl);
1072 
1073 	cprman_write(cprman, data->div_reg, div);
1074 
1075 	spin_unlock(&cprman->regs_lock);
1076 
1077 	return 0;
1078 }
1079 
1080 static bool
1081 bcm2835_clk_is_pllc(struct clk_hw *hw)
1082 {
1083 	if (!hw)
1084 		return false;
1085 
1086 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1087 }
1088 
1089 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1090 							int parent_idx,
1091 							unsigned long rate,
1092 							u32 *div,
1093 							unsigned long *prate,
1094 							unsigned long *avgrate)
1095 {
1096 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1097 	struct bcm2835_cprman *cprman = clock->cprman;
1098 	const struct bcm2835_clock_data *data = clock->data;
1099 	unsigned long best_rate = 0;
1100 	u32 curdiv, mindiv, maxdiv;
1101 	struct clk_hw *parent;
1102 
1103 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1104 
1105 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1106 		*prate = clk_hw_get_rate(parent);
1107 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1108 
1109 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1110 
1111 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1112 			unsigned long high, low;
1113 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1114 
1115 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1116 							       int_div);
1117 			int_div += CM_DIV_FRAC_MASK + 1;
1118 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1119 							      int_div);
1120 
1121 			/*
1122 			 * Return a value which is the maximum deviation
1123 			 * below the ideal rate, for use as a metric.
1124 			 */
1125 			return *avgrate - max(*avgrate - low, high - *avgrate);
1126 		}
1127 		return *avgrate;
1128 	}
1129 
1130 	if (data->frac_bits)
1131 		dev_warn(cprman->dev,
1132 			"frac bits are not used when propagating rate change");
1133 
1134 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1135 	mindiv = data->is_mash_clock ? 2 : 1;
1136 	maxdiv = BIT(data->int_bits) - 1;
1137 
1138 	/* TODO: Be smart, and only test a subset of the available divisors. */
1139 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1140 		unsigned long tmp_rate;
1141 
1142 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1143 		tmp_rate /= curdiv;
1144 		if (curdiv == mindiv ||
1145 		    (tmp_rate > best_rate && tmp_rate <= rate))
1146 			best_rate = tmp_rate;
1147 
1148 		if (best_rate == rate)
1149 			break;
1150 	}
1151 
1152 	*div = curdiv << CM_DIV_FRAC_BITS;
1153 	*prate = curdiv * best_rate;
1154 	*avgrate = best_rate;
1155 
1156 	return best_rate;
1157 }
1158 
1159 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1160 					struct clk_rate_request *req)
1161 {
1162 	struct clk_hw *parent, *best_parent = NULL;
1163 	bool current_parent_is_pllc;
1164 	unsigned long rate, best_rate = 0;
1165 	unsigned long prate, best_prate = 0;
1166 	unsigned long avgrate, best_avgrate = 0;
1167 	size_t i;
1168 	u32 div;
1169 
1170 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1171 
1172 	/*
1173 	 * Select parent clock that results in the closest but lower rate
1174 	 */
1175 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1176 		parent = clk_hw_get_parent_by_index(hw, i);
1177 		if (!parent)
1178 			continue;
1179 
1180 		/*
1181 		 * Don't choose a PLLC-derived clock as our parent
1182 		 * unless it had been manually set that way.  PLLC's
1183 		 * frequency gets adjusted by the firmware due to
1184 		 * over-temp or under-voltage conditions, without
1185 		 * prior notification to our clock consumer.
1186 		 */
1187 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1188 			continue;
1189 
1190 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1191 							  &div, &prate,
1192 							  &avgrate);
1193 		if (rate > best_rate && rate <= req->rate) {
1194 			best_parent = parent;
1195 			best_prate = prate;
1196 			best_rate = rate;
1197 			best_avgrate = avgrate;
1198 		}
1199 	}
1200 
1201 	if (!best_parent)
1202 		return -EINVAL;
1203 
1204 	req->best_parent_hw = best_parent;
1205 	req->best_parent_rate = best_prate;
1206 
1207 	req->rate = best_avgrate;
1208 
1209 	return 0;
1210 }
1211 
1212 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1213 {
1214 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1215 	struct bcm2835_cprman *cprman = clock->cprman;
1216 	const struct bcm2835_clock_data *data = clock->data;
1217 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1218 
1219 	cprman_write(cprman, data->ctl_reg, src);
1220 	return 0;
1221 }
1222 
1223 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1224 {
1225 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1226 	struct bcm2835_cprman *cprman = clock->cprman;
1227 	const struct bcm2835_clock_data *data = clock->data;
1228 	u32 src = cprman_read(cprman, data->ctl_reg);
1229 
1230 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1231 }
1232 
1233 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1234 	{
1235 		.name = "ctl",
1236 		.offset = 0,
1237 	},
1238 	{
1239 		.name = "div",
1240 		.offset = 4,
1241 	},
1242 };
1243 
1244 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1245 				    struct dentry *dentry)
1246 {
1247 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1248 	struct bcm2835_cprman *cprman = clock->cprman;
1249 	const struct bcm2835_clock_data *data = clock->data;
1250 
1251 	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1252 		bcm2835_debugfs_clock_reg32,
1253 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1254 		dentry);
1255 }
1256 
1257 static const struct clk_ops bcm2835_clock_clk_ops = {
1258 	.is_prepared = bcm2835_clock_is_on,
1259 	.prepare = bcm2835_clock_on,
1260 	.unprepare = bcm2835_clock_off,
1261 	.recalc_rate = bcm2835_clock_get_rate,
1262 	.set_rate = bcm2835_clock_set_rate,
1263 	.determine_rate = bcm2835_clock_determine_rate,
1264 	.set_parent = bcm2835_clock_set_parent,
1265 	.get_parent = bcm2835_clock_get_parent,
1266 	.debug_init = bcm2835_clock_debug_init,
1267 };
1268 
1269 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1270 {
1271 	return true;
1272 }
1273 
1274 /*
1275  * The VPU clock can never be disabled (it doesn't have an ENABLE
1276  * bit), so it gets its own set of clock ops.
1277  */
1278 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1279 	.is_prepared = bcm2835_vpu_clock_is_on,
1280 	.recalc_rate = bcm2835_clock_get_rate,
1281 	.set_rate = bcm2835_clock_set_rate,
1282 	.determine_rate = bcm2835_clock_determine_rate,
1283 	.set_parent = bcm2835_clock_set_parent,
1284 	.get_parent = bcm2835_clock_get_parent,
1285 	.debug_init = bcm2835_clock_debug_init,
1286 };
1287 
1288 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1289 					   const struct bcm2835_pll_data *data)
1290 {
1291 	struct bcm2835_pll *pll;
1292 	struct clk_init_data init;
1293 	int ret;
1294 
1295 	memset(&init, 0, sizeof(init));
1296 
1297 	/* All of the PLLs derive from the external oscillator. */
1298 	init.parent_names = &cprman->real_parent_names[0];
1299 	init.num_parents = 1;
1300 	init.name = data->name;
1301 	init.ops = &bcm2835_pll_clk_ops;
1302 	init.flags = CLK_IGNORE_UNUSED;
1303 
1304 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1305 	if (!pll)
1306 		return NULL;
1307 
1308 	pll->cprman = cprman;
1309 	pll->data = data;
1310 	pll->hw.init = &init;
1311 
1312 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1313 	if (ret)
1314 		return NULL;
1315 	return &pll->hw;
1316 }
1317 
1318 static struct clk_hw *
1319 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1320 			     const struct bcm2835_pll_divider_data *data)
1321 {
1322 	struct bcm2835_pll_divider *divider;
1323 	struct clk_init_data init;
1324 	const char *divider_name;
1325 	int ret;
1326 
1327 	if (data->fixed_divider != 1) {
1328 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1329 					      "%s_prediv", data->name);
1330 		if (!divider_name)
1331 			return NULL;
1332 	} else {
1333 		divider_name = data->name;
1334 	}
1335 
1336 	memset(&init, 0, sizeof(init));
1337 
1338 	init.parent_names = &data->source_pll;
1339 	init.num_parents = 1;
1340 	init.name = divider_name;
1341 	init.ops = &bcm2835_pll_divider_clk_ops;
1342 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1343 
1344 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1345 	if (!divider)
1346 		return NULL;
1347 
1348 	divider->div.reg = cprman->regs + data->a2w_reg;
1349 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1350 	divider->div.width = A2W_PLL_DIV_BITS;
1351 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1352 	divider->div.lock = &cprman->regs_lock;
1353 	divider->div.hw.init = &init;
1354 	divider->div.table = NULL;
1355 
1356 	divider->cprman = cprman;
1357 	divider->data = data;
1358 
1359 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1360 	if (ret)
1361 		return ERR_PTR(ret);
1362 
1363 	/*
1364 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1365 	 * is what our consumers are actually using.
1366 	 */
1367 	if (data->fixed_divider != 1) {
1368 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1369 						    divider_name,
1370 						    CLK_SET_RATE_PARENT,
1371 						    1,
1372 						    data->fixed_divider);
1373 	}
1374 
1375 	return &divider->div.hw;
1376 }
1377 
1378 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1379 					  const struct bcm2835_clock_data *data)
1380 {
1381 	struct bcm2835_clock *clock;
1382 	struct clk_init_data init;
1383 	const char *parents[1 << CM_SRC_BITS];
1384 	size_t i;
1385 	int ret;
1386 
1387 	/*
1388 	 * Replace our strings referencing parent clocks with the
1389 	 * actual clock-output-name of the parent.
1390 	 */
1391 	for (i = 0; i < data->num_mux_parents; i++) {
1392 		parents[i] = data->parents[i];
1393 
1394 		ret = match_string(cprman_parent_names,
1395 				   ARRAY_SIZE(cprman_parent_names),
1396 				   parents[i]);
1397 		if (ret >= 0)
1398 			parents[i] = cprman->real_parent_names[ret];
1399 	}
1400 
1401 	memset(&init, 0, sizeof(init));
1402 	init.parent_names = parents;
1403 	init.num_parents = data->num_mux_parents;
1404 	init.name = data->name;
1405 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1406 
1407 	/*
1408 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1409 	 * rate changes on at least of the parents.
1410 	 */
1411 	if (data->set_rate_parent)
1412 		init.flags |= CLK_SET_RATE_PARENT;
1413 
1414 	if (data->is_vpu_clock) {
1415 		init.ops = &bcm2835_vpu_clock_clk_ops;
1416 	} else {
1417 		init.ops = &bcm2835_clock_clk_ops;
1418 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1419 
1420 		/* If the clock wasn't actually enabled at boot, it's not
1421 		 * critical.
1422 		 */
1423 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1424 			init.flags &= ~CLK_IS_CRITICAL;
1425 	}
1426 
1427 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1428 	if (!clock)
1429 		return NULL;
1430 
1431 	clock->cprman = cprman;
1432 	clock->data = data;
1433 	clock->hw.init = &init;
1434 
1435 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1436 	if (ret)
1437 		return ERR_PTR(ret);
1438 	return &clock->hw;
1439 }
1440 
1441 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1442 					 const struct bcm2835_gate_data *data)
1443 {
1444 	return clk_register_gate(cprman->dev, data->name, data->parent,
1445 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1446 				 cprman->regs + data->ctl_reg,
1447 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1448 }
1449 
1450 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1451 					       const void *data);
1452 struct bcm2835_clk_desc {
1453 	bcm2835_clk_register clk_register;
1454 	const void *data;
1455 };
1456 
1457 /* assignment helper macros for different clock types */
1458 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1459 			    .data = __VA_ARGS__ }
1460 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1461 					  &(struct bcm2835_pll_data)	\
1462 					  {__VA_ARGS__})
1463 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1464 					  &(struct bcm2835_pll_divider_data) \
1465 					  {__VA_ARGS__})
1466 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1467 					  &(struct bcm2835_clock_data)	\
1468 					  {__VA_ARGS__})
1469 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1470 					  &(struct bcm2835_gate_data)	\
1471 					  {__VA_ARGS__})
1472 
1473 /* parent mux arrays plus helper macros */
1474 
1475 /* main oscillator parent mux */
1476 static const char *const bcm2835_clock_osc_parents[] = {
1477 	"gnd",
1478 	"xosc",
1479 	"testdebug0",
1480 	"testdebug1"
1481 };
1482 
1483 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1484 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1485 	.parents = bcm2835_clock_osc_parents,				\
1486 	__VA_ARGS__)
1487 
1488 /* main peripherial parent mux */
1489 static const char *const bcm2835_clock_per_parents[] = {
1490 	"gnd",
1491 	"xosc",
1492 	"testdebug0",
1493 	"testdebug1",
1494 	"plla_per",
1495 	"pllc_per",
1496 	"plld_per",
1497 	"pllh_aux",
1498 };
1499 
1500 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1501 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1502 	.parents = bcm2835_clock_per_parents,				\
1503 	__VA_ARGS__)
1504 
1505 /*
1506  * Restrict clock sources for the PCM peripheral to the oscillator and
1507  * PLLD_PER because other source may have varying rates or be switched
1508  * off.
1509  *
1510  * Prevent other sources from being selected by replacing their names in
1511  * the list of potential parents with dummy entries (entry index is
1512  * significant).
1513  */
1514 static const char *const bcm2835_pcm_per_parents[] = {
1515 	"-",
1516 	"xosc",
1517 	"-",
1518 	"-",
1519 	"-",
1520 	"-",
1521 	"plld_per",
1522 	"-",
1523 };
1524 
1525 #define REGISTER_PCM_CLK(...)	REGISTER_CLK(				\
1526 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1527 	.parents = bcm2835_pcm_per_parents,				\
1528 	__VA_ARGS__)
1529 
1530 /* main vpu parent mux */
1531 static const char *const bcm2835_clock_vpu_parents[] = {
1532 	"gnd",
1533 	"xosc",
1534 	"testdebug0",
1535 	"testdebug1",
1536 	"plla_core",
1537 	"pllc_core0",
1538 	"plld_core",
1539 	"pllh_aux",
1540 	"pllc_core1",
1541 	"pllc_core2",
1542 };
1543 
1544 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1545 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1546 	.parents = bcm2835_clock_vpu_parents,				\
1547 	__VA_ARGS__)
1548 
1549 /*
1550  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1551  * analog PHY.  The _inv variants are generated internally to cprman,
1552  * but we don't use them so they aren't hooked up.
1553  */
1554 static const char *const bcm2835_clock_dsi0_parents[] = {
1555 	"gnd",
1556 	"xosc",
1557 	"testdebug0",
1558 	"testdebug1",
1559 	"dsi0_ddr",
1560 	"dsi0_ddr_inv",
1561 	"dsi0_ddr2",
1562 	"dsi0_ddr2_inv",
1563 	"dsi0_byte",
1564 	"dsi0_byte_inv",
1565 };
1566 
1567 static const char *const bcm2835_clock_dsi1_parents[] = {
1568 	"gnd",
1569 	"xosc",
1570 	"testdebug0",
1571 	"testdebug1",
1572 	"dsi1_ddr",
1573 	"dsi1_ddr_inv",
1574 	"dsi1_ddr2",
1575 	"dsi1_ddr2_inv",
1576 	"dsi1_byte",
1577 	"dsi1_byte_inv",
1578 };
1579 
1580 #define REGISTER_DSI0_CLK(...)	REGISTER_CLK(				\
1581 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1582 	.parents = bcm2835_clock_dsi0_parents,				\
1583 	__VA_ARGS__)
1584 
1585 #define REGISTER_DSI1_CLK(...)	REGISTER_CLK(				\
1586 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1587 	.parents = bcm2835_clock_dsi1_parents,				\
1588 	__VA_ARGS__)
1589 
1590 /*
1591  * the real definition of all the pll, pll_dividers and clocks
1592  * these make use of the above REGISTER_* macros
1593  */
1594 static const struct bcm2835_clk_desc clk_desc_array[] = {
1595 	/* the PLL + PLL dividers */
1596 
1597 	/*
1598 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1599 	 * (Compact Camera Port 2) transmitter clock.
1600 	 *
1601 	 * It is in the PX LDO power domain, which is on when the
1602 	 * AUDIO domain is on.
1603 	 */
1604 	[BCM2835_PLLA]		= REGISTER_PLL(
1605 		.name = "plla",
1606 		.cm_ctrl_reg = CM_PLLA,
1607 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1608 		.frac_reg = A2W_PLLA_FRAC,
1609 		.ana_reg_base = A2W_PLLA_ANA0,
1610 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1611 		.lock_mask = CM_LOCK_FLOCKA,
1612 
1613 		.ana = &bcm2835_ana_default,
1614 
1615 		.min_rate = 600000000u,
1616 		.max_rate = 2400000000u,
1617 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1618 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1619 		.name = "plla_core",
1620 		.source_pll = "plla",
1621 		.cm_reg = CM_PLLA,
1622 		.a2w_reg = A2W_PLLA_CORE,
1623 		.load_mask = CM_PLLA_LOADCORE,
1624 		.hold_mask = CM_PLLA_HOLDCORE,
1625 		.fixed_divider = 1,
1626 		.flags = CLK_SET_RATE_PARENT),
1627 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1628 		.name = "plla_per",
1629 		.source_pll = "plla",
1630 		.cm_reg = CM_PLLA,
1631 		.a2w_reg = A2W_PLLA_PER,
1632 		.load_mask = CM_PLLA_LOADPER,
1633 		.hold_mask = CM_PLLA_HOLDPER,
1634 		.fixed_divider = 1,
1635 		.flags = CLK_SET_RATE_PARENT),
1636 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1637 		.name = "plla_dsi0",
1638 		.source_pll = "plla",
1639 		.cm_reg = CM_PLLA,
1640 		.a2w_reg = A2W_PLLA_DSI0,
1641 		.load_mask = CM_PLLA_LOADDSI0,
1642 		.hold_mask = CM_PLLA_HOLDDSI0,
1643 		.fixed_divider = 1),
1644 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1645 		.name = "plla_ccp2",
1646 		.source_pll = "plla",
1647 		.cm_reg = CM_PLLA,
1648 		.a2w_reg = A2W_PLLA_CCP2,
1649 		.load_mask = CM_PLLA_LOADCCP2,
1650 		.hold_mask = CM_PLLA_HOLDCCP2,
1651 		.fixed_divider = 1,
1652 		.flags = CLK_SET_RATE_PARENT),
1653 
1654 	/* PLLB is used for the ARM's clock. */
1655 	[BCM2835_PLLB]		= REGISTER_PLL(
1656 		.name = "pllb",
1657 		.cm_ctrl_reg = CM_PLLB,
1658 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1659 		.frac_reg = A2W_PLLB_FRAC,
1660 		.ana_reg_base = A2W_PLLB_ANA0,
1661 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1662 		.lock_mask = CM_LOCK_FLOCKB,
1663 
1664 		.ana = &bcm2835_ana_default,
1665 
1666 		.min_rate = 600000000u,
1667 		.max_rate = 3000000000u,
1668 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1669 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1670 		.name = "pllb_arm",
1671 		.source_pll = "pllb",
1672 		.cm_reg = CM_PLLB,
1673 		.a2w_reg = A2W_PLLB_ARM,
1674 		.load_mask = CM_PLLB_LOADARM,
1675 		.hold_mask = CM_PLLB_HOLDARM,
1676 		.fixed_divider = 1,
1677 		.flags = CLK_SET_RATE_PARENT),
1678 
1679 	/*
1680 	 * PLLC is the core PLL, used to drive the core VPU clock.
1681 	 *
1682 	 * It is in the PX LDO power domain, which is on when the
1683 	 * AUDIO domain is on.
1684 	 */
1685 	[BCM2835_PLLC]		= REGISTER_PLL(
1686 		.name = "pllc",
1687 		.cm_ctrl_reg = CM_PLLC,
1688 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1689 		.frac_reg = A2W_PLLC_FRAC,
1690 		.ana_reg_base = A2W_PLLC_ANA0,
1691 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1692 		.lock_mask = CM_LOCK_FLOCKC,
1693 
1694 		.ana = &bcm2835_ana_default,
1695 
1696 		.min_rate = 600000000u,
1697 		.max_rate = 3000000000u,
1698 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1699 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1700 		.name = "pllc_core0",
1701 		.source_pll = "pllc",
1702 		.cm_reg = CM_PLLC,
1703 		.a2w_reg = A2W_PLLC_CORE0,
1704 		.load_mask = CM_PLLC_LOADCORE0,
1705 		.hold_mask = CM_PLLC_HOLDCORE0,
1706 		.fixed_divider = 1,
1707 		.flags = CLK_SET_RATE_PARENT),
1708 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1709 		.name = "pllc_core1",
1710 		.source_pll = "pllc",
1711 		.cm_reg = CM_PLLC,
1712 		.a2w_reg = A2W_PLLC_CORE1,
1713 		.load_mask = CM_PLLC_LOADCORE1,
1714 		.hold_mask = CM_PLLC_HOLDCORE1,
1715 		.fixed_divider = 1,
1716 		.flags = CLK_SET_RATE_PARENT),
1717 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1718 		.name = "pllc_core2",
1719 		.source_pll = "pllc",
1720 		.cm_reg = CM_PLLC,
1721 		.a2w_reg = A2W_PLLC_CORE2,
1722 		.load_mask = CM_PLLC_LOADCORE2,
1723 		.hold_mask = CM_PLLC_HOLDCORE2,
1724 		.fixed_divider = 1,
1725 		.flags = CLK_SET_RATE_PARENT),
1726 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1727 		.name = "pllc_per",
1728 		.source_pll = "pllc",
1729 		.cm_reg = CM_PLLC,
1730 		.a2w_reg = A2W_PLLC_PER,
1731 		.load_mask = CM_PLLC_LOADPER,
1732 		.hold_mask = CM_PLLC_HOLDPER,
1733 		.fixed_divider = 1,
1734 		.flags = CLK_SET_RATE_PARENT),
1735 
1736 	/*
1737 	 * PLLD is the display PLL, used to drive DSI display panels.
1738 	 *
1739 	 * It is in the PX LDO power domain, which is on when the
1740 	 * AUDIO domain is on.
1741 	 */
1742 	[BCM2835_PLLD]		= REGISTER_PLL(
1743 		.name = "plld",
1744 		.cm_ctrl_reg = CM_PLLD,
1745 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1746 		.frac_reg = A2W_PLLD_FRAC,
1747 		.ana_reg_base = A2W_PLLD_ANA0,
1748 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1749 		.lock_mask = CM_LOCK_FLOCKD,
1750 
1751 		.ana = &bcm2835_ana_default,
1752 
1753 		.min_rate = 600000000u,
1754 		.max_rate = 2400000000u,
1755 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1756 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1757 		.name = "plld_core",
1758 		.source_pll = "plld",
1759 		.cm_reg = CM_PLLD,
1760 		.a2w_reg = A2W_PLLD_CORE,
1761 		.load_mask = CM_PLLD_LOADCORE,
1762 		.hold_mask = CM_PLLD_HOLDCORE,
1763 		.fixed_divider = 1,
1764 		.flags = CLK_SET_RATE_PARENT),
1765 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1766 		.name = "plld_per",
1767 		.source_pll = "plld",
1768 		.cm_reg = CM_PLLD,
1769 		.a2w_reg = A2W_PLLD_PER,
1770 		.load_mask = CM_PLLD_LOADPER,
1771 		.hold_mask = CM_PLLD_HOLDPER,
1772 		.fixed_divider = 1,
1773 		.flags = CLK_SET_RATE_PARENT),
1774 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1775 		.name = "plld_dsi0",
1776 		.source_pll = "plld",
1777 		.cm_reg = CM_PLLD,
1778 		.a2w_reg = A2W_PLLD_DSI0,
1779 		.load_mask = CM_PLLD_LOADDSI0,
1780 		.hold_mask = CM_PLLD_HOLDDSI0,
1781 		.fixed_divider = 1),
1782 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1783 		.name = "plld_dsi1",
1784 		.source_pll = "plld",
1785 		.cm_reg = CM_PLLD,
1786 		.a2w_reg = A2W_PLLD_DSI1,
1787 		.load_mask = CM_PLLD_LOADDSI1,
1788 		.hold_mask = CM_PLLD_HOLDDSI1,
1789 		.fixed_divider = 1),
1790 
1791 	/*
1792 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1793 	 * TV encoder.
1794 	 *
1795 	 * It is in the HDMI power domain.
1796 	 */
1797 	[BCM2835_PLLH]		= REGISTER_PLL(
1798 		"pllh",
1799 		.cm_ctrl_reg = CM_PLLH,
1800 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1801 		.frac_reg = A2W_PLLH_FRAC,
1802 		.ana_reg_base = A2W_PLLH_ANA0,
1803 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1804 		.lock_mask = CM_LOCK_FLOCKH,
1805 
1806 		.ana = &bcm2835_ana_pllh,
1807 
1808 		.min_rate = 600000000u,
1809 		.max_rate = 3000000000u,
1810 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1811 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1812 		.name = "pllh_rcal",
1813 		.source_pll = "pllh",
1814 		.cm_reg = CM_PLLH,
1815 		.a2w_reg = A2W_PLLH_RCAL,
1816 		.load_mask = CM_PLLH_LOADRCAL,
1817 		.hold_mask = 0,
1818 		.fixed_divider = 10,
1819 		.flags = CLK_SET_RATE_PARENT),
1820 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1821 		.name = "pllh_aux",
1822 		.source_pll = "pllh",
1823 		.cm_reg = CM_PLLH,
1824 		.a2w_reg = A2W_PLLH_AUX,
1825 		.load_mask = CM_PLLH_LOADAUX,
1826 		.hold_mask = 0,
1827 		.fixed_divider = 1,
1828 		.flags = CLK_SET_RATE_PARENT),
1829 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1830 		.name = "pllh_pix",
1831 		.source_pll = "pllh",
1832 		.cm_reg = CM_PLLH,
1833 		.a2w_reg = A2W_PLLH_PIX,
1834 		.load_mask = CM_PLLH_LOADPIX,
1835 		.hold_mask = 0,
1836 		.fixed_divider = 10,
1837 		.flags = CLK_SET_RATE_PARENT),
1838 
1839 	/* the clocks */
1840 
1841 	/* clocks with oscillator parent mux */
1842 
1843 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1844 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1845 		.name = "otp",
1846 		.ctl_reg = CM_OTPCTL,
1847 		.div_reg = CM_OTPDIV,
1848 		.int_bits = 4,
1849 		.frac_bits = 0,
1850 		.tcnt_mux = 6),
1851 	/*
1852 	 * Used for a 1Mhz clock for the system clocksource, and also used
1853 	 * bythe watchdog timer and the camera pulse generator.
1854 	 */
1855 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1856 		.name = "timer",
1857 		.ctl_reg = CM_TIMERCTL,
1858 		.div_reg = CM_TIMERDIV,
1859 		.int_bits = 6,
1860 		.frac_bits = 12),
1861 	/*
1862 	 * Clock for the temperature sensor.
1863 	 * Generally run at 2Mhz, max 5Mhz.
1864 	 */
1865 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1866 		.name = "tsens",
1867 		.ctl_reg = CM_TSENSCTL,
1868 		.div_reg = CM_TSENSDIV,
1869 		.int_bits = 5,
1870 		.frac_bits = 0),
1871 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1872 		.name = "tec",
1873 		.ctl_reg = CM_TECCTL,
1874 		.div_reg = CM_TECDIV,
1875 		.int_bits = 6,
1876 		.frac_bits = 0),
1877 
1878 	/* clocks with vpu parent mux */
1879 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1880 		.name = "h264",
1881 		.ctl_reg = CM_H264CTL,
1882 		.div_reg = CM_H264DIV,
1883 		.int_bits = 4,
1884 		.frac_bits = 8,
1885 		.tcnt_mux = 1),
1886 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1887 		.name = "isp",
1888 		.ctl_reg = CM_ISPCTL,
1889 		.div_reg = CM_ISPDIV,
1890 		.int_bits = 4,
1891 		.frac_bits = 8,
1892 		.tcnt_mux = 2),
1893 
1894 	/*
1895 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1896 	 * in the SDRAM controller can't be used.
1897 	 */
1898 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1899 		.name = "sdram",
1900 		.ctl_reg = CM_SDCCTL,
1901 		.div_reg = CM_SDCDIV,
1902 		.int_bits = 6,
1903 		.frac_bits = 0,
1904 		.tcnt_mux = 3),
1905 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1906 		.name = "v3d",
1907 		.ctl_reg = CM_V3DCTL,
1908 		.div_reg = CM_V3DDIV,
1909 		.int_bits = 4,
1910 		.frac_bits = 8,
1911 		.tcnt_mux = 4),
1912 	/*
1913 	 * VPU clock.  This doesn't have an enable bit, since it drives
1914 	 * the bus for everything else, and is special so it doesn't need
1915 	 * to be gated for rate changes.  It is also known as "clk_audio"
1916 	 * in various hardware documentation.
1917 	 */
1918 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1919 		.name = "vpu",
1920 		.ctl_reg = CM_VPUCTL,
1921 		.div_reg = CM_VPUDIV,
1922 		.int_bits = 12,
1923 		.frac_bits = 8,
1924 		.flags = CLK_IS_CRITICAL,
1925 		.is_vpu_clock = true,
1926 		.tcnt_mux = 5),
1927 
1928 	/* clocks with per parent mux */
1929 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1930 		.name = "aveo",
1931 		.ctl_reg = CM_AVEOCTL,
1932 		.div_reg = CM_AVEODIV,
1933 		.int_bits = 4,
1934 		.frac_bits = 0,
1935 		.tcnt_mux = 38),
1936 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1937 		.name = "cam0",
1938 		.ctl_reg = CM_CAM0CTL,
1939 		.div_reg = CM_CAM0DIV,
1940 		.int_bits = 4,
1941 		.frac_bits = 8,
1942 		.tcnt_mux = 14),
1943 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1944 		.name = "cam1",
1945 		.ctl_reg = CM_CAM1CTL,
1946 		.div_reg = CM_CAM1DIV,
1947 		.int_bits = 4,
1948 		.frac_bits = 8,
1949 		.tcnt_mux = 15),
1950 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1951 		.name = "dft",
1952 		.ctl_reg = CM_DFTCTL,
1953 		.div_reg = CM_DFTDIV,
1954 		.int_bits = 5,
1955 		.frac_bits = 0),
1956 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1957 		.name = "dpi",
1958 		.ctl_reg = CM_DPICTL,
1959 		.div_reg = CM_DPIDIV,
1960 		.int_bits = 4,
1961 		.frac_bits = 8,
1962 		.tcnt_mux = 17),
1963 
1964 	/* Arasan EMMC clock */
1965 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
1966 		.name = "emmc",
1967 		.ctl_reg = CM_EMMCCTL,
1968 		.div_reg = CM_EMMCDIV,
1969 		.int_bits = 4,
1970 		.frac_bits = 8,
1971 		.tcnt_mux = 39),
1972 
1973 	/* General purpose (GPIO) clocks */
1974 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
1975 		.name = "gp0",
1976 		.ctl_reg = CM_GP0CTL,
1977 		.div_reg = CM_GP0DIV,
1978 		.int_bits = 12,
1979 		.frac_bits = 12,
1980 		.is_mash_clock = true,
1981 		.tcnt_mux = 20),
1982 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
1983 		.name = "gp1",
1984 		.ctl_reg = CM_GP1CTL,
1985 		.div_reg = CM_GP1DIV,
1986 		.int_bits = 12,
1987 		.frac_bits = 12,
1988 		.flags = CLK_IS_CRITICAL,
1989 		.is_mash_clock = true,
1990 		.tcnt_mux = 21),
1991 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
1992 		.name = "gp2",
1993 		.ctl_reg = CM_GP2CTL,
1994 		.div_reg = CM_GP2DIV,
1995 		.int_bits = 12,
1996 		.frac_bits = 12,
1997 		.flags = CLK_IS_CRITICAL),
1998 
1999 	/* HDMI state machine */
2000 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2001 		.name = "hsm",
2002 		.ctl_reg = CM_HSMCTL,
2003 		.div_reg = CM_HSMDIV,
2004 		.int_bits = 4,
2005 		.frac_bits = 8,
2006 		.tcnt_mux = 22),
2007 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2008 		.name = "pcm",
2009 		.ctl_reg = CM_PCMCTL,
2010 		.div_reg = CM_PCMDIV,
2011 		.int_bits = 12,
2012 		.frac_bits = 12,
2013 		.is_mash_clock = true,
2014 		.low_jitter = true,
2015 		.tcnt_mux = 23),
2016 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2017 		.name = "pwm",
2018 		.ctl_reg = CM_PWMCTL,
2019 		.div_reg = CM_PWMDIV,
2020 		.int_bits = 12,
2021 		.frac_bits = 12,
2022 		.is_mash_clock = true,
2023 		.tcnt_mux = 24),
2024 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2025 		.name = "slim",
2026 		.ctl_reg = CM_SLIMCTL,
2027 		.div_reg = CM_SLIMDIV,
2028 		.int_bits = 12,
2029 		.frac_bits = 12,
2030 		.is_mash_clock = true,
2031 		.tcnt_mux = 25),
2032 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2033 		.name = "smi",
2034 		.ctl_reg = CM_SMICTL,
2035 		.div_reg = CM_SMIDIV,
2036 		.int_bits = 4,
2037 		.frac_bits = 8,
2038 		.tcnt_mux = 27),
2039 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2040 		.name = "uart",
2041 		.ctl_reg = CM_UARTCTL,
2042 		.div_reg = CM_UARTDIV,
2043 		.int_bits = 10,
2044 		.frac_bits = 12,
2045 		.tcnt_mux = 28),
2046 
2047 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2048 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2049 		.name = "vec",
2050 		.ctl_reg = CM_VECCTL,
2051 		.div_reg = CM_VECDIV,
2052 		.int_bits = 4,
2053 		.frac_bits = 0,
2054 		/*
2055 		 * Allow rate change propagation only on PLLH_AUX which is
2056 		 * assigned index 7 in the parent array.
2057 		 */
2058 		.set_rate_parent = BIT(7),
2059 		.tcnt_mux = 29),
2060 
2061 	/* dsi clocks */
2062 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2063 		.name = "dsi0e",
2064 		.ctl_reg = CM_DSI0ECTL,
2065 		.div_reg = CM_DSI0EDIV,
2066 		.int_bits = 4,
2067 		.frac_bits = 8,
2068 		.tcnt_mux = 18),
2069 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2070 		.name = "dsi1e",
2071 		.ctl_reg = CM_DSI1ECTL,
2072 		.div_reg = CM_DSI1EDIV,
2073 		.int_bits = 4,
2074 		.frac_bits = 8,
2075 		.tcnt_mux = 19),
2076 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2077 		.name = "dsi0p",
2078 		.ctl_reg = CM_DSI0PCTL,
2079 		.div_reg = CM_DSI0PDIV,
2080 		.int_bits = 0,
2081 		.frac_bits = 0,
2082 		.tcnt_mux = 12),
2083 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2084 		.name = "dsi1p",
2085 		.ctl_reg = CM_DSI1PCTL,
2086 		.div_reg = CM_DSI1PDIV,
2087 		.int_bits = 0,
2088 		.frac_bits = 0,
2089 		.tcnt_mux = 13),
2090 
2091 	/* the gates */
2092 
2093 	/*
2094 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2095 	 * you have the debug bit set in the power manager, which we
2096 	 * don't bother exposing) are individual gates off of the
2097 	 * non-stop vpu clock.
2098 	 */
2099 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2100 		.name = "peri_image",
2101 		.parent = "vpu",
2102 		.ctl_reg = CM_PERIICTL),
2103 };
2104 
2105 /*
2106  * Permanently take a reference on the parent of the SDRAM clock.
2107  *
2108  * While the SDRAM is being driven by its dedicated PLL most of the
2109  * time, there is a little loop running in the firmware that
2110  * periodically switches the SDRAM to using our CM clock to do PVT
2111  * recalibration, with the assumption that the previously configured
2112  * SDRAM parent is still enabled and running.
2113  */
2114 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2115 {
2116 	struct clk *parent = clk_get_parent(sdc);
2117 
2118 	if (IS_ERR(parent))
2119 		return PTR_ERR(parent);
2120 
2121 	return clk_prepare_enable(parent);
2122 }
2123 
2124 static int bcm2835_clk_probe(struct platform_device *pdev)
2125 {
2126 	struct device *dev = &pdev->dev;
2127 	struct clk_hw **hws;
2128 	struct bcm2835_cprman *cprman;
2129 	struct resource *res;
2130 	const struct bcm2835_clk_desc *desc;
2131 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2132 	size_t i;
2133 	int ret;
2134 
2135 	cprman = devm_kzalloc(dev,
2136 			      struct_size(cprman, onecell.hws, asize),
2137 			      GFP_KERNEL);
2138 	if (!cprman)
2139 		return -ENOMEM;
2140 
2141 	spin_lock_init(&cprman->regs_lock);
2142 	cprman->dev = dev;
2143 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2144 	cprman->regs = devm_ioremap_resource(dev, res);
2145 	if (IS_ERR(cprman->regs))
2146 		return PTR_ERR(cprman->regs);
2147 
2148 	memcpy(cprman->real_parent_names, cprman_parent_names,
2149 	       sizeof(cprman_parent_names));
2150 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2151 			   ARRAY_SIZE(cprman_parent_names));
2152 
2153 	/*
2154 	 * Make sure the external oscillator has been registered.
2155 	 *
2156 	 * The other (DSI) clocks are not present on older device
2157 	 * trees, which we still need to support for backwards
2158 	 * compatibility.
2159 	 */
2160 	if (!cprman->real_parent_names[0])
2161 		return -ENODEV;
2162 
2163 	platform_set_drvdata(pdev, cprman);
2164 
2165 	cprman->onecell.num = asize;
2166 	hws = cprman->onecell.hws;
2167 
2168 	for (i = 0; i < asize; i++) {
2169 		desc = &clk_desc_array[i];
2170 		if (desc->clk_register && desc->data)
2171 			hws[i] = desc->clk_register(cprman, desc->data);
2172 	}
2173 
2174 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2175 	if (ret)
2176 		return ret;
2177 
2178 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2179 				      &cprman->onecell);
2180 }
2181 
2182 static const struct of_device_id bcm2835_clk_of_match[] = {
2183 	{ .compatible = "brcm,bcm2835-cprman", },
2184 	{}
2185 };
2186 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2187 
2188 static struct platform_driver bcm2835_clk_driver = {
2189 	.driver = {
2190 		.name = "bcm2835-clk",
2191 		.of_match_table = bcm2835_clk_of_match,
2192 	},
2193 	.probe          = bcm2835_clk_probe,
2194 };
2195 
2196 builtin_platform_driver(bcm2835_clk_driver);
2197 
2198 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2199 MODULE_DESCRIPTION("BCM2835 clock driver");
2200 MODULE_LICENSE("GPL");
2201