xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision a59511d1)
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 /**
21  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
22  *
23  * The clock tree on the 2835 has several levels.  There's a root
24  * oscillator running at 19.2Mhz.  After the oscillator there are 5
25  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
26  * and "HDMI displays".  Those 5 PLLs each can divide their output to
27  * produce up to 4 channels.  Finally, there is the level of clocks to
28  * be consumed by other hardware components (like "H264" or "HDMI
29  * state machine"), which divide off of some subset of the PLL
30  * channels.
31  *
32  * All of the clocks in the tree are exposed in the DT, because the DT
33  * may want to make assignments of the final layer of clocks to the
34  * PLL channels, and some components of the hardware will actually
35  * skip layers of the tree (for example, the pixel clock comes
36  * directly from the PLLH PIX channel without using a CM_*CTL clock
37  * generator).
38  */
39 
40 #include <linux/clk-provider.h>
41 #include <linux/clkdev.h>
42 #include <linux/clk/bcm2835.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/platform_device.h>
46 #include <linux/slab.h>
47 #include <dt-bindings/clock/bcm2835.h>
48 
49 #define CM_PASSWORD		0x5a000000
50 
51 #define CM_GNRICCTL		0x000
52 #define CM_GNRICDIV		0x004
53 # define CM_DIV_FRAC_BITS	12
54 
55 #define CM_VPUCTL		0x008
56 #define CM_VPUDIV		0x00c
57 #define CM_SYSCTL		0x010
58 #define CM_SYSDIV		0x014
59 #define CM_PERIACTL		0x018
60 #define CM_PERIADIV		0x01c
61 #define CM_PERIICTL		0x020
62 #define CM_PERIIDIV		0x024
63 #define CM_H264CTL		0x028
64 #define CM_H264DIV		0x02c
65 #define CM_ISPCTL		0x030
66 #define CM_ISPDIV		0x034
67 #define CM_V3DCTL		0x038
68 #define CM_V3DDIV		0x03c
69 #define CM_CAM0CTL		0x040
70 #define CM_CAM0DIV		0x044
71 #define CM_CAM1CTL		0x048
72 #define CM_CAM1DIV		0x04c
73 #define CM_CCP2CTL		0x050
74 #define CM_CCP2DIV		0x054
75 #define CM_DSI0ECTL		0x058
76 #define CM_DSI0EDIV		0x05c
77 #define CM_DSI0PCTL		0x060
78 #define CM_DSI0PDIV		0x064
79 #define CM_DPICTL		0x068
80 #define CM_DPIDIV		0x06c
81 #define CM_GP0CTL		0x070
82 #define CM_GP0DIV		0x074
83 #define CM_GP1CTL		0x078
84 #define CM_GP1DIV		0x07c
85 #define CM_GP2CTL		0x080
86 #define CM_GP2DIV		0x084
87 #define CM_HSMCTL		0x088
88 #define CM_HSMDIV		0x08c
89 #define CM_OTPCTL		0x090
90 #define CM_OTPDIV		0x094
91 #define CM_PCMCTL		0x098
92 #define CM_PCMDIV		0x09c
93 #define CM_PWMCTL		0x0a0
94 #define CM_PWMDIV		0x0a4
95 #define CM_SLIMCTL		0x0a8
96 #define CM_SLIMDIV		0x0ac
97 #define CM_SMICTL		0x0b0
98 #define CM_SMIDIV		0x0b4
99 /* no definition for 0x0b8  and 0x0bc */
100 #define CM_TCNTCTL		0x0c0
101 #define CM_TCNTDIV		0x0c4
102 #define CM_TECCTL		0x0c8
103 #define CM_TECDIV		0x0cc
104 #define CM_TD0CTL		0x0d0
105 #define CM_TD0DIV		0x0d4
106 #define CM_TD1CTL		0x0d8
107 #define CM_TD1DIV		0x0dc
108 #define CM_TSENSCTL		0x0e0
109 #define CM_TSENSDIV		0x0e4
110 #define CM_TIMERCTL		0x0e8
111 #define CM_TIMERDIV		0x0ec
112 #define CM_UARTCTL		0x0f0
113 #define CM_UARTDIV		0x0f4
114 #define CM_VECCTL		0x0f8
115 #define CM_VECDIV		0x0fc
116 #define CM_PULSECTL		0x190
117 #define CM_PULSEDIV		0x194
118 #define CM_SDCCTL		0x1a8
119 #define CM_SDCDIV		0x1ac
120 #define CM_ARMCTL		0x1b0
121 #define CM_EMMCCTL		0x1c0
122 #define CM_EMMCDIV		0x1c4
123 
124 /* General bits for the CM_*CTL regs */
125 # define CM_ENABLE			BIT(4)
126 # define CM_KILL			BIT(5)
127 # define CM_GATE_BIT			6
128 # define CM_GATE			BIT(CM_GATE_BIT)
129 # define CM_BUSY			BIT(7)
130 # define CM_BUSYD			BIT(8)
131 # define CM_SRC_SHIFT			0
132 # define CM_SRC_BITS			4
133 # define CM_SRC_MASK			0xf
134 # define CM_SRC_GND			0
135 # define CM_SRC_OSC			1
136 # define CM_SRC_TESTDEBUG0		2
137 # define CM_SRC_TESTDEBUG1		3
138 # define CM_SRC_PLLA_CORE		4
139 # define CM_SRC_PLLA_PER		4
140 # define CM_SRC_PLLC_CORE0		5
141 # define CM_SRC_PLLC_PER		5
142 # define CM_SRC_PLLC_CORE1		8
143 # define CM_SRC_PLLD_CORE		6
144 # define CM_SRC_PLLD_PER		6
145 # define CM_SRC_PLLH_AUX		7
146 # define CM_SRC_PLLC_CORE1		8
147 # define CM_SRC_PLLC_CORE2		9
148 
149 #define CM_OSCCOUNT		0x100
150 
151 #define CM_PLLA			0x104
152 # define CM_PLL_ANARST			BIT(8)
153 # define CM_PLLA_HOLDPER		BIT(7)
154 # define CM_PLLA_LOADPER		BIT(6)
155 # define CM_PLLA_HOLDCORE		BIT(5)
156 # define CM_PLLA_LOADCORE		BIT(4)
157 # define CM_PLLA_HOLDCCP2		BIT(3)
158 # define CM_PLLA_LOADCCP2		BIT(2)
159 # define CM_PLLA_HOLDDSI0		BIT(1)
160 # define CM_PLLA_LOADDSI0		BIT(0)
161 
162 #define CM_PLLC			0x108
163 # define CM_PLLC_HOLDPER		BIT(7)
164 # define CM_PLLC_LOADPER		BIT(6)
165 # define CM_PLLC_HOLDCORE2		BIT(5)
166 # define CM_PLLC_LOADCORE2		BIT(4)
167 # define CM_PLLC_HOLDCORE1		BIT(3)
168 # define CM_PLLC_LOADCORE1		BIT(2)
169 # define CM_PLLC_HOLDCORE0		BIT(1)
170 # define CM_PLLC_LOADCORE0		BIT(0)
171 
172 #define CM_PLLD			0x10c
173 # define CM_PLLD_HOLDPER		BIT(7)
174 # define CM_PLLD_LOADPER		BIT(6)
175 # define CM_PLLD_HOLDCORE		BIT(5)
176 # define CM_PLLD_LOADCORE		BIT(4)
177 # define CM_PLLD_HOLDDSI1		BIT(3)
178 # define CM_PLLD_LOADDSI1		BIT(2)
179 # define CM_PLLD_HOLDDSI0		BIT(1)
180 # define CM_PLLD_LOADDSI0		BIT(0)
181 
182 #define CM_PLLH			0x110
183 # define CM_PLLH_LOADRCAL		BIT(2)
184 # define CM_PLLH_LOADAUX		BIT(1)
185 # define CM_PLLH_LOADPIX		BIT(0)
186 
187 #define CM_LOCK			0x114
188 # define CM_LOCK_FLOCKH			BIT(12)
189 # define CM_LOCK_FLOCKD			BIT(11)
190 # define CM_LOCK_FLOCKC			BIT(10)
191 # define CM_LOCK_FLOCKB			BIT(9)
192 # define CM_LOCK_FLOCKA			BIT(8)
193 
194 #define CM_EVENT		0x118
195 #define CM_DSI1ECTL		0x158
196 #define CM_DSI1EDIV		0x15c
197 #define CM_DSI1PCTL		0x160
198 #define CM_DSI1PDIV		0x164
199 #define CM_DFTCTL		0x168
200 #define CM_DFTDIV		0x16c
201 
202 #define CM_PLLB			0x170
203 # define CM_PLLB_HOLDARM		BIT(1)
204 # define CM_PLLB_LOADARM		BIT(0)
205 
206 #define A2W_PLLA_CTRL		0x1100
207 #define A2W_PLLC_CTRL		0x1120
208 #define A2W_PLLD_CTRL		0x1140
209 #define A2W_PLLH_CTRL		0x1160
210 #define A2W_PLLB_CTRL		0x11e0
211 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
212 # define A2W_PLL_CTRL_PWRDN		BIT(16)
213 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
214 # define A2W_PLL_CTRL_PDIV_SHIFT	12
215 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
216 # define A2W_PLL_CTRL_NDIV_SHIFT	0
217 
218 #define A2W_PLLA_ANA0		0x1010
219 #define A2W_PLLC_ANA0		0x1030
220 #define A2W_PLLD_ANA0		0x1050
221 #define A2W_PLLH_ANA0		0x1070
222 #define A2W_PLLB_ANA0		0x10f0
223 
224 #define A2W_PLL_KA_SHIFT	7
225 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
226 #define A2W_PLL_KI_SHIFT	19
227 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
228 #define A2W_PLL_KP_SHIFT	15
229 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
230 
231 #define A2W_PLLH_KA_SHIFT	19
232 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
233 #define A2W_PLLH_KI_LOW_SHIFT	22
234 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
235 #define A2W_PLLH_KI_HIGH_SHIFT	0
236 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
237 #define A2W_PLLH_KP_SHIFT	1
238 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
239 
240 #define A2W_XOSC_CTRL		0x1190
241 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
242 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
243 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
244 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
245 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
246 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
247 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
248 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
249 
250 #define A2W_PLLA_FRAC		0x1200
251 #define A2W_PLLC_FRAC		0x1220
252 #define A2W_PLLD_FRAC		0x1240
253 #define A2W_PLLH_FRAC		0x1260
254 #define A2W_PLLB_FRAC		0x12e0
255 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
256 # define A2W_PLL_FRAC_BITS		20
257 
258 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
259 #define A2W_PLL_DIV_BITS		8
260 #define A2W_PLL_DIV_SHIFT		0
261 
262 #define A2W_PLLA_DSI0		0x1300
263 #define A2W_PLLA_CORE		0x1400
264 #define A2W_PLLA_PER		0x1500
265 #define A2W_PLLA_CCP2		0x1600
266 
267 #define A2W_PLLC_CORE2		0x1320
268 #define A2W_PLLC_CORE1		0x1420
269 #define A2W_PLLC_PER		0x1520
270 #define A2W_PLLC_CORE0		0x1620
271 
272 #define A2W_PLLD_DSI0		0x1340
273 #define A2W_PLLD_CORE		0x1440
274 #define A2W_PLLD_PER		0x1540
275 #define A2W_PLLD_DSI1		0x1640
276 
277 #define A2W_PLLH_AUX		0x1360
278 #define A2W_PLLH_RCAL		0x1460
279 #define A2W_PLLH_PIX		0x1560
280 #define A2W_PLLH_STS		0x1660
281 
282 #define A2W_PLLH_CTRLR		0x1960
283 #define A2W_PLLH_FRACR		0x1a60
284 #define A2W_PLLH_AUXR		0x1b60
285 #define A2W_PLLH_RCALR		0x1c60
286 #define A2W_PLLH_PIXR		0x1d60
287 #define A2W_PLLH_STSR		0x1e60
288 
289 #define A2W_PLLB_ARM		0x13e0
290 #define A2W_PLLB_SP0		0x14e0
291 #define A2W_PLLB_SP1		0x15e0
292 #define A2W_PLLB_SP2		0x16e0
293 
294 #define LOCK_TIMEOUT_NS		100000000
295 #define BCM2835_MAX_FB_RATE	1750000000u
296 
297 struct bcm2835_cprman {
298 	struct device *dev;
299 	void __iomem *regs;
300 	spinlock_t regs_lock;
301 	const char *osc_name;
302 
303 	struct clk_onecell_data onecell;
304 	struct clk *clks[BCM2835_CLOCK_COUNT];
305 };
306 
307 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
308 {
309 	writel(CM_PASSWORD | val, cprman->regs + reg);
310 }
311 
312 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
313 {
314 	return readl(cprman->regs + reg);
315 }
316 
317 /*
318  * These are fixed clocks. They're probably not all root clocks and it may
319  * be possible to turn them on and off but until this is mapped out better
320  * it's the only way they can be used.
321  */
322 void __init bcm2835_init_clocks(void)
323 {
324 	struct clk *clk;
325 	int ret;
326 
327 	clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
328 	if (IS_ERR(clk))
329 		pr_err("apb_pclk not registered\n");
330 
331 	clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
332 	if (IS_ERR(clk))
333 		pr_err("uart0_pclk not registered\n");
334 	ret = clk_register_clkdev(clk, NULL, "20201000.uart");
335 	if (ret)
336 		pr_err("uart0_pclk alias not registered\n");
337 
338 	clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
339 	if (IS_ERR(clk))
340 		pr_err("uart1_pclk not registered\n");
341 	ret = clk_register_clkdev(clk, NULL, "20215000.uart");
342 	if (ret)
343 		pr_err("uart1_pclk alias not registered\n");
344 }
345 
346 struct bcm2835_pll_data {
347 	const char *name;
348 	u32 cm_ctrl_reg;
349 	u32 a2w_ctrl_reg;
350 	u32 frac_reg;
351 	u32 ana_reg_base;
352 	u32 reference_enable_mask;
353 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
354 	u32 lock_mask;
355 
356 	const struct bcm2835_pll_ana_bits *ana;
357 
358 	unsigned long min_rate;
359 	unsigned long max_rate;
360 	/*
361 	 * Highest rate for the VCO before we have to use the
362 	 * pre-divide-by-2.
363 	 */
364 	unsigned long max_fb_rate;
365 };
366 
367 struct bcm2835_pll_ana_bits {
368 	u32 mask0;
369 	u32 set0;
370 	u32 mask1;
371 	u32 set1;
372 	u32 mask3;
373 	u32 set3;
374 	u32 fb_prediv_mask;
375 };
376 
377 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
378 	.mask0 = 0,
379 	.set0 = 0,
380 	.mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
381 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
382 	.mask3 = ~A2W_PLL_KA_MASK,
383 	.set3 = (2 << A2W_PLL_KA_SHIFT),
384 	.fb_prediv_mask = BIT(14),
385 };
386 
387 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
388 	.mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
389 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
390 	.mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
391 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
392 	.mask3 = 0,
393 	.set3 = 0,
394 	.fb_prediv_mask = BIT(11),
395 };
396 
397 /*
398  * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
399  * Port 2) transmitter clock.
400  *
401  * It is in the PX LDO power domain, which is on when the AUDIO domain
402  * is on.
403  */
404 static const struct bcm2835_pll_data bcm2835_plla_data = {
405 	.name = "plla",
406 	.cm_ctrl_reg = CM_PLLA,
407 	.a2w_ctrl_reg = A2W_PLLA_CTRL,
408 	.frac_reg = A2W_PLLA_FRAC,
409 	.ana_reg_base = A2W_PLLA_ANA0,
410 	.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
411 	.lock_mask = CM_LOCK_FLOCKA,
412 
413 	.ana = &bcm2835_ana_default,
414 
415 	.min_rate = 600000000u,
416 	.max_rate = 2400000000u,
417 	.max_fb_rate = BCM2835_MAX_FB_RATE,
418 };
419 
420 /* PLLB is used for the ARM's clock. */
421 static const struct bcm2835_pll_data bcm2835_pllb_data = {
422 	.name = "pllb",
423 	.cm_ctrl_reg = CM_PLLB,
424 	.a2w_ctrl_reg = A2W_PLLB_CTRL,
425 	.frac_reg = A2W_PLLB_FRAC,
426 	.ana_reg_base = A2W_PLLB_ANA0,
427 	.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
428 	.lock_mask = CM_LOCK_FLOCKB,
429 
430 	.ana = &bcm2835_ana_default,
431 
432 	.min_rate = 600000000u,
433 	.max_rate = 3000000000u,
434 	.max_fb_rate = BCM2835_MAX_FB_RATE,
435 };
436 
437 /*
438  * PLLC is the core PLL, used to drive the core VPU clock.
439  *
440  * It is in the PX LDO power domain, which is on when the AUDIO domain
441  * is on.
442 */
443 static const struct bcm2835_pll_data bcm2835_pllc_data = {
444 	.name = "pllc",
445 	.cm_ctrl_reg = CM_PLLC,
446 	.a2w_ctrl_reg = A2W_PLLC_CTRL,
447 	.frac_reg = A2W_PLLC_FRAC,
448 	.ana_reg_base = A2W_PLLC_ANA0,
449 	.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
450 	.lock_mask = CM_LOCK_FLOCKC,
451 
452 	.ana = &bcm2835_ana_default,
453 
454 	.min_rate = 600000000u,
455 	.max_rate = 3000000000u,
456 	.max_fb_rate = BCM2835_MAX_FB_RATE,
457 };
458 
459 /*
460  * PLLD is the display PLL, used to drive DSI display panels.
461  *
462  * It is in the PX LDO power domain, which is on when the AUDIO domain
463  * is on.
464  */
465 static const struct bcm2835_pll_data bcm2835_plld_data = {
466 	.name = "plld",
467 	.cm_ctrl_reg = CM_PLLD,
468 	.a2w_ctrl_reg = A2W_PLLD_CTRL,
469 	.frac_reg = A2W_PLLD_FRAC,
470 	.ana_reg_base = A2W_PLLD_ANA0,
471 	.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
472 	.lock_mask = CM_LOCK_FLOCKD,
473 
474 	.ana = &bcm2835_ana_default,
475 
476 	.min_rate = 600000000u,
477 	.max_rate = 2400000000u,
478 	.max_fb_rate = BCM2835_MAX_FB_RATE,
479 };
480 
481 /*
482  * PLLH is used to supply the pixel clock or the AUX clock for the TV
483  * encoder.
484  *
485  * It is in the HDMI power domain.
486  */
487 static const struct bcm2835_pll_data bcm2835_pllh_data = {
488 	"pllh",
489 	.cm_ctrl_reg = CM_PLLH,
490 	.a2w_ctrl_reg = A2W_PLLH_CTRL,
491 	.frac_reg = A2W_PLLH_FRAC,
492 	.ana_reg_base = A2W_PLLH_ANA0,
493 	.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
494 	.lock_mask = CM_LOCK_FLOCKH,
495 
496 	.ana = &bcm2835_ana_pllh,
497 
498 	.min_rate = 600000000u,
499 	.max_rate = 3000000000u,
500 	.max_fb_rate = BCM2835_MAX_FB_RATE,
501 };
502 
503 struct bcm2835_pll_divider_data {
504 	const char *name;
505 	const struct bcm2835_pll_data *source_pll;
506 	u32 cm_reg;
507 	u32 a2w_reg;
508 
509 	u32 load_mask;
510 	u32 hold_mask;
511 	u32 fixed_divider;
512 };
513 
514 static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = {
515 	.name = "plla_core",
516 	.source_pll = &bcm2835_plla_data,
517 	.cm_reg = CM_PLLA,
518 	.a2w_reg = A2W_PLLA_CORE,
519 	.load_mask = CM_PLLA_LOADCORE,
520 	.hold_mask = CM_PLLA_HOLDCORE,
521 	.fixed_divider = 1,
522 };
523 
524 static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = {
525 	.name = "plla_per",
526 	.source_pll = &bcm2835_plla_data,
527 	.cm_reg = CM_PLLA,
528 	.a2w_reg = A2W_PLLA_PER,
529 	.load_mask = CM_PLLA_LOADPER,
530 	.hold_mask = CM_PLLA_HOLDPER,
531 	.fixed_divider = 1,
532 };
533 
534 static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = {
535 	.name = "pllb_arm",
536 	.source_pll = &bcm2835_pllb_data,
537 	.cm_reg = CM_PLLB,
538 	.a2w_reg = A2W_PLLB_ARM,
539 	.load_mask = CM_PLLB_LOADARM,
540 	.hold_mask = CM_PLLB_HOLDARM,
541 	.fixed_divider = 1,
542 };
543 
544 static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = {
545 	.name = "pllc_core0",
546 	.source_pll = &bcm2835_pllc_data,
547 	.cm_reg = CM_PLLC,
548 	.a2w_reg = A2W_PLLC_CORE0,
549 	.load_mask = CM_PLLC_LOADCORE0,
550 	.hold_mask = CM_PLLC_HOLDCORE0,
551 	.fixed_divider = 1,
552 };
553 
554 static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = {
555 	.name = "pllc_core1", .source_pll = &bcm2835_pllc_data,
556 	.cm_reg = CM_PLLC, A2W_PLLC_CORE1,
557 	.load_mask = CM_PLLC_LOADCORE1,
558 	.hold_mask = CM_PLLC_HOLDCORE1,
559 	.fixed_divider = 1,
560 };
561 
562 static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = {
563 	.name = "pllc_core2",
564 	.source_pll = &bcm2835_pllc_data,
565 	.cm_reg = CM_PLLC,
566 	.a2w_reg = A2W_PLLC_CORE2,
567 	.load_mask = CM_PLLC_LOADCORE2,
568 	.hold_mask = CM_PLLC_HOLDCORE2,
569 	.fixed_divider = 1,
570 };
571 
572 static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = {
573 	.name = "pllc_per",
574 	.source_pll = &bcm2835_pllc_data,
575 	.cm_reg = CM_PLLC,
576 	.a2w_reg = A2W_PLLC_PER,
577 	.load_mask = CM_PLLC_LOADPER,
578 	.hold_mask = CM_PLLC_HOLDPER,
579 	.fixed_divider = 1,
580 };
581 
582 static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = {
583 	.name = "plld_core",
584 	.source_pll = &bcm2835_plld_data,
585 	.cm_reg = CM_PLLD,
586 	.a2w_reg = A2W_PLLD_CORE,
587 	.load_mask = CM_PLLD_LOADCORE,
588 	.hold_mask = CM_PLLD_HOLDCORE,
589 	.fixed_divider = 1,
590 };
591 
592 static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = {
593 	.name = "plld_per",
594 	.source_pll = &bcm2835_plld_data,
595 	.cm_reg = CM_PLLD,
596 	.a2w_reg = A2W_PLLD_PER,
597 	.load_mask = CM_PLLD_LOADPER,
598 	.hold_mask = CM_PLLD_HOLDPER,
599 	.fixed_divider = 1,
600 };
601 
602 static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = {
603 	.name = "pllh_rcal",
604 	.source_pll = &bcm2835_pllh_data,
605 	.cm_reg = CM_PLLH,
606 	.a2w_reg = A2W_PLLH_RCAL,
607 	.load_mask = CM_PLLH_LOADRCAL,
608 	.hold_mask = 0,
609 	.fixed_divider = 10,
610 };
611 
612 static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = {
613 	.name = "pllh_aux",
614 	.source_pll = &bcm2835_pllh_data,
615 	.cm_reg = CM_PLLH,
616 	.a2w_reg = A2W_PLLH_AUX,
617 	.load_mask = CM_PLLH_LOADAUX,
618 	.hold_mask = 0,
619 	.fixed_divider = 10,
620 };
621 
622 static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = {
623 	.name = "pllh_pix",
624 	.source_pll = &bcm2835_pllh_data,
625 	.cm_reg = CM_PLLH,
626 	.a2w_reg = A2W_PLLH_PIX,
627 	.load_mask = CM_PLLH_LOADPIX,
628 	.hold_mask = 0,
629 	.fixed_divider = 10,
630 };
631 
632 struct bcm2835_clock_data {
633 	const char *name;
634 
635 	const char *const *parents;
636 	int num_mux_parents;
637 
638 	u32 ctl_reg;
639 	u32 div_reg;
640 
641 	/* Number of integer bits in the divider */
642 	u32 int_bits;
643 	/* Number of fractional bits in the divider */
644 	u32 frac_bits;
645 
646 	bool is_vpu_clock;
647 };
648 
649 static const char *const bcm2835_clock_per_parents[] = {
650 	"gnd",
651 	"xosc",
652 	"testdebug0",
653 	"testdebug1",
654 	"plla_per",
655 	"pllc_per",
656 	"plld_per",
657 	"pllh_aux",
658 };
659 
660 static const char *const bcm2835_clock_vpu_parents[] = {
661 	"gnd",
662 	"xosc",
663 	"testdebug0",
664 	"testdebug1",
665 	"plla_core",
666 	"pllc_core0",
667 	"plld_core",
668 	"pllh_aux",
669 	"pllc_core1",
670 	"pllc_core2",
671 };
672 
673 static const char *const bcm2835_clock_osc_parents[] = {
674 	"gnd",
675 	"xosc",
676 	"testdebug0",
677 	"testdebug1"
678 };
679 
680 /*
681  * Used for a 1Mhz clock for the system clocksource, and also used by
682  * the watchdog timer and the camera pulse generator.
683  */
684 static const struct bcm2835_clock_data bcm2835_clock_timer_data = {
685 	.name = "timer",
686 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
687 	.parents = bcm2835_clock_osc_parents,
688 	.ctl_reg = CM_TIMERCTL,
689 	.div_reg = CM_TIMERDIV,
690 	.int_bits = 6,
691 	.frac_bits = 12,
692 };
693 
694 /* One Time Programmable Memory clock.  Maximum 10Mhz. */
695 static const struct bcm2835_clock_data bcm2835_clock_otp_data = {
696 	.name = "otp",
697 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
698 	.parents = bcm2835_clock_osc_parents,
699 	.ctl_reg = CM_OTPCTL,
700 	.div_reg = CM_OTPDIV,
701 	.int_bits = 4,
702 	.frac_bits = 0,
703 };
704 
705 /*
706  * VPU clock.  This doesn't have an enable bit, since it drives the
707  * bus for everything else, and is special so it doesn't need to be
708  * gated for rate changes.  It is also known as "clk_audio" in various
709  * hardware documentation.
710  */
711 static const struct bcm2835_clock_data bcm2835_clock_vpu_data = {
712 	.name = "vpu",
713 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
714 	.parents = bcm2835_clock_vpu_parents,
715 	.ctl_reg = CM_VPUCTL,
716 	.div_reg = CM_VPUDIV,
717 	.int_bits = 12,
718 	.frac_bits = 8,
719 	.is_vpu_clock = true,
720 };
721 
722 static const struct bcm2835_clock_data bcm2835_clock_v3d_data = {
723 	.name = "v3d",
724 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
725 	.parents = bcm2835_clock_vpu_parents,
726 	.ctl_reg = CM_V3DCTL,
727 	.div_reg = CM_V3DDIV,
728 	.int_bits = 4,
729 	.frac_bits = 8,
730 };
731 
732 static const struct bcm2835_clock_data bcm2835_clock_isp_data = {
733 	.name = "isp",
734 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
735 	.parents = bcm2835_clock_vpu_parents,
736 	.ctl_reg = CM_ISPCTL,
737 	.div_reg = CM_ISPDIV,
738 	.int_bits = 4,
739 	.frac_bits = 8,
740 };
741 
742 static const struct bcm2835_clock_data bcm2835_clock_h264_data = {
743 	.name = "h264",
744 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
745 	.parents = bcm2835_clock_vpu_parents,
746 	.ctl_reg = CM_H264CTL,
747 	.div_reg = CM_H264DIV,
748 	.int_bits = 4,
749 	.frac_bits = 8,
750 };
751 
752 /* TV encoder clock.  Only operating frequency is 108Mhz.  */
753 static const struct bcm2835_clock_data bcm2835_clock_vec_data = {
754 	.name = "vec",
755 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
756 	.parents = bcm2835_clock_per_parents,
757 	.ctl_reg = CM_VECCTL,
758 	.div_reg = CM_VECDIV,
759 	.int_bits = 4,
760 	.frac_bits = 0,
761 };
762 
763 static const struct bcm2835_clock_data bcm2835_clock_uart_data = {
764 	.name = "uart",
765 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
766 	.parents = bcm2835_clock_per_parents,
767 	.ctl_reg = CM_UARTCTL,
768 	.div_reg = CM_UARTDIV,
769 	.int_bits = 10,
770 	.frac_bits = 12,
771 };
772 
773 /* HDMI state machine */
774 static const struct bcm2835_clock_data bcm2835_clock_hsm_data = {
775 	.name = "hsm",
776 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
777 	.parents = bcm2835_clock_per_parents,
778 	.ctl_reg = CM_HSMCTL,
779 	.div_reg = CM_HSMDIV,
780 	.int_bits = 4,
781 	.frac_bits = 8,
782 };
783 
784 /*
785  * Secondary SDRAM clock.  Used for low-voltage modes when the PLL in
786  * the SDRAM controller can't be used.
787  */
788 static const struct bcm2835_clock_data bcm2835_clock_sdram_data = {
789 	.name = "sdram",
790 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
791 	.parents = bcm2835_clock_vpu_parents,
792 	.ctl_reg = CM_SDCCTL,
793 	.div_reg = CM_SDCDIV,
794 	.int_bits = 6,
795 	.frac_bits = 0,
796 };
797 
798 /* Clock for the temperature sensor.  Generally run at 2Mhz, max 5Mhz. */
799 static const struct bcm2835_clock_data bcm2835_clock_tsens_data = {
800 	.name = "tsens",
801 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
802 	.parents = bcm2835_clock_osc_parents,
803 	.ctl_reg = CM_TSENSCTL,
804 	.div_reg = CM_TSENSDIV,
805 	.int_bits = 5,
806 	.frac_bits = 0,
807 };
808 
809 /* Arasan EMMC clock */
810 static const struct bcm2835_clock_data bcm2835_clock_emmc_data = {
811 	.name = "emmc",
812 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
813 	.parents = bcm2835_clock_per_parents,
814 	.ctl_reg = CM_EMMCCTL,
815 	.div_reg = CM_EMMCDIV,
816 	.int_bits = 4,
817 	.frac_bits = 8,
818 };
819 
820 static const struct bcm2835_clock_data bcm2835_clock_pwm_data = {
821 	.name = "pwm",
822 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
823 	.parents = bcm2835_clock_per_parents,
824 	.ctl_reg = CM_PWMCTL,
825 	.div_reg = CM_PWMDIV,
826 	.int_bits = 12,
827 	.frac_bits = 12,
828 };
829 
830 struct bcm2835_pll {
831 	struct clk_hw hw;
832 	struct bcm2835_cprman *cprman;
833 	const struct bcm2835_pll_data *data;
834 };
835 
836 static int bcm2835_pll_is_on(struct clk_hw *hw)
837 {
838 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
839 	struct bcm2835_cprman *cprman = pll->cprman;
840 	const struct bcm2835_pll_data *data = pll->data;
841 
842 	return cprman_read(cprman, data->a2w_ctrl_reg) &
843 		A2W_PLL_CTRL_PRST_DISABLE;
844 }
845 
846 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
847 					     unsigned long parent_rate,
848 					     u32 *ndiv, u32 *fdiv)
849 {
850 	u64 div;
851 
852 	div = (u64)rate << A2W_PLL_FRAC_BITS;
853 	do_div(div, parent_rate);
854 
855 	*ndiv = div >> A2W_PLL_FRAC_BITS;
856 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
857 }
858 
859 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
860 					   u32 ndiv, u32 fdiv, u32 pdiv)
861 {
862 	u64 rate;
863 
864 	if (pdiv == 0)
865 		return 0;
866 
867 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
868 	do_div(rate, pdiv);
869 	return rate >> A2W_PLL_FRAC_BITS;
870 }
871 
872 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
873 				   unsigned long *parent_rate)
874 {
875 	u32 ndiv, fdiv;
876 
877 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
878 
879 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
880 }
881 
882 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
883 					  unsigned long parent_rate)
884 {
885 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
886 	struct bcm2835_cprman *cprman = pll->cprman;
887 	const struct bcm2835_pll_data *data = pll->data;
888 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
889 	u32 ndiv, pdiv, fdiv;
890 	bool using_prediv;
891 
892 	if (parent_rate == 0)
893 		return 0;
894 
895 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
896 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
897 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
898 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
899 		data->ana->fb_prediv_mask;
900 
901 	if (using_prediv)
902 		ndiv *= 2;
903 
904 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
905 }
906 
907 static void bcm2835_pll_off(struct clk_hw *hw)
908 {
909 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
910 	struct bcm2835_cprman *cprman = pll->cprman;
911 	const struct bcm2835_pll_data *data = pll->data;
912 
913 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
914 	cprman_write(cprman, data->a2w_ctrl_reg, A2W_PLL_CTRL_PWRDN);
915 }
916 
917 static int bcm2835_pll_on(struct clk_hw *hw)
918 {
919 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
920 	struct bcm2835_cprman *cprman = pll->cprman;
921 	const struct bcm2835_pll_data *data = pll->data;
922 	ktime_t timeout;
923 
924 	/* Take the PLL out of reset. */
925 	cprman_write(cprman, data->cm_ctrl_reg,
926 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
927 
928 	/* Wait for the PLL to lock. */
929 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
930 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
931 		if (ktime_after(ktime_get(), timeout)) {
932 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
933 				clk_hw_get_name(hw));
934 			return -ETIMEDOUT;
935 		}
936 
937 		cpu_relax();
938 	}
939 
940 	return 0;
941 }
942 
943 static void
944 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
945 {
946 	int i;
947 
948 	/*
949 	 * ANA register setup is done as a series of writes to
950 	 * ANA3-ANA0, in that order.  This lets us write all 4
951 	 * registers as a single cycle of the serdes interface (taking
952 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
953 	 * 3 individually through their partial-write registers, each
954 	 * would be their own serdes cycle.
955 	 */
956 	for (i = 3; i >= 0; i--)
957 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
958 }
959 
960 static int bcm2835_pll_set_rate(struct clk_hw *hw,
961 				unsigned long rate, unsigned long parent_rate)
962 {
963 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
964 	struct bcm2835_cprman *cprman = pll->cprman;
965 	const struct bcm2835_pll_data *data = pll->data;
966 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
967 	u32 ndiv, fdiv, a2w_ctl;
968 	u32 ana[4];
969 	int i;
970 
971 	if (rate < data->min_rate || rate > data->max_rate) {
972 		dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
973 			clk_hw_get_name(hw), rate,
974 			data->min_rate, data->max_rate);
975 		return -EINVAL;
976 	}
977 
978 	if (rate > data->max_fb_rate) {
979 		use_fb_prediv = true;
980 		rate /= 2;
981 	} else {
982 		use_fb_prediv = false;
983 	}
984 
985 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
986 
987 	for (i = 3; i >= 0; i--)
988 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
989 
990 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
991 
992 	ana[0] &= ~data->ana->mask0;
993 	ana[0] |= data->ana->set0;
994 	ana[1] &= ~data->ana->mask1;
995 	ana[1] |= data->ana->set1;
996 	ana[3] &= ~data->ana->mask3;
997 	ana[3] |= data->ana->set3;
998 
999 	if (was_using_prediv && !use_fb_prediv) {
1000 		ana[1] &= ~data->ana->fb_prediv_mask;
1001 		do_ana_setup_first = true;
1002 	} else if (!was_using_prediv && use_fb_prediv) {
1003 		ana[1] |= data->ana->fb_prediv_mask;
1004 		do_ana_setup_first = false;
1005 	} else {
1006 		do_ana_setup_first = true;
1007 	}
1008 
1009 	/* Unmask the reference clock from the oscillator. */
1010 	cprman_write(cprman, A2W_XOSC_CTRL,
1011 		     cprman_read(cprman, A2W_XOSC_CTRL) |
1012 		     data->reference_enable_mask);
1013 
1014 	if (do_ana_setup_first)
1015 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
1016 
1017 	/* Set the PLL multiplier from the oscillator. */
1018 	cprman_write(cprman, data->frac_reg, fdiv);
1019 
1020 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
1021 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
1022 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
1023 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
1024 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
1025 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
1026 
1027 	if (!do_ana_setup_first)
1028 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
1029 
1030 	return 0;
1031 }
1032 
1033 static const struct clk_ops bcm2835_pll_clk_ops = {
1034 	.is_prepared = bcm2835_pll_is_on,
1035 	.prepare = bcm2835_pll_on,
1036 	.unprepare = bcm2835_pll_off,
1037 	.recalc_rate = bcm2835_pll_get_rate,
1038 	.set_rate = bcm2835_pll_set_rate,
1039 	.round_rate = bcm2835_pll_round_rate,
1040 };
1041 
1042 struct bcm2835_pll_divider {
1043 	struct clk_divider div;
1044 	struct bcm2835_cprman *cprman;
1045 	const struct bcm2835_pll_divider_data *data;
1046 };
1047 
1048 static struct bcm2835_pll_divider *
1049 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
1050 {
1051 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
1052 }
1053 
1054 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
1055 {
1056 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1057 	struct bcm2835_cprman *cprman = divider->cprman;
1058 	const struct bcm2835_pll_divider_data *data = divider->data;
1059 
1060 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
1061 }
1062 
1063 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
1064 					   unsigned long rate,
1065 					   unsigned long *parent_rate)
1066 {
1067 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
1068 }
1069 
1070 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
1071 						  unsigned long parent_rate)
1072 {
1073 	return clk_divider_ops.recalc_rate(hw, parent_rate);
1074 }
1075 
1076 static void bcm2835_pll_divider_off(struct clk_hw *hw)
1077 {
1078 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1079 	struct bcm2835_cprman *cprman = divider->cprman;
1080 	const struct bcm2835_pll_divider_data *data = divider->data;
1081 
1082 	cprman_write(cprman, data->cm_reg,
1083 		     (cprman_read(cprman, data->cm_reg) &
1084 		      ~data->load_mask) | data->hold_mask);
1085 	cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
1086 }
1087 
1088 static int bcm2835_pll_divider_on(struct clk_hw *hw)
1089 {
1090 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1091 	struct bcm2835_cprman *cprman = divider->cprman;
1092 	const struct bcm2835_pll_divider_data *data = divider->data;
1093 
1094 	cprman_write(cprman, data->a2w_reg,
1095 		     cprman_read(cprman, data->a2w_reg) &
1096 		     ~A2W_PLL_CHANNEL_DISABLE);
1097 
1098 	cprman_write(cprman, data->cm_reg,
1099 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
1100 
1101 	return 0;
1102 }
1103 
1104 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
1105 					unsigned long rate,
1106 					unsigned long parent_rate)
1107 {
1108 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1109 	struct bcm2835_cprman *cprman = divider->cprman;
1110 	const struct bcm2835_pll_divider_data *data = divider->data;
1111 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
1112 
1113 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
1114 
1115 	div = min(div, max_div);
1116 	if (div == max_div)
1117 		div = 0;
1118 
1119 	cprman_write(cprman, data->a2w_reg, div);
1120 	cm = cprman_read(cprman, data->cm_reg);
1121 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
1122 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
1123 
1124 	return 0;
1125 }
1126 
1127 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
1128 	.is_prepared = bcm2835_pll_divider_is_on,
1129 	.prepare = bcm2835_pll_divider_on,
1130 	.unprepare = bcm2835_pll_divider_off,
1131 	.recalc_rate = bcm2835_pll_divider_get_rate,
1132 	.set_rate = bcm2835_pll_divider_set_rate,
1133 	.round_rate = bcm2835_pll_divider_round_rate,
1134 };
1135 
1136 /*
1137  * The CM dividers do fixed-point division, so we can't use the
1138  * generic integer divider code like the PLL dividers do (and we can't
1139  * fake it by having some fixed shifts preceding it in the clock tree,
1140  * because we'd run out of bits in a 32-bit unsigned long).
1141  */
1142 struct bcm2835_clock {
1143 	struct clk_hw hw;
1144 	struct bcm2835_cprman *cprman;
1145 	const struct bcm2835_clock_data *data;
1146 };
1147 
1148 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
1149 {
1150 	return container_of(hw, struct bcm2835_clock, hw);
1151 }
1152 
1153 static int bcm2835_clock_is_on(struct clk_hw *hw)
1154 {
1155 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1156 	struct bcm2835_cprman *cprman = clock->cprman;
1157 	const struct bcm2835_clock_data *data = clock->data;
1158 
1159 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
1160 }
1161 
1162 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
1163 				    unsigned long rate,
1164 				    unsigned long parent_rate,
1165 				    bool round_up)
1166 {
1167 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1168 	const struct bcm2835_clock_data *data = clock->data;
1169 	u32 unused_frac_mask =
1170 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
1171 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
1172 	u64 rem;
1173 	u32 div;
1174 
1175 	rem = do_div(temp, rate);
1176 	div = temp;
1177 
1178 	/* Round up and mask off the unused bits */
1179 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
1180 		div += unused_frac_mask + 1;
1181 	div &= ~unused_frac_mask;
1182 
1183 	/* Clamp to the limits. */
1184 	div = max(div, unused_frac_mask + 1);
1185 	div = min_t(u32, div, GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
1186 				      CM_DIV_FRAC_BITS - data->frac_bits));
1187 
1188 	return div;
1189 }
1190 
1191 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
1192 					    unsigned long parent_rate,
1193 					    u32 div)
1194 {
1195 	const struct bcm2835_clock_data *data = clock->data;
1196 	u64 temp;
1197 
1198 	/*
1199 	 * The divisor is a 12.12 fixed point field, but only some of
1200 	 * the bits are populated in any given clock.
1201 	 */
1202 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
1203 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
1204 
1205 	if (div == 0)
1206 		return 0;
1207 
1208 	temp = (u64)parent_rate << data->frac_bits;
1209 
1210 	do_div(temp, div);
1211 
1212 	return temp;
1213 }
1214 
1215 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1216 					    unsigned long parent_rate)
1217 {
1218 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1219 	struct bcm2835_cprman *cprman = clock->cprman;
1220 	const struct bcm2835_clock_data *data = clock->data;
1221 	u32 div = cprman_read(cprman, data->div_reg);
1222 
1223 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1224 }
1225 
1226 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1227 {
1228 	struct bcm2835_cprman *cprman = clock->cprman;
1229 	const struct bcm2835_clock_data *data = clock->data;
1230 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1231 
1232 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1233 		if (ktime_after(ktime_get(), timeout)) {
1234 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1235 				clk_hw_get_name(&clock->hw));
1236 			return;
1237 		}
1238 		cpu_relax();
1239 	}
1240 }
1241 
1242 static void bcm2835_clock_off(struct clk_hw *hw)
1243 {
1244 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1245 	struct bcm2835_cprman *cprman = clock->cprman;
1246 	const struct bcm2835_clock_data *data = clock->data;
1247 
1248 	spin_lock(&cprman->regs_lock);
1249 	cprman_write(cprman, data->ctl_reg,
1250 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1251 	spin_unlock(&cprman->regs_lock);
1252 
1253 	/* BUSY will remain high until the divider completes its cycle. */
1254 	bcm2835_clock_wait_busy(clock);
1255 }
1256 
1257 static int bcm2835_clock_on(struct clk_hw *hw)
1258 {
1259 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1260 	struct bcm2835_cprman *cprman = clock->cprman;
1261 	const struct bcm2835_clock_data *data = clock->data;
1262 
1263 	spin_lock(&cprman->regs_lock);
1264 	cprman_write(cprman, data->ctl_reg,
1265 		     cprman_read(cprman, data->ctl_reg) |
1266 		     CM_ENABLE |
1267 		     CM_GATE);
1268 	spin_unlock(&cprman->regs_lock);
1269 
1270 	return 0;
1271 }
1272 
1273 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1274 				  unsigned long rate, unsigned long parent_rate)
1275 {
1276 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1277 	struct bcm2835_cprman *cprman = clock->cprman;
1278 	const struct bcm2835_clock_data *data = clock->data;
1279 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1280 
1281 	cprman_write(cprman, data->div_reg, div);
1282 
1283 	return 0;
1284 }
1285 
1286 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1287 		struct clk_rate_request *req)
1288 {
1289 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1290 	struct clk_hw *parent, *best_parent = NULL;
1291 	unsigned long rate, best_rate = 0;
1292 	unsigned long prate, best_prate = 0;
1293 	size_t i;
1294 	u32 div;
1295 
1296 	/*
1297 	 * Select parent clock that results in the closest but lower rate
1298 	 */
1299 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1300 		parent = clk_hw_get_parent_by_index(hw, i);
1301 		if (!parent)
1302 			continue;
1303 		prate = clk_hw_get_rate(parent);
1304 		div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
1305 		rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
1306 		if (rate > best_rate && rate <= req->rate) {
1307 			best_parent = parent;
1308 			best_prate = prate;
1309 			best_rate = rate;
1310 		}
1311 	}
1312 
1313 	if (!best_parent)
1314 		return -EINVAL;
1315 
1316 	req->best_parent_hw = best_parent;
1317 	req->best_parent_rate = best_prate;
1318 
1319 	req->rate = best_rate;
1320 
1321 	return 0;
1322 }
1323 
1324 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1325 {
1326 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1327 	struct bcm2835_cprman *cprman = clock->cprman;
1328 	const struct bcm2835_clock_data *data = clock->data;
1329 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1330 
1331 	cprman_write(cprman, data->ctl_reg, src);
1332 	return 0;
1333 }
1334 
1335 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1336 {
1337 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1338 	struct bcm2835_cprman *cprman = clock->cprman;
1339 	const struct bcm2835_clock_data *data = clock->data;
1340 	u32 src = cprman_read(cprman, data->ctl_reg);
1341 
1342 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1343 }
1344 
1345 
1346 static const struct clk_ops bcm2835_clock_clk_ops = {
1347 	.is_prepared = bcm2835_clock_is_on,
1348 	.prepare = bcm2835_clock_on,
1349 	.unprepare = bcm2835_clock_off,
1350 	.recalc_rate = bcm2835_clock_get_rate,
1351 	.set_rate = bcm2835_clock_set_rate,
1352 	.determine_rate = bcm2835_clock_determine_rate,
1353 	.set_parent = bcm2835_clock_set_parent,
1354 	.get_parent = bcm2835_clock_get_parent,
1355 };
1356 
1357 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1358 {
1359 	return true;
1360 }
1361 
1362 /*
1363  * The VPU clock can never be disabled (it doesn't have an ENABLE
1364  * bit), so it gets its own set of clock ops.
1365  */
1366 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1367 	.is_prepared = bcm2835_vpu_clock_is_on,
1368 	.recalc_rate = bcm2835_clock_get_rate,
1369 	.set_rate = bcm2835_clock_set_rate,
1370 	.determine_rate = bcm2835_clock_determine_rate,
1371 	.set_parent = bcm2835_clock_set_parent,
1372 	.get_parent = bcm2835_clock_get_parent,
1373 };
1374 
1375 static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1376 					const struct bcm2835_pll_data *data)
1377 {
1378 	struct bcm2835_pll *pll;
1379 	struct clk_init_data init;
1380 
1381 	memset(&init, 0, sizeof(init));
1382 
1383 	/* All of the PLLs derive from the external oscillator. */
1384 	init.parent_names = &cprman->osc_name;
1385 	init.num_parents = 1;
1386 	init.name = data->name;
1387 	init.ops = &bcm2835_pll_clk_ops;
1388 	init.flags = CLK_IGNORE_UNUSED;
1389 
1390 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1391 	if (!pll)
1392 		return NULL;
1393 
1394 	pll->cprman = cprman;
1395 	pll->data = data;
1396 	pll->hw.init = &init;
1397 
1398 	return devm_clk_register(cprman->dev, &pll->hw);
1399 }
1400 
1401 static struct clk *
1402 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1403 			     const struct bcm2835_pll_divider_data *data)
1404 {
1405 	struct bcm2835_pll_divider *divider;
1406 	struct clk_init_data init;
1407 	struct clk *clk;
1408 	const char *divider_name;
1409 
1410 	if (data->fixed_divider != 1) {
1411 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1412 					      "%s_prediv", data->name);
1413 		if (!divider_name)
1414 			return NULL;
1415 	} else {
1416 		divider_name = data->name;
1417 	}
1418 
1419 	memset(&init, 0, sizeof(init));
1420 
1421 	init.parent_names = &data->source_pll->name;
1422 	init.num_parents = 1;
1423 	init.name = divider_name;
1424 	init.ops = &bcm2835_pll_divider_clk_ops;
1425 	init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1426 
1427 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1428 	if (!divider)
1429 		return NULL;
1430 
1431 	divider->div.reg = cprman->regs + data->a2w_reg;
1432 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1433 	divider->div.width = A2W_PLL_DIV_BITS;
1434 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1435 	divider->div.lock = &cprman->regs_lock;
1436 	divider->div.hw.init = &init;
1437 	divider->div.table = NULL;
1438 
1439 	divider->cprman = cprman;
1440 	divider->data = data;
1441 
1442 	clk = devm_clk_register(cprman->dev, &divider->div.hw);
1443 	if (IS_ERR(clk))
1444 		return clk;
1445 
1446 	/*
1447 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1448 	 * is what our consumers are actually using.
1449 	 */
1450 	if (data->fixed_divider != 1) {
1451 		return clk_register_fixed_factor(cprman->dev, data->name,
1452 						 divider_name,
1453 						 CLK_SET_RATE_PARENT,
1454 						 1,
1455 						 data->fixed_divider);
1456 	}
1457 
1458 	return clk;
1459 }
1460 
1461 static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1462 					  const struct bcm2835_clock_data *data)
1463 {
1464 	struct bcm2835_clock *clock;
1465 	struct clk_init_data init;
1466 	const char *parents[1 << CM_SRC_BITS];
1467 	size_t i;
1468 
1469 	/*
1470 	 * Replace our "xosc" references with the oscillator's
1471 	 * actual name.
1472 	 */
1473 	for (i = 0; i < data->num_mux_parents; i++) {
1474 		if (strcmp(data->parents[i], "xosc") == 0)
1475 			parents[i] = cprman->osc_name;
1476 		else
1477 			parents[i] = data->parents[i];
1478 	}
1479 
1480 	memset(&init, 0, sizeof(init));
1481 	init.parent_names = parents;
1482 	init.num_parents = data->num_mux_parents;
1483 	init.name = data->name;
1484 	init.flags = CLK_IGNORE_UNUSED;
1485 
1486 	if (data->is_vpu_clock) {
1487 		init.ops = &bcm2835_vpu_clock_clk_ops;
1488 	} else {
1489 		init.ops = &bcm2835_clock_clk_ops;
1490 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1491 	}
1492 
1493 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1494 	if (!clock)
1495 		return NULL;
1496 
1497 	clock->cprman = cprman;
1498 	clock->data = data;
1499 	clock->hw.init = &init;
1500 
1501 	return devm_clk_register(cprman->dev, &clock->hw);
1502 }
1503 
1504 static int bcm2835_clk_probe(struct platform_device *pdev)
1505 {
1506 	struct device *dev = &pdev->dev;
1507 	struct clk **clks;
1508 	struct bcm2835_cprman *cprman;
1509 	struct resource *res;
1510 
1511 	cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL);
1512 	if (!cprman)
1513 		return -ENOMEM;
1514 
1515 	spin_lock_init(&cprman->regs_lock);
1516 	cprman->dev = dev;
1517 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1518 	cprman->regs = devm_ioremap_resource(dev, res);
1519 	if (IS_ERR(cprman->regs))
1520 		return PTR_ERR(cprman->regs);
1521 
1522 	cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1523 	if (!cprman->osc_name)
1524 		return -ENODEV;
1525 
1526 	platform_set_drvdata(pdev, cprman);
1527 
1528 	cprman->onecell.clk_num = BCM2835_CLOCK_COUNT;
1529 	cprman->onecell.clks = cprman->clks;
1530 	clks = cprman->clks;
1531 
1532 	clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data);
1533 	clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data);
1534 	clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data);
1535 	clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data);
1536 	clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data);
1537 
1538 	clks[BCM2835_PLLA_CORE] =
1539 		bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data);
1540 	clks[BCM2835_PLLA_PER] =
1541 		bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data);
1542 	clks[BCM2835_PLLC_CORE0] =
1543 		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data);
1544 	clks[BCM2835_PLLC_CORE1] =
1545 		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data);
1546 	clks[BCM2835_PLLC_CORE2] =
1547 		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data);
1548 	clks[BCM2835_PLLC_PER] =
1549 		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data);
1550 	clks[BCM2835_PLLD_CORE] =
1551 		bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data);
1552 	clks[BCM2835_PLLD_PER] =
1553 		bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data);
1554 	clks[BCM2835_PLLH_RCAL] =
1555 		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data);
1556 	clks[BCM2835_PLLH_AUX] =
1557 		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data);
1558 	clks[BCM2835_PLLH_PIX] =
1559 		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data);
1560 
1561 	clks[BCM2835_CLOCK_TIMER] =
1562 		bcm2835_register_clock(cprman, &bcm2835_clock_timer_data);
1563 	clks[BCM2835_CLOCK_OTP] =
1564 		bcm2835_register_clock(cprman, &bcm2835_clock_otp_data);
1565 	clks[BCM2835_CLOCK_TSENS] =
1566 		bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data);
1567 	clks[BCM2835_CLOCK_VPU] =
1568 		bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data);
1569 	clks[BCM2835_CLOCK_V3D] =
1570 		bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
1571 	clks[BCM2835_CLOCK_ISP] =
1572 		bcm2835_register_clock(cprman, &bcm2835_clock_isp_data);
1573 	clks[BCM2835_CLOCK_H264] =
1574 		bcm2835_register_clock(cprman, &bcm2835_clock_h264_data);
1575 	clks[BCM2835_CLOCK_V3D] =
1576 		bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
1577 	clks[BCM2835_CLOCK_SDRAM] =
1578 		bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data);
1579 	clks[BCM2835_CLOCK_UART] =
1580 		bcm2835_register_clock(cprman, &bcm2835_clock_uart_data);
1581 	clks[BCM2835_CLOCK_VEC] =
1582 		bcm2835_register_clock(cprman, &bcm2835_clock_vec_data);
1583 	clks[BCM2835_CLOCK_HSM] =
1584 		bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data);
1585 	clks[BCM2835_CLOCK_EMMC] =
1586 		bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data);
1587 
1588 	/*
1589 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1590 	 * you have the debug bit set in the power manager, which we
1591 	 * don't bother exposing) are individual gates off of the
1592 	 * non-stop vpu clock.
1593 	 */
1594 	clks[BCM2835_CLOCK_PERI_IMAGE] =
1595 		clk_register_gate(dev, "peri_image", "vpu",
1596 				  CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1597 				  cprman->regs + CM_PERIICTL, CM_GATE_BIT,
1598 				  0, &cprman->regs_lock);
1599 
1600 	clks[BCM2835_CLOCK_PWM] =
1601 		bcm2835_register_clock(cprman, &bcm2835_clock_pwm_data);
1602 
1603 	return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
1604 				   &cprman->onecell);
1605 }
1606 
1607 static const struct of_device_id bcm2835_clk_of_match[] = {
1608 	{ .compatible = "brcm,bcm2835-cprman", },
1609 	{}
1610 };
1611 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1612 
1613 static struct platform_driver bcm2835_clk_driver = {
1614 	.driver = {
1615 		.name = "bcm2835-clk",
1616 		.of_match_table = bcm2835_clk_of_match,
1617 	},
1618 	.probe          = bcm2835_clk_probe,
1619 };
1620 
1621 builtin_platform_driver(bcm2835_clk_driver);
1622 
1623 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1624 MODULE_DESCRIPTION("BCM2835 clock driver");
1625 MODULE_LICENSE("GPL v2");
1626