xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision 9fb29c73)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6 
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26 
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include <linux/of.h>
34 #include <linux/platform_device.h>
35 #include <linux/slab.h>
36 #include <dt-bindings/clock/bcm2835.h>
37 
38 #define CM_PASSWORD		0x5a000000
39 
40 #define CM_GNRICCTL		0x000
41 #define CM_GNRICDIV		0x004
42 # define CM_DIV_FRAC_BITS	12
43 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
44 
45 #define CM_VPUCTL		0x008
46 #define CM_VPUDIV		0x00c
47 #define CM_SYSCTL		0x010
48 #define CM_SYSDIV		0x014
49 #define CM_PERIACTL		0x018
50 #define CM_PERIADIV		0x01c
51 #define CM_PERIICTL		0x020
52 #define CM_PERIIDIV		0x024
53 #define CM_H264CTL		0x028
54 #define CM_H264DIV		0x02c
55 #define CM_ISPCTL		0x030
56 #define CM_ISPDIV		0x034
57 #define CM_V3DCTL		0x038
58 #define CM_V3DDIV		0x03c
59 #define CM_CAM0CTL		0x040
60 #define CM_CAM0DIV		0x044
61 #define CM_CAM1CTL		0x048
62 #define CM_CAM1DIV		0x04c
63 #define CM_CCP2CTL		0x050
64 #define CM_CCP2DIV		0x054
65 #define CM_DSI0ECTL		0x058
66 #define CM_DSI0EDIV		0x05c
67 #define CM_DSI0PCTL		0x060
68 #define CM_DSI0PDIV		0x064
69 #define CM_DPICTL		0x068
70 #define CM_DPIDIV		0x06c
71 #define CM_GP0CTL		0x070
72 #define CM_GP0DIV		0x074
73 #define CM_GP1CTL		0x078
74 #define CM_GP1DIV		0x07c
75 #define CM_GP2CTL		0x080
76 #define CM_GP2DIV		0x084
77 #define CM_HSMCTL		0x088
78 #define CM_HSMDIV		0x08c
79 #define CM_OTPCTL		0x090
80 #define CM_OTPDIV		0x094
81 #define CM_PCMCTL		0x098
82 #define CM_PCMDIV		0x09c
83 #define CM_PWMCTL		0x0a0
84 #define CM_PWMDIV		0x0a4
85 #define CM_SLIMCTL		0x0a8
86 #define CM_SLIMDIV		0x0ac
87 #define CM_SMICTL		0x0b0
88 #define CM_SMIDIV		0x0b4
89 /* no definition for 0x0b8  and 0x0bc */
90 #define CM_TCNTCTL		0x0c0
91 # define CM_TCNT_SRC1_SHIFT		12
92 #define CM_TCNTCNT		0x0c4
93 #define CM_TECCTL		0x0c8
94 #define CM_TECDIV		0x0cc
95 #define CM_TD0CTL		0x0d0
96 #define CM_TD0DIV		0x0d4
97 #define CM_TD1CTL		0x0d8
98 #define CM_TD1DIV		0x0dc
99 #define CM_TSENSCTL		0x0e0
100 #define CM_TSENSDIV		0x0e4
101 #define CM_TIMERCTL		0x0e8
102 #define CM_TIMERDIV		0x0ec
103 #define CM_UARTCTL		0x0f0
104 #define CM_UARTDIV		0x0f4
105 #define CM_VECCTL		0x0f8
106 #define CM_VECDIV		0x0fc
107 #define CM_PULSECTL		0x190
108 #define CM_PULSEDIV		0x194
109 #define CM_SDCCTL		0x1a8
110 #define CM_SDCDIV		0x1ac
111 #define CM_ARMCTL		0x1b0
112 #define CM_AVEOCTL		0x1b8
113 #define CM_AVEODIV		0x1bc
114 #define CM_EMMCCTL		0x1c0
115 #define CM_EMMCDIV		0x1c4
116 
117 /* General bits for the CM_*CTL regs */
118 # define CM_ENABLE			BIT(4)
119 # define CM_KILL			BIT(5)
120 # define CM_GATE_BIT			6
121 # define CM_GATE			BIT(CM_GATE_BIT)
122 # define CM_BUSY			BIT(7)
123 # define CM_BUSYD			BIT(8)
124 # define CM_FRAC			BIT(9)
125 # define CM_SRC_SHIFT			0
126 # define CM_SRC_BITS			4
127 # define CM_SRC_MASK			0xf
128 # define CM_SRC_GND			0
129 # define CM_SRC_OSC			1
130 # define CM_SRC_TESTDEBUG0		2
131 # define CM_SRC_TESTDEBUG1		3
132 # define CM_SRC_PLLA_CORE		4
133 # define CM_SRC_PLLA_PER		4
134 # define CM_SRC_PLLC_CORE0		5
135 # define CM_SRC_PLLC_PER		5
136 # define CM_SRC_PLLC_CORE1		8
137 # define CM_SRC_PLLD_CORE		6
138 # define CM_SRC_PLLD_PER		6
139 # define CM_SRC_PLLH_AUX		7
140 # define CM_SRC_PLLC_CORE1		8
141 # define CM_SRC_PLLC_CORE2		9
142 
143 #define CM_OSCCOUNT		0x100
144 
145 #define CM_PLLA			0x104
146 # define CM_PLL_ANARST			BIT(8)
147 # define CM_PLLA_HOLDPER		BIT(7)
148 # define CM_PLLA_LOADPER		BIT(6)
149 # define CM_PLLA_HOLDCORE		BIT(5)
150 # define CM_PLLA_LOADCORE		BIT(4)
151 # define CM_PLLA_HOLDCCP2		BIT(3)
152 # define CM_PLLA_LOADCCP2		BIT(2)
153 # define CM_PLLA_HOLDDSI0		BIT(1)
154 # define CM_PLLA_LOADDSI0		BIT(0)
155 
156 #define CM_PLLC			0x108
157 # define CM_PLLC_HOLDPER		BIT(7)
158 # define CM_PLLC_LOADPER		BIT(6)
159 # define CM_PLLC_HOLDCORE2		BIT(5)
160 # define CM_PLLC_LOADCORE2		BIT(4)
161 # define CM_PLLC_HOLDCORE1		BIT(3)
162 # define CM_PLLC_LOADCORE1		BIT(2)
163 # define CM_PLLC_HOLDCORE0		BIT(1)
164 # define CM_PLLC_LOADCORE0		BIT(0)
165 
166 #define CM_PLLD			0x10c
167 # define CM_PLLD_HOLDPER		BIT(7)
168 # define CM_PLLD_LOADPER		BIT(6)
169 # define CM_PLLD_HOLDCORE		BIT(5)
170 # define CM_PLLD_LOADCORE		BIT(4)
171 # define CM_PLLD_HOLDDSI1		BIT(3)
172 # define CM_PLLD_LOADDSI1		BIT(2)
173 # define CM_PLLD_HOLDDSI0		BIT(1)
174 # define CM_PLLD_LOADDSI0		BIT(0)
175 
176 #define CM_PLLH			0x110
177 # define CM_PLLH_LOADRCAL		BIT(2)
178 # define CM_PLLH_LOADAUX		BIT(1)
179 # define CM_PLLH_LOADPIX		BIT(0)
180 
181 #define CM_LOCK			0x114
182 # define CM_LOCK_FLOCKH			BIT(12)
183 # define CM_LOCK_FLOCKD			BIT(11)
184 # define CM_LOCK_FLOCKC			BIT(10)
185 # define CM_LOCK_FLOCKB			BIT(9)
186 # define CM_LOCK_FLOCKA			BIT(8)
187 
188 #define CM_EVENT		0x118
189 #define CM_DSI1ECTL		0x158
190 #define CM_DSI1EDIV		0x15c
191 #define CM_DSI1PCTL		0x160
192 #define CM_DSI1PDIV		0x164
193 #define CM_DFTCTL		0x168
194 #define CM_DFTDIV		0x16c
195 
196 #define CM_PLLB			0x170
197 # define CM_PLLB_HOLDARM		BIT(1)
198 # define CM_PLLB_LOADARM		BIT(0)
199 
200 #define A2W_PLLA_CTRL		0x1100
201 #define A2W_PLLC_CTRL		0x1120
202 #define A2W_PLLD_CTRL		0x1140
203 #define A2W_PLLH_CTRL		0x1160
204 #define A2W_PLLB_CTRL		0x11e0
205 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
206 # define A2W_PLL_CTRL_PWRDN		BIT(16)
207 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
208 # define A2W_PLL_CTRL_PDIV_SHIFT	12
209 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
210 # define A2W_PLL_CTRL_NDIV_SHIFT	0
211 
212 #define A2W_PLLA_ANA0		0x1010
213 #define A2W_PLLC_ANA0		0x1030
214 #define A2W_PLLD_ANA0		0x1050
215 #define A2W_PLLH_ANA0		0x1070
216 #define A2W_PLLB_ANA0		0x10f0
217 
218 #define A2W_PLL_KA_SHIFT	7
219 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
220 #define A2W_PLL_KI_SHIFT	19
221 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
222 #define A2W_PLL_KP_SHIFT	15
223 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
224 
225 #define A2W_PLLH_KA_SHIFT	19
226 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
227 #define A2W_PLLH_KI_LOW_SHIFT	22
228 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
229 #define A2W_PLLH_KI_HIGH_SHIFT	0
230 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
231 #define A2W_PLLH_KP_SHIFT	1
232 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
233 
234 #define A2W_XOSC_CTRL		0x1190
235 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
236 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
237 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
238 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
239 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
240 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
241 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
242 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
243 
244 #define A2W_PLLA_FRAC		0x1200
245 #define A2W_PLLC_FRAC		0x1220
246 #define A2W_PLLD_FRAC		0x1240
247 #define A2W_PLLH_FRAC		0x1260
248 #define A2W_PLLB_FRAC		0x12e0
249 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
250 # define A2W_PLL_FRAC_BITS		20
251 
252 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
253 #define A2W_PLL_DIV_BITS		8
254 #define A2W_PLL_DIV_SHIFT		0
255 
256 #define A2W_PLLA_DSI0		0x1300
257 #define A2W_PLLA_CORE		0x1400
258 #define A2W_PLLA_PER		0x1500
259 #define A2W_PLLA_CCP2		0x1600
260 
261 #define A2W_PLLC_CORE2		0x1320
262 #define A2W_PLLC_CORE1		0x1420
263 #define A2W_PLLC_PER		0x1520
264 #define A2W_PLLC_CORE0		0x1620
265 
266 #define A2W_PLLD_DSI0		0x1340
267 #define A2W_PLLD_CORE		0x1440
268 #define A2W_PLLD_PER		0x1540
269 #define A2W_PLLD_DSI1		0x1640
270 
271 #define A2W_PLLH_AUX		0x1360
272 #define A2W_PLLH_RCAL		0x1460
273 #define A2W_PLLH_PIX		0x1560
274 #define A2W_PLLH_STS		0x1660
275 
276 #define A2W_PLLH_CTRLR		0x1960
277 #define A2W_PLLH_FRACR		0x1a60
278 #define A2W_PLLH_AUXR		0x1b60
279 #define A2W_PLLH_RCALR		0x1c60
280 #define A2W_PLLH_PIXR		0x1d60
281 #define A2W_PLLH_STSR		0x1e60
282 
283 #define A2W_PLLB_ARM		0x13e0
284 #define A2W_PLLB_SP0		0x14e0
285 #define A2W_PLLB_SP1		0x15e0
286 #define A2W_PLLB_SP2		0x16e0
287 
288 #define LOCK_TIMEOUT_NS		100000000
289 #define BCM2835_MAX_FB_RATE	1750000000u
290 
291 /*
292  * Names of clocks used within the driver that need to be replaced
293  * with an external parent's name.  This array is in the order that
294  * the clocks node in the DT references external clocks.
295  */
296 static const char *const cprman_parent_names[] = {
297 	"xosc",
298 	"dsi0_byte",
299 	"dsi0_ddr2",
300 	"dsi0_ddr",
301 	"dsi1_byte",
302 	"dsi1_ddr2",
303 	"dsi1_ddr",
304 };
305 
306 struct bcm2835_cprman {
307 	struct device *dev;
308 	void __iomem *regs;
309 	spinlock_t regs_lock; /* spinlock for all clocks */
310 
311 	/*
312 	 * Real names of cprman clock parents looked up through
313 	 * of_clk_get_parent_name(), which will be used in the
314 	 * parent_names[] arrays for clock registration.
315 	 */
316 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
317 
318 	/* Must be last */
319 	struct clk_hw_onecell_data onecell;
320 };
321 
322 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
323 {
324 	writel(CM_PASSWORD | val, cprman->regs + reg);
325 }
326 
327 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
328 {
329 	return readl(cprman->regs + reg);
330 }
331 
332 /* Does a cycle of measuring a clock through the TCNT clock, which may
333  * source from many other clocks in the system.
334  */
335 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
336 					      u32 tcnt_mux)
337 {
338 	u32 osccount = 19200; /* 1ms */
339 	u32 count;
340 	ktime_t timeout;
341 
342 	spin_lock(&cprman->regs_lock);
343 
344 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
345 
346 	cprman_write(cprman, CM_TCNTCTL,
347 		     (tcnt_mux & CM_SRC_MASK) |
348 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
349 
350 	cprman_write(cprman, CM_OSCCOUNT, osccount);
351 
352 	/* do a kind delay at the start */
353 	mdelay(1);
354 
355 	/* Finish off whatever is left of OSCCOUNT */
356 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
357 	while (cprman_read(cprman, CM_OSCCOUNT)) {
358 		if (ktime_after(ktime_get(), timeout)) {
359 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
360 			count = 0;
361 			goto out;
362 		}
363 		cpu_relax();
364 	}
365 
366 	/* Wait for BUSY to clear. */
367 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
369 		if (ktime_after(ktime_get(), timeout)) {
370 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
371 			count = 0;
372 			goto out;
373 		}
374 		cpu_relax();
375 	}
376 
377 	count = cprman_read(cprman, CM_TCNTCNT);
378 
379 	cprman_write(cprman, CM_TCNTCTL, 0);
380 
381 out:
382 	spin_unlock(&cprman->regs_lock);
383 
384 	return count * 1000;
385 }
386 
387 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
388 				  struct debugfs_reg32 *regs, size_t nregs,
389 				  struct dentry *dentry)
390 {
391 	struct debugfs_regset32 *regset;
392 
393 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
394 	if (!regset)
395 		return;
396 
397 	regset->regs = regs;
398 	regset->nregs = nregs;
399 	regset->base = cprman->regs + base;
400 
401 	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
402 }
403 
404 struct bcm2835_pll_data {
405 	const char *name;
406 	u32 cm_ctrl_reg;
407 	u32 a2w_ctrl_reg;
408 	u32 frac_reg;
409 	u32 ana_reg_base;
410 	u32 reference_enable_mask;
411 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
412 	u32 lock_mask;
413 
414 	const struct bcm2835_pll_ana_bits *ana;
415 
416 	unsigned long min_rate;
417 	unsigned long max_rate;
418 	/*
419 	 * Highest rate for the VCO before we have to use the
420 	 * pre-divide-by-2.
421 	 */
422 	unsigned long max_fb_rate;
423 };
424 
425 struct bcm2835_pll_ana_bits {
426 	u32 mask0;
427 	u32 set0;
428 	u32 mask1;
429 	u32 set1;
430 	u32 mask3;
431 	u32 set3;
432 	u32 fb_prediv_mask;
433 };
434 
435 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
436 	.mask0 = 0,
437 	.set0 = 0,
438 	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
439 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
440 	.mask3 = A2W_PLL_KA_MASK,
441 	.set3 = (2 << A2W_PLL_KA_SHIFT),
442 	.fb_prediv_mask = BIT(14),
443 };
444 
445 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
446 	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
447 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
448 	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
449 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
450 	.mask3 = 0,
451 	.set3 = 0,
452 	.fb_prediv_mask = BIT(11),
453 };
454 
455 struct bcm2835_pll_divider_data {
456 	const char *name;
457 	const char *source_pll;
458 
459 	u32 cm_reg;
460 	u32 a2w_reg;
461 
462 	u32 load_mask;
463 	u32 hold_mask;
464 	u32 fixed_divider;
465 	u32 flags;
466 };
467 
468 struct bcm2835_clock_data {
469 	const char *name;
470 
471 	const char *const *parents;
472 	int num_mux_parents;
473 
474 	/* Bitmap encoding which parents accept rate change propagation. */
475 	unsigned int set_rate_parent;
476 
477 	u32 ctl_reg;
478 	u32 div_reg;
479 
480 	/* Number of integer bits in the divider */
481 	u32 int_bits;
482 	/* Number of fractional bits in the divider */
483 	u32 frac_bits;
484 
485 	u32 flags;
486 
487 	bool is_vpu_clock;
488 	bool is_mash_clock;
489 	bool low_jitter;
490 
491 	u32 tcnt_mux;
492 };
493 
494 struct bcm2835_gate_data {
495 	const char *name;
496 	const char *parent;
497 
498 	u32 ctl_reg;
499 };
500 
501 struct bcm2835_pll {
502 	struct clk_hw hw;
503 	struct bcm2835_cprman *cprman;
504 	const struct bcm2835_pll_data *data;
505 };
506 
507 static int bcm2835_pll_is_on(struct clk_hw *hw)
508 {
509 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
510 	struct bcm2835_cprman *cprman = pll->cprman;
511 	const struct bcm2835_pll_data *data = pll->data;
512 
513 	return cprman_read(cprman, data->a2w_ctrl_reg) &
514 		A2W_PLL_CTRL_PRST_DISABLE;
515 }
516 
517 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
518 					     unsigned long parent_rate,
519 					     u32 *ndiv, u32 *fdiv)
520 {
521 	u64 div;
522 
523 	div = (u64)rate << A2W_PLL_FRAC_BITS;
524 	do_div(div, parent_rate);
525 
526 	*ndiv = div >> A2W_PLL_FRAC_BITS;
527 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
528 }
529 
530 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
531 					   u32 ndiv, u32 fdiv, u32 pdiv)
532 {
533 	u64 rate;
534 
535 	if (pdiv == 0)
536 		return 0;
537 
538 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
539 	do_div(rate, pdiv);
540 	return rate >> A2W_PLL_FRAC_BITS;
541 }
542 
543 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
544 				   unsigned long *parent_rate)
545 {
546 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
547 	const struct bcm2835_pll_data *data = pll->data;
548 	u32 ndiv, fdiv;
549 
550 	rate = clamp(rate, data->min_rate, data->max_rate);
551 
552 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
553 
554 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
555 }
556 
557 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
558 					  unsigned long parent_rate)
559 {
560 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
561 	struct bcm2835_cprman *cprman = pll->cprman;
562 	const struct bcm2835_pll_data *data = pll->data;
563 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
564 	u32 ndiv, pdiv, fdiv;
565 	bool using_prediv;
566 
567 	if (parent_rate == 0)
568 		return 0;
569 
570 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
571 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
572 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
573 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
574 		data->ana->fb_prediv_mask;
575 
576 	if (using_prediv) {
577 		ndiv *= 2;
578 		fdiv *= 2;
579 	}
580 
581 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
582 }
583 
584 static void bcm2835_pll_off(struct clk_hw *hw)
585 {
586 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
587 	struct bcm2835_cprman *cprman = pll->cprman;
588 	const struct bcm2835_pll_data *data = pll->data;
589 
590 	spin_lock(&cprman->regs_lock);
591 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
592 	cprman_write(cprman, data->a2w_ctrl_reg,
593 		     cprman_read(cprman, data->a2w_ctrl_reg) |
594 		     A2W_PLL_CTRL_PWRDN);
595 	spin_unlock(&cprman->regs_lock);
596 }
597 
598 static int bcm2835_pll_on(struct clk_hw *hw)
599 {
600 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
601 	struct bcm2835_cprman *cprman = pll->cprman;
602 	const struct bcm2835_pll_data *data = pll->data;
603 	ktime_t timeout;
604 
605 	cprman_write(cprman, data->a2w_ctrl_reg,
606 		     cprman_read(cprman, data->a2w_ctrl_reg) &
607 		     ~A2W_PLL_CTRL_PWRDN);
608 
609 	/* Take the PLL out of reset. */
610 	spin_lock(&cprman->regs_lock);
611 	cprman_write(cprman, data->cm_ctrl_reg,
612 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
613 	spin_unlock(&cprman->regs_lock);
614 
615 	/* Wait for the PLL to lock. */
616 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
617 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
618 		if (ktime_after(ktime_get(), timeout)) {
619 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
620 				clk_hw_get_name(hw));
621 			return -ETIMEDOUT;
622 		}
623 
624 		cpu_relax();
625 	}
626 
627 	cprman_write(cprman, data->a2w_ctrl_reg,
628 		     cprman_read(cprman, data->a2w_ctrl_reg) |
629 		     A2W_PLL_CTRL_PRST_DISABLE);
630 
631 	return 0;
632 }
633 
634 static void
635 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
636 {
637 	int i;
638 
639 	/*
640 	 * ANA register setup is done as a series of writes to
641 	 * ANA3-ANA0, in that order.  This lets us write all 4
642 	 * registers as a single cycle of the serdes interface (taking
643 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
644 	 * 3 individually through their partial-write registers, each
645 	 * would be their own serdes cycle.
646 	 */
647 	for (i = 3; i >= 0; i--)
648 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
649 }
650 
651 static int bcm2835_pll_set_rate(struct clk_hw *hw,
652 				unsigned long rate, unsigned long parent_rate)
653 {
654 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
655 	struct bcm2835_cprman *cprman = pll->cprman;
656 	const struct bcm2835_pll_data *data = pll->data;
657 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
658 	u32 ndiv, fdiv, a2w_ctl;
659 	u32 ana[4];
660 	int i;
661 
662 	if (rate > data->max_fb_rate) {
663 		use_fb_prediv = true;
664 		rate /= 2;
665 	} else {
666 		use_fb_prediv = false;
667 	}
668 
669 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
670 
671 	for (i = 3; i >= 0; i--)
672 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
673 
674 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
675 
676 	ana[0] &= ~data->ana->mask0;
677 	ana[0] |= data->ana->set0;
678 	ana[1] &= ~data->ana->mask1;
679 	ana[1] |= data->ana->set1;
680 	ana[3] &= ~data->ana->mask3;
681 	ana[3] |= data->ana->set3;
682 
683 	if (was_using_prediv && !use_fb_prediv) {
684 		ana[1] &= ~data->ana->fb_prediv_mask;
685 		do_ana_setup_first = true;
686 	} else if (!was_using_prediv && use_fb_prediv) {
687 		ana[1] |= data->ana->fb_prediv_mask;
688 		do_ana_setup_first = false;
689 	} else {
690 		do_ana_setup_first = true;
691 	}
692 
693 	/* Unmask the reference clock from the oscillator. */
694 	spin_lock(&cprman->regs_lock);
695 	cprman_write(cprman, A2W_XOSC_CTRL,
696 		     cprman_read(cprman, A2W_XOSC_CTRL) |
697 		     data->reference_enable_mask);
698 	spin_unlock(&cprman->regs_lock);
699 
700 	if (do_ana_setup_first)
701 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
702 
703 	/* Set the PLL multiplier from the oscillator. */
704 	cprman_write(cprman, data->frac_reg, fdiv);
705 
706 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
707 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
708 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
709 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
710 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
711 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
712 
713 	if (!do_ana_setup_first)
714 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
715 
716 	return 0;
717 }
718 
719 static void bcm2835_pll_debug_init(struct clk_hw *hw,
720 				  struct dentry *dentry)
721 {
722 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
723 	struct bcm2835_cprman *cprman = pll->cprman;
724 	const struct bcm2835_pll_data *data = pll->data;
725 	struct debugfs_reg32 *regs;
726 
727 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
728 	if (!regs)
729 		return;
730 
731 	regs[0].name = "cm_ctrl";
732 	regs[0].offset = data->cm_ctrl_reg;
733 	regs[1].name = "a2w_ctrl";
734 	regs[1].offset = data->a2w_ctrl_reg;
735 	regs[2].name = "frac";
736 	regs[2].offset = data->frac_reg;
737 	regs[3].name = "ana0";
738 	regs[3].offset = data->ana_reg_base + 0 * 4;
739 	regs[4].name = "ana1";
740 	regs[4].offset = data->ana_reg_base + 1 * 4;
741 	regs[5].name = "ana2";
742 	regs[5].offset = data->ana_reg_base + 2 * 4;
743 	regs[6].name = "ana3";
744 	regs[6].offset = data->ana_reg_base + 3 * 4;
745 
746 	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
747 }
748 
749 static const struct clk_ops bcm2835_pll_clk_ops = {
750 	.is_prepared = bcm2835_pll_is_on,
751 	.prepare = bcm2835_pll_on,
752 	.unprepare = bcm2835_pll_off,
753 	.recalc_rate = bcm2835_pll_get_rate,
754 	.set_rate = bcm2835_pll_set_rate,
755 	.round_rate = bcm2835_pll_round_rate,
756 	.debug_init = bcm2835_pll_debug_init,
757 };
758 
759 struct bcm2835_pll_divider {
760 	struct clk_divider div;
761 	struct bcm2835_cprman *cprman;
762 	const struct bcm2835_pll_divider_data *data;
763 };
764 
765 static struct bcm2835_pll_divider *
766 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
767 {
768 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
769 }
770 
771 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
772 {
773 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
774 	struct bcm2835_cprman *cprman = divider->cprman;
775 	const struct bcm2835_pll_divider_data *data = divider->data;
776 
777 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
778 }
779 
780 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
781 					   unsigned long rate,
782 					   unsigned long *parent_rate)
783 {
784 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
785 }
786 
787 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
788 						  unsigned long parent_rate)
789 {
790 	return clk_divider_ops.recalc_rate(hw, parent_rate);
791 }
792 
793 static void bcm2835_pll_divider_off(struct clk_hw *hw)
794 {
795 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
796 	struct bcm2835_cprman *cprman = divider->cprman;
797 	const struct bcm2835_pll_divider_data *data = divider->data;
798 
799 	spin_lock(&cprman->regs_lock);
800 	cprman_write(cprman, data->cm_reg,
801 		     (cprman_read(cprman, data->cm_reg) &
802 		      ~data->load_mask) | data->hold_mask);
803 	cprman_write(cprman, data->a2w_reg,
804 		     cprman_read(cprman, data->a2w_reg) |
805 		     A2W_PLL_CHANNEL_DISABLE);
806 	spin_unlock(&cprman->regs_lock);
807 }
808 
809 static int bcm2835_pll_divider_on(struct clk_hw *hw)
810 {
811 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
812 	struct bcm2835_cprman *cprman = divider->cprman;
813 	const struct bcm2835_pll_divider_data *data = divider->data;
814 
815 	spin_lock(&cprman->regs_lock);
816 	cprman_write(cprman, data->a2w_reg,
817 		     cprman_read(cprman, data->a2w_reg) &
818 		     ~A2W_PLL_CHANNEL_DISABLE);
819 
820 	cprman_write(cprman, data->cm_reg,
821 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
822 	spin_unlock(&cprman->regs_lock);
823 
824 	return 0;
825 }
826 
827 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
828 					unsigned long rate,
829 					unsigned long parent_rate)
830 {
831 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
832 	struct bcm2835_cprman *cprman = divider->cprman;
833 	const struct bcm2835_pll_divider_data *data = divider->data;
834 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
835 
836 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
837 
838 	div = min(div, max_div);
839 	if (div == max_div)
840 		div = 0;
841 
842 	cprman_write(cprman, data->a2w_reg, div);
843 	cm = cprman_read(cprman, data->cm_reg);
844 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
845 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
846 
847 	return 0;
848 }
849 
850 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
851 					   struct dentry *dentry)
852 {
853 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
854 	struct bcm2835_cprman *cprman = divider->cprman;
855 	const struct bcm2835_pll_divider_data *data = divider->data;
856 	struct debugfs_reg32 *regs;
857 
858 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
859 	if (!regs)
860 		return;
861 
862 	regs[0].name = "cm";
863 	regs[0].offset = data->cm_reg;
864 	regs[1].name = "a2w";
865 	regs[1].offset = data->a2w_reg;
866 
867 	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
868 }
869 
870 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
871 	.is_prepared = bcm2835_pll_divider_is_on,
872 	.prepare = bcm2835_pll_divider_on,
873 	.unprepare = bcm2835_pll_divider_off,
874 	.recalc_rate = bcm2835_pll_divider_get_rate,
875 	.set_rate = bcm2835_pll_divider_set_rate,
876 	.round_rate = bcm2835_pll_divider_round_rate,
877 	.debug_init = bcm2835_pll_divider_debug_init,
878 };
879 
880 /*
881  * The CM dividers do fixed-point division, so we can't use the
882  * generic integer divider code like the PLL dividers do (and we can't
883  * fake it by having some fixed shifts preceding it in the clock tree,
884  * because we'd run out of bits in a 32-bit unsigned long).
885  */
886 struct bcm2835_clock {
887 	struct clk_hw hw;
888 	struct bcm2835_cprman *cprman;
889 	const struct bcm2835_clock_data *data;
890 };
891 
892 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
893 {
894 	return container_of(hw, struct bcm2835_clock, hw);
895 }
896 
897 static int bcm2835_clock_is_on(struct clk_hw *hw)
898 {
899 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
900 	struct bcm2835_cprman *cprman = clock->cprman;
901 	const struct bcm2835_clock_data *data = clock->data;
902 
903 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
904 }
905 
906 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
907 				    unsigned long rate,
908 				    unsigned long parent_rate,
909 				    bool round_up)
910 {
911 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
912 	const struct bcm2835_clock_data *data = clock->data;
913 	u32 unused_frac_mask =
914 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
915 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
916 	u64 rem;
917 	u32 div, mindiv, maxdiv;
918 
919 	rem = do_div(temp, rate);
920 	div = temp;
921 
922 	/* Round up and mask off the unused bits */
923 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
924 		div += unused_frac_mask + 1;
925 	div &= ~unused_frac_mask;
926 
927 	/* different clamping limits apply for a mash clock */
928 	if (data->is_mash_clock) {
929 		/* clamp to min divider of 2 */
930 		mindiv = 2 << CM_DIV_FRAC_BITS;
931 		/* clamp to the highest possible integer divider */
932 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
933 	} else {
934 		/* clamp to min divider of 1 */
935 		mindiv = 1 << CM_DIV_FRAC_BITS;
936 		/* clamp to the highest possible fractional divider */
937 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
938 				 CM_DIV_FRAC_BITS - data->frac_bits);
939 	}
940 
941 	/* apply the clamping  limits */
942 	div = max_t(u32, div, mindiv);
943 	div = min_t(u32, div, maxdiv);
944 
945 	return div;
946 }
947 
948 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
949 					    unsigned long parent_rate,
950 					    u32 div)
951 {
952 	const struct bcm2835_clock_data *data = clock->data;
953 	u64 temp;
954 
955 	if (data->int_bits == 0 && data->frac_bits == 0)
956 		return parent_rate;
957 
958 	/*
959 	 * The divisor is a 12.12 fixed point field, but only some of
960 	 * the bits are populated in any given clock.
961 	 */
962 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
963 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
964 
965 	if (div == 0)
966 		return 0;
967 
968 	temp = (u64)parent_rate << data->frac_bits;
969 
970 	do_div(temp, div);
971 
972 	return temp;
973 }
974 
975 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
976 					    unsigned long parent_rate)
977 {
978 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
979 	struct bcm2835_cprman *cprman = clock->cprman;
980 	const struct bcm2835_clock_data *data = clock->data;
981 	u32 div;
982 
983 	if (data->int_bits == 0 && data->frac_bits == 0)
984 		return parent_rate;
985 
986 	div = cprman_read(cprman, data->div_reg);
987 
988 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
989 }
990 
991 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
992 {
993 	struct bcm2835_cprman *cprman = clock->cprman;
994 	const struct bcm2835_clock_data *data = clock->data;
995 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
996 
997 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
998 		if (ktime_after(ktime_get(), timeout)) {
999 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1000 				clk_hw_get_name(&clock->hw));
1001 			return;
1002 		}
1003 		cpu_relax();
1004 	}
1005 }
1006 
1007 static void bcm2835_clock_off(struct clk_hw *hw)
1008 {
1009 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1010 	struct bcm2835_cprman *cprman = clock->cprman;
1011 	const struct bcm2835_clock_data *data = clock->data;
1012 
1013 	spin_lock(&cprman->regs_lock);
1014 	cprman_write(cprman, data->ctl_reg,
1015 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1016 	spin_unlock(&cprman->regs_lock);
1017 
1018 	/* BUSY will remain high until the divider completes its cycle. */
1019 	bcm2835_clock_wait_busy(clock);
1020 }
1021 
1022 static int bcm2835_clock_on(struct clk_hw *hw)
1023 {
1024 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1025 	struct bcm2835_cprman *cprman = clock->cprman;
1026 	const struct bcm2835_clock_data *data = clock->data;
1027 
1028 	spin_lock(&cprman->regs_lock);
1029 	cprman_write(cprman, data->ctl_reg,
1030 		     cprman_read(cprman, data->ctl_reg) |
1031 		     CM_ENABLE |
1032 		     CM_GATE);
1033 	spin_unlock(&cprman->regs_lock);
1034 
1035 	/* Debug code to measure the clock once it's turned on to see
1036 	 * if it's ticking at the rate we expect.
1037 	 */
1038 	if (data->tcnt_mux && false) {
1039 		dev_info(cprman->dev,
1040 			 "clk %s: rate %ld, measure %ld\n",
1041 			 data->name,
1042 			 clk_hw_get_rate(hw),
1043 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1050 				  unsigned long rate, unsigned long parent_rate)
1051 {
1052 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1053 	struct bcm2835_cprman *cprman = clock->cprman;
1054 	const struct bcm2835_clock_data *data = clock->data;
1055 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1056 	u32 ctl;
1057 
1058 	spin_lock(&cprman->regs_lock);
1059 
1060 	/*
1061 	 * Setting up frac support
1062 	 *
1063 	 * In principle it is recommended to stop/start the clock first,
1064 	 * but as we set CLK_SET_RATE_GATE during registration of the
1065 	 * clock this requirement should be take care of by the
1066 	 * clk-framework.
1067 	 */
1068 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1069 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1070 	cprman_write(cprman, data->ctl_reg, ctl);
1071 
1072 	cprman_write(cprman, data->div_reg, div);
1073 
1074 	spin_unlock(&cprman->regs_lock);
1075 
1076 	return 0;
1077 }
1078 
1079 static bool
1080 bcm2835_clk_is_pllc(struct clk_hw *hw)
1081 {
1082 	if (!hw)
1083 		return false;
1084 
1085 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1086 }
1087 
1088 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1089 							int parent_idx,
1090 							unsigned long rate,
1091 							u32 *div,
1092 							unsigned long *prate,
1093 							unsigned long *avgrate)
1094 {
1095 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1096 	struct bcm2835_cprman *cprman = clock->cprman;
1097 	const struct bcm2835_clock_data *data = clock->data;
1098 	unsigned long best_rate = 0;
1099 	u32 curdiv, mindiv, maxdiv;
1100 	struct clk_hw *parent;
1101 
1102 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1103 
1104 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1105 		*prate = clk_hw_get_rate(parent);
1106 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1107 
1108 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1109 
1110 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1111 			unsigned long high, low;
1112 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1113 
1114 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1115 							       int_div);
1116 			int_div += CM_DIV_FRAC_MASK + 1;
1117 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1118 							      int_div);
1119 
1120 			/*
1121 			 * Return a value which is the maximum deviation
1122 			 * below the ideal rate, for use as a metric.
1123 			 */
1124 			return *avgrate - max(*avgrate - low, high - *avgrate);
1125 		}
1126 		return *avgrate;
1127 	}
1128 
1129 	if (data->frac_bits)
1130 		dev_warn(cprman->dev,
1131 			"frac bits are not used when propagating rate change");
1132 
1133 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1134 	mindiv = data->is_mash_clock ? 2 : 1;
1135 	maxdiv = BIT(data->int_bits) - 1;
1136 
1137 	/* TODO: Be smart, and only test a subset of the available divisors. */
1138 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1139 		unsigned long tmp_rate;
1140 
1141 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1142 		tmp_rate /= curdiv;
1143 		if (curdiv == mindiv ||
1144 		    (tmp_rate > best_rate && tmp_rate <= rate))
1145 			best_rate = tmp_rate;
1146 
1147 		if (best_rate == rate)
1148 			break;
1149 	}
1150 
1151 	*div = curdiv << CM_DIV_FRAC_BITS;
1152 	*prate = curdiv * best_rate;
1153 	*avgrate = best_rate;
1154 
1155 	return best_rate;
1156 }
1157 
1158 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1159 					struct clk_rate_request *req)
1160 {
1161 	struct clk_hw *parent, *best_parent = NULL;
1162 	bool current_parent_is_pllc;
1163 	unsigned long rate, best_rate = 0;
1164 	unsigned long prate, best_prate = 0;
1165 	unsigned long avgrate, best_avgrate = 0;
1166 	size_t i;
1167 	u32 div;
1168 
1169 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1170 
1171 	/*
1172 	 * Select parent clock that results in the closest but lower rate
1173 	 */
1174 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1175 		parent = clk_hw_get_parent_by_index(hw, i);
1176 		if (!parent)
1177 			continue;
1178 
1179 		/*
1180 		 * Don't choose a PLLC-derived clock as our parent
1181 		 * unless it had been manually set that way.  PLLC's
1182 		 * frequency gets adjusted by the firmware due to
1183 		 * over-temp or under-voltage conditions, without
1184 		 * prior notification to our clock consumer.
1185 		 */
1186 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1187 			continue;
1188 
1189 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1190 							  &div, &prate,
1191 							  &avgrate);
1192 		if (rate > best_rate && rate <= req->rate) {
1193 			best_parent = parent;
1194 			best_prate = prate;
1195 			best_rate = rate;
1196 			best_avgrate = avgrate;
1197 		}
1198 	}
1199 
1200 	if (!best_parent)
1201 		return -EINVAL;
1202 
1203 	req->best_parent_hw = best_parent;
1204 	req->best_parent_rate = best_prate;
1205 
1206 	req->rate = best_avgrate;
1207 
1208 	return 0;
1209 }
1210 
1211 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1212 {
1213 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1214 	struct bcm2835_cprman *cprman = clock->cprman;
1215 	const struct bcm2835_clock_data *data = clock->data;
1216 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1217 
1218 	cprman_write(cprman, data->ctl_reg, src);
1219 	return 0;
1220 }
1221 
1222 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1223 {
1224 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1225 	struct bcm2835_cprman *cprman = clock->cprman;
1226 	const struct bcm2835_clock_data *data = clock->data;
1227 	u32 src = cprman_read(cprman, data->ctl_reg);
1228 
1229 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1230 }
1231 
1232 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1233 	{
1234 		.name = "ctl",
1235 		.offset = 0,
1236 	},
1237 	{
1238 		.name = "div",
1239 		.offset = 4,
1240 	},
1241 };
1242 
1243 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1244 				    struct dentry *dentry)
1245 {
1246 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1247 	struct bcm2835_cprman *cprman = clock->cprman;
1248 	const struct bcm2835_clock_data *data = clock->data;
1249 
1250 	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1251 		bcm2835_debugfs_clock_reg32,
1252 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1253 		dentry);
1254 }
1255 
1256 static const struct clk_ops bcm2835_clock_clk_ops = {
1257 	.is_prepared = bcm2835_clock_is_on,
1258 	.prepare = bcm2835_clock_on,
1259 	.unprepare = bcm2835_clock_off,
1260 	.recalc_rate = bcm2835_clock_get_rate,
1261 	.set_rate = bcm2835_clock_set_rate,
1262 	.determine_rate = bcm2835_clock_determine_rate,
1263 	.set_parent = bcm2835_clock_set_parent,
1264 	.get_parent = bcm2835_clock_get_parent,
1265 	.debug_init = bcm2835_clock_debug_init,
1266 };
1267 
1268 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1269 {
1270 	return true;
1271 }
1272 
1273 /*
1274  * The VPU clock can never be disabled (it doesn't have an ENABLE
1275  * bit), so it gets its own set of clock ops.
1276  */
1277 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1278 	.is_prepared = bcm2835_vpu_clock_is_on,
1279 	.recalc_rate = bcm2835_clock_get_rate,
1280 	.set_rate = bcm2835_clock_set_rate,
1281 	.determine_rate = bcm2835_clock_determine_rate,
1282 	.set_parent = bcm2835_clock_set_parent,
1283 	.get_parent = bcm2835_clock_get_parent,
1284 	.debug_init = bcm2835_clock_debug_init,
1285 };
1286 
1287 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1288 					   const struct bcm2835_pll_data *data)
1289 {
1290 	struct bcm2835_pll *pll;
1291 	struct clk_init_data init;
1292 	int ret;
1293 
1294 	memset(&init, 0, sizeof(init));
1295 
1296 	/* All of the PLLs derive from the external oscillator. */
1297 	init.parent_names = &cprman->real_parent_names[0];
1298 	init.num_parents = 1;
1299 	init.name = data->name;
1300 	init.ops = &bcm2835_pll_clk_ops;
1301 	init.flags = CLK_IGNORE_UNUSED;
1302 
1303 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1304 	if (!pll)
1305 		return NULL;
1306 
1307 	pll->cprman = cprman;
1308 	pll->data = data;
1309 	pll->hw.init = &init;
1310 
1311 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1312 	if (ret)
1313 		return NULL;
1314 	return &pll->hw;
1315 }
1316 
1317 static struct clk_hw *
1318 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1319 			     const struct bcm2835_pll_divider_data *data)
1320 {
1321 	struct bcm2835_pll_divider *divider;
1322 	struct clk_init_data init;
1323 	const char *divider_name;
1324 	int ret;
1325 
1326 	if (data->fixed_divider != 1) {
1327 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1328 					      "%s_prediv", data->name);
1329 		if (!divider_name)
1330 			return NULL;
1331 	} else {
1332 		divider_name = data->name;
1333 	}
1334 
1335 	memset(&init, 0, sizeof(init));
1336 
1337 	init.parent_names = &data->source_pll;
1338 	init.num_parents = 1;
1339 	init.name = divider_name;
1340 	init.ops = &bcm2835_pll_divider_clk_ops;
1341 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1342 
1343 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1344 	if (!divider)
1345 		return NULL;
1346 
1347 	divider->div.reg = cprman->regs + data->a2w_reg;
1348 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1349 	divider->div.width = A2W_PLL_DIV_BITS;
1350 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1351 	divider->div.lock = &cprman->regs_lock;
1352 	divider->div.hw.init = &init;
1353 	divider->div.table = NULL;
1354 
1355 	divider->cprman = cprman;
1356 	divider->data = data;
1357 
1358 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1359 	if (ret)
1360 		return ERR_PTR(ret);
1361 
1362 	/*
1363 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1364 	 * is what our consumers are actually using.
1365 	 */
1366 	if (data->fixed_divider != 1) {
1367 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1368 						    divider_name,
1369 						    CLK_SET_RATE_PARENT,
1370 						    1,
1371 						    data->fixed_divider);
1372 	}
1373 
1374 	return &divider->div.hw;
1375 }
1376 
1377 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1378 					  const struct bcm2835_clock_data *data)
1379 {
1380 	struct bcm2835_clock *clock;
1381 	struct clk_init_data init;
1382 	const char *parents[1 << CM_SRC_BITS];
1383 	size_t i;
1384 	int ret;
1385 
1386 	/*
1387 	 * Replace our strings referencing parent clocks with the
1388 	 * actual clock-output-name of the parent.
1389 	 */
1390 	for (i = 0; i < data->num_mux_parents; i++) {
1391 		parents[i] = data->parents[i];
1392 
1393 		ret = match_string(cprman_parent_names,
1394 				   ARRAY_SIZE(cprman_parent_names),
1395 				   parents[i]);
1396 		if (ret >= 0)
1397 			parents[i] = cprman->real_parent_names[ret];
1398 	}
1399 
1400 	memset(&init, 0, sizeof(init));
1401 	init.parent_names = parents;
1402 	init.num_parents = data->num_mux_parents;
1403 	init.name = data->name;
1404 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1405 
1406 	/*
1407 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1408 	 * rate changes on at least of the parents.
1409 	 */
1410 	if (data->set_rate_parent)
1411 		init.flags |= CLK_SET_RATE_PARENT;
1412 
1413 	if (data->is_vpu_clock) {
1414 		init.ops = &bcm2835_vpu_clock_clk_ops;
1415 	} else {
1416 		init.ops = &bcm2835_clock_clk_ops;
1417 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1418 
1419 		/* If the clock wasn't actually enabled at boot, it's not
1420 		 * critical.
1421 		 */
1422 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1423 			init.flags &= ~CLK_IS_CRITICAL;
1424 	}
1425 
1426 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1427 	if (!clock)
1428 		return NULL;
1429 
1430 	clock->cprman = cprman;
1431 	clock->data = data;
1432 	clock->hw.init = &init;
1433 
1434 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1435 	if (ret)
1436 		return ERR_PTR(ret);
1437 	return &clock->hw;
1438 }
1439 
1440 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1441 					 const struct bcm2835_gate_data *data)
1442 {
1443 	return clk_register_gate(cprman->dev, data->name, data->parent,
1444 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1445 				 cprman->regs + data->ctl_reg,
1446 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1447 }
1448 
1449 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1450 					       const void *data);
1451 struct bcm2835_clk_desc {
1452 	bcm2835_clk_register clk_register;
1453 	const void *data;
1454 };
1455 
1456 /* assignment helper macros for different clock types */
1457 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1458 			    .data = __VA_ARGS__ }
1459 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1460 					  &(struct bcm2835_pll_data)	\
1461 					  {__VA_ARGS__})
1462 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1463 					  &(struct bcm2835_pll_divider_data) \
1464 					  {__VA_ARGS__})
1465 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1466 					  &(struct bcm2835_clock_data)	\
1467 					  {__VA_ARGS__})
1468 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1469 					  &(struct bcm2835_gate_data)	\
1470 					  {__VA_ARGS__})
1471 
1472 /* parent mux arrays plus helper macros */
1473 
1474 /* main oscillator parent mux */
1475 static const char *const bcm2835_clock_osc_parents[] = {
1476 	"gnd",
1477 	"xosc",
1478 	"testdebug0",
1479 	"testdebug1"
1480 };
1481 
1482 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1483 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1484 	.parents = bcm2835_clock_osc_parents,				\
1485 	__VA_ARGS__)
1486 
1487 /* main peripherial parent mux */
1488 static const char *const bcm2835_clock_per_parents[] = {
1489 	"gnd",
1490 	"xosc",
1491 	"testdebug0",
1492 	"testdebug1",
1493 	"plla_per",
1494 	"pllc_per",
1495 	"plld_per",
1496 	"pllh_aux",
1497 };
1498 
1499 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1500 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1501 	.parents = bcm2835_clock_per_parents,				\
1502 	__VA_ARGS__)
1503 
1504 /*
1505  * Restrict clock sources for the PCM peripheral to the oscillator and
1506  * PLLD_PER because other source may have varying rates or be switched
1507  * off.
1508  *
1509  * Prevent other sources from being selected by replacing their names in
1510  * the list of potential parents with dummy entries (entry index is
1511  * significant).
1512  */
1513 static const char *const bcm2835_pcm_per_parents[] = {
1514 	"-",
1515 	"xosc",
1516 	"-",
1517 	"-",
1518 	"-",
1519 	"-",
1520 	"plld_per",
1521 	"-",
1522 };
1523 
1524 #define REGISTER_PCM_CLK(...)	REGISTER_CLK(				\
1525 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1526 	.parents = bcm2835_pcm_per_parents,				\
1527 	__VA_ARGS__)
1528 
1529 /* main vpu parent mux */
1530 static const char *const bcm2835_clock_vpu_parents[] = {
1531 	"gnd",
1532 	"xosc",
1533 	"testdebug0",
1534 	"testdebug1",
1535 	"plla_core",
1536 	"pllc_core0",
1537 	"plld_core",
1538 	"pllh_aux",
1539 	"pllc_core1",
1540 	"pllc_core2",
1541 };
1542 
1543 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1544 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1545 	.parents = bcm2835_clock_vpu_parents,				\
1546 	__VA_ARGS__)
1547 
1548 /*
1549  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1550  * analog PHY.  The _inv variants are generated internally to cprman,
1551  * but we don't use them so they aren't hooked up.
1552  */
1553 static const char *const bcm2835_clock_dsi0_parents[] = {
1554 	"gnd",
1555 	"xosc",
1556 	"testdebug0",
1557 	"testdebug1",
1558 	"dsi0_ddr",
1559 	"dsi0_ddr_inv",
1560 	"dsi0_ddr2",
1561 	"dsi0_ddr2_inv",
1562 	"dsi0_byte",
1563 	"dsi0_byte_inv",
1564 };
1565 
1566 static const char *const bcm2835_clock_dsi1_parents[] = {
1567 	"gnd",
1568 	"xosc",
1569 	"testdebug0",
1570 	"testdebug1",
1571 	"dsi1_ddr",
1572 	"dsi1_ddr_inv",
1573 	"dsi1_ddr2",
1574 	"dsi1_ddr2_inv",
1575 	"dsi1_byte",
1576 	"dsi1_byte_inv",
1577 };
1578 
1579 #define REGISTER_DSI0_CLK(...)	REGISTER_CLK(				\
1580 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1581 	.parents = bcm2835_clock_dsi0_parents,				\
1582 	__VA_ARGS__)
1583 
1584 #define REGISTER_DSI1_CLK(...)	REGISTER_CLK(				\
1585 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1586 	.parents = bcm2835_clock_dsi1_parents,				\
1587 	__VA_ARGS__)
1588 
1589 /*
1590  * the real definition of all the pll, pll_dividers and clocks
1591  * these make use of the above REGISTER_* macros
1592  */
1593 static const struct bcm2835_clk_desc clk_desc_array[] = {
1594 	/* the PLL + PLL dividers */
1595 
1596 	/*
1597 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1598 	 * (Compact Camera Port 2) transmitter clock.
1599 	 *
1600 	 * It is in the PX LDO power domain, which is on when the
1601 	 * AUDIO domain is on.
1602 	 */
1603 	[BCM2835_PLLA]		= REGISTER_PLL(
1604 		.name = "plla",
1605 		.cm_ctrl_reg = CM_PLLA,
1606 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1607 		.frac_reg = A2W_PLLA_FRAC,
1608 		.ana_reg_base = A2W_PLLA_ANA0,
1609 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1610 		.lock_mask = CM_LOCK_FLOCKA,
1611 
1612 		.ana = &bcm2835_ana_default,
1613 
1614 		.min_rate = 600000000u,
1615 		.max_rate = 2400000000u,
1616 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1617 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1618 		.name = "plla_core",
1619 		.source_pll = "plla",
1620 		.cm_reg = CM_PLLA,
1621 		.a2w_reg = A2W_PLLA_CORE,
1622 		.load_mask = CM_PLLA_LOADCORE,
1623 		.hold_mask = CM_PLLA_HOLDCORE,
1624 		.fixed_divider = 1,
1625 		.flags = CLK_SET_RATE_PARENT),
1626 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1627 		.name = "plla_per",
1628 		.source_pll = "plla",
1629 		.cm_reg = CM_PLLA,
1630 		.a2w_reg = A2W_PLLA_PER,
1631 		.load_mask = CM_PLLA_LOADPER,
1632 		.hold_mask = CM_PLLA_HOLDPER,
1633 		.fixed_divider = 1,
1634 		.flags = CLK_SET_RATE_PARENT),
1635 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1636 		.name = "plla_dsi0",
1637 		.source_pll = "plla",
1638 		.cm_reg = CM_PLLA,
1639 		.a2w_reg = A2W_PLLA_DSI0,
1640 		.load_mask = CM_PLLA_LOADDSI0,
1641 		.hold_mask = CM_PLLA_HOLDDSI0,
1642 		.fixed_divider = 1),
1643 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1644 		.name = "plla_ccp2",
1645 		.source_pll = "plla",
1646 		.cm_reg = CM_PLLA,
1647 		.a2w_reg = A2W_PLLA_CCP2,
1648 		.load_mask = CM_PLLA_LOADCCP2,
1649 		.hold_mask = CM_PLLA_HOLDCCP2,
1650 		.fixed_divider = 1,
1651 		.flags = CLK_SET_RATE_PARENT),
1652 
1653 	/* PLLB is used for the ARM's clock. */
1654 	[BCM2835_PLLB]		= REGISTER_PLL(
1655 		.name = "pllb",
1656 		.cm_ctrl_reg = CM_PLLB,
1657 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1658 		.frac_reg = A2W_PLLB_FRAC,
1659 		.ana_reg_base = A2W_PLLB_ANA0,
1660 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1661 		.lock_mask = CM_LOCK_FLOCKB,
1662 
1663 		.ana = &bcm2835_ana_default,
1664 
1665 		.min_rate = 600000000u,
1666 		.max_rate = 3000000000u,
1667 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1668 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1669 		.name = "pllb_arm",
1670 		.source_pll = "pllb",
1671 		.cm_reg = CM_PLLB,
1672 		.a2w_reg = A2W_PLLB_ARM,
1673 		.load_mask = CM_PLLB_LOADARM,
1674 		.hold_mask = CM_PLLB_HOLDARM,
1675 		.fixed_divider = 1,
1676 		.flags = CLK_SET_RATE_PARENT),
1677 
1678 	/*
1679 	 * PLLC is the core PLL, used to drive the core VPU clock.
1680 	 *
1681 	 * It is in the PX LDO power domain, which is on when the
1682 	 * AUDIO domain is on.
1683 	 */
1684 	[BCM2835_PLLC]		= REGISTER_PLL(
1685 		.name = "pllc",
1686 		.cm_ctrl_reg = CM_PLLC,
1687 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1688 		.frac_reg = A2W_PLLC_FRAC,
1689 		.ana_reg_base = A2W_PLLC_ANA0,
1690 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1691 		.lock_mask = CM_LOCK_FLOCKC,
1692 
1693 		.ana = &bcm2835_ana_default,
1694 
1695 		.min_rate = 600000000u,
1696 		.max_rate = 3000000000u,
1697 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1698 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1699 		.name = "pllc_core0",
1700 		.source_pll = "pllc",
1701 		.cm_reg = CM_PLLC,
1702 		.a2w_reg = A2W_PLLC_CORE0,
1703 		.load_mask = CM_PLLC_LOADCORE0,
1704 		.hold_mask = CM_PLLC_HOLDCORE0,
1705 		.fixed_divider = 1,
1706 		.flags = CLK_SET_RATE_PARENT),
1707 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1708 		.name = "pllc_core1",
1709 		.source_pll = "pllc",
1710 		.cm_reg = CM_PLLC,
1711 		.a2w_reg = A2W_PLLC_CORE1,
1712 		.load_mask = CM_PLLC_LOADCORE1,
1713 		.hold_mask = CM_PLLC_HOLDCORE1,
1714 		.fixed_divider = 1,
1715 		.flags = CLK_SET_RATE_PARENT),
1716 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1717 		.name = "pllc_core2",
1718 		.source_pll = "pllc",
1719 		.cm_reg = CM_PLLC,
1720 		.a2w_reg = A2W_PLLC_CORE2,
1721 		.load_mask = CM_PLLC_LOADCORE2,
1722 		.hold_mask = CM_PLLC_HOLDCORE2,
1723 		.fixed_divider = 1,
1724 		.flags = CLK_SET_RATE_PARENT),
1725 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1726 		.name = "pllc_per",
1727 		.source_pll = "pllc",
1728 		.cm_reg = CM_PLLC,
1729 		.a2w_reg = A2W_PLLC_PER,
1730 		.load_mask = CM_PLLC_LOADPER,
1731 		.hold_mask = CM_PLLC_HOLDPER,
1732 		.fixed_divider = 1,
1733 		.flags = CLK_SET_RATE_PARENT),
1734 
1735 	/*
1736 	 * PLLD is the display PLL, used to drive DSI display panels.
1737 	 *
1738 	 * It is in the PX LDO power domain, which is on when the
1739 	 * AUDIO domain is on.
1740 	 */
1741 	[BCM2835_PLLD]		= REGISTER_PLL(
1742 		.name = "plld",
1743 		.cm_ctrl_reg = CM_PLLD,
1744 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1745 		.frac_reg = A2W_PLLD_FRAC,
1746 		.ana_reg_base = A2W_PLLD_ANA0,
1747 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1748 		.lock_mask = CM_LOCK_FLOCKD,
1749 
1750 		.ana = &bcm2835_ana_default,
1751 
1752 		.min_rate = 600000000u,
1753 		.max_rate = 2400000000u,
1754 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1755 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1756 		.name = "plld_core",
1757 		.source_pll = "plld",
1758 		.cm_reg = CM_PLLD,
1759 		.a2w_reg = A2W_PLLD_CORE,
1760 		.load_mask = CM_PLLD_LOADCORE,
1761 		.hold_mask = CM_PLLD_HOLDCORE,
1762 		.fixed_divider = 1,
1763 		.flags = CLK_SET_RATE_PARENT),
1764 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1765 		.name = "plld_per",
1766 		.source_pll = "plld",
1767 		.cm_reg = CM_PLLD,
1768 		.a2w_reg = A2W_PLLD_PER,
1769 		.load_mask = CM_PLLD_LOADPER,
1770 		.hold_mask = CM_PLLD_HOLDPER,
1771 		.fixed_divider = 1,
1772 		.flags = CLK_SET_RATE_PARENT),
1773 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1774 		.name = "plld_dsi0",
1775 		.source_pll = "plld",
1776 		.cm_reg = CM_PLLD,
1777 		.a2w_reg = A2W_PLLD_DSI0,
1778 		.load_mask = CM_PLLD_LOADDSI0,
1779 		.hold_mask = CM_PLLD_HOLDDSI0,
1780 		.fixed_divider = 1),
1781 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1782 		.name = "plld_dsi1",
1783 		.source_pll = "plld",
1784 		.cm_reg = CM_PLLD,
1785 		.a2w_reg = A2W_PLLD_DSI1,
1786 		.load_mask = CM_PLLD_LOADDSI1,
1787 		.hold_mask = CM_PLLD_HOLDDSI1,
1788 		.fixed_divider = 1),
1789 
1790 	/*
1791 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1792 	 * TV encoder.
1793 	 *
1794 	 * It is in the HDMI power domain.
1795 	 */
1796 	[BCM2835_PLLH]		= REGISTER_PLL(
1797 		"pllh",
1798 		.cm_ctrl_reg = CM_PLLH,
1799 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1800 		.frac_reg = A2W_PLLH_FRAC,
1801 		.ana_reg_base = A2W_PLLH_ANA0,
1802 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1803 		.lock_mask = CM_LOCK_FLOCKH,
1804 
1805 		.ana = &bcm2835_ana_pllh,
1806 
1807 		.min_rate = 600000000u,
1808 		.max_rate = 3000000000u,
1809 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1810 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1811 		.name = "pllh_rcal",
1812 		.source_pll = "pllh",
1813 		.cm_reg = CM_PLLH,
1814 		.a2w_reg = A2W_PLLH_RCAL,
1815 		.load_mask = CM_PLLH_LOADRCAL,
1816 		.hold_mask = 0,
1817 		.fixed_divider = 10,
1818 		.flags = CLK_SET_RATE_PARENT),
1819 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1820 		.name = "pllh_aux",
1821 		.source_pll = "pllh",
1822 		.cm_reg = CM_PLLH,
1823 		.a2w_reg = A2W_PLLH_AUX,
1824 		.load_mask = CM_PLLH_LOADAUX,
1825 		.hold_mask = 0,
1826 		.fixed_divider = 1,
1827 		.flags = CLK_SET_RATE_PARENT),
1828 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1829 		.name = "pllh_pix",
1830 		.source_pll = "pllh",
1831 		.cm_reg = CM_PLLH,
1832 		.a2w_reg = A2W_PLLH_PIX,
1833 		.load_mask = CM_PLLH_LOADPIX,
1834 		.hold_mask = 0,
1835 		.fixed_divider = 10,
1836 		.flags = CLK_SET_RATE_PARENT),
1837 
1838 	/* the clocks */
1839 
1840 	/* clocks with oscillator parent mux */
1841 
1842 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1843 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1844 		.name = "otp",
1845 		.ctl_reg = CM_OTPCTL,
1846 		.div_reg = CM_OTPDIV,
1847 		.int_bits = 4,
1848 		.frac_bits = 0,
1849 		.tcnt_mux = 6),
1850 	/*
1851 	 * Used for a 1Mhz clock for the system clocksource, and also used
1852 	 * bythe watchdog timer and the camera pulse generator.
1853 	 */
1854 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1855 		.name = "timer",
1856 		.ctl_reg = CM_TIMERCTL,
1857 		.div_reg = CM_TIMERDIV,
1858 		.int_bits = 6,
1859 		.frac_bits = 12),
1860 	/*
1861 	 * Clock for the temperature sensor.
1862 	 * Generally run at 2Mhz, max 5Mhz.
1863 	 */
1864 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1865 		.name = "tsens",
1866 		.ctl_reg = CM_TSENSCTL,
1867 		.div_reg = CM_TSENSDIV,
1868 		.int_bits = 5,
1869 		.frac_bits = 0),
1870 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1871 		.name = "tec",
1872 		.ctl_reg = CM_TECCTL,
1873 		.div_reg = CM_TECDIV,
1874 		.int_bits = 6,
1875 		.frac_bits = 0),
1876 
1877 	/* clocks with vpu parent mux */
1878 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1879 		.name = "h264",
1880 		.ctl_reg = CM_H264CTL,
1881 		.div_reg = CM_H264DIV,
1882 		.int_bits = 4,
1883 		.frac_bits = 8,
1884 		.tcnt_mux = 1),
1885 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1886 		.name = "isp",
1887 		.ctl_reg = CM_ISPCTL,
1888 		.div_reg = CM_ISPDIV,
1889 		.int_bits = 4,
1890 		.frac_bits = 8,
1891 		.tcnt_mux = 2),
1892 
1893 	/*
1894 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1895 	 * in the SDRAM controller can't be used.
1896 	 */
1897 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1898 		.name = "sdram",
1899 		.ctl_reg = CM_SDCCTL,
1900 		.div_reg = CM_SDCDIV,
1901 		.int_bits = 6,
1902 		.frac_bits = 0,
1903 		.tcnt_mux = 3),
1904 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1905 		.name = "v3d",
1906 		.ctl_reg = CM_V3DCTL,
1907 		.div_reg = CM_V3DDIV,
1908 		.int_bits = 4,
1909 		.frac_bits = 8,
1910 		.tcnt_mux = 4),
1911 	/*
1912 	 * VPU clock.  This doesn't have an enable bit, since it drives
1913 	 * the bus for everything else, and is special so it doesn't need
1914 	 * to be gated for rate changes.  It is also known as "clk_audio"
1915 	 * in various hardware documentation.
1916 	 */
1917 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1918 		.name = "vpu",
1919 		.ctl_reg = CM_VPUCTL,
1920 		.div_reg = CM_VPUDIV,
1921 		.int_bits = 12,
1922 		.frac_bits = 8,
1923 		.flags = CLK_IS_CRITICAL,
1924 		.is_vpu_clock = true,
1925 		.tcnt_mux = 5),
1926 
1927 	/* clocks with per parent mux */
1928 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1929 		.name = "aveo",
1930 		.ctl_reg = CM_AVEOCTL,
1931 		.div_reg = CM_AVEODIV,
1932 		.int_bits = 4,
1933 		.frac_bits = 0,
1934 		.tcnt_mux = 38),
1935 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1936 		.name = "cam0",
1937 		.ctl_reg = CM_CAM0CTL,
1938 		.div_reg = CM_CAM0DIV,
1939 		.int_bits = 4,
1940 		.frac_bits = 8,
1941 		.tcnt_mux = 14),
1942 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1943 		.name = "cam1",
1944 		.ctl_reg = CM_CAM1CTL,
1945 		.div_reg = CM_CAM1DIV,
1946 		.int_bits = 4,
1947 		.frac_bits = 8,
1948 		.tcnt_mux = 15),
1949 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1950 		.name = "dft",
1951 		.ctl_reg = CM_DFTCTL,
1952 		.div_reg = CM_DFTDIV,
1953 		.int_bits = 5,
1954 		.frac_bits = 0),
1955 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1956 		.name = "dpi",
1957 		.ctl_reg = CM_DPICTL,
1958 		.div_reg = CM_DPIDIV,
1959 		.int_bits = 4,
1960 		.frac_bits = 8,
1961 		.tcnt_mux = 17),
1962 
1963 	/* Arasan EMMC clock */
1964 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
1965 		.name = "emmc",
1966 		.ctl_reg = CM_EMMCCTL,
1967 		.div_reg = CM_EMMCDIV,
1968 		.int_bits = 4,
1969 		.frac_bits = 8,
1970 		.tcnt_mux = 39),
1971 
1972 	/* General purpose (GPIO) clocks */
1973 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
1974 		.name = "gp0",
1975 		.ctl_reg = CM_GP0CTL,
1976 		.div_reg = CM_GP0DIV,
1977 		.int_bits = 12,
1978 		.frac_bits = 12,
1979 		.is_mash_clock = true,
1980 		.tcnt_mux = 20),
1981 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
1982 		.name = "gp1",
1983 		.ctl_reg = CM_GP1CTL,
1984 		.div_reg = CM_GP1DIV,
1985 		.int_bits = 12,
1986 		.frac_bits = 12,
1987 		.flags = CLK_IS_CRITICAL,
1988 		.is_mash_clock = true,
1989 		.tcnt_mux = 21),
1990 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
1991 		.name = "gp2",
1992 		.ctl_reg = CM_GP2CTL,
1993 		.div_reg = CM_GP2DIV,
1994 		.int_bits = 12,
1995 		.frac_bits = 12,
1996 		.flags = CLK_IS_CRITICAL),
1997 
1998 	/* HDMI state machine */
1999 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2000 		.name = "hsm",
2001 		.ctl_reg = CM_HSMCTL,
2002 		.div_reg = CM_HSMDIV,
2003 		.int_bits = 4,
2004 		.frac_bits = 8,
2005 		.tcnt_mux = 22),
2006 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2007 		.name = "pcm",
2008 		.ctl_reg = CM_PCMCTL,
2009 		.div_reg = CM_PCMDIV,
2010 		.int_bits = 12,
2011 		.frac_bits = 12,
2012 		.is_mash_clock = true,
2013 		.low_jitter = true,
2014 		.tcnt_mux = 23),
2015 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2016 		.name = "pwm",
2017 		.ctl_reg = CM_PWMCTL,
2018 		.div_reg = CM_PWMDIV,
2019 		.int_bits = 12,
2020 		.frac_bits = 12,
2021 		.is_mash_clock = true,
2022 		.tcnt_mux = 24),
2023 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2024 		.name = "slim",
2025 		.ctl_reg = CM_SLIMCTL,
2026 		.div_reg = CM_SLIMDIV,
2027 		.int_bits = 12,
2028 		.frac_bits = 12,
2029 		.is_mash_clock = true,
2030 		.tcnt_mux = 25),
2031 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2032 		.name = "smi",
2033 		.ctl_reg = CM_SMICTL,
2034 		.div_reg = CM_SMIDIV,
2035 		.int_bits = 4,
2036 		.frac_bits = 8,
2037 		.tcnt_mux = 27),
2038 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2039 		.name = "uart",
2040 		.ctl_reg = CM_UARTCTL,
2041 		.div_reg = CM_UARTDIV,
2042 		.int_bits = 10,
2043 		.frac_bits = 12,
2044 		.tcnt_mux = 28),
2045 
2046 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2047 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2048 		.name = "vec",
2049 		.ctl_reg = CM_VECCTL,
2050 		.div_reg = CM_VECDIV,
2051 		.int_bits = 4,
2052 		.frac_bits = 0,
2053 		/*
2054 		 * Allow rate change propagation only on PLLH_AUX which is
2055 		 * assigned index 7 in the parent array.
2056 		 */
2057 		.set_rate_parent = BIT(7),
2058 		.tcnt_mux = 29),
2059 
2060 	/* dsi clocks */
2061 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2062 		.name = "dsi0e",
2063 		.ctl_reg = CM_DSI0ECTL,
2064 		.div_reg = CM_DSI0EDIV,
2065 		.int_bits = 4,
2066 		.frac_bits = 8,
2067 		.tcnt_mux = 18),
2068 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2069 		.name = "dsi1e",
2070 		.ctl_reg = CM_DSI1ECTL,
2071 		.div_reg = CM_DSI1EDIV,
2072 		.int_bits = 4,
2073 		.frac_bits = 8,
2074 		.tcnt_mux = 19),
2075 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2076 		.name = "dsi0p",
2077 		.ctl_reg = CM_DSI0PCTL,
2078 		.div_reg = CM_DSI0PDIV,
2079 		.int_bits = 0,
2080 		.frac_bits = 0,
2081 		.tcnt_mux = 12),
2082 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2083 		.name = "dsi1p",
2084 		.ctl_reg = CM_DSI1PCTL,
2085 		.div_reg = CM_DSI1PDIV,
2086 		.int_bits = 0,
2087 		.frac_bits = 0,
2088 		.tcnt_mux = 13),
2089 
2090 	/* the gates */
2091 
2092 	/*
2093 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2094 	 * you have the debug bit set in the power manager, which we
2095 	 * don't bother exposing) are individual gates off of the
2096 	 * non-stop vpu clock.
2097 	 */
2098 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2099 		.name = "peri_image",
2100 		.parent = "vpu",
2101 		.ctl_reg = CM_PERIICTL),
2102 };
2103 
2104 /*
2105  * Permanently take a reference on the parent of the SDRAM clock.
2106  *
2107  * While the SDRAM is being driven by its dedicated PLL most of the
2108  * time, there is a little loop running in the firmware that
2109  * periodically switches the SDRAM to using our CM clock to do PVT
2110  * recalibration, with the assumption that the previously configured
2111  * SDRAM parent is still enabled and running.
2112  */
2113 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2114 {
2115 	struct clk *parent = clk_get_parent(sdc);
2116 
2117 	if (IS_ERR(parent))
2118 		return PTR_ERR(parent);
2119 
2120 	return clk_prepare_enable(parent);
2121 }
2122 
2123 static int bcm2835_clk_probe(struct platform_device *pdev)
2124 {
2125 	struct device *dev = &pdev->dev;
2126 	struct clk_hw **hws;
2127 	struct bcm2835_cprman *cprman;
2128 	struct resource *res;
2129 	const struct bcm2835_clk_desc *desc;
2130 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2131 	size_t i;
2132 	int ret;
2133 
2134 	cprman = devm_kzalloc(dev,
2135 			      struct_size(cprman, onecell.hws, asize),
2136 			      GFP_KERNEL);
2137 	if (!cprman)
2138 		return -ENOMEM;
2139 
2140 	spin_lock_init(&cprman->regs_lock);
2141 	cprman->dev = dev;
2142 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2143 	cprman->regs = devm_ioremap_resource(dev, res);
2144 	if (IS_ERR(cprman->regs))
2145 		return PTR_ERR(cprman->regs);
2146 
2147 	memcpy(cprman->real_parent_names, cprman_parent_names,
2148 	       sizeof(cprman_parent_names));
2149 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2150 			   ARRAY_SIZE(cprman_parent_names));
2151 
2152 	/*
2153 	 * Make sure the external oscillator has been registered.
2154 	 *
2155 	 * The other (DSI) clocks are not present on older device
2156 	 * trees, which we still need to support for backwards
2157 	 * compatibility.
2158 	 */
2159 	if (!cprman->real_parent_names[0])
2160 		return -ENODEV;
2161 
2162 	platform_set_drvdata(pdev, cprman);
2163 
2164 	cprman->onecell.num = asize;
2165 	hws = cprman->onecell.hws;
2166 
2167 	for (i = 0; i < asize; i++) {
2168 		desc = &clk_desc_array[i];
2169 		if (desc->clk_register && desc->data)
2170 			hws[i] = desc->clk_register(cprman, desc->data);
2171 	}
2172 
2173 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2174 	if (ret)
2175 		return ret;
2176 
2177 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2178 				      &cprman->onecell);
2179 }
2180 
2181 static const struct of_device_id bcm2835_clk_of_match[] = {
2182 	{ .compatible = "brcm,bcm2835-cprman", },
2183 	{}
2184 };
2185 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2186 
2187 static struct platform_driver bcm2835_clk_driver = {
2188 	.driver = {
2189 		.name = "bcm2835-clk",
2190 		.of_match_table = bcm2835_clk_of_match,
2191 	},
2192 	.probe          = bcm2835_clk_probe,
2193 };
2194 
2195 builtin_platform_driver(bcm2835_clk_driver);
2196 
2197 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2198 MODULE_DESCRIPTION("BCM2835 clock driver");
2199 MODULE_LICENSE("GPL");
2200