1 /* 2 * Copyright (C) 2010,2015 Broadcom 3 * Copyright (C) 2012 Stephen Warren 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 /** 21 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) 22 * 23 * The clock tree on the 2835 has several levels. There's a root 24 * oscillator running at 19.2Mhz. After the oscillator there are 5 25 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", 26 * and "HDMI displays". Those 5 PLLs each can divide their output to 27 * produce up to 4 channels. Finally, there is the level of clocks to 28 * be consumed by other hardware components (like "H264" or "HDMI 29 * state machine"), which divide off of some subset of the PLL 30 * channels. 31 * 32 * All of the clocks in the tree are exposed in the DT, because the DT 33 * may want to make assignments of the final layer of clocks to the 34 * PLL channels, and some components of the hardware will actually 35 * skip layers of the tree (for example, the pixel clock comes 36 * directly from the PLLH PIX channel without using a CM_*CTL clock 37 * generator). 38 */ 39 40 #include <linux/clk-provider.h> 41 #include <linux/clkdev.h> 42 #include <linux/clk/bcm2835.h> 43 #include <linux/module.h> 44 #include <linux/of.h> 45 #include <linux/platform_device.h> 46 #include <linux/slab.h> 47 #include <dt-bindings/clock/bcm2835.h> 48 49 #define CM_PASSWORD 0x5a000000 50 51 #define CM_GNRICCTL 0x000 52 #define CM_GNRICDIV 0x004 53 # define CM_DIV_FRAC_BITS 12 54 55 #define CM_VPUCTL 0x008 56 #define CM_VPUDIV 0x00c 57 #define CM_SYSCTL 0x010 58 #define CM_SYSDIV 0x014 59 #define CM_PERIACTL 0x018 60 #define CM_PERIADIV 0x01c 61 #define CM_PERIICTL 0x020 62 #define CM_PERIIDIV 0x024 63 #define CM_H264CTL 0x028 64 #define CM_H264DIV 0x02c 65 #define CM_ISPCTL 0x030 66 #define CM_ISPDIV 0x034 67 #define CM_V3DCTL 0x038 68 #define CM_V3DDIV 0x03c 69 #define CM_CAM0CTL 0x040 70 #define CM_CAM0DIV 0x044 71 #define CM_CAM1CTL 0x048 72 #define CM_CAM1DIV 0x04c 73 #define CM_CCP2CTL 0x050 74 #define CM_CCP2DIV 0x054 75 #define CM_DSI0ECTL 0x058 76 #define CM_DSI0EDIV 0x05c 77 #define CM_DSI0PCTL 0x060 78 #define CM_DSI0PDIV 0x064 79 #define CM_DPICTL 0x068 80 #define CM_DPIDIV 0x06c 81 #define CM_GP0CTL 0x070 82 #define CM_GP0DIV 0x074 83 #define CM_GP1CTL 0x078 84 #define CM_GP1DIV 0x07c 85 #define CM_GP2CTL 0x080 86 #define CM_GP2DIV 0x084 87 #define CM_HSMCTL 0x088 88 #define CM_HSMDIV 0x08c 89 #define CM_OTPCTL 0x090 90 #define CM_OTPDIV 0x094 91 #define CM_PWMCTL 0x0a0 92 #define CM_PWMDIV 0x0a4 93 #define CM_SMICTL 0x0b0 94 #define CM_SMIDIV 0x0b4 95 #define CM_TSENSCTL 0x0e0 96 #define CM_TSENSDIV 0x0e4 97 #define CM_TIMERCTL 0x0e8 98 #define CM_TIMERDIV 0x0ec 99 #define CM_UARTCTL 0x0f0 100 #define CM_UARTDIV 0x0f4 101 #define CM_VECCTL 0x0f8 102 #define CM_VECDIV 0x0fc 103 #define CM_PULSECTL 0x190 104 #define CM_PULSEDIV 0x194 105 #define CM_SDCCTL 0x1a8 106 #define CM_SDCDIV 0x1ac 107 #define CM_ARMCTL 0x1b0 108 #define CM_EMMCCTL 0x1c0 109 #define CM_EMMCDIV 0x1c4 110 111 /* General bits for the CM_*CTL regs */ 112 # define CM_ENABLE BIT(4) 113 # define CM_KILL BIT(5) 114 # define CM_GATE_BIT 6 115 # define CM_GATE BIT(CM_GATE_BIT) 116 # define CM_BUSY BIT(7) 117 # define CM_BUSYD BIT(8) 118 # define CM_SRC_SHIFT 0 119 # define CM_SRC_BITS 4 120 # define CM_SRC_MASK 0xf 121 # define CM_SRC_GND 0 122 # define CM_SRC_OSC 1 123 # define CM_SRC_TESTDEBUG0 2 124 # define CM_SRC_TESTDEBUG1 3 125 # define CM_SRC_PLLA_CORE 4 126 # define CM_SRC_PLLA_PER 4 127 # define CM_SRC_PLLC_CORE0 5 128 # define CM_SRC_PLLC_PER 5 129 # define CM_SRC_PLLC_CORE1 8 130 # define CM_SRC_PLLD_CORE 6 131 # define CM_SRC_PLLD_PER 6 132 # define CM_SRC_PLLH_AUX 7 133 # define CM_SRC_PLLC_CORE1 8 134 # define CM_SRC_PLLC_CORE2 9 135 136 #define CM_OSCCOUNT 0x100 137 138 #define CM_PLLA 0x104 139 # define CM_PLL_ANARST BIT(8) 140 # define CM_PLLA_HOLDPER BIT(7) 141 # define CM_PLLA_LOADPER BIT(6) 142 # define CM_PLLA_HOLDCORE BIT(5) 143 # define CM_PLLA_LOADCORE BIT(4) 144 # define CM_PLLA_HOLDCCP2 BIT(3) 145 # define CM_PLLA_LOADCCP2 BIT(2) 146 # define CM_PLLA_HOLDDSI0 BIT(1) 147 # define CM_PLLA_LOADDSI0 BIT(0) 148 149 #define CM_PLLC 0x108 150 # define CM_PLLC_HOLDPER BIT(7) 151 # define CM_PLLC_LOADPER BIT(6) 152 # define CM_PLLC_HOLDCORE2 BIT(5) 153 # define CM_PLLC_LOADCORE2 BIT(4) 154 # define CM_PLLC_HOLDCORE1 BIT(3) 155 # define CM_PLLC_LOADCORE1 BIT(2) 156 # define CM_PLLC_HOLDCORE0 BIT(1) 157 # define CM_PLLC_LOADCORE0 BIT(0) 158 159 #define CM_PLLD 0x10c 160 # define CM_PLLD_HOLDPER BIT(7) 161 # define CM_PLLD_LOADPER BIT(6) 162 # define CM_PLLD_HOLDCORE BIT(5) 163 # define CM_PLLD_LOADCORE BIT(4) 164 # define CM_PLLD_HOLDDSI1 BIT(3) 165 # define CM_PLLD_LOADDSI1 BIT(2) 166 # define CM_PLLD_HOLDDSI0 BIT(1) 167 # define CM_PLLD_LOADDSI0 BIT(0) 168 169 #define CM_PLLH 0x110 170 # define CM_PLLH_LOADRCAL BIT(2) 171 # define CM_PLLH_LOADAUX BIT(1) 172 # define CM_PLLH_LOADPIX BIT(0) 173 174 #define CM_LOCK 0x114 175 # define CM_LOCK_FLOCKH BIT(12) 176 # define CM_LOCK_FLOCKD BIT(11) 177 # define CM_LOCK_FLOCKC BIT(10) 178 # define CM_LOCK_FLOCKB BIT(9) 179 # define CM_LOCK_FLOCKA BIT(8) 180 181 #define CM_EVENT 0x118 182 #define CM_DSI1ECTL 0x158 183 #define CM_DSI1EDIV 0x15c 184 #define CM_DSI1PCTL 0x160 185 #define CM_DSI1PDIV 0x164 186 #define CM_DFTCTL 0x168 187 #define CM_DFTDIV 0x16c 188 189 #define CM_PLLB 0x170 190 # define CM_PLLB_HOLDARM BIT(1) 191 # define CM_PLLB_LOADARM BIT(0) 192 193 #define A2W_PLLA_CTRL 0x1100 194 #define A2W_PLLC_CTRL 0x1120 195 #define A2W_PLLD_CTRL 0x1140 196 #define A2W_PLLH_CTRL 0x1160 197 #define A2W_PLLB_CTRL 0x11e0 198 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) 199 # define A2W_PLL_CTRL_PWRDN BIT(16) 200 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 201 # define A2W_PLL_CTRL_PDIV_SHIFT 12 202 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff 203 # define A2W_PLL_CTRL_NDIV_SHIFT 0 204 205 #define A2W_PLLA_ANA0 0x1010 206 #define A2W_PLLC_ANA0 0x1030 207 #define A2W_PLLD_ANA0 0x1050 208 #define A2W_PLLH_ANA0 0x1070 209 #define A2W_PLLB_ANA0 0x10f0 210 211 #define A2W_PLL_KA_SHIFT 7 212 #define A2W_PLL_KA_MASK GENMASK(9, 7) 213 #define A2W_PLL_KI_SHIFT 19 214 #define A2W_PLL_KI_MASK GENMASK(21, 19) 215 #define A2W_PLL_KP_SHIFT 15 216 #define A2W_PLL_KP_MASK GENMASK(18, 15) 217 218 #define A2W_PLLH_KA_SHIFT 19 219 #define A2W_PLLH_KA_MASK GENMASK(21, 19) 220 #define A2W_PLLH_KI_LOW_SHIFT 22 221 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) 222 #define A2W_PLLH_KI_HIGH_SHIFT 0 223 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) 224 #define A2W_PLLH_KP_SHIFT 1 225 #define A2W_PLLH_KP_MASK GENMASK(4, 1) 226 227 #define A2W_XOSC_CTRL 0x1190 228 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) 229 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) 230 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) 231 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) 232 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) 233 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) 234 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) 235 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) 236 237 #define A2W_PLLA_FRAC 0x1200 238 #define A2W_PLLC_FRAC 0x1220 239 #define A2W_PLLD_FRAC 0x1240 240 #define A2W_PLLH_FRAC 0x1260 241 #define A2W_PLLB_FRAC 0x12e0 242 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) 243 # define A2W_PLL_FRAC_BITS 20 244 245 #define A2W_PLL_CHANNEL_DISABLE BIT(8) 246 #define A2W_PLL_DIV_BITS 8 247 #define A2W_PLL_DIV_SHIFT 0 248 249 #define A2W_PLLA_DSI0 0x1300 250 #define A2W_PLLA_CORE 0x1400 251 #define A2W_PLLA_PER 0x1500 252 #define A2W_PLLA_CCP2 0x1600 253 254 #define A2W_PLLC_CORE2 0x1320 255 #define A2W_PLLC_CORE1 0x1420 256 #define A2W_PLLC_PER 0x1520 257 #define A2W_PLLC_CORE0 0x1620 258 259 #define A2W_PLLD_DSI0 0x1340 260 #define A2W_PLLD_CORE 0x1440 261 #define A2W_PLLD_PER 0x1540 262 #define A2W_PLLD_DSI1 0x1640 263 264 #define A2W_PLLH_AUX 0x1360 265 #define A2W_PLLH_RCAL 0x1460 266 #define A2W_PLLH_PIX 0x1560 267 #define A2W_PLLH_STS 0x1660 268 269 #define A2W_PLLH_CTRLR 0x1960 270 #define A2W_PLLH_FRACR 0x1a60 271 #define A2W_PLLH_AUXR 0x1b60 272 #define A2W_PLLH_RCALR 0x1c60 273 #define A2W_PLLH_PIXR 0x1d60 274 #define A2W_PLLH_STSR 0x1e60 275 276 #define A2W_PLLB_ARM 0x13e0 277 #define A2W_PLLB_SP0 0x14e0 278 #define A2W_PLLB_SP1 0x15e0 279 #define A2W_PLLB_SP2 0x16e0 280 281 #define LOCK_TIMEOUT_NS 100000000 282 #define BCM2835_MAX_FB_RATE 1750000000u 283 284 struct bcm2835_cprman { 285 struct device *dev; 286 void __iomem *regs; 287 spinlock_t regs_lock; 288 const char *osc_name; 289 290 struct clk_onecell_data onecell; 291 struct clk *clks[BCM2835_CLOCK_COUNT]; 292 }; 293 294 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) 295 { 296 writel(CM_PASSWORD | val, cprman->regs + reg); 297 } 298 299 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) 300 { 301 return readl(cprman->regs + reg); 302 } 303 304 /* 305 * These are fixed clocks. They're probably not all root clocks and it may 306 * be possible to turn them on and off but until this is mapped out better 307 * it's the only way they can be used. 308 */ 309 void __init bcm2835_init_clocks(void) 310 { 311 struct clk *clk; 312 int ret; 313 314 clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, CLK_IS_ROOT, 315 126000000); 316 if (IS_ERR(clk)) 317 pr_err("apb_pclk not registered\n"); 318 319 clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, CLK_IS_ROOT, 320 3000000); 321 if (IS_ERR(clk)) 322 pr_err("uart0_pclk not registered\n"); 323 ret = clk_register_clkdev(clk, NULL, "20201000.uart"); 324 if (ret) 325 pr_err("uart0_pclk alias not registered\n"); 326 327 clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, CLK_IS_ROOT, 328 125000000); 329 if (IS_ERR(clk)) 330 pr_err("uart1_pclk not registered\n"); 331 ret = clk_register_clkdev(clk, NULL, "20215000.uart"); 332 if (ret) 333 pr_err("uart1_pclk alias not registered\n"); 334 } 335 336 struct bcm2835_pll_data { 337 const char *name; 338 u32 cm_ctrl_reg; 339 u32 a2w_ctrl_reg; 340 u32 frac_reg; 341 u32 ana_reg_base; 342 u32 reference_enable_mask; 343 /* Bit in CM_LOCK to indicate when the PLL has locked. */ 344 u32 lock_mask; 345 346 const struct bcm2835_pll_ana_bits *ana; 347 348 unsigned long min_rate; 349 unsigned long max_rate; 350 /* 351 * Highest rate for the VCO before we have to use the 352 * pre-divide-by-2. 353 */ 354 unsigned long max_fb_rate; 355 }; 356 357 struct bcm2835_pll_ana_bits { 358 u32 mask0; 359 u32 set0; 360 u32 mask1; 361 u32 set1; 362 u32 mask3; 363 u32 set3; 364 u32 fb_prediv_mask; 365 }; 366 367 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { 368 .mask0 = 0, 369 .set0 = 0, 370 .mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK), 371 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), 372 .mask3 = ~A2W_PLL_KA_MASK, 373 .set3 = (2 << A2W_PLL_KA_SHIFT), 374 .fb_prediv_mask = BIT(14), 375 }; 376 377 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { 378 .mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK), 379 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), 380 .mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK), 381 .set1 = (6 << A2W_PLLH_KP_SHIFT), 382 .mask3 = 0, 383 .set3 = 0, 384 .fb_prediv_mask = BIT(11), 385 }; 386 387 /* 388 * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera 389 * Port 2) transmitter clock. 390 * 391 * It is in the PX LDO power domain, which is on when the AUDIO domain 392 * is on. 393 */ 394 static const struct bcm2835_pll_data bcm2835_plla_data = { 395 .name = "plla", 396 .cm_ctrl_reg = CM_PLLA, 397 .a2w_ctrl_reg = A2W_PLLA_CTRL, 398 .frac_reg = A2W_PLLA_FRAC, 399 .ana_reg_base = A2W_PLLA_ANA0, 400 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, 401 .lock_mask = CM_LOCK_FLOCKA, 402 403 .ana = &bcm2835_ana_default, 404 405 .min_rate = 600000000u, 406 .max_rate = 2400000000u, 407 .max_fb_rate = BCM2835_MAX_FB_RATE, 408 }; 409 410 /* PLLB is used for the ARM's clock. */ 411 static const struct bcm2835_pll_data bcm2835_pllb_data = { 412 .name = "pllb", 413 .cm_ctrl_reg = CM_PLLB, 414 .a2w_ctrl_reg = A2W_PLLB_CTRL, 415 .frac_reg = A2W_PLLB_FRAC, 416 .ana_reg_base = A2W_PLLB_ANA0, 417 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE, 418 .lock_mask = CM_LOCK_FLOCKB, 419 420 .ana = &bcm2835_ana_default, 421 422 .min_rate = 600000000u, 423 .max_rate = 3000000000u, 424 .max_fb_rate = BCM2835_MAX_FB_RATE, 425 }; 426 427 /* 428 * PLLC is the core PLL, used to drive the core VPU clock. 429 * 430 * It is in the PX LDO power domain, which is on when the AUDIO domain 431 * is on. 432 */ 433 static const struct bcm2835_pll_data bcm2835_pllc_data = { 434 .name = "pllc", 435 .cm_ctrl_reg = CM_PLLC, 436 .a2w_ctrl_reg = A2W_PLLC_CTRL, 437 .frac_reg = A2W_PLLC_FRAC, 438 .ana_reg_base = A2W_PLLC_ANA0, 439 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 440 .lock_mask = CM_LOCK_FLOCKC, 441 442 .ana = &bcm2835_ana_default, 443 444 .min_rate = 600000000u, 445 .max_rate = 3000000000u, 446 .max_fb_rate = BCM2835_MAX_FB_RATE, 447 }; 448 449 /* 450 * PLLD is the display PLL, used to drive DSI display panels. 451 * 452 * It is in the PX LDO power domain, which is on when the AUDIO domain 453 * is on. 454 */ 455 static const struct bcm2835_pll_data bcm2835_plld_data = { 456 .name = "plld", 457 .cm_ctrl_reg = CM_PLLD, 458 .a2w_ctrl_reg = A2W_PLLD_CTRL, 459 .frac_reg = A2W_PLLD_FRAC, 460 .ana_reg_base = A2W_PLLD_ANA0, 461 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, 462 .lock_mask = CM_LOCK_FLOCKD, 463 464 .ana = &bcm2835_ana_default, 465 466 .min_rate = 600000000u, 467 .max_rate = 2400000000u, 468 .max_fb_rate = BCM2835_MAX_FB_RATE, 469 }; 470 471 /* 472 * PLLH is used to supply the pixel clock or the AUX clock for the TV 473 * encoder. 474 * 475 * It is in the HDMI power domain. 476 */ 477 static const struct bcm2835_pll_data bcm2835_pllh_data = { 478 "pllh", 479 .cm_ctrl_reg = CM_PLLH, 480 .a2w_ctrl_reg = A2W_PLLH_CTRL, 481 .frac_reg = A2W_PLLH_FRAC, 482 .ana_reg_base = A2W_PLLH_ANA0, 483 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 484 .lock_mask = CM_LOCK_FLOCKH, 485 486 .ana = &bcm2835_ana_pllh, 487 488 .min_rate = 600000000u, 489 .max_rate = 3000000000u, 490 .max_fb_rate = BCM2835_MAX_FB_RATE, 491 }; 492 493 struct bcm2835_pll_divider_data { 494 const char *name; 495 const struct bcm2835_pll_data *source_pll; 496 u32 cm_reg; 497 u32 a2w_reg; 498 499 u32 load_mask; 500 u32 hold_mask; 501 u32 fixed_divider; 502 }; 503 504 static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = { 505 .name = "plla_core", 506 .source_pll = &bcm2835_plla_data, 507 .cm_reg = CM_PLLA, 508 .a2w_reg = A2W_PLLA_CORE, 509 .load_mask = CM_PLLA_LOADCORE, 510 .hold_mask = CM_PLLA_HOLDCORE, 511 .fixed_divider = 1, 512 }; 513 514 static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = { 515 .name = "plla_per", 516 .source_pll = &bcm2835_plla_data, 517 .cm_reg = CM_PLLA, 518 .a2w_reg = A2W_PLLA_PER, 519 .load_mask = CM_PLLA_LOADPER, 520 .hold_mask = CM_PLLA_HOLDPER, 521 .fixed_divider = 1, 522 }; 523 524 static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = { 525 .name = "pllb_arm", 526 .source_pll = &bcm2835_pllb_data, 527 .cm_reg = CM_PLLB, 528 .a2w_reg = A2W_PLLB_ARM, 529 .load_mask = CM_PLLB_LOADARM, 530 .hold_mask = CM_PLLB_HOLDARM, 531 .fixed_divider = 1, 532 }; 533 534 static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = { 535 .name = "pllc_core0", 536 .source_pll = &bcm2835_pllc_data, 537 .cm_reg = CM_PLLC, 538 .a2w_reg = A2W_PLLC_CORE0, 539 .load_mask = CM_PLLC_LOADCORE0, 540 .hold_mask = CM_PLLC_HOLDCORE0, 541 .fixed_divider = 1, 542 }; 543 544 static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = { 545 .name = "pllc_core1", .source_pll = &bcm2835_pllc_data, 546 .cm_reg = CM_PLLC, A2W_PLLC_CORE1, 547 .load_mask = CM_PLLC_LOADCORE1, 548 .hold_mask = CM_PLLC_HOLDCORE1, 549 .fixed_divider = 1, 550 }; 551 552 static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = { 553 .name = "pllc_core2", 554 .source_pll = &bcm2835_pllc_data, 555 .cm_reg = CM_PLLC, 556 .a2w_reg = A2W_PLLC_CORE2, 557 .load_mask = CM_PLLC_LOADCORE2, 558 .hold_mask = CM_PLLC_HOLDCORE2, 559 .fixed_divider = 1, 560 }; 561 562 static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = { 563 .name = "pllc_per", 564 .source_pll = &bcm2835_pllc_data, 565 .cm_reg = CM_PLLC, 566 .a2w_reg = A2W_PLLC_PER, 567 .load_mask = CM_PLLC_LOADPER, 568 .hold_mask = CM_PLLC_HOLDPER, 569 .fixed_divider = 1, 570 }; 571 572 static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = { 573 .name = "plld_core", 574 .source_pll = &bcm2835_plld_data, 575 .cm_reg = CM_PLLD, 576 .a2w_reg = A2W_PLLD_CORE, 577 .load_mask = CM_PLLD_LOADCORE, 578 .hold_mask = CM_PLLD_HOLDCORE, 579 .fixed_divider = 1, 580 }; 581 582 static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = { 583 .name = "plld_per", 584 .source_pll = &bcm2835_plld_data, 585 .cm_reg = CM_PLLD, 586 .a2w_reg = A2W_PLLD_PER, 587 .load_mask = CM_PLLD_LOADPER, 588 .hold_mask = CM_PLLD_HOLDPER, 589 .fixed_divider = 1, 590 }; 591 592 static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = { 593 .name = "pllh_rcal", 594 .source_pll = &bcm2835_pllh_data, 595 .cm_reg = CM_PLLH, 596 .a2w_reg = A2W_PLLH_RCAL, 597 .load_mask = CM_PLLH_LOADRCAL, 598 .hold_mask = 0, 599 .fixed_divider = 10, 600 }; 601 602 static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = { 603 .name = "pllh_aux", 604 .source_pll = &bcm2835_pllh_data, 605 .cm_reg = CM_PLLH, 606 .a2w_reg = A2W_PLLH_AUX, 607 .load_mask = CM_PLLH_LOADAUX, 608 .hold_mask = 0, 609 .fixed_divider = 10, 610 }; 611 612 static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = { 613 .name = "pllh_pix", 614 .source_pll = &bcm2835_pllh_data, 615 .cm_reg = CM_PLLH, 616 .a2w_reg = A2W_PLLH_PIX, 617 .load_mask = CM_PLLH_LOADPIX, 618 .hold_mask = 0, 619 .fixed_divider = 10, 620 }; 621 622 struct bcm2835_clock_data { 623 const char *name; 624 625 const char *const *parents; 626 int num_mux_parents; 627 628 u32 ctl_reg; 629 u32 div_reg; 630 631 /* Number of integer bits in the divider */ 632 u32 int_bits; 633 /* Number of fractional bits in the divider */ 634 u32 frac_bits; 635 636 bool is_vpu_clock; 637 }; 638 639 static const char *const bcm2835_clock_per_parents[] = { 640 "gnd", 641 "xosc", 642 "testdebug0", 643 "testdebug1", 644 "plla_per", 645 "pllc_per", 646 "plld_per", 647 "pllh_aux", 648 }; 649 650 static const char *const bcm2835_clock_vpu_parents[] = { 651 "gnd", 652 "xosc", 653 "testdebug0", 654 "testdebug1", 655 "plla_core", 656 "pllc_core0", 657 "plld_core", 658 "pllh_aux", 659 "pllc_core1", 660 "pllc_core2", 661 }; 662 663 static const char *const bcm2835_clock_osc_parents[] = { 664 "gnd", 665 "xosc", 666 "testdebug0", 667 "testdebug1" 668 }; 669 670 /* 671 * Used for a 1Mhz clock for the system clocksource, and also used by 672 * the watchdog timer and the camera pulse generator. 673 */ 674 static const struct bcm2835_clock_data bcm2835_clock_timer_data = { 675 .name = "timer", 676 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), 677 .parents = bcm2835_clock_osc_parents, 678 .ctl_reg = CM_TIMERCTL, 679 .div_reg = CM_TIMERDIV, 680 .int_bits = 6, 681 .frac_bits = 12, 682 }; 683 684 /* One Time Programmable Memory clock. Maximum 10Mhz. */ 685 static const struct bcm2835_clock_data bcm2835_clock_otp_data = { 686 .name = "otp", 687 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), 688 .parents = bcm2835_clock_osc_parents, 689 .ctl_reg = CM_OTPCTL, 690 .div_reg = CM_OTPDIV, 691 .int_bits = 4, 692 .frac_bits = 0, 693 }; 694 695 /* 696 * VPU clock. This doesn't have an enable bit, since it drives the 697 * bus for everything else, and is special so it doesn't need to be 698 * gated for rate changes. It is also known as "clk_audio" in various 699 * hardware documentation. 700 */ 701 static const struct bcm2835_clock_data bcm2835_clock_vpu_data = { 702 .name = "vpu", 703 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), 704 .parents = bcm2835_clock_vpu_parents, 705 .ctl_reg = CM_VPUCTL, 706 .div_reg = CM_VPUDIV, 707 .int_bits = 12, 708 .frac_bits = 8, 709 .is_vpu_clock = true, 710 }; 711 712 static const struct bcm2835_clock_data bcm2835_clock_v3d_data = { 713 .name = "v3d", 714 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), 715 .parents = bcm2835_clock_vpu_parents, 716 .ctl_reg = CM_V3DCTL, 717 .div_reg = CM_V3DDIV, 718 .int_bits = 4, 719 .frac_bits = 8, 720 }; 721 722 static const struct bcm2835_clock_data bcm2835_clock_isp_data = { 723 .name = "isp", 724 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), 725 .parents = bcm2835_clock_vpu_parents, 726 .ctl_reg = CM_ISPCTL, 727 .div_reg = CM_ISPDIV, 728 .int_bits = 4, 729 .frac_bits = 8, 730 }; 731 732 static const struct bcm2835_clock_data bcm2835_clock_h264_data = { 733 .name = "h264", 734 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), 735 .parents = bcm2835_clock_vpu_parents, 736 .ctl_reg = CM_H264CTL, 737 .div_reg = CM_H264DIV, 738 .int_bits = 4, 739 .frac_bits = 8, 740 }; 741 742 /* TV encoder clock. Only operating frequency is 108Mhz. */ 743 static const struct bcm2835_clock_data bcm2835_clock_vec_data = { 744 .name = "vec", 745 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), 746 .parents = bcm2835_clock_per_parents, 747 .ctl_reg = CM_VECCTL, 748 .div_reg = CM_VECDIV, 749 .int_bits = 4, 750 .frac_bits = 0, 751 }; 752 753 static const struct bcm2835_clock_data bcm2835_clock_uart_data = { 754 .name = "uart", 755 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), 756 .parents = bcm2835_clock_per_parents, 757 .ctl_reg = CM_UARTCTL, 758 .div_reg = CM_UARTDIV, 759 .int_bits = 10, 760 .frac_bits = 12, 761 }; 762 763 /* HDMI state machine */ 764 static const struct bcm2835_clock_data bcm2835_clock_hsm_data = { 765 .name = "hsm", 766 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), 767 .parents = bcm2835_clock_per_parents, 768 .ctl_reg = CM_HSMCTL, 769 .div_reg = CM_HSMDIV, 770 .int_bits = 4, 771 .frac_bits = 8, 772 }; 773 774 /* 775 * Secondary SDRAM clock. Used for low-voltage modes when the PLL in 776 * the SDRAM controller can't be used. 777 */ 778 static const struct bcm2835_clock_data bcm2835_clock_sdram_data = { 779 .name = "sdram", 780 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), 781 .parents = bcm2835_clock_vpu_parents, 782 .ctl_reg = CM_SDCCTL, 783 .div_reg = CM_SDCDIV, 784 .int_bits = 6, 785 .frac_bits = 0, 786 }; 787 788 /* Clock for the temperature sensor. Generally run at 2Mhz, max 5Mhz. */ 789 static const struct bcm2835_clock_data bcm2835_clock_tsens_data = { 790 .name = "tsens", 791 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), 792 .parents = bcm2835_clock_osc_parents, 793 .ctl_reg = CM_TSENSCTL, 794 .div_reg = CM_TSENSDIV, 795 .int_bits = 5, 796 .frac_bits = 0, 797 }; 798 799 /* Arasan EMMC clock */ 800 static const struct bcm2835_clock_data bcm2835_clock_emmc_data = { 801 .name = "emmc", 802 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), 803 .parents = bcm2835_clock_per_parents, 804 .ctl_reg = CM_EMMCCTL, 805 .div_reg = CM_EMMCDIV, 806 .int_bits = 4, 807 .frac_bits = 8, 808 }; 809 810 struct bcm2835_pll { 811 struct clk_hw hw; 812 struct bcm2835_cprman *cprman; 813 const struct bcm2835_pll_data *data; 814 }; 815 816 static int bcm2835_pll_is_on(struct clk_hw *hw) 817 { 818 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 819 struct bcm2835_cprman *cprman = pll->cprman; 820 const struct bcm2835_pll_data *data = pll->data; 821 822 return cprman_read(cprman, data->a2w_ctrl_reg) & 823 A2W_PLL_CTRL_PRST_DISABLE; 824 } 825 826 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, 827 unsigned long parent_rate, 828 u32 *ndiv, u32 *fdiv) 829 { 830 u64 div; 831 832 div = (u64)rate << A2W_PLL_FRAC_BITS; 833 do_div(div, parent_rate); 834 835 *ndiv = div >> A2W_PLL_FRAC_BITS; 836 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); 837 } 838 839 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, 840 u32 ndiv, u32 fdiv, u32 pdiv) 841 { 842 u64 rate; 843 844 if (pdiv == 0) 845 return 0; 846 847 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); 848 do_div(rate, pdiv); 849 return rate >> A2W_PLL_FRAC_BITS; 850 } 851 852 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, 853 unsigned long *parent_rate) 854 { 855 u32 ndiv, fdiv; 856 857 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); 858 859 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); 860 } 861 862 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, 863 unsigned long parent_rate) 864 { 865 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 866 struct bcm2835_cprman *cprman = pll->cprman; 867 const struct bcm2835_pll_data *data = pll->data; 868 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); 869 u32 ndiv, pdiv, fdiv; 870 bool using_prediv; 871 872 if (parent_rate == 0) 873 return 0; 874 875 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; 876 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; 877 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; 878 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & 879 data->ana->fb_prediv_mask; 880 881 if (using_prediv) 882 ndiv *= 2; 883 884 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); 885 } 886 887 static void bcm2835_pll_off(struct clk_hw *hw) 888 { 889 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 890 struct bcm2835_cprman *cprman = pll->cprman; 891 const struct bcm2835_pll_data *data = pll->data; 892 893 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST); 894 cprman_write(cprman, data->a2w_ctrl_reg, A2W_PLL_CTRL_PWRDN); 895 } 896 897 static int bcm2835_pll_on(struct clk_hw *hw) 898 { 899 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 900 struct bcm2835_cprman *cprman = pll->cprman; 901 const struct bcm2835_pll_data *data = pll->data; 902 ktime_t timeout; 903 904 /* Take the PLL out of reset. */ 905 cprman_write(cprman, data->cm_ctrl_reg, 906 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); 907 908 /* Wait for the PLL to lock. */ 909 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 910 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { 911 if (ktime_after(ktime_get(), timeout)) { 912 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 913 clk_hw_get_name(hw)); 914 return -ETIMEDOUT; 915 } 916 917 cpu_relax(); 918 } 919 920 return 0; 921 } 922 923 static void 924 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) 925 { 926 int i; 927 928 /* 929 * ANA register setup is done as a series of writes to 930 * ANA3-ANA0, in that order. This lets us write all 4 931 * registers as a single cycle of the serdes interface (taking 932 * 100 xosc clocks), whereas if we were to update ana0, 1, and 933 * 3 individually through their partial-write registers, each 934 * would be their own serdes cycle. 935 */ 936 for (i = 3; i >= 0; i--) 937 cprman_write(cprman, ana_reg_base + i * 4, ana[i]); 938 } 939 940 static int bcm2835_pll_set_rate(struct clk_hw *hw, 941 unsigned long rate, unsigned long parent_rate) 942 { 943 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 944 struct bcm2835_cprman *cprman = pll->cprman; 945 const struct bcm2835_pll_data *data = pll->data; 946 bool was_using_prediv, use_fb_prediv, do_ana_setup_first; 947 u32 ndiv, fdiv, a2w_ctl; 948 u32 ana[4]; 949 int i; 950 951 if (rate < data->min_rate || rate > data->max_rate) { 952 dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n", 953 clk_hw_get_name(hw), rate, 954 data->min_rate, data->max_rate); 955 return -EINVAL; 956 } 957 958 if (rate > data->max_fb_rate) { 959 use_fb_prediv = true; 960 rate /= 2; 961 } else { 962 use_fb_prediv = false; 963 } 964 965 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); 966 967 for (i = 3; i >= 0; i--) 968 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); 969 970 was_using_prediv = ana[1] & data->ana->fb_prediv_mask; 971 972 ana[0] &= ~data->ana->mask0; 973 ana[0] |= data->ana->set0; 974 ana[1] &= ~data->ana->mask1; 975 ana[1] |= data->ana->set1; 976 ana[3] &= ~data->ana->mask3; 977 ana[3] |= data->ana->set3; 978 979 if (was_using_prediv && !use_fb_prediv) { 980 ana[1] &= ~data->ana->fb_prediv_mask; 981 do_ana_setup_first = true; 982 } else if (!was_using_prediv && use_fb_prediv) { 983 ana[1] |= data->ana->fb_prediv_mask; 984 do_ana_setup_first = false; 985 } else { 986 do_ana_setup_first = true; 987 } 988 989 /* Unmask the reference clock from the oscillator. */ 990 cprman_write(cprman, A2W_XOSC_CTRL, 991 cprman_read(cprman, A2W_XOSC_CTRL) | 992 data->reference_enable_mask); 993 994 if (do_ana_setup_first) 995 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 996 997 /* Set the PLL multiplier from the oscillator. */ 998 cprman_write(cprman, data->frac_reg, fdiv); 999 1000 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); 1001 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; 1002 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; 1003 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; 1004 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; 1005 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); 1006 1007 if (!do_ana_setup_first) 1008 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 1009 1010 return 0; 1011 } 1012 1013 static const struct clk_ops bcm2835_pll_clk_ops = { 1014 .is_prepared = bcm2835_pll_is_on, 1015 .prepare = bcm2835_pll_on, 1016 .unprepare = bcm2835_pll_off, 1017 .recalc_rate = bcm2835_pll_get_rate, 1018 .set_rate = bcm2835_pll_set_rate, 1019 .round_rate = bcm2835_pll_round_rate, 1020 }; 1021 1022 struct bcm2835_pll_divider { 1023 struct clk_divider div; 1024 struct bcm2835_cprman *cprman; 1025 const struct bcm2835_pll_divider_data *data; 1026 }; 1027 1028 static struct bcm2835_pll_divider * 1029 bcm2835_pll_divider_from_hw(struct clk_hw *hw) 1030 { 1031 return container_of(hw, struct bcm2835_pll_divider, div.hw); 1032 } 1033 1034 static int bcm2835_pll_divider_is_on(struct clk_hw *hw) 1035 { 1036 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 1037 struct bcm2835_cprman *cprman = divider->cprman; 1038 const struct bcm2835_pll_divider_data *data = divider->data; 1039 1040 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); 1041 } 1042 1043 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw, 1044 unsigned long rate, 1045 unsigned long *parent_rate) 1046 { 1047 return clk_divider_ops.round_rate(hw, rate, parent_rate); 1048 } 1049 1050 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, 1051 unsigned long parent_rate) 1052 { 1053 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 1054 struct bcm2835_cprman *cprman = divider->cprman; 1055 const struct bcm2835_pll_divider_data *data = divider->data; 1056 u32 div = cprman_read(cprman, data->a2w_reg); 1057 1058 div &= (1 << A2W_PLL_DIV_BITS) - 1; 1059 if (div == 0) 1060 div = 256; 1061 1062 return parent_rate / div; 1063 } 1064 1065 static void bcm2835_pll_divider_off(struct clk_hw *hw) 1066 { 1067 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 1068 struct bcm2835_cprman *cprman = divider->cprman; 1069 const struct bcm2835_pll_divider_data *data = divider->data; 1070 1071 cprman_write(cprman, data->cm_reg, 1072 (cprman_read(cprman, data->cm_reg) & 1073 ~data->load_mask) | data->hold_mask); 1074 cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE); 1075 } 1076 1077 static int bcm2835_pll_divider_on(struct clk_hw *hw) 1078 { 1079 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 1080 struct bcm2835_cprman *cprman = divider->cprman; 1081 const struct bcm2835_pll_divider_data *data = divider->data; 1082 1083 cprman_write(cprman, data->a2w_reg, 1084 cprman_read(cprman, data->a2w_reg) & 1085 ~A2W_PLL_CHANNEL_DISABLE); 1086 1087 cprman_write(cprman, data->cm_reg, 1088 cprman_read(cprman, data->cm_reg) & ~data->hold_mask); 1089 1090 return 0; 1091 } 1092 1093 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, 1094 unsigned long rate, 1095 unsigned long parent_rate) 1096 { 1097 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 1098 struct bcm2835_cprman *cprman = divider->cprman; 1099 const struct bcm2835_pll_divider_data *data = divider->data; 1100 u32 cm; 1101 int ret; 1102 1103 ret = clk_divider_ops.set_rate(hw, rate, parent_rate); 1104 if (ret) 1105 return ret; 1106 1107 cm = cprman_read(cprman, data->cm_reg); 1108 cprman_write(cprman, data->cm_reg, cm | data->load_mask); 1109 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); 1110 1111 return 0; 1112 } 1113 1114 static const struct clk_ops bcm2835_pll_divider_clk_ops = { 1115 .is_prepared = bcm2835_pll_divider_is_on, 1116 .prepare = bcm2835_pll_divider_on, 1117 .unprepare = bcm2835_pll_divider_off, 1118 .recalc_rate = bcm2835_pll_divider_get_rate, 1119 .set_rate = bcm2835_pll_divider_set_rate, 1120 .round_rate = bcm2835_pll_divider_round_rate, 1121 }; 1122 1123 /* 1124 * The CM dividers do fixed-point division, so we can't use the 1125 * generic integer divider code like the PLL dividers do (and we can't 1126 * fake it by having some fixed shifts preceding it in the clock tree, 1127 * because we'd run out of bits in a 32-bit unsigned long). 1128 */ 1129 struct bcm2835_clock { 1130 struct clk_hw hw; 1131 struct bcm2835_cprman *cprman; 1132 const struct bcm2835_clock_data *data; 1133 }; 1134 1135 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) 1136 { 1137 return container_of(hw, struct bcm2835_clock, hw); 1138 } 1139 1140 static int bcm2835_clock_is_on(struct clk_hw *hw) 1141 { 1142 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1143 struct bcm2835_cprman *cprman = clock->cprman; 1144 const struct bcm2835_clock_data *data = clock->data; 1145 1146 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; 1147 } 1148 1149 static u32 bcm2835_clock_choose_div(struct clk_hw *hw, 1150 unsigned long rate, 1151 unsigned long parent_rate) 1152 { 1153 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1154 const struct bcm2835_clock_data *data = clock->data; 1155 u32 unused_frac_mask = GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0); 1156 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; 1157 u32 div; 1158 1159 do_div(temp, rate); 1160 div = temp; 1161 1162 /* Round and mask off the unused bits */ 1163 if (unused_frac_mask != 0) { 1164 div += unused_frac_mask >> 1; 1165 div &= ~unused_frac_mask; 1166 } 1167 1168 /* Clamp to the limits. */ 1169 div = max(div, unused_frac_mask + 1); 1170 div = min_t(u32, div, GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, 1171 CM_DIV_FRAC_BITS - data->frac_bits)); 1172 1173 return div; 1174 } 1175 1176 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, 1177 unsigned long parent_rate, 1178 u32 div) 1179 { 1180 const struct bcm2835_clock_data *data = clock->data; 1181 u64 temp; 1182 1183 /* 1184 * The divisor is a 12.12 fixed point field, but only some of 1185 * the bits are populated in any given clock. 1186 */ 1187 div >>= CM_DIV_FRAC_BITS - data->frac_bits; 1188 div &= (1 << (data->int_bits + data->frac_bits)) - 1; 1189 1190 if (div == 0) 1191 return 0; 1192 1193 temp = (u64)parent_rate << data->frac_bits; 1194 1195 do_div(temp, div); 1196 1197 return temp; 1198 } 1199 1200 static long bcm2835_clock_round_rate(struct clk_hw *hw, 1201 unsigned long rate, 1202 unsigned long *parent_rate) 1203 { 1204 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1205 u32 div = bcm2835_clock_choose_div(hw, rate, *parent_rate); 1206 1207 return bcm2835_clock_rate_from_divisor(clock, *parent_rate, div); 1208 } 1209 1210 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, 1211 unsigned long parent_rate) 1212 { 1213 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1214 struct bcm2835_cprman *cprman = clock->cprman; 1215 const struct bcm2835_clock_data *data = clock->data; 1216 u32 div = cprman_read(cprman, data->div_reg); 1217 1218 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); 1219 } 1220 1221 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) 1222 { 1223 struct bcm2835_cprman *cprman = clock->cprman; 1224 const struct bcm2835_clock_data *data = clock->data; 1225 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 1226 1227 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { 1228 if (ktime_after(ktime_get(), timeout)) { 1229 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 1230 clk_hw_get_name(&clock->hw)); 1231 return; 1232 } 1233 cpu_relax(); 1234 } 1235 } 1236 1237 static void bcm2835_clock_off(struct clk_hw *hw) 1238 { 1239 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1240 struct bcm2835_cprman *cprman = clock->cprman; 1241 const struct bcm2835_clock_data *data = clock->data; 1242 1243 spin_lock(&cprman->regs_lock); 1244 cprman_write(cprman, data->ctl_reg, 1245 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); 1246 spin_unlock(&cprman->regs_lock); 1247 1248 /* BUSY will remain high until the divider completes its cycle. */ 1249 bcm2835_clock_wait_busy(clock); 1250 } 1251 1252 static int bcm2835_clock_on(struct clk_hw *hw) 1253 { 1254 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1255 struct bcm2835_cprman *cprman = clock->cprman; 1256 const struct bcm2835_clock_data *data = clock->data; 1257 1258 spin_lock(&cprman->regs_lock); 1259 cprman_write(cprman, data->ctl_reg, 1260 cprman_read(cprman, data->ctl_reg) | 1261 CM_ENABLE | 1262 CM_GATE); 1263 spin_unlock(&cprman->regs_lock); 1264 1265 return 0; 1266 } 1267 1268 static int bcm2835_clock_set_rate(struct clk_hw *hw, 1269 unsigned long rate, unsigned long parent_rate) 1270 { 1271 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1272 struct bcm2835_cprman *cprman = clock->cprman; 1273 const struct bcm2835_clock_data *data = clock->data; 1274 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate); 1275 1276 cprman_write(cprman, data->div_reg, div); 1277 1278 return 0; 1279 } 1280 1281 static const struct clk_ops bcm2835_clock_clk_ops = { 1282 .is_prepared = bcm2835_clock_is_on, 1283 .prepare = bcm2835_clock_on, 1284 .unprepare = bcm2835_clock_off, 1285 .recalc_rate = bcm2835_clock_get_rate, 1286 .set_rate = bcm2835_clock_set_rate, 1287 .round_rate = bcm2835_clock_round_rate, 1288 }; 1289 1290 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) 1291 { 1292 return true; 1293 } 1294 1295 /* 1296 * The VPU clock can never be disabled (it doesn't have an ENABLE 1297 * bit), so it gets its own set of clock ops. 1298 */ 1299 static const struct clk_ops bcm2835_vpu_clock_clk_ops = { 1300 .is_prepared = bcm2835_vpu_clock_is_on, 1301 .recalc_rate = bcm2835_clock_get_rate, 1302 .set_rate = bcm2835_clock_set_rate, 1303 .round_rate = bcm2835_clock_round_rate, 1304 }; 1305 1306 static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman, 1307 const struct bcm2835_pll_data *data) 1308 { 1309 struct bcm2835_pll *pll; 1310 struct clk_init_data init; 1311 1312 memset(&init, 0, sizeof(init)); 1313 1314 /* All of the PLLs derive from the external oscillator. */ 1315 init.parent_names = &cprman->osc_name; 1316 init.num_parents = 1; 1317 init.name = data->name; 1318 init.ops = &bcm2835_pll_clk_ops; 1319 init.flags = CLK_IGNORE_UNUSED; 1320 1321 pll = kzalloc(sizeof(*pll), GFP_KERNEL); 1322 if (!pll) 1323 return NULL; 1324 1325 pll->cprman = cprman; 1326 pll->data = data; 1327 pll->hw.init = &init; 1328 1329 return devm_clk_register(cprman->dev, &pll->hw); 1330 } 1331 1332 static struct clk * 1333 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, 1334 const struct bcm2835_pll_divider_data *data) 1335 { 1336 struct bcm2835_pll_divider *divider; 1337 struct clk_init_data init; 1338 struct clk *clk; 1339 const char *divider_name; 1340 1341 if (data->fixed_divider != 1) { 1342 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, 1343 "%s_prediv", data->name); 1344 if (!divider_name) 1345 return NULL; 1346 } else { 1347 divider_name = data->name; 1348 } 1349 1350 memset(&init, 0, sizeof(init)); 1351 1352 init.parent_names = &data->source_pll->name; 1353 init.num_parents = 1; 1354 init.name = divider_name; 1355 init.ops = &bcm2835_pll_divider_clk_ops; 1356 init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED; 1357 1358 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); 1359 if (!divider) 1360 return NULL; 1361 1362 divider->div.reg = cprman->regs + data->a2w_reg; 1363 divider->div.shift = A2W_PLL_DIV_SHIFT; 1364 divider->div.width = A2W_PLL_DIV_BITS; 1365 divider->div.flags = 0; 1366 divider->div.lock = &cprman->regs_lock; 1367 divider->div.hw.init = &init; 1368 divider->div.table = NULL; 1369 1370 divider->cprman = cprman; 1371 divider->data = data; 1372 1373 clk = devm_clk_register(cprman->dev, ÷r->div.hw); 1374 if (IS_ERR(clk)) 1375 return clk; 1376 1377 /* 1378 * PLLH's channels have a fixed divide by 10 afterwards, which 1379 * is what our consumers are actually using. 1380 */ 1381 if (data->fixed_divider != 1) { 1382 return clk_register_fixed_factor(cprman->dev, data->name, 1383 divider_name, 1384 CLK_SET_RATE_PARENT, 1385 1, 1386 data->fixed_divider); 1387 } 1388 1389 return clk; 1390 } 1391 1392 static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman, 1393 const struct bcm2835_clock_data *data) 1394 { 1395 struct bcm2835_clock *clock; 1396 struct clk_init_data init; 1397 const char *parent; 1398 1399 /* 1400 * Most of the clock generators have a mux field, so we 1401 * instantiate a generic mux as our parent to handle it. 1402 */ 1403 if (data->num_mux_parents) { 1404 const char *parents[1 << CM_SRC_BITS]; 1405 int i; 1406 1407 parent = devm_kasprintf(cprman->dev, GFP_KERNEL, 1408 "mux_%s", data->name); 1409 if (!parent) 1410 return NULL; 1411 1412 /* 1413 * Replace our "xosc" references with the oscillator's 1414 * actual name. 1415 */ 1416 for (i = 0; i < data->num_mux_parents; i++) { 1417 if (strcmp(data->parents[i], "xosc") == 0) 1418 parents[i] = cprman->osc_name; 1419 else 1420 parents[i] = data->parents[i]; 1421 } 1422 1423 clk_register_mux(cprman->dev, parent, 1424 parents, data->num_mux_parents, 1425 CLK_SET_RATE_PARENT, 1426 cprman->regs + data->ctl_reg, 1427 CM_SRC_SHIFT, CM_SRC_BITS, 1428 0, &cprman->regs_lock); 1429 } else { 1430 parent = data->parents[0]; 1431 } 1432 1433 memset(&init, 0, sizeof(init)); 1434 init.parent_names = &parent; 1435 init.num_parents = 1; 1436 init.name = data->name; 1437 init.flags = CLK_IGNORE_UNUSED; 1438 1439 if (data->is_vpu_clock) { 1440 init.ops = &bcm2835_vpu_clock_clk_ops; 1441 } else { 1442 init.ops = &bcm2835_clock_clk_ops; 1443 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; 1444 } 1445 1446 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); 1447 if (!clock) 1448 return NULL; 1449 1450 clock->cprman = cprman; 1451 clock->data = data; 1452 clock->hw.init = &init; 1453 1454 return devm_clk_register(cprman->dev, &clock->hw); 1455 } 1456 1457 static int bcm2835_clk_probe(struct platform_device *pdev) 1458 { 1459 struct device *dev = &pdev->dev; 1460 struct clk **clks; 1461 struct bcm2835_cprman *cprman; 1462 struct resource *res; 1463 1464 cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL); 1465 if (!cprman) 1466 return -ENOMEM; 1467 1468 spin_lock_init(&cprman->regs_lock); 1469 cprman->dev = dev; 1470 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1471 cprman->regs = devm_ioremap_resource(dev, res); 1472 if (IS_ERR(cprman->regs)) 1473 return PTR_ERR(cprman->regs); 1474 1475 cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0); 1476 if (!cprman->osc_name) 1477 return -ENODEV; 1478 1479 platform_set_drvdata(pdev, cprman); 1480 1481 cprman->onecell.clk_num = BCM2835_CLOCK_COUNT; 1482 cprman->onecell.clks = cprman->clks; 1483 clks = cprman->clks; 1484 1485 clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data); 1486 clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data); 1487 clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data); 1488 clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data); 1489 clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data); 1490 1491 clks[BCM2835_PLLA_CORE] = 1492 bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data); 1493 clks[BCM2835_PLLA_PER] = 1494 bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data); 1495 clks[BCM2835_PLLC_CORE0] = 1496 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data); 1497 clks[BCM2835_PLLC_CORE1] = 1498 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data); 1499 clks[BCM2835_PLLC_CORE2] = 1500 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data); 1501 clks[BCM2835_PLLC_PER] = 1502 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data); 1503 clks[BCM2835_PLLD_CORE] = 1504 bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data); 1505 clks[BCM2835_PLLD_PER] = 1506 bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data); 1507 clks[BCM2835_PLLH_RCAL] = 1508 bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data); 1509 clks[BCM2835_PLLH_AUX] = 1510 bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data); 1511 clks[BCM2835_PLLH_PIX] = 1512 bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data); 1513 1514 clks[BCM2835_CLOCK_TIMER] = 1515 bcm2835_register_clock(cprman, &bcm2835_clock_timer_data); 1516 clks[BCM2835_CLOCK_OTP] = 1517 bcm2835_register_clock(cprman, &bcm2835_clock_otp_data); 1518 clks[BCM2835_CLOCK_TSENS] = 1519 bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data); 1520 clks[BCM2835_CLOCK_VPU] = 1521 bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data); 1522 clks[BCM2835_CLOCK_V3D] = 1523 bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data); 1524 clks[BCM2835_CLOCK_ISP] = 1525 bcm2835_register_clock(cprman, &bcm2835_clock_isp_data); 1526 clks[BCM2835_CLOCK_H264] = 1527 bcm2835_register_clock(cprman, &bcm2835_clock_h264_data); 1528 clks[BCM2835_CLOCK_V3D] = 1529 bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data); 1530 clks[BCM2835_CLOCK_SDRAM] = 1531 bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data); 1532 clks[BCM2835_CLOCK_UART] = 1533 bcm2835_register_clock(cprman, &bcm2835_clock_uart_data); 1534 clks[BCM2835_CLOCK_VEC] = 1535 bcm2835_register_clock(cprman, &bcm2835_clock_vec_data); 1536 clks[BCM2835_CLOCK_HSM] = 1537 bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data); 1538 clks[BCM2835_CLOCK_EMMC] = 1539 bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data); 1540 1541 /* 1542 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if 1543 * you have the debug bit set in the power manager, which we 1544 * don't bother exposing) are individual gates off of the 1545 * non-stop vpu clock. 1546 */ 1547 clks[BCM2835_CLOCK_PERI_IMAGE] = 1548 clk_register_gate(dev, "peri_image", "vpu", 1549 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, 1550 cprman->regs + CM_PERIICTL, CM_GATE_BIT, 1551 0, &cprman->regs_lock); 1552 1553 return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get, 1554 &cprman->onecell); 1555 } 1556 1557 static const struct of_device_id bcm2835_clk_of_match[] = { 1558 { .compatible = "brcm,bcm2835-cprman", }, 1559 {} 1560 }; 1561 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); 1562 1563 static struct platform_driver bcm2835_clk_driver = { 1564 .driver = { 1565 .name = "bcm2835-clk", 1566 .of_match_table = bcm2835_clk_of_match, 1567 }, 1568 .probe = bcm2835_clk_probe, 1569 }; 1570 1571 builtin_platform_driver(bcm2835_clk_driver); 1572 1573 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); 1574 MODULE_DESCRIPTION("BCM2835 clock driver"); 1575 MODULE_LICENSE("GPL v2"); 1576