1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2010,2015 Broadcom 4 * Copyright (C) 2012 Stephen Warren 5 */ 6 7 /** 8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) 9 * 10 * The clock tree on the 2835 has several levels. There's a root 11 * oscillator running at 19.2Mhz. After the oscillator there are 5 12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", 13 * and "HDMI displays". Those 5 PLLs each can divide their output to 14 * produce up to 4 channels. Finally, there is the level of clocks to 15 * be consumed by other hardware components (like "H264" or "HDMI 16 * state machine"), which divide off of some subset of the PLL 17 * channels. 18 * 19 * All of the clocks in the tree are exposed in the DT, because the DT 20 * may want to make assignments of the final layer of clocks to the 21 * PLL channels, and some components of the hardware will actually 22 * skip layers of the tree (for example, the pixel clock comes 23 * directly from the PLLH PIX channel without using a CM_*CTL clock 24 * generator). 25 */ 26 27 #include <linux/clk-provider.h> 28 #include <linux/clkdev.h> 29 #include <linux/clk.h> 30 #include <linux/debugfs.h> 31 #include <linux/delay.h> 32 #include <linux/io.h> 33 #include <linux/module.h> 34 #include <linux/of_device.h> 35 #include <linux/platform_device.h> 36 #include <linux/slab.h> 37 #include <dt-bindings/clock/bcm2835.h> 38 39 #define CM_PASSWORD 0x5a000000 40 41 #define CM_GNRICCTL 0x000 42 #define CM_GNRICDIV 0x004 43 # define CM_DIV_FRAC_BITS 12 44 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0) 45 46 #define CM_VPUCTL 0x008 47 #define CM_VPUDIV 0x00c 48 #define CM_SYSCTL 0x010 49 #define CM_SYSDIV 0x014 50 #define CM_PERIACTL 0x018 51 #define CM_PERIADIV 0x01c 52 #define CM_PERIICTL 0x020 53 #define CM_PERIIDIV 0x024 54 #define CM_H264CTL 0x028 55 #define CM_H264DIV 0x02c 56 #define CM_ISPCTL 0x030 57 #define CM_ISPDIV 0x034 58 #define CM_V3DCTL 0x038 59 #define CM_V3DDIV 0x03c 60 #define CM_CAM0CTL 0x040 61 #define CM_CAM0DIV 0x044 62 #define CM_CAM1CTL 0x048 63 #define CM_CAM1DIV 0x04c 64 #define CM_CCP2CTL 0x050 65 #define CM_CCP2DIV 0x054 66 #define CM_DSI0ECTL 0x058 67 #define CM_DSI0EDIV 0x05c 68 #define CM_DSI0PCTL 0x060 69 #define CM_DSI0PDIV 0x064 70 #define CM_DPICTL 0x068 71 #define CM_DPIDIV 0x06c 72 #define CM_GP0CTL 0x070 73 #define CM_GP0DIV 0x074 74 #define CM_GP1CTL 0x078 75 #define CM_GP1DIV 0x07c 76 #define CM_GP2CTL 0x080 77 #define CM_GP2DIV 0x084 78 #define CM_HSMCTL 0x088 79 #define CM_HSMDIV 0x08c 80 #define CM_OTPCTL 0x090 81 #define CM_OTPDIV 0x094 82 #define CM_PCMCTL 0x098 83 #define CM_PCMDIV 0x09c 84 #define CM_PWMCTL 0x0a0 85 #define CM_PWMDIV 0x0a4 86 #define CM_SLIMCTL 0x0a8 87 #define CM_SLIMDIV 0x0ac 88 #define CM_SMICTL 0x0b0 89 #define CM_SMIDIV 0x0b4 90 /* no definition for 0x0b8 and 0x0bc */ 91 #define CM_TCNTCTL 0x0c0 92 # define CM_TCNT_SRC1_SHIFT 12 93 #define CM_TCNTCNT 0x0c4 94 #define CM_TECCTL 0x0c8 95 #define CM_TECDIV 0x0cc 96 #define CM_TD0CTL 0x0d0 97 #define CM_TD0DIV 0x0d4 98 #define CM_TD1CTL 0x0d8 99 #define CM_TD1DIV 0x0dc 100 #define CM_TSENSCTL 0x0e0 101 #define CM_TSENSDIV 0x0e4 102 #define CM_TIMERCTL 0x0e8 103 #define CM_TIMERDIV 0x0ec 104 #define CM_UARTCTL 0x0f0 105 #define CM_UARTDIV 0x0f4 106 #define CM_VECCTL 0x0f8 107 #define CM_VECDIV 0x0fc 108 #define CM_PULSECTL 0x190 109 #define CM_PULSEDIV 0x194 110 #define CM_SDCCTL 0x1a8 111 #define CM_SDCDIV 0x1ac 112 #define CM_ARMCTL 0x1b0 113 #define CM_AVEOCTL 0x1b8 114 #define CM_AVEODIV 0x1bc 115 #define CM_EMMCCTL 0x1c0 116 #define CM_EMMCDIV 0x1c4 117 #define CM_EMMC2CTL 0x1d0 118 #define CM_EMMC2DIV 0x1d4 119 120 /* General bits for the CM_*CTL regs */ 121 # define CM_ENABLE BIT(4) 122 # define CM_KILL BIT(5) 123 # define CM_GATE_BIT 6 124 # define CM_GATE BIT(CM_GATE_BIT) 125 # define CM_BUSY BIT(7) 126 # define CM_BUSYD BIT(8) 127 # define CM_FRAC BIT(9) 128 # define CM_SRC_SHIFT 0 129 # define CM_SRC_BITS 4 130 # define CM_SRC_MASK 0xf 131 # define CM_SRC_GND 0 132 # define CM_SRC_OSC 1 133 # define CM_SRC_TESTDEBUG0 2 134 # define CM_SRC_TESTDEBUG1 3 135 # define CM_SRC_PLLA_CORE 4 136 # define CM_SRC_PLLA_PER 4 137 # define CM_SRC_PLLC_CORE0 5 138 # define CM_SRC_PLLC_PER 5 139 # define CM_SRC_PLLC_CORE1 8 140 # define CM_SRC_PLLD_CORE 6 141 # define CM_SRC_PLLD_PER 6 142 # define CM_SRC_PLLH_AUX 7 143 # define CM_SRC_PLLC_CORE1 8 144 # define CM_SRC_PLLC_CORE2 9 145 146 #define CM_OSCCOUNT 0x100 147 148 #define CM_PLLA 0x104 149 # define CM_PLL_ANARST BIT(8) 150 # define CM_PLLA_HOLDPER BIT(7) 151 # define CM_PLLA_LOADPER BIT(6) 152 # define CM_PLLA_HOLDCORE BIT(5) 153 # define CM_PLLA_LOADCORE BIT(4) 154 # define CM_PLLA_HOLDCCP2 BIT(3) 155 # define CM_PLLA_LOADCCP2 BIT(2) 156 # define CM_PLLA_HOLDDSI0 BIT(1) 157 # define CM_PLLA_LOADDSI0 BIT(0) 158 159 #define CM_PLLC 0x108 160 # define CM_PLLC_HOLDPER BIT(7) 161 # define CM_PLLC_LOADPER BIT(6) 162 # define CM_PLLC_HOLDCORE2 BIT(5) 163 # define CM_PLLC_LOADCORE2 BIT(4) 164 # define CM_PLLC_HOLDCORE1 BIT(3) 165 # define CM_PLLC_LOADCORE1 BIT(2) 166 # define CM_PLLC_HOLDCORE0 BIT(1) 167 # define CM_PLLC_LOADCORE0 BIT(0) 168 169 #define CM_PLLD 0x10c 170 # define CM_PLLD_HOLDPER BIT(7) 171 # define CM_PLLD_LOADPER BIT(6) 172 # define CM_PLLD_HOLDCORE BIT(5) 173 # define CM_PLLD_LOADCORE BIT(4) 174 # define CM_PLLD_HOLDDSI1 BIT(3) 175 # define CM_PLLD_LOADDSI1 BIT(2) 176 # define CM_PLLD_HOLDDSI0 BIT(1) 177 # define CM_PLLD_LOADDSI0 BIT(0) 178 179 #define CM_PLLH 0x110 180 # define CM_PLLH_LOADRCAL BIT(2) 181 # define CM_PLLH_LOADAUX BIT(1) 182 # define CM_PLLH_LOADPIX BIT(0) 183 184 #define CM_LOCK 0x114 185 # define CM_LOCK_FLOCKH BIT(12) 186 # define CM_LOCK_FLOCKD BIT(11) 187 # define CM_LOCK_FLOCKC BIT(10) 188 # define CM_LOCK_FLOCKB BIT(9) 189 # define CM_LOCK_FLOCKA BIT(8) 190 191 #define CM_EVENT 0x118 192 #define CM_DSI1ECTL 0x158 193 #define CM_DSI1EDIV 0x15c 194 #define CM_DSI1PCTL 0x160 195 #define CM_DSI1PDIV 0x164 196 #define CM_DFTCTL 0x168 197 #define CM_DFTDIV 0x16c 198 199 #define CM_PLLB 0x170 200 # define CM_PLLB_HOLDARM BIT(1) 201 # define CM_PLLB_LOADARM BIT(0) 202 203 #define A2W_PLLA_CTRL 0x1100 204 #define A2W_PLLC_CTRL 0x1120 205 #define A2W_PLLD_CTRL 0x1140 206 #define A2W_PLLH_CTRL 0x1160 207 #define A2W_PLLB_CTRL 0x11e0 208 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) 209 # define A2W_PLL_CTRL_PWRDN BIT(16) 210 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 211 # define A2W_PLL_CTRL_PDIV_SHIFT 12 212 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff 213 # define A2W_PLL_CTRL_NDIV_SHIFT 0 214 215 #define A2W_PLLA_ANA0 0x1010 216 #define A2W_PLLC_ANA0 0x1030 217 #define A2W_PLLD_ANA0 0x1050 218 #define A2W_PLLH_ANA0 0x1070 219 #define A2W_PLLB_ANA0 0x10f0 220 221 #define A2W_PLL_KA_SHIFT 7 222 #define A2W_PLL_KA_MASK GENMASK(9, 7) 223 #define A2W_PLL_KI_SHIFT 19 224 #define A2W_PLL_KI_MASK GENMASK(21, 19) 225 #define A2W_PLL_KP_SHIFT 15 226 #define A2W_PLL_KP_MASK GENMASK(18, 15) 227 228 #define A2W_PLLH_KA_SHIFT 19 229 #define A2W_PLLH_KA_MASK GENMASK(21, 19) 230 #define A2W_PLLH_KI_LOW_SHIFT 22 231 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) 232 #define A2W_PLLH_KI_HIGH_SHIFT 0 233 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) 234 #define A2W_PLLH_KP_SHIFT 1 235 #define A2W_PLLH_KP_MASK GENMASK(4, 1) 236 237 #define A2W_XOSC_CTRL 0x1190 238 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) 239 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) 240 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) 241 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) 242 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) 243 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) 244 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) 245 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) 246 247 #define A2W_PLLA_FRAC 0x1200 248 #define A2W_PLLC_FRAC 0x1220 249 #define A2W_PLLD_FRAC 0x1240 250 #define A2W_PLLH_FRAC 0x1260 251 #define A2W_PLLB_FRAC 0x12e0 252 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) 253 # define A2W_PLL_FRAC_BITS 20 254 255 #define A2W_PLL_CHANNEL_DISABLE BIT(8) 256 #define A2W_PLL_DIV_BITS 8 257 #define A2W_PLL_DIV_SHIFT 0 258 259 #define A2W_PLLA_DSI0 0x1300 260 #define A2W_PLLA_CORE 0x1400 261 #define A2W_PLLA_PER 0x1500 262 #define A2W_PLLA_CCP2 0x1600 263 264 #define A2W_PLLC_CORE2 0x1320 265 #define A2W_PLLC_CORE1 0x1420 266 #define A2W_PLLC_PER 0x1520 267 #define A2W_PLLC_CORE0 0x1620 268 269 #define A2W_PLLD_DSI0 0x1340 270 #define A2W_PLLD_CORE 0x1440 271 #define A2W_PLLD_PER 0x1540 272 #define A2W_PLLD_DSI1 0x1640 273 274 #define A2W_PLLH_AUX 0x1360 275 #define A2W_PLLH_RCAL 0x1460 276 #define A2W_PLLH_PIX 0x1560 277 #define A2W_PLLH_STS 0x1660 278 279 #define A2W_PLLH_CTRLR 0x1960 280 #define A2W_PLLH_FRACR 0x1a60 281 #define A2W_PLLH_AUXR 0x1b60 282 #define A2W_PLLH_RCALR 0x1c60 283 #define A2W_PLLH_PIXR 0x1d60 284 #define A2W_PLLH_STSR 0x1e60 285 286 #define A2W_PLLB_ARM 0x13e0 287 #define A2W_PLLB_SP0 0x14e0 288 #define A2W_PLLB_SP1 0x15e0 289 #define A2W_PLLB_SP2 0x16e0 290 291 #define LOCK_TIMEOUT_NS 100000000 292 #define BCM2835_MAX_FB_RATE 1750000000u 293 294 #define SOC_BCM2835 BIT(0) 295 #define SOC_BCM2711 BIT(1) 296 #define SOC_ALL (SOC_BCM2835 | SOC_BCM2711) 297 298 /* 299 * Names of clocks used within the driver that need to be replaced 300 * with an external parent's name. This array is in the order that 301 * the clocks node in the DT references external clocks. 302 */ 303 static const char *const cprman_parent_names[] = { 304 "xosc", 305 "dsi0_byte", 306 "dsi0_ddr2", 307 "dsi0_ddr", 308 "dsi1_byte", 309 "dsi1_ddr2", 310 "dsi1_ddr", 311 }; 312 313 struct bcm2835_cprman { 314 struct device *dev; 315 void __iomem *regs; 316 spinlock_t regs_lock; /* spinlock for all clocks */ 317 unsigned int soc; 318 319 /* 320 * Real names of cprman clock parents looked up through 321 * of_clk_get_parent_name(), which will be used in the 322 * parent_names[] arrays for clock registration. 323 */ 324 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)]; 325 326 /* Must be last */ 327 struct clk_hw_onecell_data onecell; 328 }; 329 330 struct cprman_plat_data { 331 unsigned int soc; 332 }; 333 334 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) 335 { 336 writel(CM_PASSWORD | val, cprman->regs + reg); 337 } 338 339 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) 340 { 341 return readl(cprman->regs + reg); 342 } 343 344 /* Does a cycle of measuring a clock through the TCNT clock, which may 345 * source from many other clocks in the system. 346 */ 347 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman, 348 u32 tcnt_mux) 349 { 350 u32 osccount = 19200; /* 1ms */ 351 u32 count; 352 ktime_t timeout; 353 354 spin_lock(&cprman->regs_lock); 355 356 cprman_write(cprman, CM_TCNTCTL, CM_KILL); 357 358 cprman_write(cprman, CM_TCNTCTL, 359 (tcnt_mux & CM_SRC_MASK) | 360 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT); 361 362 cprman_write(cprman, CM_OSCCOUNT, osccount); 363 364 /* do a kind delay at the start */ 365 mdelay(1); 366 367 /* Finish off whatever is left of OSCCOUNT */ 368 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 369 while (cprman_read(cprman, CM_OSCCOUNT)) { 370 if (ktime_after(ktime_get(), timeout)) { 371 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n"); 372 count = 0; 373 goto out; 374 } 375 cpu_relax(); 376 } 377 378 /* Wait for BUSY to clear. */ 379 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 380 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) { 381 if (ktime_after(ktime_get(), timeout)) { 382 dev_err(cprman->dev, "timeout waiting for !BUSY\n"); 383 count = 0; 384 goto out; 385 } 386 cpu_relax(); 387 } 388 389 count = cprman_read(cprman, CM_TCNTCNT); 390 391 cprman_write(cprman, CM_TCNTCTL, 0); 392 393 out: 394 spin_unlock(&cprman->regs_lock); 395 396 return count * 1000; 397 } 398 399 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base, 400 const struct debugfs_reg32 *regs, 401 size_t nregs, struct dentry *dentry) 402 { 403 struct debugfs_regset32 *regset; 404 405 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL); 406 if (!regset) 407 return; 408 409 regset->regs = regs; 410 regset->nregs = nregs; 411 regset->base = cprman->regs + base; 412 413 debugfs_create_regset32("regdump", S_IRUGO, dentry, regset); 414 } 415 416 struct bcm2835_pll_data { 417 const char *name; 418 u32 cm_ctrl_reg; 419 u32 a2w_ctrl_reg; 420 u32 frac_reg; 421 u32 ana_reg_base; 422 u32 reference_enable_mask; 423 /* Bit in CM_LOCK to indicate when the PLL has locked. */ 424 u32 lock_mask; 425 u32 flags; 426 427 const struct bcm2835_pll_ana_bits *ana; 428 429 unsigned long min_rate; 430 unsigned long max_rate; 431 /* 432 * Highest rate for the VCO before we have to use the 433 * pre-divide-by-2. 434 */ 435 unsigned long max_fb_rate; 436 }; 437 438 struct bcm2835_pll_ana_bits { 439 u32 mask0; 440 u32 set0; 441 u32 mask1; 442 u32 set1; 443 u32 mask3; 444 u32 set3; 445 u32 fb_prediv_mask; 446 }; 447 448 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { 449 .mask0 = 0, 450 .set0 = 0, 451 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK, 452 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), 453 .mask3 = A2W_PLL_KA_MASK, 454 .set3 = (2 << A2W_PLL_KA_SHIFT), 455 .fb_prediv_mask = BIT(14), 456 }; 457 458 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { 459 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK, 460 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), 461 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK, 462 .set1 = (6 << A2W_PLLH_KP_SHIFT), 463 .mask3 = 0, 464 .set3 = 0, 465 .fb_prediv_mask = BIT(11), 466 }; 467 468 struct bcm2835_pll_divider_data { 469 const char *name; 470 const char *source_pll; 471 472 u32 cm_reg; 473 u32 a2w_reg; 474 475 u32 load_mask; 476 u32 hold_mask; 477 u32 fixed_divider; 478 u32 flags; 479 }; 480 481 struct bcm2835_clock_data { 482 const char *name; 483 484 const char *const *parents; 485 int num_mux_parents; 486 487 /* Bitmap encoding which parents accept rate change propagation. */ 488 unsigned int set_rate_parent; 489 490 u32 ctl_reg; 491 u32 div_reg; 492 493 /* Number of integer bits in the divider */ 494 u32 int_bits; 495 /* Number of fractional bits in the divider */ 496 u32 frac_bits; 497 498 u32 flags; 499 500 bool is_vpu_clock; 501 bool is_mash_clock; 502 bool low_jitter; 503 504 u32 tcnt_mux; 505 }; 506 507 struct bcm2835_gate_data { 508 const char *name; 509 const char *parent; 510 511 u32 ctl_reg; 512 }; 513 514 struct bcm2835_pll { 515 struct clk_hw hw; 516 struct bcm2835_cprman *cprman; 517 const struct bcm2835_pll_data *data; 518 }; 519 520 static int bcm2835_pll_is_on(struct clk_hw *hw) 521 { 522 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 523 struct bcm2835_cprman *cprman = pll->cprman; 524 const struct bcm2835_pll_data *data = pll->data; 525 526 return cprman_read(cprman, data->a2w_ctrl_reg) & 527 A2W_PLL_CTRL_PRST_DISABLE; 528 } 529 530 static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman, 531 const struct bcm2835_pll_data *data) 532 { 533 /* 534 * On BCM2711 there isn't a pre-divisor available in the PLL feedback 535 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed 536 * for to for VCO RANGE bits. 537 */ 538 if (cprman->soc & SOC_BCM2711) 539 return 0; 540 541 return data->ana->fb_prediv_mask; 542 } 543 544 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, 545 unsigned long parent_rate, 546 u32 *ndiv, u32 *fdiv) 547 { 548 u64 div; 549 550 div = (u64)rate << A2W_PLL_FRAC_BITS; 551 do_div(div, parent_rate); 552 553 *ndiv = div >> A2W_PLL_FRAC_BITS; 554 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); 555 } 556 557 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, 558 u32 ndiv, u32 fdiv, u32 pdiv) 559 { 560 u64 rate; 561 562 if (pdiv == 0) 563 return 0; 564 565 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); 566 do_div(rate, pdiv); 567 return rate >> A2W_PLL_FRAC_BITS; 568 } 569 570 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, 571 unsigned long *parent_rate) 572 { 573 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 574 const struct bcm2835_pll_data *data = pll->data; 575 u32 ndiv, fdiv; 576 577 rate = clamp(rate, data->min_rate, data->max_rate); 578 579 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); 580 581 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); 582 } 583 584 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, 585 unsigned long parent_rate) 586 { 587 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 588 struct bcm2835_cprman *cprman = pll->cprman; 589 const struct bcm2835_pll_data *data = pll->data; 590 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); 591 u32 ndiv, pdiv, fdiv; 592 bool using_prediv; 593 594 if (parent_rate == 0) 595 return 0; 596 597 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; 598 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; 599 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; 600 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & 601 bcm2835_pll_get_prediv_mask(cprman, data); 602 603 if (using_prediv) { 604 ndiv *= 2; 605 fdiv *= 2; 606 } 607 608 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); 609 } 610 611 static void bcm2835_pll_off(struct clk_hw *hw) 612 { 613 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 614 struct bcm2835_cprman *cprman = pll->cprman; 615 const struct bcm2835_pll_data *data = pll->data; 616 617 spin_lock(&cprman->regs_lock); 618 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST); 619 cprman_write(cprman, data->a2w_ctrl_reg, 620 cprman_read(cprman, data->a2w_ctrl_reg) | 621 A2W_PLL_CTRL_PWRDN); 622 spin_unlock(&cprman->regs_lock); 623 } 624 625 static int bcm2835_pll_on(struct clk_hw *hw) 626 { 627 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 628 struct bcm2835_cprman *cprman = pll->cprman; 629 const struct bcm2835_pll_data *data = pll->data; 630 ktime_t timeout; 631 632 cprman_write(cprman, data->a2w_ctrl_reg, 633 cprman_read(cprman, data->a2w_ctrl_reg) & 634 ~A2W_PLL_CTRL_PWRDN); 635 636 /* Take the PLL out of reset. */ 637 spin_lock(&cprman->regs_lock); 638 cprman_write(cprman, data->cm_ctrl_reg, 639 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); 640 spin_unlock(&cprman->regs_lock); 641 642 /* Wait for the PLL to lock. */ 643 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 644 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { 645 if (ktime_after(ktime_get(), timeout)) { 646 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 647 clk_hw_get_name(hw)); 648 return -ETIMEDOUT; 649 } 650 651 cpu_relax(); 652 } 653 654 cprman_write(cprman, data->a2w_ctrl_reg, 655 cprman_read(cprman, data->a2w_ctrl_reg) | 656 A2W_PLL_CTRL_PRST_DISABLE); 657 658 return 0; 659 } 660 661 static void 662 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) 663 { 664 int i; 665 666 /* 667 * ANA register setup is done as a series of writes to 668 * ANA3-ANA0, in that order. This lets us write all 4 669 * registers as a single cycle of the serdes interface (taking 670 * 100 xosc clocks), whereas if we were to update ana0, 1, and 671 * 3 individually through their partial-write registers, each 672 * would be their own serdes cycle. 673 */ 674 for (i = 3; i >= 0; i--) 675 cprman_write(cprman, ana_reg_base + i * 4, ana[i]); 676 } 677 678 static int bcm2835_pll_set_rate(struct clk_hw *hw, 679 unsigned long rate, unsigned long parent_rate) 680 { 681 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 682 struct bcm2835_cprman *cprman = pll->cprman; 683 const struct bcm2835_pll_data *data = pll->data; 684 u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data); 685 bool was_using_prediv, use_fb_prediv, do_ana_setup_first; 686 u32 ndiv, fdiv, a2w_ctl; 687 u32 ana[4]; 688 int i; 689 690 if (rate > data->max_fb_rate) { 691 use_fb_prediv = true; 692 rate /= 2; 693 } else { 694 use_fb_prediv = false; 695 } 696 697 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); 698 699 for (i = 3; i >= 0; i--) 700 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); 701 702 was_using_prediv = ana[1] & prediv_mask; 703 704 ana[0] &= ~data->ana->mask0; 705 ana[0] |= data->ana->set0; 706 ana[1] &= ~data->ana->mask1; 707 ana[1] |= data->ana->set1; 708 ana[3] &= ~data->ana->mask3; 709 ana[3] |= data->ana->set3; 710 711 if (was_using_prediv && !use_fb_prediv) { 712 ana[1] &= ~prediv_mask; 713 do_ana_setup_first = true; 714 } else if (!was_using_prediv && use_fb_prediv) { 715 ana[1] |= prediv_mask; 716 do_ana_setup_first = false; 717 } else { 718 do_ana_setup_first = true; 719 } 720 721 /* Unmask the reference clock from the oscillator. */ 722 spin_lock(&cprman->regs_lock); 723 cprman_write(cprman, A2W_XOSC_CTRL, 724 cprman_read(cprman, A2W_XOSC_CTRL) | 725 data->reference_enable_mask); 726 spin_unlock(&cprman->regs_lock); 727 728 if (do_ana_setup_first) 729 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 730 731 /* Set the PLL multiplier from the oscillator. */ 732 cprman_write(cprman, data->frac_reg, fdiv); 733 734 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); 735 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; 736 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; 737 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; 738 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; 739 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); 740 741 if (!do_ana_setup_first) 742 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 743 744 return 0; 745 } 746 747 static void bcm2835_pll_debug_init(struct clk_hw *hw, 748 struct dentry *dentry) 749 { 750 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 751 struct bcm2835_cprman *cprman = pll->cprman; 752 const struct bcm2835_pll_data *data = pll->data; 753 struct debugfs_reg32 *regs; 754 755 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL); 756 if (!regs) 757 return; 758 759 regs[0].name = "cm_ctrl"; 760 regs[0].offset = data->cm_ctrl_reg; 761 regs[1].name = "a2w_ctrl"; 762 regs[1].offset = data->a2w_ctrl_reg; 763 regs[2].name = "frac"; 764 regs[2].offset = data->frac_reg; 765 regs[3].name = "ana0"; 766 regs[3].offset = data->ana_reg_base + 0 * 4; 767 regs[4].name = "ana1"; 768 regs[4].offset = data->ana_reg_base + 1 * 4; 769 regs[5].name = "ana2"; 770 regs[5].offset = data->ana_reg_base + 2 * 4; 771 regs[6].name = "ana3"; 772 regs[6].offset = data->ana_reg_base + 3 * 4; 773 774 bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry); 775 } 776 777 static const struct clk_ops bcm2835_pll_clk_ops = { 778 .is_prepared = bcm2835_pll_is_on, 779 .prepare = bcm2835_pll_on, 780 .unprepare = bcm2835_pll_off, 781 .recalc_rate = bcm2835_pll_get_rate, 782 .set_rate = bcm2835_pll_set_rate, 783 .round_rate = bcm2835_pll_round_rate, 784 .debug_init = bcm2835_pll_debug_init, 785 }; 786 787 struct bcm2835_pll_divider { 788 struct clk_divider div; 789 struct bcm2835_cprman *cprman; 790 const struct bcm2835_pll_divider_data *data; 791 }; 792 793 static struct bcm2835_pll_divider * 794 bcm2835_pll_divider_from_hw(struct clk_hw *hw) 795 { 796 return container_of(hw, struct bcm2835_pll_divider, div.hw); 797 } 798 799 static int bcm2835_pll_divider_is_on(struct clk_hw *hw) 800 { 801 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 802 struct bcm2835_cprman *cprman = divider->cprman; 803 const struct bcm2835_pll_divider_data *data = divider->data; 804 805 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); 806 } 807 808 static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw, 809 struct clk_rate_request *req) 810 { 811 return clk_divider_ops.determine_rate(hw, req); 812 } 813 814 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, 815 unsigned long parent_rate) 816 { 817 return clk_divider_ops.recalc_rate(hw, parent_rate); 818 } 819 820 static void bcm2835_pll_divider_off(struct clk_hw *hw) 821 { 822 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 823 struct bcm2835_cprman *cprman = divider->cprman; 824 const struct bcm2835_pll_divider_data *data = divider->data; 825 826 spin_lock(&cprman->regs_lock); 827 cprman_write(cprman, data->cm_reg, 828 (cprman_read(cprman, data->cm_reg) & 829 ~data->load_mask) | data->hold_mask); 830 cprman_write(cprman, data->a2w_reg, 831 cprman_read(cprman, data->a2w_reg) | 832 A2W_PLL_CHANNEL_DISABLE); 833 spin_unlock(&cprman->regs_lock); 834 } 835 836 static int bcm2835_pll_divider_on(struct clk_hw *hw) 837 { 838 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 839 struct bcm2835_cprman *cprman = divider->cprman; 840 const struct bcm2835_pll_divider_data *data = divider->data; 841 842 spin_lock(&cprman->regs_lock); 843 cprman_write(cprman, data->a2w_reg, 844 cprman_read(cprman, data->a2w_reg) & 845 ~A2W_PLL_CHANNEL_DISABLE); 846 847 cprman_write(cprman, data->cm_reg, 848 cprman_read(cprman, data->cm_reg) & ~data->hold_mask); 849 spin_unlock(&cprman->regs_lock); 850 851 return 0; 852 } 853 854 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, 855 unsigned long rate, 856 unsigned long parent_rate) 857 { 858 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 859 struct bcm2835_cprman *cprman = divider->cprman; 860 const struct bcm2835_pll_divider_data *data = divider->data; 861 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS; 862 863 div = DIV_ROUND_UP_ULL(parent_rate, rate); 864 865 div = min(div, max_div); 866 if (div == max_div) 867 div = 0; 868 869 cprman_write(cprman, data->a2w_reg, div); 870 cm = cprman_read(cprman, data->cm_reg); 871 cprman_write(cprman, data->cm_reg, cm | data->load_mask); 872 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); 873 874 return 0; 875 } 876 877 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw, 878 struct dentry *dentry) 879 { 880 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 881 struct bcm2835_cprman *cprman = divider->cprman; 882 const struct bcm2835_pll_divider_data *data = divider->data; 883 struct debugfs_reg32 *regs; 884 885 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL); 886 if (!regs) 887 return; 888 889 regs[0].name = "cm"; 890 regs[0].offset = data->cm_reg; 891 regs[1].name = "a2w"; 892 regs[1].offset = data->a2w_reg; 893 894 bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry); 895 } 896 897 static const struct clk_ops bcm2835_pll_divider_clk_ops = { 898 .is_prepared = bcm2835_pll_divider_is_on, 899 .prepare = bcm2835_pll_divider_on, 900 .unprepare = bcm2835_pll_divider_off, 901 .recalc_rate = bcm2835_pll_divider_get_rate, 902 .set_rate = bcm2835_pll_divider_set_rate, 903 .determine_rate = bcm2835_pll_divider_determine_rate, 904 .debug_init = bcm2835_pll_divider_debug_init, 905 }; 906 907 /* 908 * The CM dividers do fixed-point division, so we can't use the 909 * generic integer divider code like the PLL dividers do (and we can't 910 * fake it by having some fixed shifts preceding it in the clock tree, 911 * because we'd run out of bits in a 32-bit unsigned long). 912 */ 913 struct bcm2835_clock { 914 struct clk_hw hw; 915 struct bcm2835_cprman *cprman; 916 const struct bcm2835_clock_data *data; 917 }; 918 919 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) 920 { 921 return container_of(hw, struct bcm2835_clock, hw); 922 } 923 924 static int bcm2835_clock_is_on(struct clk_hw *hw) 925 { 926 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 927 struct bcm2835_cprman *cprman = clock->cprman; 928 const struct bcm2835_clock_data *data = clock->data; 929 930 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; 931 } 932 933 static u32 bcm2835_clock_choose_div(struct clk_hw *hw, 934 unsigned long rate, 935 unsigned long parent_rate, 936 bool round_up) 937 { 938 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 939 const struct bcm2835_clock_data *data = clock->data; 940 u32 unused_frac_mask = 941 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1; 942 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; 943 u64 rem; 944 u32 div, mindiv, maxdiv; 945 946 rem = do_div(temp, rate); 947 div = temp; 948 949 /* Round up and mask off the unused bits */ 950 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0)) 951 div += unused_frac_mask + 1; 952 div &= ~unused_frac_mask; 953 954 /* different clamping limits apply for a mash clock */ 955 if (data->is_mash_clock) { 956 /* clamp to min divider of 2 */ 957 mindiv = 2 << CM_DIV_FRAC_BITS; 958 /* clamp to the highest possible integer divider */ 959 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS; 960 } else { 961 /* clamp to min divider of 1 */ 962 mindiv = 1 << CM_DIV_FRAC_BITS; 963 /* clamp to the highest possible fractional divider */ 964 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, 965 CM_DIV_FRAC_BITS - data->frac_bits); 966 } 967 968 /* apply the clamping limits */ 969 div = max_t(u32, div, mindiv); 970 div = min_t(u32, div, maxdiv); 971 972 return div; 973 } 974 975 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, 976 unsigned long parent_rate, 977 u32 div) 978 { 979 const struct bcm2835_clock_data *data = clock->data; 980 u64 temp; 981 982 if (data->int_bits == 0 && data->frac_bits == 0) 983 return parent_rate; 984 985 /* 986 * The divisor is a 12.12 fixed point field, but only some of 987 * the bits are populated in any given clock. 988 */ 989 div >>= CM_DIV_FRAC_BITS - data->frac_bits; 990 div &= (1 << (data->int_bits + data->frac_bits)) - 1; 991 992 if (div == 0) 993 return 0; 994 995 temp = (u64)parent_rate << data->frac_bits; 996 997 do_div(temp, div); 998 999 return temp; 1000 } 1001 1002 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, 1003 unsigned long parent_rate) 1004 { 1005 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1006 struct bcm2835_cprman *cprman = clock->cprman; 1007 const struct bcm2835_clock_data *data = clock->data; 1008 u32 div; 1009 1010 if (data->int_bits == 0 && data->frac_bits == 0) 1011 return parent_rate; 1012 1013 div = cprman_read(cprman, data->div_reg); 1014 1015 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); 1016 } 1017 1018 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) 1019 { 1020 struct bcm2835_cprman *cprman = clock->cprman; 1021 const struct bcm2835_clock_data *data = clock->data; 1022 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 1023 1024 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { 1025 if (ktime_after(ktime_get(), timeout)) { 1026 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 1027 clk_hw_get_name(&clock->hw)); 1028 return; 1029 } 1030 cpu_relax(); 1031 } 1032 } 1033 1034 static void bcm2835_clock_off(struct clk_hw *hw) 1035 { 1036 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1037 struct bcm2835_cprman *cprman = clock->cprman; 1038 const struct bcm2835_clock_data *data = clock->data; 1039 1040 spin_lock(&cprman->regs_lock); 1041 cprman_write(cprman, data->ctl_reg, 1042 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); 1043 spin_unlock(&cprman->regs_lock); 1044 1045 /* BUSY will remain high until the divider completes its cycle. */ 1046 bcm2835_clock_wait_busy(clock); 1047 } 1048 1049 static int bcm2835_clock_on(struct clk_hw *hw) 1050 { 1051 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1052 struct bcm2835_cprman *cprman = clock->cprman; 1053 const struct bcm2835_clock_data *data = clock->data; 1054 1055 spin_lock(&cprman->regs_lock); 1056 cprman_write(cprman, data->ctl_reg, 1057 cprman_read(cprman, data->ctl_reg) | 1058 CM_ENABLE | 1059 CM_GATE); 1060 spin_unlock(&cprman->regs_lock); 1061 1062 /* Debug code to measure the clock once it's turned on to see 1063 * if it's ticking at the rate we expect. 1064 */ 1065 if (data->tcnt_mux && false) { 1066 dev_info(cprman->dev, 1067 "clk %s: rate %ld, measure %ld\n", 1068 data->name, 1069 clk_hw_get_rate(hw), 1070 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux)); 1071 } 1072 1073 return 0; 1074 } 1075 1076 static int bcm2835_clock_set_rate(struct clk_hw *hw, 1077 unsigned long rate, unsigned long parent_rate) 1078 { 1079 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1080 struct bcm2835_cprman *cprman = clock->cprman; 1081 const struct bcm2835_clock_data *data = clock->data; 1082 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false); 1083 u32 ctl; 1084 1085 spin_lock(&cprman->regs_lock); 1086 1087 /* 1088 * Setting up frac support 1089 * 1090 * In principle it is recommended to stop/start the clock first, 1091 * but as we set CLK_SET_RATE_GATE during registration of the 1092 * clock this requirement should be take care of by the 1093 * clk-framework. 1094 */ 1095 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC; 1096 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0; 1097 cprman_write(cprman, data->ctl_reg, ctl); 1098 1099 cprman_write(cprman, data->div_reg, div); 1100 1101 spin_unlock(&cprman->regs_lock); 1102 1103 return 0; 1104 } 1105 1106 static bool 1107 bcm2835_clk_is_pllc(struct clk_hw *hw) 1108 { 1109 if (!hw) 1110 return false; 1111 1112 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0; 1113 } 1114 1115 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw, 1116 int parent_idx, 1117 unsigned long rate, 1118 u32 *div, 1119 unsigned long *prate, 1120 unsigned long *avgrate) 1121 { 1122 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1123 struct bcm2835_cprman *cprman = clock->cprman; 1124 const struct bcm2835_clock_data *data = clock->data; 1125 unsigned long best_rate = 0; 1126 u32 curdiv, mindiv, maxdiv; 1127 struct clk_hw *parent; 1128 1129 parent = clk_hw_get_parent_by_index(hw, parent_idx); 1130 1131 if (!(BIT(parent_idx) & data->set_rate_parent)) { 1132 *prate = clk_hw_get_rate(parent); 1133 *div = bcm2835_clock_choose_div(hw, rate, *prate, true); 1134 1135 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div); 1136 1137 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) { 1138 unsigned long high, low; 1139 u32 int_div = *div & ~CM_DIV_FRAC_MASK; 1140 1141 high = bcm2835_clock_rate_from_divisor(clock, *prate, 1142 int_div); 1143 int_div += CM_DIV_FRAC_MASK + 1; 1144 low = bcm2835_clock_rate_from_divisor(clock, *prate, 1145 int_div); 1146 1147 /* 1148 * Return a value which is the maximum deviation 1149 * below the ideal rate, for use as a metric. 1150 */ 1151 return *avgrate - max(*avgrate - low, high - *avgrate); 1152 } 1153 return *avgrate; 1154 } 1155 1156 if (data->frac_bits) 1157 dev_warn(cprman->dev, 1158 "frac bits are not used when propagating rate change"); 1159 1160 /* clamp to min divider of 2 if we're dealing with a mash clock */ 1161 mindiv = data->is_mash_clock ? 2 : 1; 1162 maxdiv = BIT(data->int_bits) - 1; 1163 1164 /* TODO: Be smart, and only test a subset of the available divisors. */ 1165 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) { 1166 unsigned long tmp_rate; 1167 1168 tmp_rate = clk_hw_round_rate(parent, rate * curdiv); 1169 tmp_rate /= curdiv; 1170 if (curdiv == mindiv || 1171 (tmp_rate > best_rate && tmp_rate <= rate)) 1172 best_rate = tmp_rate; 1173 1174 if (best_rate == rate) 1175 break; 1176 } 1177 1178 *div = curdiv << CM_DIV_FRAC_BITS; 1179 *prate = curdiv * best_rate; 1180 *avgrate = best_rate; 1181 1182 return best_rate; 1183 } 1184 1185 static int bcm2835_clock_determine_rate(struct clk_hw *hw, 1186 struct clk_rate_request *req) 1187 { 1188 struct clk_hw *parent, *best_parent = NULL; 1189 bool current_parent_is_pllc; 1190 unsigned long rate, best_rate = 0; 1191 unsigned long prate, best_prate = 0; 1192 unsigned long avgrate, best_avgrate = 0; 1193 size_t i; 1194 u32 div; 1195 1196 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw)); 1197 1198 /* 1199 * Select parent clock that results in the closest but lower rate 1200 */ 1201 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) { 1202 parent = clk_hw_get_parent_by_index(hw, i); 1203 if (!parent) 1204 continue; 1205 1206 /* 1207 * Don't choose a PLLC-derived clock as our parent 1208 * unless it had been manually set that way. PLLC's 1209 * frequency gets adjusted by the firmware due to 1210 * over-temp or under-voltage conditions, without 1211 * prior notification to our clock consumer. 1212 */ 1213 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc) 1214 continue; 1215 1216 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate, 1217 &div, &prate, 1218 &avgrate); 1219 if (rate > best_rate && rate <= req->rate) { 1220 best_parent = parent; 1221 best_prate = prate; 1222 best_rate = rate; 1223 best_avgrate = avgrate; 1224 } 1225 } 1226 1227 if (!best_parent) 1228 return -EINVAL; 1229 1230 req->best_parent_hw = best_parent; 1231 req->best_parent_rate = best_prate; 1232 1233 req->rate = best_avgrate; 1234 1235 return 0; 1236 } 1237 1238 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index) 1239 { 1240 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1241 struct bcm2835_cprman *cprman = clock->cprman; 1242 const struct bcm2835_clock_data *data = clock->data; 1243 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK; 1244 1245 cprman_write(cprman, data->ctl_reg, src); 1246 return 0; 1247 } 1248 1249 static u8 bcm2835_clock_get_parent(struct clk_hw *hw) 1250 { 1251 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1252 struct bcm2835_cprman *cprman = clock->cprman; 1253 const struct bcm2835_clock_data *data = clock->data; 1254 u32 src = cprman_read(cprman, data->ctl_reg); 1255 1256 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT; 1257 } 1258 1259 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = { 1260 { 1261 .name = "ctl", 1262 .offset = 0, 1263 }, 1264 { 1265 .name = "div", 1266 .offset = 4, 1267 }, 1268 }; 1269 1270 static void bcm2835_clock_debug_init(struct clk_hw *hw, 1271 struct dentry *dentry) 1272 { 1273 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1274 struct bcm2835_cprman *cprman = clock->cprman; 1275 const struct bcm2835_clock_data *data = clock->data; 1276 1277 bcm2835_debugfs_regset(cprman, data->ctl_reg, 1278 bcm2835_debugfs_clock_reg32, 1279 ARRAY_SIZE(bcm2835_debugfs_clock_reg32), 1280 dentry); 1281 } 1282 1283 static const struct clk_ops bcm2835_clock_clk_ops = { 1284 .is_prepared = bcm2835_clock_is_on, 1285 .prepare = bcm2835_clock_on, 1286 .unprepare = bcm2835_clock_off, 1287 .recalc_rate = bcm2835_clock_get_rate, 1288 .set_rate = bcm2835_clock_set_rate, 1289 .determine_rate = bcm2835_clock_determine_rate, 1290 .set_parent = bcm2835_clock_set_parent, 1291 .get_parent = bcm2835_clock_get_parent, 1292 .debug_init = bcm2835_clock_debug_init, 1293 }; 1294 1295 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) 1296 { 1297 return true; 1298 } 1299 1300 /* 1301 * The VPU clock can never be disabled (it doesn't have an ENABLE 1302 * bit), so it gets its own set of clock ops. 1303 */ 1304 static const struct clk_ops bcm2835_vpu_clock_clk_ops = { 1305 .is_prepared = bcm2835_vpu_clock_is_on, 1306 .recalc_rate = bcm2835_clock_get_rate, 1307 .set_rate = bcm2835_clock_set_rate, 1308 .determine_rate = bcm2835_clock_determine_rate, 1309 .set_parent = bcm2835_clock_set_parent, 1310 .get_parent = bcm2835_clock_get_parent, 1311 .debug_init = bcm2835_clock_debug_init, 1312 }; 1313 1314 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman, 1315 const void *data) 1316 { 1317 const struct bcm2835_pll_data *pll_data = data; 1318 struct bcm2835_pll *pll; 1319 struct clk_init_data init; 1320 int ret; 1321 1322 memset(&init, 0, sizeof(init)); 1323 1324 /* All of the PLLs derive from the external oscillator. */ 1325 init.parent_names = &cprman->real_parent_names[0]; 1326 init.num_parents = 1; 1327 init.name = pll_data->name; 1328 init.ops = &bcm2835_pll_clk_ops; 1329 init.flags = pll_data->flags | CLK_IGNORE_UNUSED; 1330 1331 pll = kzalloc(sizeof(*pll), GFP_KERNEL); 1332 if (!pll) 1333 return NULL; 1334 1335 pll->cprman = cprman; 1336 pll->data = pll_data; 1337 pll->hw.init = &init; 1338 1339 ret = devm_clk_hw_register(cprman->dev, &pll->hw); 1340 if (ret) { 1341 kfree(pll); 1342 return NULL; 1343 } 1344 return &pll->hw; 1345 } 1346 1347 static struct clk_hw * 1348 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, 1349 const void *data) 1350 { 1351 const struct bcm2835_pll_divider_data *divider_data = data; 1352 struct bcm2835_pll_divider *divider; 1353 struct clk_init_data init; 1354 const char *divider_name; 1355 int ret; 1356 1357 if (divider_data->fixed_divider != 1) { 1358 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, 1359 "%s_prediv", divider_data->name); 1360 if (!divider_name) 1361 return NULL; 1362 } else { 1363 divider_name = divider_data->name; 1364 } 1365 1366 memset(&init, 0, sizeof(init)); 1367 1368 init.parent_names = ÷r_data->source_pll; 1369 init.num_parents = 1; 1370 init.name = divider_name; 1371 init.ops = &bcm2835_pll_divider_clk_ops; 1372 init.flags = divider_data->flags | CLK_IGNORE_UNUSED; 1373 1374 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); 1375 if (!divider) 1376 return NULL; 1377 1378 divider->div.reg = cprman->regs + divider_data->a2w_reg; 1379 divider->div.shift = A2W_PLL_DIV_SHIFT; 1380 divider->div.width = A2W_PLL_DIV_BITS; 1381 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO; 1382 divider->div.lock = &cprman->regs_lock; 1383 divider->div.hw.init = &init; 1384 divider->div.table = NULL; 1385 1386 divider->cprman = cprman; 1387 divider->data = divider_data; 1388 1389 ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw); 1390 if (ret) 1391 return ERR_PTR(ret); 1392 1393 /* 1394 * PLLH's channels have a fixed divide by 10 afterwards, which 1395 * is what our consumers are actually using. 1396 */ 1397 if (divider_data->fixed_divider != 1) { 1398 return clk_hw_register_fixed_factor(cprman->dev, 1399 divider_data->name, 1400 divider_name, 1401 CLK_SET_RATE_PARENT, 1402 1, 1403 divider_data->fixed_divider); 1404 } 1405 1406 return ÷r->div.hw; 1407 } 1408 1409 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman, 1410 const void *data) 1411 { 1412 const struct bcm2835_clock_data *clock_data = data; 1413 struct bcm2835_clock *clock; 1414 struct clk_init_data init; 1415 const char *parents[1 << CM_SRC_BITS]; 1416 size_t i; 1417 int ret; 1418 1419 /* 1420 * Replace our strings referencing parent clocks with the 1421 * actual clock-output-name of the parent. 1422 */ 1423 for (i = 0; i < clock_data->num_mux_parents; i++) { 1424 parents[i] = clock_data->parents[i]; 1425 1426 ret = match_string(cprman_parent_names, 1427 ARRAY_SIZE(cprman_parent_names), 1428 parents[i]); 1429 if (ret >= 0) 1430 parents[i] = cprman->real_parent_names[ret]; 1431 } 1432 1433 memset(&init, 0, sizeof(init)); 1434 init.parent_names = parents; 1435 init.num_parents = clock_data->num_mux_parents; 1436 init.name = clock_data->name; 1437 init.flags = clock_data->flags | CLK_IGNORE_UNUSED; 1438 1439 /* 1440 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate 1441 * rate changes on at least of the parents. 1442 */ 1443 if (clock_data->set_rate_parent) 1444 init.flags |= CLK_SET_RATE_PARENT; 1445 1446 if (clock_data->is_vpu_clock) { 1447 init.ops = &bcm2835_vpu_clock_clk_ops; 1448 } else { 1449 init.ops = &bcm2835_clock_clk_ops; 1450 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; 1451 1452 /* If the clock wasn't actually enabled at boot, it's not 1453 * critical. 1454 */ 1455 if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE)) 1456 init.flags &= ~CLK_IS_CRITICAL; 1457 } 1458 1459 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); 1460 if (!clock) 1461 return NULL; 1462 1463 clock->cprman = cprman; 1464 clock->data = clock_data; 1465 clock->hw.init = &init; 1466 1467 ret = devm_clk_hw_register(cprman->dev, &clock->hw); 1468 if (ret) 1469 return ERR_PTR(ret); 1470 return &clock->hw; 1471 } 1472 1473 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman, 1474 const void *data) 1475 { 1476 const struct bcm2835_gate_data *gate_data = data; 1477 1478 return clk_hw_register_gate(cprman->dev, gate_data->name, 1479 gate_data->parent, 1480 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, 1481 cprman->regs + gate_data->ctl_reg, 1482 CM_GATE_BIT, 0, &cprman->regs_lock); 1483 } 1484 1485 struct bcm2835_clk_desc { 1486 struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman, 1487 const void *data); 1488 unsigned int supported; 1489 const void *data; 1490 }; 1491 1492 /* assignment helper macros for different clock types */ 1493 #define _REGISTER(f, s, ...) { .clk_register = f, \ 1494 .supported = s, \ 1495 .data = __VA_ARGS__ } 1496 #define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \ 1497 s, \ 1498 &(struct bcm2835_pll_data) \ 1499 {__VA_ARGS__}) 1500 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \ 1501 s, \ 1502 &(struct bcm2835_pll_divider_data) \ 1503 {__VA_ARGS__}) 1504 #define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \ 1505 s, \ 1506 &(struct bcm2835_clock_data) \ 1507 {__VA_ARGS__}) 1508 #define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \ 1509 s, \ 1510 &(struct bcm2835_gate_data) \ 1511 {__VA_ARGS__}) 1512 1513 /* parent mux arrays plus helper macros */ 1514 1515 /* main oscillator parent mux */ 1516 static const char *const bcm2835_clock_osc_parents[] = { 1517 "gnd", 1518 "xosc", 1519 "testdebug0", 1520 "testdebug1" 1521 }; 1522 1523 #define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \ 1524 s, \ 1525 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \ 1526 .parents = bcm2835_clock_osc_parents, \ 1527 __VA_ARGS__) 1528 1529 /* main peripherial parent mux */ 1530 static const char *const bcm2835_clock_per_parents[] = { 1531 "gnd", 1532 "xosc", 1533 "testdebug0", 1534 "testdebug1", 1535 "plla_per", 1536 "pllc_per", 1537 "plld_per", 1538 "pllh_aux", 1539 }; 1540 1541 #define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \ 1542 s, \ 1543 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \ 1544 .parents = bcm2835_clock_per_parents, \ 1545 __VA_ARGS__) 1546 1547 /* 1548 * Restrict clock sources for the PCM peripheral to the oscillator and 1549 * PLLD_PER because other source may have varying rates or be switched 1550 * off. 1551 * 1552 * Prevent other sources from being selected by replacing their names in 1553 * the list of potential parents with dummy entries (entry index is 1554 * significant). 1555 */ 1556 static const char *const bcm2835_pcm_per_parents[] = { 1557 "-", 1558 "xosc", 1559 "-", 1560 "-", 1561 "-", 1562 "-", 1563 "plld_per", 1564 "-", 1565 }; 1566 1567 #define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \ 1568 s, \ 1569 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \ 1570 .parents = bcm2835_pcm_per_parents, \ 1571 __VA_ARGS__) 1572 1573 /* main vpu parent mux */ 1574 static const char *const bcm2835_clock_vpu_parents[] = { 1575 "gnd", 1576 "xosc", 1577 "testdebug0", 1578 "testdebug1", 1579 "plla_core", 1580 "pllc_core0", 1581 "plld_core", 1582 "pllh_aux", 1583 "pllc_core1", 1584 "pllc_core2", 1585 }; 1586 1587 #define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \ 1588 s, \ 1589 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \ 1590 .parents = bcm2835_clock_vpu_parents, \ 1591 __VA_ARGS__) 1592 1593 /* 1594 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI 1595 * analog PHY. The _inv variants are generated internally to cprman, 1596 * but we don't use them so they aren't hooked up. 1597 */ 1598 static const char *const bcm2835_clock_dsi0_parents[] = { 1599 "gnd", 1600 "xosc", 1601 "testdebug0", 1602 "testdebug1", 1603 "dsi0_ddr", 1604 "dsi0_ddr_inv", 1605 "dsi0_ddr2", 1606 "dsi0_ddr2_inv", 1607 "dsi0_byte", 1608 "dsi0_byte_inv", 1609 }; 1610 1611 static const char *const bcm2835_clock_dsi1_parents[] = { 1612 "gnd", 1613 "xosc", 1614 "testdebug0", 1615 "testdebug1", 1616 "dsi1_ddr", 1617 "dsi1_ddr_inv", 1618 "dsi1_ddr2", 1619 "dsi1_ddr2_inv", 1620 "dsi1_byte", 1621 "dsi1_byte_inv", 1622 }; 1623 1624 #define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \ 1625 s, \ 1626 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \ 1627 .parents = bcm2835_clock_dsi0_parents, \ 1628 __VA_ARGS__) 1629 1630 #define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \ 1631 s, \ 1632 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \ 1633 .parents = bcm2835_clock_dsi1_parents, \ 1634 __VA_ARGS__) 1635 1636 /* 1637 * the real definition of all the pll, pll_dividers and clocks 1638 * these make use of the above REGISTER_* macros 1639 */ 1640 static const struct bcm2835_clk_desc clk_desc_array[] = { 1641 /* the PLL + PLL dividers */ 1642 1643 /* 1644 * PLLA is the auxiliary PLL, used to drive the CCP2 1645 * (Compact Camera Port 2) transmitter clock. 1646 * 1647 * It is in the PX LDO power domain, which is on when the 1648 * AUDIO domain is on. 1649 */ 1650 [BCM2835_PLLA] = REGISTER_PLL( 1651 SOC_ALL, 1652 .name = "plla", 1653 .cm_ctrl_reg = CM_PLLA, 1654 .a2w_ctrl_reg = A2W_PLLA_CTRL, 1655 .frac_reg = A2W_PLLA_FRAC, 1656 .ana_reg_base = A2W_PLLA_ANA0, 1657 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, 1658 .lock_mask = CM_LOCK_FLOCKA, 1659 1660 .ana = &bcm2835_ana_default, 1661 1662 .min_rate = 600000000u, 1663 .max_rate = 2400000000u, 1664 .max_fb_rate = BCM2835_MAX_FB_RATE), 1665 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV( 1666 SOC_ALL, 1667 .name = "plla_core", 1668 .source_pll = "plla", 1669 .cm_reg = CM_PLLA, 1670 .a2w_reg = A2W_PLLA_CORE, 1671 .load_mask = CM_PLLA_LOADCORE, 1672 .hold_mask = CM_PLLA_HOLDCORE, 1673 .fixed_divider = 1, 1674 .flags = CLK_SET_RATE_PARENT), 1675 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV( 1676 SOC_ALL, 1677 .name = "plla_per", 1678 .source_pll = "plla", 1679 .cm_reg = CM_PLLA, 1680 .a2w_reg = A2W_PLLA_PER, 1681 .load_mask = CM_PLLA_LOADPER, 1682 .hold_mask = CM_PLLA_HOLDPER, 1683 .fixed_divider = 1, 1684 .flags = CLK_SET_RATE_PARENT), 1685 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV( 1686 SOC_ALL, 1687 .name = "plla_dsi0", 1688 .source_pll = "plla", 1689 .cm_reg = CM_PLLA, 1690 .a2w_reg = A2W_PLLA_DSI0, 1691 .load_mask = CM_PLLA_LOADDSI0, 1692 .hold_mask = CM_PLLA_HOLDDSI0, 1693 .fixed_divider = 1), 1694 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV( 1695 SOC_ALL, 1696 .name = "plla_ccp2", 1697 .source_pll = "plla", 1698 .cm_reg = CM_PLLA, 1699 .a2w_reg = A2W_PLLA_CCP2, 1700 .load_mask = CM_PLLA_LOADCCP2, 1701 .hold_mask = CM_PLLA_HOLDCCP2, 1702 .fixed_divider = 1, 1703 .flags = CLK_SET_RATE_PARENT), 1704 1705 /* PLLB is used for the ARM's clock. */ 1706 [BCM2835_PLLB] = REGISTER_PLL( 1707 SOC_ALL, 1708 .name = "pllb", 1709 .cm_ctrl_reg = CM_PLLB, 1710 .a2w_ctrl_reg = A2W_PLLB_CTRL, 1711 .frac_reg = A2W_PLLB_FRAC, 1712 .ana_reg_base = A2W_PLLB_ANA0, 1713 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE, 1714 .lock_mask = CM_LOCK_FLOCKB, 1715 1716 .ana = &bcm2835_ana_default, 1717 1718 .min_rate = 600000000u, 1719 .max_rate = 3000000000u, 1720 .max_fb_rate = BCM2835_MAX_FB_RATE, 1721 .flags = CLK_GET_RATE_NOCACHE), 1722 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV( 1723 SOC_ALL, 1724 .name = "pllb_arm", 1725 .source_pll = "pllb", 1726 .cm_reg = CM_PLLB, 1727 .a2w_reg = A2W_PLLB_ARM, 1728 .load_mask = CM_PLLB_LOADARM, 1729 .hold_mask = CM_PLLB_HOLDARM, 1730 .fixed_divider = 1, 1731 .flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE), 1732 1733 /* 1734 * PLLC is the core PLL, used to drive the core VPU clock. 1735 * 1736 * It is in the PX LDO power domain, which is on when the 1737 * AUDIO domain is on. 1738 */ 1739 [BCM2835_PLLC] = REGISTER_PLL( 1740 SOC_ALL, 1741 .name = "pllc", 1742 .cm_ctrl_reg = CM_PLLC, 1743 .a2w_ctrl_reg = A2W_PLLC_CTRL, 1744 .frac_reg = A2W_PLLC_FRAC, 1745 .ana_reg_base = A2W_PLLC_ANA0, 1746 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1747 .lock_mask = CM_LOCK_FLOCKC, 1748 1749 .ana = &bcm2835_ana_default, 1750 1751 .min_rate = 600000000u, 1752 .max_rate = 3000000000u, 1753 .max_fb_rate = BCM2835_MAX_FB_RATE), 1754 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV( 1755 SOC_ALL, 1756 .name = "pllc_core0", 1757 .source_pll = "pllc", 1758 .cm_reg = CM_PLLC, 1759 .a2w_reg = A2W_PLLC_CORE0, 1760 .load_mask = CM_PLLC_LOADCORE0, 1761 .hold_mask = CM_PLLC_HOLDCORE0, 1762 .fixed_divider = 1, 1763 .flags = CLK_SET_RATE_PARENT), 1764 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV( 1765 SOC_ALL, 1766 .name = "pllc_core1", 1767 .source_pll = "pllc", 1768 .cm_reg = CM_PLLC, 1769 .a2w_reg = A2W_PLLC_CORE1, 1770 .load_mask = CM_PLLC_LOADCORE1, 1771 .hold_mask = CM_PLLC_HOLDCORE1, 1772 .fixed_divider = 1, 1773 .flags = CLK_SET_RATE_PARENT), 1774 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV( 1775 SOC_ALL, 1776 .name = "pllc_core2", 1777 .source_pll = "pllc", 1778 .cm_reg = CM_PLLC, 1779 .a2w_reg = A2W_PLLC_CORE2, 1780 .load_mask = CM_PLLC_LOADCORE2, 1781 .hold_mask = CM_PLLC_HOLDCORE2, 1782 .fixed_divider = 1, 1783 .flags = CLK_SET_RATE_PARENT), 1784 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV( 1785 SOC_ALL, 1786 .name = "pllc_per", 1787 .source_pll = "pllc", 1788 .cm_reg = CM_PLLC, 1789 .a2w_reg = A2W_PLLC_PER, 1790 .load_mask = CM_PLLC_LOADPER, 1791 .hold_mask = CM_PLLC_HOLDPER, 1792 .fixed_divider = 1, 1793 .flags = CLK_SET_RATE_PARENT), 1794 1795 /* 1796 * PLLD is the display PLL, used to drive DSI display panels. 1797 * 1798 * It is in the PX LDO power domain, which is on when the 1799 * AUDIO domain is on. 1800 */ 1801 [BCM2835_PLLD] = REGISTER_PLL( 1802 SOC_ALL, 1803 .name = "plld", 1804 .cm_ctrl_reg = CM_PLLD, 1805 .a2w_ctrl_reg = A2W_PLLD_CTRL, 1806 .frac_reg = A2W_PLLD_FRAC, 1807 .ana_reg_base = A2W_PLLD_ANA0, 1808 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, 1809 .lock_mask = CM_LOCK_FLOCKD, 1810 1811 .ana = &bcm2835_ana_default, 1812 1813 .min_rate = 600000000u, 1814 .max_rate = 2400000000u, 1815 .max_fb_rate = BCM2835_MAX_FB_RATE), 1816 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV( 1817 SOC_ALL, 1818 .name = "plld_core", 1819 .source_pll = "plld", 1820 .cm_reg = CM_PLLD, 1821 .a2w_reg = A2W_PLLD_CORE, 1822 .load_mask = CM_PLLD_LOADCORE, 1823 .hold_mask = CM_PLLD_HOLDCORE, 1824 .fixed_divider = 1, 1825 .flags = CLK_SET_RATE_PARENT), 1826 /* 1827 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core. 1828 * Otherwise this could cause firmware lookups. That's why we mark 1829 * it as critical. 1830 */ 1831 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV( 1832 SOC_ALL, 1833 .name = "plld_per", 1834 .source_pll = "plld", 1835 .cm_reg = CM_PLLD, 1836 .a2w_reg = A2W_PLLD_PER, 1837 .load_mask = CM_PLLD_LOADPER, 1838 .hold_mask = CM_PLLD_HOLDPER, 1839 .fixed_divider = 1, 1840 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT), 1841 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV( 1842 SOC_ALL, 1843 .name = "plld_dsi0", 1844 .source_pll = "plld", 1845 .cm_reg = CM_PLLD, 1846 .a2w_reg = A2W_PLLD_DSI0, 1847 .load_mask = CM_PLLD_LOADDSI0, 1848 .hold_mask = CM_PLLD_HOLDDSI0, 1849 .fixed_divider = 1), 1850 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV( 1851 SOC_ALL, 1852 .name = "plld_dsi1", 1853 .source_pll = "plld", 1854 .cm_reg = CM_PLLD, 1855 .a2w_reg = A2W_PLLD_DSI1, 1856 .load_mask = CM_PLLD_LOADDSI1, 1857 .hold_mask = CM_PLLD_HOLDDSI1, 1858 .fixed_divider = 1), 1859 1860 /* 1861 * PLLH is used to supply the pixel clock or the AUX clock for the 1862 * TV encoder. 1863 * 1864 * It is in the HDMI power domain. 1865 */ 1866 [BCM2835_PLLH] = REGISTER_PLL( 1867 SOC_BCM2835, 1868 "pllh", 1869 .cm_ctrl_reg = CM_PLLH, 1870 .a2w_ctrl_reg = A2W_PLLH_CTRL, 1871 .frac_reg = A2W_PLLH_FRAC, 1872 .ana_reg_base = A2W_PLLH_ANA0, 1873 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1874 .lock_mask = CM_LOCK_FLOCKH, 1875 1876 .ana = &bcm2835_ana_pllh, 1877 1878 .min_rate = 600000000u, 1879 .max_rate = 3000000000u, 1880 .max_fb_rate = BCM2835_MAX_FB_RATE), 1881 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV( 1882 SOC_BCM2835, 1883 .name = "pllh_rcal", 1884 .source_pll = "pllh", 1885 .cm_reg = CM_PLLH, 1886 .a2w_reg = A2W_PLLH_RCAL, 1887 .load_mask = CM_PLLH_LOADRCAL, 1888 .hold_mask = 0, 1889 .fixed_divider = 10, 1890 .flags = CLK_SET_RATE_PARENT), 1891 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV( 1892 SOC_BCM2835, 1893 .name = "pllh_aux", 1894 .source_pll = "pllh", 1895 .cm_reg = CM_PLLH, 1896 .a2w_reg = A2W_PLLH_AUX, 1897 .load_mask = CM_PLLH_LOADAUX, 1898 .hold_mask = 0, 1899 .fixed_divider = 1, 1900 .flags = CLK_SET_RATE_PARENT), 1901 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV( 1902 SOC_BCM2835, 1903 .name = "pllh_pix", 1904 .source_pll = "pllh", 1905 .cm_reg = CM_PLLH, 1906 .a2w_reg = A2W_PLLH_PIX, 1907 .load_mask = CM_PLLH_LOADPIX, 1908 .hold_mask = 0, 1909 .fixed_divider = 10, 1910 .flags = CLK_SET_RATE_PARENT), 1911 1912 /* the clocks */ 1913 1914 /* clocks with oscillator parent mux */ 1915 1916 /* One Time Programmable Memory clock. Maximum 10Mhz. */ 1917 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK( 1918 SOC_ALL, 1919 .name = "otp", 1920 .ctl_reg = CM_OTPCTL, 1921 .div_reg = CM_OTPDIV, 1922 .int_bits = 4, 1923 .frac_bits = 0, 1924 .tcnt_mux = 6), 1925 /* 1926 * Used for a 1Mhz clock for the system clocksource, and also used 1927 * bythe watchdog timer and the camera pulse generator. 1928 */ 1929 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK( 1930 SOC_ALL, 1931 .name = "timer", 1932 .ctl_reg = CM_TIMERCTL, 1933 .div_reg = CM_TIMERDIV, 1934 .int_bits = 6, 1935 .frac_bits = 12), 1936 /* 1937 * Clock for the temperature sensor. 1938 * Generally run at 2Mhz, max 5Mhz. 1939 */ 1940 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK( 1941 SOC_ALL, 1942 .name = "tsens", 1943 .ctl_reg = CM_TSENSCTL, 1944 .div_reg = CM_TSENSDIV, 1945 .int_bits = 5, 1946 .frac_bits = 0), 1947 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK( 1948 SOC_ALL, 1949 .name = "tec", 1950 .ctl_reg = CM_TECCTL, 1951 .div_reg = CM_TECDIV, 1952 .int_bits = 6, 1953 .frac_bits = 0), 1954 1955 /* clocks with vpu parent mux */ 1956 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK( 1957 SOC_ALL, 1958 .name = "h264", 1959 .ctl_reg = CM_H264CTL, 1960 .div_reg = CM_H264DIV, 1961 .int_bits = 4, 1962 .frac_bits = 8, 1963 .tcnt_mux = 1), 1964 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK( 1965 SOC_ALL, 1966 .name = "isp", 1967 .ctl_reg = CM_ISPCTL, 1968 .div_reg = CM_ISPDIV, 1969 .int_bits = 4, 1970 .frac_bits = 8, 1971 .tcnt_mux = 2), 1972 1973 /* 1974 * Secondary SDRAM clock. Used for low-voltage modes when the PLL 1975 * in the SDRAM controller can't be used. 1976 */ 1977 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK( 1978 SOC_ALL, 1979 .name = "sdram", 1980 .ctl_reg = CM_SDCCTL, 1981 .div_reg = CM_SDCDIV, 1982 .int_bits = 6, 1983 .frac_bits = 0, 1984 .tcnt_mux = 3), 1985 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK( 1986 SOC_ALL, 1987 .name = "v3d", 1988 .ctl_reg = CM_V3DCTL, 1989 .div_reg = CM_V3DDIV, 1990 .int_bits = 4, 1991 .frac_bits = 8, 1992 .tcnt_mux = 4), 1993 /* 1994 * VPU clock. This doesn't have an enable bit, since it drives 1995 * the bus for everything else, and is special so it doesn't need 1996 * to be gated for rate changes. It is also known as "clk_audio" 1997 * in various hardware documentation. 1998 */ 1999 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK( 2000 SOC_ALL, 2001 .name = "vpu", 2002 .ctl_reg = CM_VPUCTL, 2003 .div_reg = CM_VPUDIV, 2004 .int_bits = 12, 2005 .frac_bits = 8, 2006 .flags = CLK_IS_CRITICAL, 2007 .is_vpu_clock = true, 2008 .tcnt_mux = 5), 2009 2010 /* clocks with per parent mux */ 2011 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK( 2012 SOC_ALL, 2013 .name = "aveo", 2014 .ctl_reg = CM_AVEOCTL, 2015 .div_reg = CM_AVEODIV, 2016 .int_bits = 4, 2017 .frac_bits = 0, 2018 .tcnt_mux = 38), 2019 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK( 2020 SOC_ALL, 2021 .name = "cam0", 2022 .ctl_reg = CM_CAM0CTL, 2023 .div_reg = CM_CAM0DIV, 2024 .int_bits = 4, 2025 .frac_bits = 8, 2026 .tcnt_mux = 14), 2027 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK( 2028 SOC_ALL, 2029 .name = "cam1", 2030 .ctl_reg = CM_CAM1CTL, 2031 .div_reg = CM_CAM1DIV, 2032 .int_bits = 4, 2033 .frac_bits = 8, 2034 .tcnt_mux = 15), 2035 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK( 2036 SOC_ALL, 2037 .name = "dft", 2038 .ctl_reg = CM_DFTCTL, 2039 .div_reg = CM_DFTDIV, 2040 .int_bits = 5, 2041 .frac_bits = 0), 2042 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK( 2043 SOC_ALL, 2044 .name = "dpi", 2045 .ctl_reg = CM_DPICTL, 2046 .div_reg = CM_DPIDIV, 2047 .int_bits = 4, 2048 .frac_bits = 8, 2049 .tcnt_mux = 17), 2050 2051 /* Arasan EMMC clock */ 2052 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK( 2053 SOC_ALL, 2054 .name = "emmc", 2055 .ctl_reg = CM_EMMCCTL, 2056 .div_reg = CM_EMMCDIV, 2057 .int_bits = 4, 2058 .frac_bits = 8, 2059 .tcnt_mux = 39), 2060 2061 /* EMMC2 clock (only available for BCM2711) */ 2062 [BCM2711_CLOCK_EMMC2] = REGISTER_PER_CLK( 2063 SOC_BCM2711, 2064 .name = "emmc2", 2065 .ctl_reg = CM_EMMC2CTL, 2066 .div_reg = CM_EMMC2DIV, 2067 .int_bits = 4, 2068 .frac_bits = 8, 2069 .tcnt_mux = 42), 2070 2071 /* General purpose (GPIO) clocks */ 2072 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK( 2073 SOC_ALL, 2074 .name = "gp0", 2075 .ctl_reg = CM_GP0CTL, 2076 .div_reg = CM_GP0DIV, 2077 .int_bits = 12, 2078 .frac_bits = 12, 2079 .is_mash_clock = true, 2080 .tcnt_mux = 20), 2081 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK( 2082 SOC_ALL, 2083 .name = "gp1", 2084 .ctl_reg = CM_GP1CTL, 2085 .div_reg = CM_GP1DIV, 2086 .int_bits = 12, 2087 .frac_bits = 12, 2088 .flags = CLK_IS_CRITICAL, 2089 .is_mash_clock = true, 2090 .tcnt_mux = 21), 2091 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK( 2092 SOC_ALL, 2093 .name = "gp2", 2094 .ctl_reg = CM_GP2CTL, 2095 .div_reg = CM_GP2DIV, 2096 .int_bits = 12, 2097 .frac_bits = 12, 2098 .flags = CLK_IS_CRITICAL), 2099 2100 /* HDMI state machine */ 2101 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK( 2102 SOC_ALL, 2103 .name = "hsm", 2104 .ctl_reg = CM_HSMCTL, 2105 .div_reg = CM_HSMDIV, 2106 .int_bits = 4, 2107 .frac_bits = 8, 2108 .tcnt_mux = 22), 2109 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK( 2110 SOC_ALL, 2111 .name = "pcm", 2112 .ctl_reg = CM_PCMCTL, 2113 .div_reg = CM_PCMDIV, 2114 .int_bits = 12, 2115 .frac_bits = 12, 2116 .is_mash_clock = true, 2117 .low_jitter = true, 2118 .tcnt_mux = 23), 2119 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK( 2120 SOC_ALL, 2121 .name = "pwm", 2122 .ctl_reg = CM_PWMCTL, 2123 .div_reg = CM_PWMDIV, 2124 .int_bits = 12, 2125 .frac_bits = 12, 2126 .is_mash_clock = true, 2127 .tcnt_mux = 24), 2128 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK( 2129 SOC_ALL, 2130 .name = "slim", 2131 .ctl_reg = CM_SLIMCTL, 2132 .div_reg = CM_SLIMDIV, 2133 .int_bits = 12, 2134 .frac_bits = 12, 2135 .is_mash_clock = true, 2136 .tcnt_mux = 25), 2137 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK( 2138 SOC_ALL, 2139 .name = "smi", 2140 .ctl_reg = CM_SMICTL, 2141 .div_reg = CM_SMIDIV, 2142 .int_bits = 4, 2143 .frac_bits = 8, 2144 .tcnt_mux = 27), 2145 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK( 2146 SOC_ALL, 2147 .name = "uart", 2148 .ctl_reg = CM_UARTCTL, 2149 .div_reg = CM_UARTDIV, 2150 .int_bits = 10, 2151 .frac_bits = 12, 2152 .tcnt_mux = 28), 2153 2154 /* TV encoder clock. Only operating frequency is 108Mhz. */ 2155 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK( 2156 SOC_ALL, 2157 .name = "vec", 2158 .ctl_reg = CM_VECCTL, 2159 .div_reg = CM_VECDIV, 2160 .int_bits = 4, 2161 .frac_bits = 0, 2162 /* 2163 * Allow rate change propagation only on PLLH_AUX which is 2164 * assigned index 7 in the parent array. 2165 */ 2166 .set_rate_parent = BIT(7), 2167 .tcnt_mux = 29), 2168 2169 /* dsi clocks */ 2170 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK( 2171 SOC_ALL, 2172 .name = "dsi0e", 2173 .ctl_reg = CM_DSI0ECTL, 2174 .div_reg = CM_DSI0EDIV, 2175 .int_bits = 4, 2176 .frac_bits = 8, 2177 .tcnt_mux = 18), 2178 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK( 2179 SOC_ALL, 2180 .name = "dsi1e", 2181 .ctl_reg = CM_DSI1ECTL, 2182 .div_reg = CM_DSI1EDIV, 2183 .int_bits = 4, 2184 .frac_bits = 8, 2185 .tcnt_mux = 19), 2186 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK( 2187 SOC_ALL, 2188 .name = "dsi0p", 2189 .ctl_reg = CM_DSI0PCTL, 2190 .div_reg = CM_DSI0PDIV, 2191 .int_bits = 0, 2192 .frac_bits = 0, 2193 .tcnt_mux = 12), 2194 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK( 2195 SOC_ALL, 2196 .name = "dsi1p", 2197 .ctl_reg = CM_DSI1PCTL, 2198 .div_reg = CM_DSI1PDIV, 2199 .int_bits = 0, 2200 .frac_bits = 0, 2201 .tcnt_mux = 13), 2202 2203 /* the gates */ 2204 2205 /* 2206 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if 2207 * you have the debug bit set in the power manager, which we 2208 * don't bother exposing) are individual gates off of the 2209 * non-stop vpu clock. 2210 */ 2211 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE( 2212 SOC_ALL, 2213 .name = "peri_image", 2214 .parent = "vpu", 2215 .ctl_reg = CM_PERIICTL), 2216 }; 2217 2218 /* 2219 * Permanently take a reference on the parent of the SDRAM clock. 2220 * 2221 * While the SDRAM is being driven by its dedicated PLL most of the 2222 * time, there is a little loop running in the firmware that 2223 * periodically switches the SDRAM to using our CM clock to do PVT 2224 * recalibration, with the assumption that the previously configured 2225 * SDRAM parent is still enabled and running. 2226 */ 2227 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc) 2228 { 2229 struct clk *parent = clk_get_parent(sdc); 2230 2231 if (IS_ERR(parent)) 2232 return PTR_ERR(parent); 2233 2234 return clk_prepare_enable(parent); 2235 } 2236 2237 static int bcm2835_clk_probe(struct platform_device *pdev) 2238 { 2239 struct device *dev = &pdev->dev; 2240 struct clk_hw **hws; 2241 struct bcm2835_cprman *cprman; 2242 const struct bcm2835_clk_desc *desc; 2243 const size_t asize = ARRAY_SIZE(clk_desc_array); 2244 const struct cprman_plat_data *pdata; 2245 size_t i; 2246 int ret; 2247 2248 pdata = of_device_get_match_data(&pdev->dev); 2249 if (!pdata) 2250 return -ENODEV; 2251 2252 cprman = devm_kzalloc(dev, 2253 struct_size(cprman, onecell.hws, asize), 2254 GFP_KERNEL); 2255 if (!cprman) 2256 return -ENOMEM; 2257 2258 spin_lock_init(&cprman->regs_lock); 2259 cprman->dev = dev; 2260 cprman->regs = devm_platform_ioremap_resource(pdev, 0); 2261 if (IS_ERR(cprman->regs)) 2262 return PTR_ERR(cprman->regs); 2263 2264 memcpy(cprman->real_parent_names, cprman_parent_names, 2265 sizeof(cprman_parent_names)); 2266 of_clk_parent_fill(dev->of_node, cprman->real_parent_names, 2267 ARRAY_SIZE(cprman_parent_names)); 2268 2269 /* 2270 * Make sure the external oscillator has been registered. 2271 * 2272 * The other (DSI) clocks are not present on older device 2273 * trees, which we still need to support for backwards 2274 * compatibility. 2275 */ 2276 if (!cprman->real_parent_names[0]) 2277 return -ENODEV; 2278 2279 platform_set_drvdata(pdev, cprman); 2280 2281 cprman->onecell.num = asize; 2282 cprman->soc = pdata->soc; 2283 hws = cprman->onecell.hws; 2284 2285 for (i = 0; i < asize; i++) { 2286 desc = &clk_desc_array[i]; 2287 if (desc->clk_register && desc->data && 2288 (desc->supported & pdata->soc)) { 2289 hws[i] = desc->clk_register(cprman, desc->data); 2290 } 2291 } 2292 2293 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk); 2294 if (ret) 2295 return ret; 2296 2297 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, 2298 &cprman->onecell); 2299 } 2300 2301 static const struct cprman_plat_data cprman_bcm2835_plat_data = { 2302 .soc = SOC_BCM2835, 2303 }; 2304 2305 static const struct cprman_plat_data cprman_bcm2711_plat_data = { 2306 .soc = SOC_BCM2711, 2307 }; 2308 2309 static const struct of_device_id bcm2835_clk_of_match[] = { 2310 { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data }, 2311 { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data }, 2312 {} 2313 }; 2314 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); 2315 2316 static struct platform_driver bcm2835_clk_driver = { 2317 .driver = { 2318 .name = "bcm2835-clk", 2319 .of_match_table = bcm2835_clk_of_match, 2320 }, 2321 .probe = bcm2835_clk_probe, 2322 }; 2323 2324 builtin_platform_driver(bcm2835_clk_driver); 2325 2326 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); 2327 MODULE_DESCRIPTION("BCM2835 clock driver"); 2328 MODULE_LICENSE("GPL"); 2329