xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision 711aab1d)
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36 
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/delay.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/platform_device.h>
46 #include <linux/slab.h>
47 #include <dt-bindings/clock/bcm2835.h>
48 
49 #define CM_PASSWORD		0x5a000000
50 
51 #define CM_GNRICCTL		0x000
52 #define CM_GNRICDIV		0x004
53 # define CM_DIV_FRAC_BITS	12
54 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55 
56 #define CM_VPUCTL		0x008
57 #define CM_VPUDIV		0x00c
58 #define CM_SYSCTL		0x010
59 #define CM_SYSDIV		0x014
60 #define CM_PERIACTL		0x018
61 #define CM_PERIADIV		0x01c
62 #define CM_PERIICTL		0x020
63 #define CM_PERIIDIV		0x024
64 #define CM_H264CTL		0x028
65 #define CM_H264DIV		0x02c
66 #define CM_ISPCTL		0x030
67 #define CM_ISPDIV		0x034
68 #define CM_V3DCTL		0x038
69 #define CM_V3DDIV		0x03c
70 #define CM_CAM0CTL		0x040
71 #define CM_CAM0DIV		0x044
72 #define CM_CAM1CTL		0x048
73 #define CM_CAM1DIV		0x04c
74 #define CM_CCP2CTL		0x050
75 #define CM_CCP2DIV		0x054
76 #define CM_DSI0ECTL		0x058
77 #define CM_DSI0EDIV		0x05c
78 #define CM_DSI0PCTL		0x060
79 #define CM_DSI0PDIV		0x064
80 #define CM_DPICTL		0x068
81 #define CM_DPIDIV		0x06c
82 #define CM_GP0CTL		0x070
83 #define CM_GP0DIV		0x074
84 #define CM_GP1CTL		0x078
85 #define CM_GP1DIV		0x07c
86 #define CM_GP2CTL		0x080
87 #define CM_GP2DIV		0x084
88 #define CM_HSMCTL		0x088
89 #define CM_HSMDIV		0x08c
90 #define CM_OTPCTL		0x090
91 #define CM_OTPDIV		0x094
92 #define CM_PCMCTL		0x098
93 #define CM_PCMDIV		0x09c
94 #define CM_PWMCTL		0x0a0
95 #define CM_PWMDIV		0x0a4
96 #define CM_SLIMCTL		0x0a8
97 #define CM_SLIMDIV		0x0ac
98 #define CM_SMICTL		0x0b0
99 #define CM_SMIDIV		0x0b4
100 /* no definition for 0x0b8  and 0x0bc */
101 #define CM_TCNTCTL		0x0c0
102 # define CM_TCNT_SRC1_SHIFT		12
103 #define CM_TCNTCNT		0x0c4
104 #define CM_TECCTL		0x0c8
105 #define CM_TECDIV		0x0cc
106 #define CM_TD0CTL		0x0d0
107 #define CM_TD0DIV		0x0d4
108 #define CM_TD1CTL		0x0d8
109 #define CM_TD1DIV		0x0dc
110 #define CM_TSENSCTL		0x0e0
111 #define CM_TSENSDIV		0x0e4
112 #define CM_TIMERCTL		0x0e8
113 #define CM_TIMERDIV		0x0ec
114 #define CM_UARTCTL		0x0f0
115 #define CM_UARTDIV		0x0f4
116 #define CM_VECCTL		0x0f8
117 #define CM_VECDIV		0x0fc
118 #define CM_PULSECTL		0x190
119 #define CM_PULSEDIV		0x194
120 #define CM_SDCCTL		0x1a8
121 #define CM_SDCDIV		0x1ac
122 #define CM_ARMCTL		0x1b0
123 #define CM_AVEOCTL		0x1b8
124 #define CM_AVEODIV		0x1bc
125 #define CM_EMMCCTL		0x1c0
126 #define CM_EMMCDIV		0x1c4
127 
128 /* General bits for the CM_*CTL regs */
129 # define CM_ENABLE			BIT(4)
130 # define CM_KILL			BIT(5)
131 # define CM_GATE_BIT			6
132 # define CM_GATE			BIT(CM_GATE_BIT)
133 # define CM_BUSY			BIT(7)
134 # define CM_BUSYD			BIT(8)
135 # define CM_FRAC			BIT(9)
136 # define CM_SRC_SHIFT			0
137 # define CM_SRC_BITS			4
138 # define CM_SRC_MASK			0xf
139 # define CM_SRC_GND			0
140 # define CM_SRC_OSC			1
141 # define CM_SRC_TESTDEBUG0		2
142 # define CM_SRC_TESTDEBUG1		3
143 # define CM_SRC_PLLA_CORE		4
144 # define CM_SRC_PLLA_PER		4
145 # define CM_SRC_PLLC_CORE0		5
146 # define CM_SRC_PLLC_PER		5
147 # define CM_SRC_PLLC_CORE1		8
148 # define CM_SRC_PLLD_CORE		6
149 # define CM_SRC_PLLD_PER		6
150 # define CM_SRC_PLLH_AUX		7
151 # define CM_SRC_PLLC_CORE1		8
152 # define CM_SRC_PLLC_CORE2		9
153 
154 #define CM_OSCCOUNT		0x100
155 
156 #define CM_PLLA			0x104
157 # define CM_PLL_ANARST			BIT(8)
158 # define CM_PLLA_HOLDPER		BIT(7)
159 # define CM_PLLA_LOADPER		BIT(6)
160 # define CM_PLLA_HOLDCORE		BIT(5)
161 # define CM_PLLA_LOADCORE		BIT(4)
162 # define CM_PLLA_HOLDCCP2		BIT(3)
163 # define CM_PLLA_LOADCCP2		BIT(2)
164 # define CM_PLLA_HOLDDSI0		BIT(1)
165 # define CM_PLLA_LOADDSI0		BIT(0)
166 
167 #define CM_PLLC			0x108
168 # define CM_PLLC_HOLDPER		BIT(7)
169 # define CM_PLLC_LOADPER		BIT(6)
170 # define CM_PLLC_HOLDCORE2		BIT(5)
171 # define CM_PLLC_LOADCORE2		BIT(4)
172 # define CM_PLLC_HOLDCORE1		BIT(3)
173 # define CM_PLLC_LOADCORE1		BIT(2)
174 # define CM_PLLC_HOLDCORE0		BIT(1)
175 # define CM_PLLC_LOADCORE0		BIT(0)
176 
177 #define CM_PLLD			0x10c
178 # define CM_PLLD_HOLDPER		BIT(7)
179 # define CM_PLLD_LOADPER		BIT(6)
180 # define CM_PLLD_HOLDCORE		BIT(5)
181 # define CM_PLLD_LOADCORE		BIT(4)
182 # define CM_PLLD_HOLDDSI1		BIT(3)
183 # define CM_PLLD_LOADDSI1		BIT(2)
184 # define CM_PLLD_HOLDDSI0		BIT(1)
185 # define CM_PLLD_LOADDSI0		BIT(0)
186 
187 #define CM_PLLH			0x110
188 # define CM_PLLH_LOADRCAL		BIT(2)
189 # define CM_PLLH_LOADAUX		BIT(1)
190 # define CM_PLLH_LOADPIX		BIT(0)
191 
192 #define CM_LOCK			0x114
193 # define CM_LOCK_FLOCKH			BIT(12)
194 # define CM_LOCK_FLOCKD			BIT(11)
195 # define CM_LOCK_FLOCKC			BIT(10)
196 # define CM_LOCK_FLOCKB			BIT(9)
197 # define CM_LOCK_FLOCKA			BIT(8)
198 
199 #define CM_EVENT		0x118
200 #define CM_DSI1ECTL		0x158
201 #define CM_DSI1EDIV		0x15c
202 #define CM_DSI1PCTL		0x160
203 #define CM_DSI1PDIV		0x164
204 #define CM_DFTCTL		0x168
205 #define CM_DFTDIV		0x16c
206 
207 #define CM_PLLB			0x170
208 # define CM_PLLB_HOLDARM		BIT(1)
209 # define CM_PLLB_LOADARM		BIT(0)
210 
211 #define A2W_PLLA_CTRL		0x1100
212 #define A2W_PLLC_CTRL		0x1120
213 #define A2W_PLLD_CTRL		0x1140
214 #define A2W_PLLH_CTRL		0x1160
215 #define A2W_PLLB_CTRL		0x11e0
216 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
217 # define A2W_PLL_CTRL_PWRDN		BIT(16)
218 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
219 # define A2W_PLL_CTRL_PDIV_SHIFT	12
220 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
221 # define A2W_PLL_CTRL_NDIV_SHIFT	0
222 
223 #define A2W_PLLA_ANA0		0x1010
224 #define A2W_PLLC_ANA0		0x1030
225 #define A2W_PLLD_ANA0		0x1050
226 #define A2W_PLLH_ANA0		0x1070
227 #define A2W_PLLB_ANA0		0x10f0
228 
229 #define A2W_PLL_KA_SHIFT	7
230 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
231 #define A2W_PLL_KI_SHIFT	19
232 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
233 #define A2W_PLL_KP_SHIFT	15
234 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
235 
236 #define A2W_PLLH_KA_SHIFT	19
237 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
238 #define A2W_PLLH_KI_LOW_SHIFT	22
239 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
240 #define A2W_PLLH_KI_HIGH_SHIFT	0
241 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
242 #define A2W_PLLH_KP_SHIFT	1
243 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
244 
245 #define A2W_XOSC_CTRL		0x1190
246 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
247 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
248 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
249 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
250 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
251 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
252 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
253 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
254 
255 #define A2W_PLLA_FRAC		0x1200
256 #define A2W_PLLC_FRAC		0x1220
257 #define A2W_PLLD_FRAC		0x1240
258 #define A2W_PLLH_FRAC		0x1260
259 #define A2W_PLLB_FRAC		0x12e0
260 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
261 # define A2W_PLL_FRAC_BITS		20
262 
263 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
264 #define A2W_PLL_DIV_BITS		8
265 #define A2W_PLL_DIV_SHIFT		0
266 
267 #define A2W_PLLA_DSI0		0x1300
268 #define A2W_PLLA_CORE		0x1400
269 #define A2W_PLLA_PER		0x1500
270 #define A2W_PLLA_CCP2		0x1600
271 
272 #define A2W_PLLC_CORE2		0x1320
273 #define A2W_PLLC_CORE1		0x1420
274 #define A2W_PLLC_PER		0x1520
275 #define A2W_PLLC_CORE0		0x1620
276 
277 #define A2W_PLLD_DSI0		0x1340
278 #define A2W_PLLD_CORE		0x1440
279 #define A2W_PLLD_PER		0x1540
280 #define A2W_PLLD_DSI1		0x1640
281 
282 #define A2W_PLLH_AUX		0x1360
283 #define A2W_PLLH_RCAL		0x1460
284 #define A2W_PLLH_PIX		0x1560
285 #define A2W_PLLH_STS		0x1660
286 
287 #define A2W_PLLH_CTRLR		0x1960
288 #define A2W_PLLH_FRACR		0x1a60
289 #define A2W_PLLH_AUXR		0x1b60
290 #define A2W_PLLH_RCALR		0x1c60
291 #define A2W_PLLH_PIXR		0x1d60
292 #define A2W_PLLH_STSR		0x1e60
293 
294 #define A2W_PLLB_ARM		0x13e0
295 #define A2W_PLLB_SP0		0x14e0
296 #define A2W_PLLB_SP1		0x15e0
297 #define A2W_PLLB_SP2		0x16e0
298 
299 #define LOCK_TIMEOUT_NS		100000000
300 #define BCM2835_MAX_FB_RATE	1750000000u
301 
302 /*
303  * Names of clocks used within the driver that need to be replaced
304  * with an external parent's name.  This array is in the order that
305  * the clocks node in the DT references external clocks.
306  */
307 static const char *const cprman_parent_names[] = {
308 	"xosc",
309 	"dsi0_byte",
310 	"dsi0_ddr2",
311 	"dsi0_ddr",
312 	"dsi1_byte",
313 	"dsi1_ddr2",
314 	"dsi1_ddr",
315 };
316 
317 struct bcm2835_cprman {
318 	struct device *dev;
319 	void __iomem *regs;
320 	spinlock_t regs_lock; /* spinlock for all clocks */
321 
322 	/*
323 	 * Real names of cprman clock parents looked up through
324 	 * of_clk_get_parent_name(), which will be used in the
325 	 * parent_names[] arrays for clock registration.
326 	 */
327 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
328 
329 	/* Must be last */
330 	struct clk_hw_onecell_data onecell;
331 };
332 
333 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334 {
335 	writel(CM_PASSWORD | val, cprman->regs + reg);
336 }
337 
338 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339 {
340 	return readl(cprman->regs + reg);
341 }
342 
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344  * source from many other clocks in the system.
345  */
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347 					      u32 tcnt_mux)
348 {
349 	u32 osccount = 19200; /* 1ms */
350 	u32 count;
351 	ktime_t timeout;
352 
353 	spin_lock(&cprman->regs_lock);
354 
355 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356 
357 	cprman_write(cprman, CM_TCNTCTL,
358 		     (tcnt_mux & CM_SRC_MASK) |
359 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360 
361 	cprman_write(cprman, CM_OSCCOUNT, osccount);
362 
363 	/* do a kind delay at the start */
364 	mdelay(1);
365 
366 	/* Finish off whatever is left of OSCCOUNT */
367 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368 	while (cprman_read(cprman, CM_OSCCOUNT)) {
369 		if (ktime_after(ktime_get(), timeout)) {
370 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371 			count = 0;
372 			goto out;
373 		}
374 		cpu_relax();
375 	}
376 
377 	/* Wait for BUSY to clear. */
378 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380 		if (ktime_after(ktime_get(), timeout)) {
381 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382 			count = 0;
383 			goto out;
384 		}
385 		cpu_relax();
386 	}
387 
388 	count = cprman_read(cprman, CM_TCNTCNT);
389 
390 	cprman_write(cprman, CM_TCNTCTL, 0);
391 
392 out:
393 	spin_unlock(&cprman->regs_lock);
394 
395 	return count * 1000;
396 }
397 
398 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399 				  struct debugfs_reg32 *regs, size_t nregs,
400 				  struct dentry *dentry)
401 {
402 	struct dentry *regdump;
403 	struct debugfs_regset32 *regset;
404 
405 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406 	if (!regset)
407 		return -ENOMEM;
408 
409 	regset->regs = regs;
410 	regset->nregs = nregs;
411 	regset->base = cprman->regs + base;
412 
413 	regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
414 					  regset);
415 
416 	return regdump ? 0 : -ENOMEM;
417 }
418 
419 /*
420  * These are fixed clocks. They're probably not all root clocks and it may
421  * be possible to turn them on and off but until this is mapped out better
422  * it's the only way they can be used.
423  */
424 void __init bcm2835_init_clocks(void)
425 {
426 	struct clk_hw *hw;
427 	int ret;
428 
429 	hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
430 	if (IS_ERR(hw))
431 		pr_err("apb_pclk not registered\n");
432 
433 	hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
434 	if (IS_ERR(hw))
435 		pr_err("uart0_pclk not registered\n");
436 	ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
437 	if (ret)
438 		pr_err("uart0_pclk alias not registered\n");
439 
440 	hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
441 	if (IS_ERR(hw))
442 		pr_err("uart1_pclk not registered\n");
443 	ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
444 	if (ret)
445 		pr_err("uart1_pclk alias not registered\n");
446 }
447 
448 struct bcm2835_pll_data {
449 	const char *name;
450 	u32 cm_ctrl_reg;
451 	u32 a2w_ctrl_reg;
452 	u32 frac_reg;
453 	u32 ana_reg_base;
454 	u32 reference_enable_mask;
455 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
456 	u32 lock_mask;
457 
458 	const struct bcm2835_pll_ana_bits *ana;
459 
460 	unsigned long min_rate;
461 	unsigned long max_rate;
462 	/*
463 	 * Highest rate for the VCO before we have to use the
464 	 * pre-divide-by-2.
465 	 */
466 	unsigned long max_fb_rate;
467 };
468 
469 struct bcm2835_pll_ana_bits {
470 	u32 mask0;
471 	u32 set0;
472 	u32 mask1;
473 	u32 set1;
474 	u32 mask3;
475 	u32 set3;
476 	u32 fb_prediv_mask;
477 };
478 
479 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
480 	.mask0 = 0,
481 	.set0 = 0,
482 	.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
483 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
484 	.mask3 = (u32)~A2W_PLL_KA_MASK,
485 	.set3 = (2 << A2W_PLL_KA_SHIFT),
486 	.fb_prediv_mask = BIT(14),
487 };
488 
489 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
490 	.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
491 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
492 	.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
493 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
494 	.mask3 = 0,
495 	.set3 = 0,
496 	.fb_prediv_mask = BIT(11),
497 };
498 
499 struct bcm2835_pll_divider_data {
500 	const char *name;
501 	const char *source_pll;
502 
503 	u32 cm_reg;
504 	u32 a2w_reg;
505 
506 	u32 load_mask;
507 	u32 hold_mask;
508 	u32 fixed_divider;
509 	u32 flags;
510 };
511 
512 struct bcm2835_clock_data {
513 	const char *name;
514 
515 	const char *const *parents;
516 	int num_mux_parents;
517 
518 	/* Bitmap encoding which parents accept rate change propagation. */
519 	unsigned int set_rate_parent;
520 
521 	u32 ctl_reg;
522 	u32 div_reg;
523 
524 	/* Number of integer bits in the divider */
525 	u32 int_bits;
526 	/* Number of fractional bits in the divider */
527 	u32 frac_bits;
528 
529 	u32 flags;
530 
531 	bool is_vpu_clock;
532 	bool is_mash_clock;
533 	bool low_jitter;
534 
535 	u32 tcnt_mux;
536 };
537 
538 struct bcm2835_gate_data {
539 	const char *name;
540 	const char *parent;
541 
542 	u32 ctl_reg;
543 };
544 
545 struct bcm2835_pll {
546 	struct clk_hw hw;
547 	struct bcm2835_cprman *cprman;
548 	const struct bcm2835_pll_data *data;
549 };
550 
551 static int bcm2835_pll_is_on(struct clk_hw *hw)
552 {
553 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
554 	struct bcm2835_cprman *cprman = pll->cprman;
555 	const struct bcm2835_pll_data *data = pll->data;
556 
557 	return cprman_read(cprman, data->a2w_ctrl_reg) &
558 		A2W_PLL_CTRL_PRST_DISABLE;
559 }
560 
561 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
562 					     unsigned long parent_rate,
563 					     u32 *ndiv, u32 *fdiv)
564 {
565 	u64 div;
566 
567 	div = (u64)rate << A2W_PLL_FRAC_BITS;
568 	do_div(div, parent_rate);
569 
570 	*ndiv = div >> A2W_PLL_FRAC_BITS;
571 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
572 }
573 
574 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
575 					   u32 ndiv, u32 fdiv, u32 pdiv)
576 {
577 	u64 rate;
578 
579 	if (pdiv == 0)
580 		return 0;
581 
582 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
583 	do_div(rate, pdiv);
584 	return rate >> A2W_PLL_FRAC_BITS;
585 }
586 
587 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
588 				   unsigned long *parent_rate)
589 {
590 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
591 	const struct bcm2835_pll_data *data = pll->data;
592 	u32 ndiv, fdiv;
593 
594 	rate = clamp(rate, data->min_rate, data->max_rate);
595 
596 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
597 
598 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
599 }
600 
601 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
602 					  unsigned long parent_rate)
603 {
604 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
605 	struct bcm2835_cprman *cprman = pll->cprman;
606 	const struct bcm2835_pll_data *data = pll->data;
607 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
608 	u32 ndiv, pdiv, fdiv;
609 	bool using_prediv;
610 
611 	if (parent_rate == 0)
612 		return 0;
613 
614 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
615 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
616 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
617 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
618 		data->ana->fb_prediv_mask;
619 
620 	if (using_prediv) {
621 		ndiv *= 2;
622 		fdiv *= 2;
623 	}
624 
625 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
626 }
627 
628 static void bcm2835_pll_off(struct clk_hw *hw)
629 {
630 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
631 	struct bcm2835_cprman *cprman = pll->cprman;
632 	const struct bcm2835_pll_data *data = pll->data;
633 
634 	spin_lock(&cprman->regs_lock);
635 	cprman_write(cprman, data->cm_ctrl_reg,
636 		     cprman_read(cprman, data->cm_ctrl_reg) |
637 		     CM_PLL_ANARST);
638 	cprman_write(cprman, data->a2w_ctrl_reg,
639 		     cprman_read(cprman, data->a2w_ctrl_reg) |
640 		     A2W_PLL_CTRL_PWRDN);
641 	spin_unlock(&cprman->regs_lock);
642 }
643 
644 static int bcm2835_pll_on(struct clk_hw *hw)
645 {
646 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
647 	struct bcm2835_cprman *cprman = pll->cprman;
648 	const struct bcm2835_pll_data *data = pll->data;
649 	ktime_t timeout;
650 
651 	cprman_write(cprman, data->a2w_ctrl_reg,
652 		     cprman_read(cprman, data->a2w_ctrl_reg) &
653 		     ~A2W_PLL_CTRL_PWRDN);
654 
655 	/* Take the PLL out of reset. */
656 	cprman_write(cprman, data->cm_ctrl_reg,
657 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
658 
659 	/* Wait for the PLL to lock. */
660 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
661 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
662 		if (ktime_after(ktime_get(), timeout)) {
663 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
664 				clk_hw_get_name(hw));
665 			return -ETIMEDOUT;
666 		}
667 
668 		cpu_relax();
669 	}
670 
671 	return 0;
672 }
673 
674 static void
675 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
676 {
677 	int i;
678 
679 	/*
680 	 * ANA register setup is done as a series of writes to
681 	 * ANA3-ANA0, in that order.  This lets us write all 4
682 	 * registers as a single cycle of the serdes interface (taking
683 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
684 	 * 3 individually through their partial-write registers, each
685 	 * would be their own serdes cycle.
686 	 */
687 	for (i = 3; i >= 0; i--)
688 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
689 }
690 
691 static int bcm2835_pll_set_rate(struct clk_hw *hw,
692 				unsigned long rate, unsigned long parent_rate)
693 {
694 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
695 	struct bcm2835_cprman *cprman = pll->cprman;
696 	const struct bcm2835_pll_data *data = pll->data;
697 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
698 	u32 ndiv, fdiv, a2w_ctl;
699 	u32 ana[4];
700 	int i;
701 
702 	if (rate > data->max_fb_rate) {
703 		use_fb_prediv = true;
704 		rate /= 2;
705 	} else {
706 		use_fb_prediv = false;
707 	}
708 
709 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
710 
711 	for (i = 3; i >= 0; i--)
712 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
713 
714 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
715 
716 	ana[0] &= ~data->ana->mask0;
717 	ana[0] |= data->ana->set0;
718 	ana[1] &= ~data->ana->mask1;
719 	ana[1] |= data->ana->set1;
720 	ana[3] &= ~data->ana->mask3;
721 	ana[3] |= data->ana->set3;
722 
723 	if (was_using_prediv && !use_fb_prediv) {
724 		ana[1] &= ~data->ana->fb_prediv_mask;
725 		do_ana_setup_first = true;
726 	} else if (!was_using_prediv && use_fb_prediv) {
727 		ana[1] |= data->ana->fb_prediv_mask;
728 		do_ana_setup_first = false;
729 	} else {
730 		do_ana_setup_first = true;
731 	}
732 
733 	/* Unmask the reference clock from the oscillator. */
734 	cprman_write(cprman, A2W_XOSC_CTRL,
735 		     cprman_read(cprman, A2W_XOSC_CTRL) |
736 		     data->reference_enable_mask);
737 
738 	if (do_ana_setup_first)
739 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
740 
741 	/* Set the PLL multiplier from the oscillator. */
742 	cprman_write(cprman, data->frac_reg, fdiv);
743 
744 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
745 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
746 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
747 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
748 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
749 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
750 
751 	if (!do_ana_setup_first)
752 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
753 
754 	return 0;
755 }
756 
757 static int bcm2835_pll_debug_init(struct clk_hw *hw,
758 				  struct dentry *dentry)
759 {
760 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
761 	struct bcm2835_cprman *cprman = pll->cprman;
762 	const struct bcm2835_pll_data *data = pll->data;
763 	struct debugfs_reg32 *regs;
764 
765 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
766 	if (!regs)
767 		return -ENOMEM;
768 
769 	regs[0].name = "cm_ctrl";
770 	regs[0].offset = data->cm_ctrl_reg;
771 	regs[1].name = "a2w_ctrl";
772 	regs[1].offset = data->a2w_ctrl_reg;
773 	regs[2].name = "frac";
774 	regs[2].offset = data->frac_reg;
775 	regs[3].name = "ana0";
776 	regs[3].offset = data->ana_reg_base + 0 * 4;
777 	regs[4].name = "ana1";
778 	regs[4].offset = data->ana_reg_base + 1 * 4;
779 	regs[5].name = "ana2";
780 	regs[5].offset = data->ana_reg_base + 2 * 4;
781 	regs[6].name = "ana3";
782 	regs[6].offset = data->ana_reg_base + 3 * 4;
783 
784 	return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
785 }
786 
787 static const struct clk_ops bcm2835_pll_clk_ops = {
788 	.is_prepared = bcm2835_pll_is_on,
789 	.prepare = bcm2835_pll_on,
790 	.unprepare = bcm2835_pll_off,
791 	.recalc_rate = bcm2835_pll_get_rate,
792 	.set_rate = bcm2835_pll_set_rate,
793 	.round_rate = bcm2835_pll_round_rate,
794 	.debug_init = bcm2835_pll_debug_init,
795 };
796 
797 struct bcm2835_pll_divider {
798 	struct clk_divider div;
799 	struct bcm2835_cprman *cprman;
800 	const struct bcm2835_pll_divider_data *data;
801 };
802 
803 static struct bcm2835_pll_divider *
804 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
805 {
806 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
807 }
808 
809 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
810 {
811 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
812 	struct bcm2835_cprman *cprman = divider->cprman;
813 	const struct bcm2835_pll_divider_data *data = divider->data;
814 
815 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
816 }
817 
818 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
819 					   unsigned long rate,
820 					   unsigned long *parent_rate)
821 {
822 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
823 }
824 
825 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
826 						  unsigned long parent_rate)
827 {
828 	return clk_divider_ops.recalc_rate(hw, parent_rate);
829 }
830 
831 static void bcm2835_pll_divider_off(struct clk_hw *hw)
832 {
833 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
834 	struct bcm2835_cprman *cprman = divider->cprman;
835 	const struct bcm2835_pll_divider_data *data = divider->data;
836 
837 	spin_lock(&cprman->regs_lock);
838 	cprman_write(cprman, data->cm_reg,
839 		     (cprman_read(cprman, data->cm_reg) &
840 		      ~data->load_mask) | data->hold_mask);
841 	cprman_write(cprman, data->a2w_reg,
842 		     cprman_read(cprman, data->a2w_reg) |
843 		     A2W_PLL_CHANNEL_DISABLE);
844 	spin_unlock(&cprman->regs_lock);
845 }
846 
847 static int bcm2835_pll_divider_on(struct clk_hw *hw)
848 {
849 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
850 	struct bcm2835_cprman *cprman = divider->cprman;
851 	const struct bcm2835_pll_divider_data *data = divider->data;
852 
853 	spin_lock(&cprman->regs_lock);
854 	cprman_write(cprman, data->a2w_reg,
855 		     cprman_read(cprman, data->a2w_reg) &
856 		     ~A2W_PLL_CHANNEL_DISABLE);
857 
858 	cprman_write(cprman, data->cm_reg,
859 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
860 	spin_unlock(&cprman->regs_lock);
861 
862 	return 0;
863 }
864 
865 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
866 					unsigned long rate,
867 					unsigned long parent_rate)
868 {
869 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
870 	struct bcm2835_cprman *cprman = divider->cprman;
871 	const struct bcm2835_pll_divider_data *data = divider->data;
872 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
873 
874 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
875 
876 	div = min(div, max_div);
877 	if (div == max_div)
878 		div = 0;
879 
880 	cprman_write(cprman, data->a2w_reg, div);
881 	cm = cprman_read(cprman, data->cm_reg);
882 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
883 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
884 
885 	return 0;
886 }
887 
888 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
889 					  struct dentry *dentry)
890 {
891 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
892 	struct bcm2835_cprman *cprman = divider->cprman;
893 	const struct bcm2835_pll_divider_data *data = divider->data;
894 	struct debugfs_reg32 *regs;
895 
896 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
897 	if (!regs)
898 		return -ENOMEM;
899 
900 	regs[0].name = "cm";
901 	regs[0].offset = data->cm_reg;
902 	regs[1].name = "a2w";
903 	regs[1].offset = data->a2w_reg;
904 
905 	return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
906 }
907 
908 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
909 	.is_prepared = bcm2835_pll_divider_is_on,
910 	.prepare = bcm2835_pll_divider_on,
911 	.unprepare = bcm2835_pll_divider_off,
912 	.recalc_rate = bcm2835_pll_divider_get_rate,
913 	.set_rate = bcm2835_pll_divider_set_rate,
914 	.round_rate = bcm2835_pll_divider_round_rate,
915 	.debug_init = bcm2835_pll_divider_debug_init,
916 };
917 
918 /*
919  * The CM dividers do fixed-point division, so we can't use the
920  * generic integer divider code like the PLL dividers do (and we can't
921  * fake it by having some fixed shifts preceding it in the clock tree,
922  * because we'd run out of bits in a 32-bit unsigned long).
923  */
924 struct bcm2835_clock {
925 	struct clk_hw hw;
926 	struct bcm2835_cprman *cprman;
927 	const struct bcm2835_clock_data *data;
928 };
929 
930 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
931 {
932 	return container_of(hw, struct bcm2835_clock, hw);
933 }
934 
935 static int bcm2835_clock_is_on(struct clk_hw *hw)
936 {
937 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
938 	struct bcm2835_cprman *cprman = clock->cprman;
939 	const struct bcm2835_clock_data *data = clock->data;
940 
941 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
942 }
943 
944 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
945 				    unsigned long rate,
946 				    unsigned long parent_rate,
947 				    bool round_up)
948 {
949 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
950 	const struct bcm2835_clock_data *data = clock->data;
951 	u32 unused_frac_mask =
952 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
953 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
954 	u64 rem;
955 	u32 div, mindiv, maxdiv;
956 
957 	rem = do_div(temp, rate);
958 	div = temp;
959 
960 	/* Round up and mask off the unused bits */
961 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
962 		div += unused_frac_mask + 1;
963 	div &= ~unused_frac_mask;
964 
965 	/* different clamping limits apply for a mash clock */
966 	if (data->is_mash_clock) {
967 		/* clamp to min divider of 2 */
968 		mindiv = 2 << CM_DIV_FRAC_BITS;
969 		/* clamp to the highest possible integer divider */
970 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
971 	} else {
972 		/* clamp to min divider of 1 */
973 		mindiv = 1 << CM_DIV_FRAC_BITS;
974 		/* clamp to the highest possible fractional divider */
975 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
976 				 CM_DIV_FRAC_BITS - data->frac_bits);
977 	}
978 
979 	/* apply the clamping  limits */
980 	div = max_t(u32, div, mindiv);
981 	div = min_t(u32, div, maxdiv);
982 
983 	return div;
984 }
985 
986 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
987 					    unsigned long parent_rate,
988 					    u32 div)
989 {
990 	const struct bcm2835_clock_data *data = clock->data;
991 	u64 temp;
992 
993 	if (data->int_bits == 0 && data->frac_bits == 0)
994 		return parent_rate;
995 
996 	/*
997 	 * The divisor is a 12.12 fixed point field, but only some of
998 	 * the bits are populated in any given clock.
999 	 */
1000 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
1001 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
1002 
1003 	if (div == 0)
1004 		return 0;
1005 
1006 	temp = (u64)parent_rate << data->frac_bits;
1007 
1008 	do_div(temp, div);
1009 
1010 	return temp;
1011 }
1012 
1013 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1014 					    unsigned long parent_rate)
1015 {
1016 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1017 	struct bcm2835_cprman *cprman = clock->cprman;
1018 	const struct bcm2835_clock_data *data = clock->data;
1019 	u32 div;
1020 
1021 	if (data->int_bits == 0 && data->frac_bits == 0)
1022 		return parent_rate;
1023 
1024 	div = cprman_read(cprman, data->div_reg);
1025 
1026 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1027 }
1028 
1029 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1030 {
1031 	struct bcm2835_cprman *cprman = clock->cprman;
1032 	const struct bcm2835_clock_data *data = clock->data;
1033 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1034 
1035 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1036 		if (ktime_after(ktime_get(), timeout)) {
1037 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1038 				clk_hw_get_name(&clock->hw));
1039 			return;
1040 		}
1041 		cpu_relax();
1042 	}
1043 }
1044 
1045 static void bcm2835_clock_off(struct clk_hw *hw)
1046 {
1047 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1048 	struct bcm2835_cprman *cprman = clock->cprman;
1049 	const struct bcm2835_clock_data *data = clock->data;
1050 
1051 	spin_lock(&cprman->regs_lock);
1052 	cprman_write(cprman, data->ctl_reg,
1053 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1054 	spin_unlock(&cprman->regs_lock);
1055 
1056 	/* BUSY will remain high until the divider completes its cycle. */
1057 	bcm2835_clock_wait_busy(clock);
1058 }
1059 
1060 static int bcm2835_clock_on(struct clk_hw *hw)
1061 {
1062 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1063 	struct bcm2835_cprman *cprman = clock->cprman;
1064 	const struct bcm2835_clock_data *data = clock->data;
1065 
1066 	spin_lock(&cprman->regs_lock);
1067 	cprman_write(cprman, data->ctl_reg,
1068 		     cprman_read(cprman, data->ctl_reg) |
1069 		     CM_ENABLE |
1070 		     CM_GATE);
1071 	spin_unlock(&cprman->regs_lock);
1072 
1073 	/* Debug code to measure the clock once it's turned on to see
1074 	 * if it's ticking at the rate we expect.
1075 	 */
1076 	if (data->tcnt_mux && false) {
1077 		dev_info(cprman->dev,
1078 			 "clk %s: rate %ld, measure %ld\n",
1079 			 data->name,
1080 			 clk_hw_get_rate(hw),
1081 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1088 				  unsigned long rate, unsigned long parent_rate)
1089 {
1090 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1091 	struct bcm2835_cprman *cprman = clock->cprman;
1092 	const struct bcm2835_clock_data *data = clock->data;
1093 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1094 	u32 ctl;
1095 
1096 	spin_lock(&cprman->regs_lock);
1097 
1098 	/*
1099 	 * Setting up frac support
1100 	 *
1101 	 * In principle it is recommended to stop/start the clock first,
1102 	 * but as we set CLK_SET_RATE_GATE during registration of the
1103 	 * clock this requirement should be take care of by the
1104 	 * clk-framework.
1105 	 */
1106 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1107 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1108 	cprman_write(cprman, data->ctl_reg, ctl);
1109 
1110 	cprman_write(cprman, data->div_reg, div);
1111 
1112 	spin_unlock(&cprman->regs_lock);
1113 
1114 	return 0;
1115 }
1116 
1117 static bool
1118 bcm2835_clk_is_pllc(struct clk_hw *hw)
1119 {
1120 	if (!hw)
1121 		return false;
1122 
1123 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1124 }
1125 
1126 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1127 							int parent_idx,
1128 							unsigned long rate,
1129 							u32 *div,
1130 							unsigned long *prate,
1131 							unsigned long *avgrate)
1132 {
1133 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1134 	struct bcm2835_cprman *cprman = clock->cprman;
1135 	const struct bcm2835_clock_data *data = clock->data;
1136 	unsigned long best_rate = 0;
1137 	u32 curdiv, mindiv, maxdiv;
1138 	struct clk_hw *parent;
1139 
1140 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1141 
1142 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1143 		*prate = clk_hw_get_rate(parent);
1144 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1145 
1146 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1147 
1148 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1149 			unsigned long high, low;
1150 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1151 
1152 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1153 							       int_div);
1154 			int_div += CM_DIV_FRAC_MASK + 1;
1155 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1156 							      int_div);
1157 
1158 			/*
1159 			 * Return a value which is the maximum deviation
1160 			 * below the ideal rate, for use as a metric.
1161 			 */
1162 			return *avgrate - max(*avgrate - low, high - *avgrate);
1163 		}
1164 		return *avgrate;
1165 	}
1166 
1167 	if (data->frac_bits)
1168 		dev_warn(cprman->dev,
1169 			"frac bits are not used when propagating rate change");
1170 
1171 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1172 	mindiv = data->is_mash_clock ? 2 : 1;
1173 	maxdiv = BIT(data->int_bits) - 1;
1174 
1175 	/* TODO: Be smart, and only test a subset of the available divisors. */
1176 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1177 		unsigned long tmp_rate;
1178 
1179 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1180 		tmp_rate /= curdiv;
1181 		if (curdiv == mindiv ||
1182 		    (tmp_rate > best_rate && tmp_rate <= rate))
1183 			best_rate = tmp_rate;
1184 
1185 		if (best_rate == rate)
1186 			break;
1187 	}
1188 
1189 	*div = curdiv << CM_DIV_FRAC_BITS;
1190 	*prate = curdiv * best_rate;
1191 	*avgrate = best_rate;
1192 
1193 	return best_rate;
1194 }
1195 
1196 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1197 					struct clk_rate_request *req)
1198 {
1199 	struct clk_hw *parent, *best_parent = NULL;
1200 	bool current_parent_is_pllc;
1201 	unsigned long rate, best_rate = 0;
1202 	unsigned long prate, best_prate = 0;
1203 	unsigned long avgrate, best_avgrate = 0;
1204 	size_t i;
1205 	u32 div;
1206 
1207 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1208 
1209 	/*
1210 	 * Select parent clock that results in the closest but lower rate
1211 	 */
1212 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1213 		parent = clk_hw_get_parent_by_index(hw, i);
1214 		if (!parent)
1215 			continue;
1216 
1217 		/*
1218 		 * Don't choose a PLLC-derived clock as our parent
1219 		 * unless it had been manually set that way.  PLLC's
1220 		 * frequency gets adjusted by the firmware due to
1221 		 * over-temp or under-voltage conditions, without
1222 		 * prior notification to our clock consumer.
1223 		 */
1224 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1225 			continue;
1226 
1227 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1228 							  &div, &prate,
1229 							  &avgrate);
1230 		if (rate > best_rate && rate <= req->rate) {
1231 			best_parent = parent;
1232 			best_prate = prate;
1233 			best_rate = rate;
1234 			best_avgrate = avgrate;
1235 		}
1236 	}
1237 
1238 	if (!best_parent)
1239 		return -EINVAL;
1240 
1241 	req->best_parent_hw = best_parent;
1242 	req->best_parent_rate = best_prate;
1243 
1244 	req->rate = best_avgrate;
1245 
1246 	return 0;
1247 }
1248 
1249 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1250 {
1251 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1252 	struct bcm2835_cprman *cprman = clock->cprman;
1253 	const struct bcm2835_clock_data *data = clock->data;
1254 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1255 
1256 	cprman_write(cprman, data->ctl_reg, src);
1257 	return 0;
1258 }
1259 
1260 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1261 {
1262 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1263 	struct bcm2835_cprman *cprman = clock->cprman;
1264 	const struct bcm2835_clock_data *data = clock->data;
1265 	u32 src = cprman_read(cprman, data->ctl_reg);
1266 
1267 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1268 }
1269 
1270 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1271 	{
1272 		.name = "ctl",
1273 		.offset = 0,
1274 	},
1275 	{
1276 		.name = "div",
1277 		.offset = 4,
1278 	},
1279 };
1280 
1281 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1282 				    struct dentry *dentry)
1283 {
1284 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1285 	struct bcm2835_cprman *cprman = clock->cprman;
1286 	const struct bcm2835_clock_data *data = clock->data;
1287 
1288 	return bcm2835_debugfs_regset(
1289 		cprman, data->ctl_reg,
1290 		bcm2835_debugfs_clock_reg32,
1291 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1292 		dentry);
1293 }
1294 
1295 static const struct clk_ops bcm2835_clock_clk_ops = {
1296 	.is_prepared = bcm2835_clock_is_on,
1297 	.prepare = bcm2835_clock_on,
1298 	.unprepare = bcm2835_clock_off,
1299 	.recalc_rate = bcm2835_clock_get_rate,
1300 	.set_rate = bcm2835_clock_set_rate,
1301 	.determine_rate = bcm2835_clock_determine_rate,
1302 	.set_parent = bcm2835_clock_set_parent,
1303 	.get_parent = bcm2835_clock_get_parent,
1304 	.debug_init = bcm2835_clock_debug_init,
1305 };
1306 
1307 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1308 {
1309 	return true;
1310 }
1311 
1312 /*
1313  * The VPU clock can never be disabled (it doesn't have an ENABLE
1314  * bit), so it gets its own set of clock ops.
1315  */
1316 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1317 	.is_prepared = bcm2835_vpu_clock_is_on,
1318 	.recalc_rate = bcm2835_clock_get_rate,
1319 	.set_rate = bcm2835_clock_set_rate,
1320 	.determine_rate = bcm2835_clock_determine_rate,
1321 	.set_parent = bcm2835_clock_set_parent,
1322 	.get_parent = bcm2835_clock_get_parent,
1323 	.debug_init = bcm2835_clock_debug_init,
1324 };
1325 
1326 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1327 					   const struct bcm2835_pll_data *data)
1328 {
1329 	struct bcm2835_pll *pll;
1330 	struct clk_init_data init;
1331 	int ret;
1332 
1333 	memset(&init, 0, sizeof(init));
1334 
1335 	/* All of the PLLs derive from the external oscillator. */
1336 	init.parent_names = &cprman->real_parent_names[0];
1337 	init.num_parents = 1;
1338 	init.name = data->name;
1339 	init.ops = &bcm2835_pll_clk_ops;
1340 	init.flags = CLK_IGNORE_UNUSED;
1341 
1342 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1343 	if (!pll)
1344 		return NULL;
1345 
1346 	pll->cprman = cprman;
1347 	pll->data = data;
1348 	pll->hw.init = &init;
1349 
1350 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1351 	if (ret)
1352 		return NULL;
1353 	return &pll->hw;
1354 }
1355 
1356 static struct clk_hw *
1357 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1358 			     const struct bcm2835_pll_divider_data *data)
1359 {
1360 	struct bcm2835_pll_divider *divider;
1361 	struct clk_init_data init;
1362 	const char *divider_name;
1363 	int ret;
1364 
1365 	if (data->fixed_divider != 1) {
1366 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1367 					      "%s_prediv", data->name);
1368 		if (!divider_name)
1369 			return NULL;
1370 	} else {
1371 		divider_name = data->name;
1372 	}
1373 
1374 	memset(&init, 0, sizeof(init));
1375 
1376 	init.parent_names = &data->source_pll;
1377 	init.num_parents = 1;
1378 	init.name = divider_name;
1379 	init.ops = &bcm2835_pll_divider_clk_ops;
1380 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1381 
1382 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1383 	if (!divider)
1384 		return NULL;
1385 
1386 	divider->div.reg = cprman->regs + data->a2w_reg;
1387 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1388 	divider->div.width = A2W_PLL_DIV_BITS;
1389 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1390 	divider->div.lock = &cprman->regs_lock;
1391 	divider->div.hw.init = &init;
1392 	divider->div.table = NULL;
1393 
1394 	divider->cprman = cprman;
1395 	divider->data = data;
1396 
1397 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1398 	if (ret)
1399 		return ERR_PTR(ret);
1400 
1401 	/*
1402 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1403 	 * is what our consumers are actually using.
1404 	 */
1405 	if (data->fixed_divider != 1) {
1406 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1407 						    divider_name,
1408 						    CLK_SET_RATE_PARENT,
1409 						    1,
1410 						    data->fixed_divider);
1411 	}
1412 
1413 	return &divider->div.hw;
1414 }
1415 
1416 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1417 					  const struct bcm2835_clock_data *data)
1418 {
1419 	struct bcm2835_clock *clock;
1420 	struct clk_init_data init;
1421 	const char *parents[1 << CM_SRC_BITS];
1422 	size_t i, j;
1423 	int ret;
1424 
1425 	/*
1426 	 * Replace our strings referencing parent clocks with the
1427 	 * actual clock-output-name of the parent.
1428 	 */
1429 	for (i = 0; i < data->num_mux_parents; i++) {
1430 		parents[i] = data->parents[i];
1431 
1432 		for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1433 			if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1434 				parents[i] = cprman->real_parent_names[j];
1435 				break;
1436 			}
1437 		}
1438 	}
1439 
1440 	memset(&init, 0, sizeof(init));
1441 	init.parent_names = parents;
1442 	init.num_parents = data->num_mux_parents;
1443 	init.name = data->name;
1444 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1445 
1446 	/*
1447 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1448 	 * rate changes on at least of the parents.
1449 	 */
1450 	if (data->set_rate_parent)
1451 		init.flags |= CLK_SET_RATE_PARENT;
1452 
1453 	if (data->is_vpu_clock) {
1454 		init.ops = &bcm2835_vpu_clock_clk_ops;
1455 	} else {
1456 		init.ops = &bcm2835_clock_clk_ops;
1457 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1458 
1459 		/* If the clock wasn't actually enabled at boot, it's not
1460 		 * critical.
1461 		 */
1462 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1463 			init.flags &= ~CLK_IS_CRITICAL;
1464 	}
1465 
1466 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1467 	if (!clock)
1468 		return NULL;
1469 
1470 	clock->cprman = cprman;
1471 	clock->data = data;
1472 	clock->hw.init = &init;
1473 
1474 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1475 	if (ret)
1476 		return ERR_PTR(ret);
1477 	return &clock->hw;
1478 }
1479 
1480 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1481 					 const struct bcm2835_gate_data *data)
1482 {
1483 	return clk_register_gate(cprman->dev, data->name, data->parent,
1484 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1485 				 cprman->regs + data->ctl_reg,
1486 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1487 }
1488 
1489 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1490 					       const void *data);
1491 struct bcm2835_clk_desc {
1492 	bcm2835_clk_register clk_register;
1493 	const void *data;
1494 };
1495 
1496 /* assignment helper macros for different clock types */
1497 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1498 			    .data = __VA_ARGS__ }
1499 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1500 					  &(struct bcm2835_pll_data)	\
1501 					  {__VA_ARGS__})
1502 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1503 					  &(struct bcm2835_pll_divider_data) \
1504 					  {__VA_ARGS__})
1505 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1506 					  &(struct bcm2835_clock_data)	\
1507 					  {__VA_ARGS__})
1508 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1509 					  &(struct bcm2835_gate_data)	\
1510 					  {__VA_ARGS__})
1511 
1512 /* parent mux arrays plus helper macros */
1513 
1514 /* main oscillator parent mux */
1515 static const char *const bcm2835_clock_osc_parents[] = {
1516 	"gnd",
1517 	"xosc",
1518 	"testdebug0",
1519 	"testdebug1"
1520 };
1521 
1522 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1523 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1524 	.parents = bcm2835_clock_osc_parents,				\
1525 	__VA_ARGS__)
1526 
1527 /* main peripherial parent mux */
1528 static const char *const bcm2835_clock_per_parents[] = {
1529 	"gnd",
1530 	"xosc",
1531 	"testdebug0",
1532 	"testdebug1",
1533 	"plla_per",
1534 	"pllc_per",
1535 	"plld_per",
1536 	"pllh_aux",
1537 };
1538 
1539 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1540 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1541 	.parents = bcm2835_clock_per_parents,				\
1542 	__VA_ARGS__)
1543 
1544 /*
1545  * Restrict clock sources for the PCM peripheral to the oscillator and
1546  * PLLD_PER because other source may have varying rates or be switched
1547  * off.
1548  *
1549  * Prevent other sources from being selected by replacing their names in
1550  * the list of potential parents with dummy entries (entry index is
1551  * significant).
1552  */
1553 static const char *const bcm2835_pcm_per_parents[] = {
1554 	"-",
1555 	"xosc",
1556 	"-",
1557 	"-",
1558 	"-",
1559 	"-",
1560 	"plld_per",
1561 	"-",
1562 };
1563 
1564 #define REGISTER_PCM_CLK(...)	REGISTER_CLK(				\
1565 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1566 	.parents = bcm2835_pcm_per_parents,				\
1567 	__VA_ARGS__)
1568 
1569 /* main vpu parent mux */
1570 static const char *const bcm2835_clock_vpu_parents[] = {
1571 	"gnd",
1572 	"xosc",
1573 	"testdebug0",
1574 	"testdebug1",
1575 	"plla_core",
1576 	"pllc_core0",
1577 	"plld_core",
1578 	"pllh_aux",
1579 	"pllc_core1",
1580 	"pllc_core2",
1581 };
1582 
1583 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1584 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1585 	.parents = bcm2835_clock_vpu_parents,				\
1586 	__VA_ARGS__)
1587 
1588 /*
1589  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1590  * analog PHY.  The _inv variants are generated internally to cprman,
1591  * but we don't use them so they aren't hooked up.
1592  */
1593 static const char *const bcm2835_clock_dsi0_parents[] = {
1594 	"gnd",
1595 	"xosc",
1596 	"testdebug0",
1597 	"testdebug1",
1598 	"dsi0_ddr",
1599 	"dsi0_ddr_inv",
1600 	"dsi0_ddr2",
1601 	"dsi0_ddr2_inv",
1602 	"dsi0_byte",
1603 	"dsi0_byte_inv",
1604 };
1605 
1606 static const char *const bcm2835_clock_dsi1_parents[] = {
1607 	"gnd",
1608 	"xosc",
1609 	"testdebug0",
1610 	"testdebug1",
1611 	"dsi1_ddr",
1612 	"dsi1_ddr_inv",
1613 	"dsi1_ddr2",
1614 	"dsi1_ddr2_inv",
1615 	"dsi1_byte",
1616 	"dsi1_byte_inv",
1617 };
1618 
1619 #define REGISTER_DSI0_CLK(...)	REGISTER_CLK(				\
1620 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1621 	.parents = bcm2835_clock_dsi0_parents,				\
1622 	__VA_ARGS__)
1623 
1624 #define REGISTER_DSI1_CLK(...)	REGISTER_CLK(				\
1625 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1626 	.parents = bcm2835_clock_dsi1_parents,				\
1627 	__VA_ARGS__)
1628 
1629 /*
1630  * the real definition of all the pll, pll_dividers and clocks
1631  * these make use of the above REGISTER_* macros
1632  */
1633 static const struct bcm2835_clk_desc clk_desc_array[] = {
1634 	/* the PLL + PLL dividers */
1635 
1636 	/*
1637 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1638 	 * (Compact Camera Port 2) transmitter clock.
1639 	 *
1640 	 * It is in the PX LDO power domain, which is on when the
1641 	 * AUDIO domain is on.
1642 	 */
1643 	[BCM2835_PLLA]		= REGISTER_PLL(
1644 		.name = "plla",
1645 		.cm_ctrl_reg = CM_PLLA,
1646 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1647 		.frac_reg = A2W_PLLA_FRAC,
1648 		.ana_reg_base = A2W_PLLA_ANA0,
1649 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1650 		.lock_mask = CM_LOCK_FLOCKA,
1651 
1652 		.ana = &bcm2835_ana_default,
1653 
1654 		.min_rate = 600000000u,
1655 		.max_rate = 2400000000u,
1656 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1657 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1658 		.name = "plla_core",
1659 		.source_pll = "plla",
1660 		.cm_reg = CM_PLLA,
1661 		.a2w_reg = A2W_PLLA_CORE,
1662 		.load_mask = CM_PLLA_LOADCORE,
1663 		.hold_mask = CM_PLLA_HOLDCORE,
1664 		.fixed_divider = 1,
1665 		.flags = CLK_SET_RATE_PARENT),
1666 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1667 		.name = "plla_per",
1668 		.source_pll = "plla",
1669 		.cm_reg = CM_PLLA,
1670 		.a2w_reg = A2W_PLLA_PER,
1671 		.load_mask = CM_PLLA_LOADPER,
1672 		.hold_mask = CM_PLLA_HOLDPER,
1673 		.fixed_divider = 1,
1674 		.flags = CLK_SET_RATE_PARENT),
1675 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1676 		.name = "plla_dsi0",
1677 		.source_pll = "plla",
1678 		.cm_reg = CM_PLLA,
1679 		.a2w_reg = A2W_PLLA_DSI0,
1680 		.load_mask = CM_PLLA_LOADDSI0,
1681 		.hold_mask = CM_PLLA_HOLDDSI0,
1682 		.fixed_divider = 1),
1683 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1684 		.name = "plla_ccp2",
1685 		.source_pll = "plla",
1686 		.cm_reg = CM_PLLA,
1687 		.a2w_reg = A2W_PLLA_CCP2,
1688 		.load_mask = CM_PLLA_LOADCCP2,
1689 		.hold_mask = CM_PLLA_HOLDCCP2,
1690 		.fixed_divider = 1,
1691 		.flags = CLK_SET_RATE_PARENT),
1692 
1693 	/* PLLB is used for the ARM's clock. */
1694 	[BCM2835_PLLB]		= REGISTER_PLL(
1695 		.name = "pllb",
1696 		.cm_ctrl_reg = CM_PLLB,
1697 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1698 		.frac_reg = A2W_PLLB_FRAC,
1699 		.ana_reg_base = A2W_PLLB_ANA0,
1700 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1701 		.lock_mask = CM_LOCK_FLOCKB,
1702 
1703 		.ana = &bcm2835_ana_default,
1704 
1705 		.min_rate = 600000000u,
1706 		.max_rate = 3000000000u,
1707 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1708 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1709 		.name = "pllb_arm",
1710 		.source_pll = "pllb",
1711 		.cm_reg = CM_PLLB,
1712 		.a2w_reg = A2W_PLLB_ARM,
1713 		.load_mask = CM_PLLB_LOADARM,
1714 		.hold_mask = CM_PLLB_HOLDARM,
1715 		.fixed_divider = 1,
1716 		.flags = CLK_SET_RATE_PARENT),
1717 
1718 	/*
1719 	 * PLLC is the core PLL, used to drive the core VPU clock.
1720 	 *
1721 	 * It is in the PX LDO power domain, which is on when the
1722 	 * AUDIO domain is on.
1723 	 */
1724 	[BCM2835_PLLC]		= REGISTER_PLL(
1725 		.name = "pllc",
1726 		.cm_ctrl_reg = CM_PLLC,
1727 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1728 		.frac_reg = A2W_PLLC_FRAC,
1729 		.ana_reg_base = A2W_PLLC_ANA0,
1730 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1731 		.lock_mask = CM_LOCK_FLOCKC,
1732 
1733 		.ana = &bcm2835_ana_default,
1734 
1735 		.min_rate = 600000000u,
1736 		.max_rate = 3000000000u,
1737 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1738 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1739 		.name = "pllc_core0",
1740 		.source_pll = "pllc",
1741 		.cm_reg = CM_PLLC,
1742 		.a2w_reg = A2W_PLLC_CORE0,
1743 		.load_mask = CM_PLLC_LOADCORE0,
1744 		.hold_mask = CM_PLLC_HOLDCORE0,
1745 		.fixed_divider = 1,
1746 		.flags = CLK_SET_RATE_PARENT),
1747 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1748 		.name = "pllc_core1",
1749 		.source_pll = "pllc",
1750 		.cm_reg = CM_PLLC,
1751 		.a2w_reg = A2W_PLLC_CORE1,
1752 		.load_mask = CM_PLLC_LOADCORE1,
1753 		.hold_mask = CM_PLLC_HOLDCORE1,
1754 		.fixed_divider = 1,
1755 		.flags = CLK_SET_RATE_PARENT),
1756 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1757 		.name = "pllc_core2",
1758 		.source_pll = "pllc",
1759 		.cm_reg = CM_PLLC,
1760 		.a2w_reg = A2W_PLLC_CORE2,
1761 		.load_mask = CM_PLLC_LOADCORE2,
1762 		.hold_mask = CM_PLLC_HOLDCORE2,
1763 		.fixed_divider = 1,
1764 		.flags = CLK_SET_RATE_PARENT),
1765 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1766 		.name = "pllc_per",
1767 		.source_pll = "pllc",
1768 		.cm_reg = CM_PLLC,
1769 		.a2w_reg = A2W_PLLC_PER,
1770 		.load_mask = CM_PLLC_LOADPER,
1771 		.hold_mask = CM_PLLC_HOLDPER,
1772 		.fixed_divider = 1,
1773 		.flags = CLK_SET_RATE_PARENT),
1774 
1775 	/*
1776 	 * PLLD is the display PLL, used to drive DSI display panels.
1777 	 *
1778 	 * It is in the PX LDO power domain, which is on when the
1779 	 * AUDIO domain is on.
1780 	 */
1781 	[BCM2835_PLLD]		= REGISTER_PLL(
1782 		.name = "plld",
1783 		.cm_ctrl_reg = CM_PLLD,
1784 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1785 		.frac_reg = A2W_PLLD_FRAC,
1786 		.ana_reg_base = A2W_PLLD_ANA0,
1787 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1788 		.lock_mask = CM_LOCK_FLOCKD,
1789 
1790 		.ana = &bcm2835_ana_default,
1791 
1792 		.min_rate = 600000000u,
1793 		.max_rate = 2400000000u,
1794 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1795 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1796 		.name = "plld_core",
1797 		.source_pll = "plld",
1798 		.cm_reg = CM_PLLD,
1799 		.a2w_reg = A2W_PLLD_CORE,
1800 		.load_mask = CM_PLLD_LOADCORE,
1801 		.hold_mask = CM_PLLD_HOLDCORE,
1802 		.fixed_divider = 1,
1803 		.flags = CLK_SET_RATE_PARENT),
1804 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1805 		.name = "plld_per",
1806 		.source_pll = "plld",
1807 		.cm_reg = CM_PLLD,
1808 		.a2w_reg = A2W_PLLD_PER,
1809 		.load_mask = CM_PLLD_LOADPER,
1810 		.hold_mask = CM_PLLD_HOLDPER,
1811 		.fixed_divider = 1,
1812 		.flags = CLK_SET_RATE_PARENT),
1813 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1814 		.name = "plld_dsi0",
1815 		.source_pll = "plld",
1816 		.cm_reg = CM_PLLD,
1817 		.a2w_reg = A2W_PLLD_DSI0,
1818 		.load_mask = CM_PLLD_LOADDSI0,
1819 		.hold_mask = CM_PLLD_HOLDDSI0,
1820 		.fixed_divider = 1),
1821 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1822 		.name = "plld_dsi1",
1823 		.source_pll = "plld",
1824 		.cm_reg = CM_PLLD,
1825 		.a2w_reg = A2W_PLLD_DSI1,
1826 		.load_mask = CM_PLLD_LOADDSI1,
1827 		.hold_mask = CM_PLLD_HOLDDSI1,
1828 		.fixed_divider = 1),
1829 
1830 	/*
1831 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1832 	 * TV encoder.
1833 	 *
1834 	 * It is in the HDMI power domain.
1835 	 */
1836 	[BCM2835_PLLH]		= REGISTER_PLL(
1837 		"pllh",
1838 		.cm_ctrl_reg = CM_PLLH,
1839 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1840 		.frac_reg = A2W_PLLH_FRAC,
1841 		.ana_reg_base = A2W_PLLH_ANA0,
1842 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1843 		.lock_mask = CM_LOCK_FLOCKH,
1844 
1845 		.ana = &bcm2835_ana_pllh,
1846 
1847 		.min_rate = 600000000u,
1848 		.max_rate = 3000000000u,
1849 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1850 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1851 		.name = "pllh_rcal",
1852 		.source_pll = "pllh",
1853 		.cm_reg = CM_PLLH,
1854 		.a2w_reg = A2W_PLLH_RCAL,
1855 		.load_mask = CM_PLLH_LOADRCAL,
1856 		.hold_mask = 0,
1857 		.fixed_divider = 10,
1858 		.flags = CLK_SET_RATE_PARENT),
1859 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1860 		.name = "pllh_aux",
1861 		.source_pll = "pllh",
1862 		.cm_reg = CM_PLLH,
1863 		.a2w_reg = A2W_PLLH_AUX,
1864 		.load_mask = CM_PLLH_LOADAUX,
1865 		.hold_mask = 0,
1866 		.fixed_divider = 1,
1867 		.flags = CLK_SET_RATE_PARENT),
1868 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1869 		.name = "pllh_pix",
1870 		.source_pll = "pllh",
1871 		.cm_reg = CM_PLLH,
1872 		.a2w_reg = A2W_PLLH_PIX,
1873 		.load_mask = CM_PLLH_LOADPIX,
1874 		.hold_mask = 0,
1875 		.fixed_divider = 10,
1876 		.flags = CLK_SET_RATE_PARENT),
1877 
1878 	/* the clocks */
1879 
1880 	/* clocks with oscillator parent mux */
1881 
1882 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1883 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1884 		.name = "otp",
1885 		.ctl_reg = CM_OTPCTL,
1886 		.div_reg = CM_OTPDIV,
1887 		.int_bits = 4,
1888 		.frac_bits = 0,
1889 		.tcnt_mux = 6),
1890 	/*
1891 	 * Used for a 1Mhz clock for the system clocksource, and also used
1892 	 * bythe watchdog timer and the camera pulse generator.
1893 	 */
1894 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1895 		.name = "timer",
1896 		.ctl_reg = CM_TIMERCTL,
1897 		.div_reg = CM_TIMERDIV,
1898 		.int_bits = 6,
1899 		.frac_bits = 12),
1900 	/*
1901 	 * Clock for the temperature sensor.
1902 	 * Generally run at 2Mhz, max 5Mhz.
1903 	 */
1904 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1905 		.name = "tsens",
1906 		.ctl_reg = CM_TSENSCTL,
1907 		.div_reg = CM_TSENSDIV,
1908 		.int_bits = 5,
1909 		.frac_bits = 0),
1910 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1911 		.name = "tec",
1912 		.ctl_reg = CM_TECCTL,
1913 		.div_reg = CM_TECDIV,
1914 		.int_bits = 6,
1915 		.frac_bits = 0),
1916 
1917 	/* clocks with vpu parent mux */
1918 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1919 		.name = "h264",
1920 		.ctl_reg = CM_H264CTL,
1921 		.div_reg = CM_H264DIV,
1922 		.int_bits = 4,
1923 		.frac_bits = 8,
1924 		.tcnt_mux = 1),
1925 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1926 		.name = "isp",
1927 		.ctl_reg = CM_ISPCTL,
1928 		.div_reg = CM_ISPDIV,
1929 		.int_bits = 4,
1930 		.frac_bits = 8,
1931 		.tcnt_mux = 2),
1932 
1933 	/*
1934 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1935 	 * in the SDRAM controller can't be used.
1936 	 */
1937 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1938 		.name = "sdram",
1939 		.ctl_reg = CM_SDCCTL,
1940 		.div_reg = CM_SDCDIV,
1941 		.int_bits = 6,
1942 		.frac_bits = 0,
1943 		.tcnt_mux = 3),
1944 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1945 		.name = "v3d",
1946 		.ctl_reg = CM_V3DCTL,
1947 		.div_reg = CM_V3DDIV,
1948 		.int_bits = 4,
1949 		.frac_bits = 8,
1950 		.tcnt_mux = 4),
1951 	/*
1952 	 * VPU clock.  This doesn't have an enable bit, since it drives
1953 	 * the bus for everything else, and is special so it doesn't need
1954 	 * to be gated for rate changes.  It is also known as "clk_audio"
1955 	 * in various hardware documentation.
1956 	 */
1957 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1958 		.name = "vpu",
1959 		.ctl_reg = CM_VPUCTL,
1960 		.div_reg = CM_VPUDIV,
1961 		.int_bits = 12,
1962 		.frac_bits = 8,
1963 		.flags = CLK_IS_CRITICAL,
1964 		.is_vpu_clock = true,
1965 		.tcnt_mux = 5),
1966 
1967 	/* clocks with per parent mux */
1968 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1969 		.name = "aveo",
1970 		.ctl_reg = CM_AVEOCTL,
1971 		.div_reg = CM_AVEODIV,
1972 		.int_bits = 4,
1973 		.frac_bits = 0,
1974 		.tcnt_mux = 38),
1975 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1976 		.name = "cam0",
1977 		.ctl_reg = CM_CAM0CTL,
1978 		.div_reg = CM_CAM0DIV,
1979 		.int_bits = 4,
1980 		.frac_bits = 8,
1981 		.tcnt_mux = 14),
1982 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1983 		.name = "cam1",
1984 		.ctl_reg = CM_CAM1CTL,
1985 		.div_reg = CM_CAM1DIV,
1986 		.int_bits = 4,
1987 		.frac_bits = 8,
1988 		.tcnt_mux = 15),
1989 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1990 		.name = "dft",
1991 		.ctl_reg = CM_DFTCTL,
1992 		.div_reg = CM_DFTDIV,
1993 		.int_bits = 5,
1994 		.frac_bits = 0),
1995 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1996 		.name = "dpi",
1997 		.ctl_reg = CM_DPICTL,
1998 		.div_reg = CM_DPIDIV,
1999 		.int_bits = 4,
2000 		.frac_bits = 8,
2001 		.tcnt_mux = 17),
2002 
2003 	/* Arasan EMMC clock */
2004 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2005 		.name = "emmc",
2006 		.ctl_reg = CM_EMMCCTL,
2007 		.div_reg = CM_EMMCDIV,
2008 		.int_bits = 4,
2009 		.frac_bits = 8,
2010 		.tcnt_mux = 39),
2011 
2012 	/* General purpose (GPIO) clocks */
2013 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2014 		.name = "gp0",
2015 		.ctl_reg = CM_GP0CTL,
2016 		.div_reg = CM_GP0DIV,
2017 		.int_bits = 12,
2018 		.frac_bits = 12,
2019 		.is_mash_clock = true,
2020 		.tcnt_mux = 20),
2021 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2022 		.name = "gp1",
2023 		.ctl_reg = CM_GP1CTL,
2024 		.div_reg = CM_GP1DIV,
2025 		.int_bits = 12,
2026 		.frac_bits = 12,
2027 		.flags = CLK_IS_CRITICAL,
2028 		.is_mash_clock = true,
2029 		.tcnt_mux = 21),
2030 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2031 		.name = "gp2",
2032 		.ctl_reg = CM_GP2CTL,
2033 		.div_reg = CM_GP2DIV,
2034 		.int_bits = 12,
2035 		.frac_bits = 12,
2036 		.flags = CLK_IS_CRITICAL),
2037 
2038 	/* HDMI state machine */
2039 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2040 		.name = "hsm",
2041 		.ctl_reg = CM_HSMCTL,
2042 		.div_reg = CM_HSMDIV,
2043 		.int_bits = 4,
2044 		.frac_bits = 8,
2045 		.tcnt_mux = 22),
2046 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2047 		.name = "pcm",
2048 		.ctl_reg = CM_PCMCTL,
2049 		.div_reg = CM_PCMDIV,
2050 		.int_bits = 12,
2051 		.frac_bits = 12,
2052 		.is_mash_clock = true,
2053 		.low_jitter = true,
2054 		.tcnt_mux = 23),
2055 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2056 		.name = "pwm",
2057 		.ctl_reg = CM_PWMCTL,
2058 		.div_reg = CM_PWMDIV,
2059 		.int_bits = 12,
2060 		.frac_bits = 12,
2061 		.is_mash_clock = true,
2062 		.tcnt_mux = 24),
2063 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2064 		.name = "slim",
2065 		.ctl_reg = CM_SLIMCTL,
2066 		.div_reg = CM_SLIMDIV,
2067 		.int_bits = 12,
2068 		.frac_bits = 12,
2069 		.is_mash_clock = true,
2070 		.tcnt_mux = 25),
2071 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2072 		.name = "smi",
2073 		.ctl_reg = CM_SMICTL,
2074 		.div_reg = CM_SMIDIV,
2075 		.int_bits = 4,
2076 		.frac_bits = 8,
2077 		.tcnt_mux = 27),
2078 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2079 		.name = "uart",
2080 		.ctl_reg = CM_UARTCTL,
2081 		.div_reg = CM_UARTDIV,
2082 		.int_bits = 10,
2083 		.frac_bits = 12,
2084 		.tcnt_mux = 28),
2085 
2086 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2087 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2088 		.name = "vec",
2089 		.ctl_reg = CM_VECCTL,
2090 		.div_reg = CM_VECDIV,
2091 		.int_bits = 4,
2092 		.frac_bits = 0,
2093 		/*
2094 		 * Allow rate change propagation only on PLLH_AUX which is
2095 		 * assigned index 7 in the parent array.
2096 		 */
2097 		.set_rate_parent = BIT(7),
2098 		.tcnt_mux = 29),
2099 
2100 	/* dsi clocks */
2101 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2102 		.name = "dsi0e",
2103 		.ctl_reg = CM_DSI0ECTL,
2104 		.div_reg = CM_DSI0EDIV,
2105 		.int_bits = 4,
2106 		.frac_bits = 8,
2107 		.tcnt_mux = 18),
2108 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2109 		.name = "dsi1e",
2110 		.ctl_reg = CM_DSI1ECTL,
2111 		.div_reg = CM_DSI1EDIV,
2112 		.int_bits = 4,
2113 		.frac_bits = 8,
2114 		.tcnt_mux = 19),
2115 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2116 		.name = "dsi0p",
2117 		.ctl_reg = CM_DSI0PCTL,
2118 		.div_reg = CM_DSI0PDIV,
2119 		.int_bits = 0,
2120 		.frac_bits = 0,
2121 		.tcnt_mux = 12),
2122 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2123 		.name = "dsi1p",
2124 		.ctl_reg = CM_DSI1PCTL,
2125 		.div_reg = CM_DSI1PDIV,
2126 		.int_bits = 0,
2127 		.frac_bits = 0,
2128 		.tcnt_mux = 13),
2129 
2130 	/* the gates */
2131 
2132 	/*
2133 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2134 	 * you have the debug bit set in the power manager, which we
2135 	 * don't bother exposing) are individual gates off of the
2136 	 * non-stop vpu clock.
2137 	 */
2138 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2139 		.name = "peri_image",
2140 		.parent = "vpu",
2141 		.ctl_reg = CM_PERIICTL),
2142 };
2143 
2144 /*
2145  * Permanently take a reference on the parent of the SDRAM clock.
2146  *
2147  * While the SDRAM is being driven by its dedicated PLL most of the
2148  * time, there is a little loop running in the firmware that
2149  * periodically switches the SDRAM to using our CM clock to do PVT
2150  * recalibration, with the assumption that the previously configured
2151  * SDRAM parent is still enabled and running.
2152  */
2153 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2154 {
2155 	struct clk *parent = clk_get_parent(sdc);
2156 
2157 	if (IS_ERR(parent))
2158 		return PTR_ERR(parent);
2159 
2160 	return clk_prepare_enable(parent);
2161 }
2162 
2163 static int bcm2835_clk_probe(struct platform_device *pdev)
2164 {
2165 	struct device *dev = &pdev->dev;
2166 	struct clk_hw **hws;
2167 	struct bcm2835_cprman *cprman;
2168 	struct resource *res;
2169 	const struct bcm2835_clk_desc *desc;
2170 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2171 	size_t i;
2172 	int ret;
2173 
2174 	cprman = devm_kzalloc(dev, sizeof(*cprman) +
2175 			      sizeof(*cprman->onecell.hws) * asize,
2176 			      GFP_KERNEL);
2177 	if (!cprman)
2178 		return -ENOMEM;
2179 
2180 	spin_lock_init(&cprman->regs_lock);
2181 	cprman->dev = dev;
2182 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2183 	cprman->regs = devm_ioremap_resource(dev, res);
2184 	if (IS_ERR(cprman->regs))
2185 		return PTR_ERR(cprman->regs);
2186 
2187 	memcpy(cprman->real_parent_names, cprman_parent_names,
2188 	       sizeof(cprman_parent_names));
2189 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2190 			   ARRAY_SIZE(cprman_parent_names));
2191 
2192 	/*
2193 	 * Make sure the external oscillator has been registered.
2194 	 *
2195 	 * The other (DSI) clocks are not present on older device
2196 	 * trees, which we still need to support for backwards
2197 	 * compatibility.
2198 	 */
2199 	if (!cprman->real_parent_names[0])
2200 		return -ENODEV;
2201 
2202 	platform_set_drvdata(pdev, cprman);
2203 
2204 	cprman->onecell.num = asize;
2205 	hws = cprman->onecell.hws;
2206 
2207 	for (i = 0; i < asize; i++) {
2208 		desc = &clk_desc_array[i];
2209 		if (desc->clk_register && desc->data)
2210 			hws[i] = desc->clk_register(cprman, desc->data);
2211 	}
2212 
2213 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2214 	if (ret)
2215 		return ret;
2216 
2217 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2218 				      &cprman->onecell);
2219 }
2220 
2221 static const struct of_device_id bcm2835_clk_of_match[] = {
2222 	{ .compatible = "brcm,bcm2835-cprman", },
2223 	{}
2224 };
2225 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2226 
2227 static struct platform_driver bcm2835_clk_driver = {
2228 	.driver = {
2229 		.name = "bcm2835-clk",
2230 		.of_match_table = bcm2835_clk_of_match,
2231 	},
2232 	.probe          = bcm2835_clk_probe,
2233 };
2234 
2235 builtin_platform_driver(bcm2835_clk_driver);
2236 
2237 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2238 MODULE_DESCRIPTION("BCM2835 clock driver");
2239 MODULE_LICENSE("GPL v2");
2240