xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision 5e18b9737004ef6f34862f6fb39d3c9027a4044a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6 
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26 
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35 #include <linux/platform_device.h>
36 #include <linux/slab.h>
37 #include <dt-bindings/clock/bcm2835.h>
38 
39 #define CM_PASSWORD		0x5a000000
40 
41 #define CM_GNRICCTL		0x000
42 #define CM_GNRICDIV		0x004
43 # define CM_DIV_FRAC_BITS	12
44 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
45 
46 #define CM_VPUCTL		0x008
47 #define CM_VPUDIV		0x00c
48 #define CM_SYSCTL		0x010
49 #define CM_SYSDIV		0x014
50 #define CM_PERIACTL		0x018
51 #define CM_PERIADIV		0x01c
52 #define CM_PERIICTL		0x020
53 #define CM_PERIIDIV		0x024
54 #define CM_H264CTL		0x028
55 #define CM_H264DIV		0x02c
56 #define CM_ISPCTL		0x030
57 #define CM_ISPDIV		0x034
58 #define CM_V3DCTL		0x038
59 #define CM_V3DDIV		0x03c
60 #define CM_CAM0CTL		0x040
61 #define CM_CAM0DIV		0x044
62 #define CM_CAM1CTL		0x048
63 #define CM_CAM1DIV		0x04c
64 #define CM_CCP2CTL		0x050
65 #define CM_CCP2DIV		0x054
66 #define CM_DSI0ECTL		0x058
67 #define CM_DSI0EDIV		0x05c
68 #define CM_DSI0PCTL		0x060
69 #define CM_DSI0PDIV		0x064
70 #define CM_DPICTL		0x068
71 #define CM_DPIDIV		0x06c
72 #define CM_GP0CTL		0x070
73 #define CM_GP0DIV		0x074
74 #define CM_GP1CTL		0x078
75 #define CM_GP1DIV		0x07c
76 #define CM_GP2CTL		0x080
77 #define CM_GP2DIV		0x084
78 #define CM_HSMCTL		0x088
79 #define CM_HSMDIV		0x08c
80 #define CM_OTPCTL		0x090
81 #define CM_OTPDIV		0x094
82 #define CM_PCMCTL		0x098
83 #define CM_PCMDIV		0x09c
84 #define CM_PWMCTL		0x0a0
85 #define CM_PWMDIV		0x0a4
86 #define CM_SLIMCTL		0x0a8
87 #define CM_SLIMDIV		0x0ac
88 #define CM_SMICTL		0x0b0
89 #define CM_SMIDIV		0x0b4
90 /* no definition for 0x0b8  and 0x0bc */
91 #define CM_TCNTCTL		0x0c0
92 # define CM_TCNT_SRC1_SHIFT		12
93 #define CM_TCNTCNT		0x0c4
94 #define CM_TECCTL		0x0c8
95 #define CM_TECDIV		0x0cc
96 #define CM_TD0CTL		0x0d0
97 #define CM_TD0DIV		0x0d4
98 #define CM_TD1CTL		0x0d8
99 #define CM_TD1DIV		0x0dc
100 #define CM_TSENSCTL		0x0e0
101 #define CM_TSENSDIV		0x0e4
102 #define CM_TIMERCTL		0x0e8
103 #define CM_TIMERDIV		0x0ec
104 #define CM_UARTCTL		0x0f0
105 #define CM_UARTDIV		0x0f4
106 #define CM_VECCTL		0x0f8
107 #define CM_VECDIV		0x0fc
108 #define CM_PULSECTL		0x190
109 #define CM_PULSEDIV		0x194
110 #define CM_SDCCTL		0x1a8
111 #define CM_SDCDIV		0x1ac
112 #define CM_ARMCTL		0x1b0
113 #define CM_AVEOCTL		0x1b8
114 #define CM_AVEODIV		0x1bc
115 #define CM_EMMCCTL		0x1c0
116 #define CM_EMMCDIV		0x1c4
117 #define CM_EMMC2CTL		0x1d0
118 #define CM_EMMC2DIV		0x1d4
119 
120 /* General bits for the CM_*CTL regs */
121 # define CM_ENABLE			BIT(4)
122 # define CM_KILL			BIT(5)
123 # define CM_GATE_BIT			6
124 # define CM_GATE			BIT(CM_GATE_BIT)
125 # define CM_BUSY			BIT(7)
126 # define CM_BUSYD			BIT(8)
127 # define CM_FRAC			BIT(9)
128 # define CM_SRC_SHIFT			0
129 # define CM_SRC_BITS			4
130 # define CM_SRC_MASK			0xf
131 # define CM_SRC_GND			0
132 # define CM_SRC_OSC			1
133 # define CM_SRC_TESTDEBUG0		2
134 # define CM_SRC_TESTDEBUG1		3
135 # define CM_SRC_PLLA_CORE		4
136 # define CM_SRC_PLLA_PER		4
137 # define CM_SRC_PLLC_CORE0		5
138 # define CM_SRC_PLLC_PER		5
139 # define CM_SRC_PLLC_CORE1		8
140 # define CM_SRC_PLLD_CORE		6
141 # define CM_SRC_PLLD_PER		6
142 # define CM_SRC_PLLH_AUX		7
143 # define CM_SRC_PLLC_CORE1		8
144 # define CM_SRC_PLLC_CORE2		9
145 
146 #define CM_OSCCOUNT		0x100
147 
148 #define CM_PLLA			0x104
149 # define CM_PLL_ANARST			BIT(8)
150 # define CM_PLLA_HOLDPER		BIT(7)
151 # define CM_PLLA_LOADPER		BIT(6)
152 # define CM_PLLA_HOLDCORE		BIT(5)
153 # define CM_PLLA_LOADCORE		BIT(4)
154 # define CM_PLLA_HOLDCCP2		BIT(3)
155 # define CM_PLLA_LOADCCP2		BIT(2)
156 # define CM_PLLA_HOLDDSI0		BIT(1)
157 # define CM_PLLA_LOADDSI0		BIT(0)
158 
159 #define CM_PLLC			0x108
160 # define CM_PLLC_HOLDPER		BIT(7)
161 # define CM_PLLC_LOADPER		BIT(6)
162 # define CM_PLLC_HOLDCORE2		BIT(5)
163 # define CM_PLLC_LOADCORE2		BIT(4)
164 # define CM_PLLC_HOLDCORE1		BIT(3)
165 # define CM_PLLC_LOADCORE1		BIT(2)
166 # define CM_PLLC_HOLDCORE0		BIT(1)
167 # define CM_PLLC_LOADCORE0		BIT(0)
168 
169 #define CM_PLLD			0x10c
170 # define CM_PLLD_HOLDPER		BIT(7)
171 # define CM_PLLD_LOADPER		BIT(6)
172 # define CM_PLLD_HOLDCORE		BIT(5)
173 # define CM_PLLD_LOADCORE		BIT(4)
174 # define CM_PLLD_HOLDDSI1		BIT(3)
175 # define CM_PLLD_LOADDSI1		BIT(2)
176 # define CM_PLLD_HOLDDSI0		BIT(1)
177 # define CM_PLLD_LOADDSI0		BIT(0)
178 
179 #define CM_PLLH			0x110
180 # define CM_PLLH_LOADRCAL		BIT(2)
181 # define CM_PLLH_LOADAUX		BIT(1)
182 # define CM_PLLH_LOADPIX		BIT(0)
183 
184 #define CM_LOCK			0x114
185 # define CM_LOCK_FLOCKH			BIT(12)
186 # define CM_LOCK_FLOCKD			BIT(11)
187 # define CM_LOCK_FLOCKC			BIT(10)
188 # define CM_LOCK_FLOCKB			BIT(9)
189 # define CM_LOCK_FLOCKA			BIT(8)
190 
191 #define CM_EVENT		0x118
192 #define CM_DSI1ECTL		0x158
193 #define CM_DSI1EDIV		0x15c
194 #define CM_DSI1PCTL		0x160
195 #define CM_DSI1PDIV		0x164
196 #define CM_DFTCTL		0x168
197 #define CM_DFTDIV		0x16c
198 
199 #define CM_PLLB			0x170
200 # define CM_PLLB_HOLDARM		BIT(1)
201 # define CM_PLLB_LOADARM		BIT(0)
202 
203 #define A2W_PLLA_CTRL		0x1100
204 #define A2W_PLLC_CTRL		0x1120
205 #define A2W_PLLD_CTRL		0x1140
206 #define A2W_PLLH_CTRL		0x1160
207 #define A2W_PLLB_CTRL		0x11e0
208 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
209 # define A2W_PLL_CTRL_PWRDN		BIT(16)
210 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
211 # define A2W_PLL_CTRL_PDIV_SHIFT	12
212 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
213 # define A2W_PLL_CTRL_NDIV_SHIFT	0
214 
215 #define A2W_PLLA_ANA0		0x1010
216 #define A2W_PLLC_ANA0		0x1030
217 #define A2W_PLLD_ANA0		0x1050
218 #define A2W_PLLH_ANA0		0x1070
219 #define A2W_PLLB_ANA0		0x10f0
220 
221 #define A2W_PLL_KA_SHIFT	7
222 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
223 #define A2W_PLL_KI_SHIFT	19
224 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
225 #define A2W_PLL_KP_SHIFT	15
226 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
227 
228 #define A2W_PLLH_KA_SHIFT	19
229 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
230 #define A2W_PLLH_KI_LOW_SHIFT	22
231 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
232 #define A2W_PLLH_KI_HIGH_SHIFT	0
233 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
234 #define A2W_PLLH_KP_SHIFT	1
235 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
236 
237 #define A2W_XOSC_CTRL		0x1190
238 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
239 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
240 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
241 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
242 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
243 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
244 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
245 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
246 
247 #define A2W_PLLA_FRAC		0x1200
248 #define A2W_PLLC_FRAC		0x1220
249 #define A2W_PLLD_FRAC		0x1240
250 #define A2W_PLLH_FRAC		0x1260
251 #define A2W_PLLB_FRAC		0x12e0
252 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
253 # define A2W_PLL_FRAC_BITS		20
254 
255 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
256 #define A2W_PLL_DIV_BITS		8
257 #define A2W_PLL_DIV_SHIFT		0
258 
259 #define A2W_PLLA_DSI0		0x1300
260 #define A2W_PLLA_CORE		0x1400
261 #define A2W_PLLA_PER		0x1500
262 #define A2W_PLLA_CCP2		0x1600
263 
264 #define A2W_PLLC_CORE2		0x1320
265 #define A2W_PLLC_CORE1		0x1420
266 #define A2W_PLLC_PER		0x1520
267 #define A2W_PLLC_CORE0		0x1620
268 
269 #define A2W_PLLD_DSI0		0x1340
270 #define A2W_PLLD_CORE		0x1440
271 #define A2W_PLLD_PER		0x1540
272 #define A2W_PLLD_DSI1		0x1640
273 
274 #define A2W_PLLH_AUX		0x1360
275 #define A2W_PLLH_RCAL		0x1460
276 #define A2W_PLLH_PIX		0x1560
277 #define A2W_PLLH_STS		0x1660
278 
279 #define A2W_PLLH_CTRLR		0x1960
280 #define A2W_PLLH_FRACR		0x1a60
281 #define A2W_PLLH_AUXR		0x1b60
282 #define A2W_PLLH_RCALR		0x1c60
283 #define A2W_PLLH_PIXR		0x1d60
284 #define A2W_PLLH_STSR		0x1e60
285 
286 #define A2W_PLLB_ARM		0x13e0
287 #define A2W_PLLB_SP0		0x14e0
288 #define A2W_PLLB_SP1		0x15e0
289 #define A2W_PLLB_SP2		0x16e0
290 
291 #define LOCK_TIMEOUT_NS		100000000
292 #define BCM2835_MAX_FB_RATE	1750000000u
293 
294 #define SOC_BCM2835		BIT(0)
295 #define SOC_BCM2711		BIT(1)
296 #define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
297 
298 /*
299  * Names of clocks used within the driver that need to be replaced
300  * with an external parent's name.  This array is in the order that
301  * the clocks node in the DT references external clocks.
302  */
303 static const char *const cprman_parent_names[] = {
304 	"xosc",
305 	"dsi0_byte",
306 	"dsi0_ddr2",
307 	"dsi0_ddr",
308 	"dsi1_byte",
309 	"dsi1_ddr2",
310 	"dsi1_ddr",
311 };
312 
313 struct bcm2835_cprman {
314 	struct device *dev;
315 	void __iomem *regs;
316 	spinlock_t regs_lock; /* spinlock for all clocks */
317 	unsigned int soc;
318 
319 	/*
320 	 * Real names of cprman clock parents looked up through
321 	 * of_clk_get_parent_name(), which will be used in the
322 	 * parent_names[] arrays for clock registration.
323 	 */
324 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
325 
326 	/* Must be last */
327 	struct clk_hw_onecell_data onecell;
328 };
329 
330 struct cprman_plat_data {
331 	unsigned int soc;
332 };
333 
334 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
335 {
336 	writel(CM_PASSWORD | val, cprman->regs + reg);
337 }
338 
339 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
340 {
341 	return readl(cprman->regs + reg);
342 }
343 
344 /* Does a cycle of measuring a clock through the TCNT clock, which may
345  * source from many other clocks in the system.
346  */
347 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
348 					      u32 tcnt_mux)
349 {
350 	u32 osccount = 19200; /* 1ms */
351 	u32 count;
352 	ktime_t timeout;
353 
354 	spin_lock(&cprman->regs_lock);
355 
356 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
357 
358 	cprman_write(cprman, CM_TCNTCTL,
359 		     (tcnt_mux & CM_SRC_MASK) |
360 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
361 
362 	cprman_write(cprman, CM_OSCCOUNT, osccount);
363 
364 	/* do a kind delay at the start */
365 	mdelay(1);
366 
367 	/* Finish off whatever is left of OSCCOUNT */
368 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
369 	while (cprman_read(cprman, CM_OSCCOUNT)) {
370 		if (ktime_after(ktime_get(), timeout)) {
371 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
372 			count = 0;
373 			goto out;
374 		}
375 		cpu_relax();
376 	}
377 
378 	/* Wait for BUSY to clear. */
379 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
380 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
381 		if (ktime_after(ktime_get(), timeout)) {
382 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
383 			count = 0;
384 			goto out;
385 		}
386 		cpu_relax();
387 	}
388 
389 	count = cprman_read(cprman, CM_TCNTCNT);
390 
391 	cprman_write(cprman, CM_TCNTCTL, 0);
392 
393 out:
394 	spin_unlock(&cprman->regs_lock);
395 
396 	return count * 1000;
397 }
398 
399 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
400 				   const struct debugfs_reg32 *regs,
401 				   size_t nregs, struct dentry *dentry)
402 {
403 	struct debugfs_regset32 *regset;
404 
405 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406 	if (!regset)
407 		return;
408 
409 	regset->regs = regs;
410 	regset->nregs = nregs;
411 	regset->base = cprman->regs + base;
412 
413 	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
414 }
415 
416 struct bcm2835_pll_data {
417 	const char *name;
418 	u32 cm_ctrl_reg;
419 	u32 a2w_ctrl_reg;
420 	u32 frac_reg;
421 	u32 ana_reg_base;
422 	u32 reference_enable_mask;
423 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
424 	u32 lock_mask;
425 	u32 flags;
426 
427 	const struct bcm2835_pll_ana_bits *ana;
428 
429 	unsigned long min_rate;
430 	unsigned long max_rate;
431 	/*
432 	 * Highest rate for the VCO before we have to use the
433 	 * pre-divide-by-2.
434 	 */
435 	unsigned long max_fb_rate;
436 };
437 
438 struct bcm2835_pll_ana_bits {
439 	u32 mask0;
440 	u32 set0;
441 	u32 mask1;
442 	u32 set1;
443 	u32 mask3;
444 	u32 set3;
445 	u32 fb_prediv_mask;
446 };
447 
448 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
449 	.mask0 = 0,
450 	.set0 = 0,
451 	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
452 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
453 	.mask3 = A2W_PLL_KA_MASK,
454 	.set3 = (2 << A2W_PLL_KA_SHIFT),
455 	.fb_prediv_mask = BIT(14),
456 };
457 
458 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
459 	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
460 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
461 	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
462 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
463 	.mask3 = 0,
464 	.set3 = 0,
465 	.fb_prediv_mask = BIT(11),
466 };
467 
468 struct bcm2835_pll_divider_data {
469 	const char *name;
470 	const char *source_pll;
471 
472 	u32 cm_reg;
473 	u32 a2w_reg;
474 
475 	u32 load_mask;
476 	u32 hold_mask;
477 	u32 fixed_divider;
478 	u32 flags;
479 };
480 
481 struct bcm2835_clock_data {
482 	const char *name;
483 
484 	const char *const *parents;
485 	int num_mux_parents;
486 
487 	/* Bitmap encoding which parents accept rate change propagation. */
488 	unsigned int set_rate_parent;
489 
490 	u32 ctl_reg;
491 	u32 div_reg;
492 
493 	/* Number of integer bits in the divider */
494 	u32 int_bits;
495 	/* Number of fractional bits in the divider */
496 	u32 frac_bits;
497 
498 	u32 flags;
499 
500 	bool is_vpu_clock;
501 	bool is_mash_clock;
502 	bool low_jitter;
503 
504 	u32 tcnt_mux;
505 };
506 
507 struct bcm2835_gate_data {
508 	const char *name;
509 	const char *parent;
510 
511 	u32 ctl_reg;
512 };
513 
514 struct bcm2835_pll {
515 	struct clk_hw hw;
516 	struct bcm2835_cprman *cprman;
517 	const struct bcm2835_pll_data *data;
518 };
519 
520 static int bcm2835_pll_is_on(struct clk_hw *hw)
521 {
522 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
523 	struct bcm2835_cprman *cprman = pll->cprman;
524 	const struct bcm2835_pll_data *data = pll->data;
525 
526 	return cprman_read(cprman, data->a2w_ctrl_reg) &
527 		A2W_PLL_CTRL_PRST_DISABLE;
528 }
529 
530 static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
531 				       const struct bcm2835_pll_data *data)
532 {
533 	/*
534 	 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
535 	 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
536 	 * for to for VCO RANGE bits.
537 	 */
538 	if (cprman->soc & SOC_BCM2711)
539 		return 0;
540 
541 	return data->ana->fb_prediv_mask;
542 }
543 
544 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
545 					     unsigned long parent_rate,
546 					     u32 *ndiv, u32 *fdiv)
547 {
548 	u64 div;
549 
550 	div = (u64)rate << A2W_PLL_FRAC_BITS;
551 	do_div(div, parent_rate);
552 
553 	*ndiv = div >> A2W_PLL_FRAC_BITS;
554 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
555 }
556 
557 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
558 					   u32 ndiv, u32 fdiv, u32 pdiv)
559 {
560 	u64 rate;
561 
562 	if (pdiv == 0)
563 		return 0;
564 
565 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
566 	do_div(rate, pdiv);
567 	return rate >> A2W_PLL_FRAC_BITS;
568 }
569 
570 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
571 				   unsigned long *parent_rate)
572 {
573 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
574 	const struct bcm2835_pll_data *data = pll->data;
575 	u32 ndiv, fdiv;
576 
577 	rate = clamp(rate, data->min_rate, data->max_rate);
578 
579 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
580 
581 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
582 }
583 
584 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
585 					  unsigned long parent_rate)
586 {
587 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
588 	struct bcm2835_cprman *cprman = pll->cprman;
589 	const struct bcm2835_pll_data *data = pll->data;
590 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
591 	u32 ndiv, pdiv, fdiv;
592 	bool using_prediv;
593 
594 	if (parent_rate == 0)
595 		return 0;
596 
597 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
598 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
599 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
600 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
601 		       bcm2835_pll_get_prediv_mask(cprman, data);
602 
603 	if (using_prediv) {
604 		ndiv *= 2;
605 		fdiv *= 2;
606 	}
607 
608 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
609 }
610 
611 static void bcm2835_pll_off(struct clk_hw *hw)
612 {
613 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
614 	struct bcm2835_cprman *cprman = pll->cprman;
615 	const struct bcm2835_pll_data *data = pll->data;
616 
617 	spin_lock(&cprman->regs_lock);
618 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
619 	cprman_write(cprman, data->a2w_ctrl_reg,
620 		     cprman_read(cprman, data->a2w_ctrl_reg) |
621 		     A2W_PLL_CTRL_PWRDN);
622 	spin_unlock(&cprman->regs_lock);
623 }
624 
625 static int bcm2835_pll_on(struct clk_hw *hw)
626 {
627 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
628 	struct bcm2835_cprman *cprman = pll->cprman;
629 	const struct bcm2835_pll_data *data = pll->data;
630 	ktime_t timeout;
631 
632 	cprman_write(cprman, data->a2w_ctrl_reg,
633 		     cprman_read(cprman, data->a2w_ctrl_reg) &
634 		     ~A2W_PLL_CTRL_PWRDN);
635 
636 	/* Take the PLL out of reset. */
637 	spin_lock(&cprman->regs_lock);
638 	cprman_write(cprman, data->cm_ctrl_reg,
639 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
640 	spin_unlock(&cprman->regs_lock);
641 
642 	/* Wait for the PLL to lock. */
643 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
644 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
645 		if (ktime_after(ktime_get(), timeout)) {
646 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
647 				clk_hw_get_name(hw));
648 			return -ETIMEDOUT;
649 		}
650 
651 		cpu_relax();
652 	}
653 
654 	cprman_write(cprman, data->a2w_ctrl_reg,
655 		     cprman_read(cprman, data->a2w_ctrl_reg) |
656 		     A2W_PLL_CTRL_PRST_DISABLE);
657 
658 	return 0;
659 }
660 
661 static void
662 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
663 {
664 	int i;
665 
666 	/*
667 	 * ANA register setup is done as a series of writes to
668 	 * ANA3-ANA0, in that order.  This lets us write all 4
669 	 * registers as a single cycle of the serdes interface (taking
670 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
671 	 * 3 individually through their partial-write registers, each
672 	 * would be their own serdes cycle.
673 	 */
674 	for (i = 3; i >= 0; i--)
675 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
676 }
677 
678 static int bcm2835_pll_set_rate(struct clk_hw *hw,
679 				unsigned long rate, unsigned long parent_rate)
680 {
681 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
682 	struct bcm2835_cprman *cprman = pll->cprman;
683 	const struct bcm2835_pll_data *data = pll->data;
684 	u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
685 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
686 	u32 ndiv, fdiv, a2w_ctl;
687 	u32 ana[4];
688 	int i;
689 
690 	if (rate > data->max_fb_rate) {
691 		use_fb_prediv = true;
692 		rate /= 2;
693 	} else {
694 		use_fb_prediv = false;
695 	}
696 
697 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
698 
699 	for (i = 3; i >= 0; i--)
700 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
701 
702 	was_using_prediv = ana[1] & prediv_mask;
703 
704 	ana[0] &= ~data->ana->mask0;
705 	ana[0] |= data->ana->set0;
706 	ana[1] &= ~data->ana->mask1;
707 	ana[1] |= data->ana->set1;
708 	ana[3] &= ~data->ana->mask3;
709 	ana[3] |= data->ana->set3;
710 
711 	if (was_using_prediv && !use_fb_prediv) {
712 		ana[1] &= ~prediv_mask;
713 		do_ana_setup_first = true;
714 	} else if (!was_using_prediv && use_fb_prediv) {
715 		ana[1] |= prediv_mask;
716 		do_ana_setup_first = false;
717 	} else {
718 		do_ana_setup_first = true;
719 	}
720 
721 	/* Unmask the reference clock from the oscillator. */
722 	spin_lock(&cprman->regs_lock);
723 	cprman_write(cprman, A2W_XOSC_CTRL,
724 		     cprman_read(cprman, A2W_XOSC_CTRL) |
725 		     data->reference_enable_mask);
726 	spin_unlock(&cprman->regs_lock);
727 
728 	if (do_ana_setup_first)
729 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
730 
731 	/* Set the PLL multiplier from the oscillator. */
732 	cprman_write(cprman, data->frac_reg, fdiv);
733 
734 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
735 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
736 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
737 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
738 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
739 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
740 
741 	if (!do_ana_setup_first)
742 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
743 
744 	return 0;
745 }
746 
747 static void bcm2835_pll_debug_init(struct clk_hw *hw,
748 				  struct dentry *dentry)
749 {
750 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
751 	struct bcm2835_cprman *cprman = pll->cprman;
752 	const struct bcm2835_pll_data *data = pll->data;
753 	struct debugfs_reg32 *regs;
754 
755 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
756 	if (!regs)
757 		return;
758 
759 	regs[0].name = "cm_ctrl";
760 	regs[0].offset = data->cm_ctrl_reg;
761 	regs[1].name = "a2w_ctrl";
762 	regs[1].offset = data->a2w_ctrl_reg;
763 	regs[2].name = "frac";
764 	regs[2].offset = data->frac_reg;
765 	regs[3].name = "ana0";
766 	regs[3].offset = data->ana_reg_base + 0 * 4;
767 	regs[4].name = "ana1";
768 	regs[4].offset = data->ana_reg_base + 1 * 4;
769 	regs[5].name = "ana2";
770 	regs[5].offset = data->ana_reg_base + 2 * 4;
771 	regs[6].name = "ana3";
772 	regs[6].offset = data->ana_reg_base + 3 * 4;
773 
774 	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
775 }
776 
777 static const struct clk_ops bcm2835_pll_clk_ops = {
778 	.is_prepared = bcm2835_pll_is_on,
779 	.prepare = bcm2835_pll_on,
780 	.unprepare = bcm2835_pll_off,
781 	.recalc_rate = bcm2835_pll_get_rate,
782 	.set_rate = bcm2835_pll_set_rate,
783 	.round_rate = bcm2835_pll_round_rate,
784 	.debug_init = bcm2835_pll_debug_init,
785 };
786 
787 struct bcm2835_pll_divider {
788 	struct clk_divider div;
789 	struct bcm2835_cprman *cprman;
790 	const struct bcm2835_pll_divider_data *data;
791 };
792 
793 static struct bcm2835_pll_divider *
794 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
795 {
796 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
797 }
798 
799 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
800 {
801 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
802 	struct bcm2835_cprman *cprman = divider->cprman;
803 	const struct bcm2835_pll_divider_data *data = divider->data;
804 
805 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
806 }
807 
808 static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
809 					      struct clk_rate_request *req)
810 {
811 	return clk_divider_ops.determine_rate(hw, req);
812 }
813 
814 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
815 						  unsigned long parent_rate)
816 {
817 	return clk_divider_ops.recalc_rate(hw, parent_rate);
818 }
819 
820 static void bcm2835_pll_divider_off(struct clk_hw *hw)
821 {
822 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
823 	struct bcm2835_cprman *cprman = divider->cprman;
824 	const struct bcm2835_pll_divider_data *data = divider->data;
825 
826 	spin_lock(&cprman->regs_lock);
827 	cprman_write(cprman, data->cm_reg,
828 		     (cprman_read(cprman, data->cm_reg) &
829 		      ~data->load_mask) | data->hold_mask);
830 	cprman_write(cprman, data->a2w_reg,
831 		     cprman_read(cprman, data->a2w_reg) |
832 		     A2W_PLL_CHANNEL_DISABLE);
833 	spin_unlock(&cprman->regs_lock);
834 }
835 
836 static int bcm2835_pll_divider_on(struct clk_hw *hw)
837 {
838 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
839 	struct bcm2835_cprman *cprman = divider->cprman;
840 	const struct bcm2835_pll_divider_data *data = divider->data;
841 
842 	spin_lock(&cprman->regs_lock);
843 	cprman_write(cprman, data->a2w_reg,
844 		     cprman_read(cprman, data->a2w_reg) &
845 		     ~A2W_PLL_CHANNEL_DISABLE);
846 
847 	cprman_write(cprman, data->cm_reg,
848 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
849 	spin_unlock(&cprman->regs_lock);
850 
851 	return 0;
852 }
853 
854 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
855 					unsigned long rate,
856 					unsigned long parent_rate)
857 {
858 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
859 	struct bcm2835_cprman *cprman = divider->cprman;
860 	const struct bcm2835_pll_divider_data *data = divider->data;
861 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
862 
863 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
864 
865 	div = min(div, max_div);
866 	if (div == max_div)
867 		div = 0;
868 
869 	cprman_write(cprman, data->a2w_reg, div);
870 	cm = cprman_read(cprman, data->cm_reg);
871 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
872 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
873 
874 	return 0;
875 }
876 
877 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
878 					   struct dentry *dentry)
879 {
880 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
881 	struct bcm2835_cprman *cprman = divider->cprman;
882 	const struct bcm2835_pll_divider_data *data = divider->data;
883 	struct debugfs_reg32 *regs;
884 
885 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
886 	if (!regs)
887 		return;
888 
889 	regs[0].name = "cm";
890 	regs[0].offset = data->cm_reg;
891 	regs[1].name = "a2w";
892 	regs[1].offset = data->a2w_reg;
893 
894 	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
895 }
896 
897 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
898 	.is_prepared = bcm2835_pll_divider_is_on,
899 	.prepare = bcm2835_pll_divider_on,
900 	.unprepare = bcm2835_pll_divider_off,
901 	.recalc_rate = bcm2835_pll_divider_get_rate,
902 	.set_rate = bcm2835_pll_divider_set_rate,
903 	.determine_rate = bcm2835_pll_divider_determine_rate,
904 	.debug_init = bcm2835_pll_divider_debug_init,
905 };
906 
907 /*
908  * The CM dividers do fixed-point division, so we can't use the
909  * generic integer divider code like the PLL dividers do (and we can't
910  * fake it by having some fixed shifts preceding it in the clock tree,
911  * because we'd run out of bits in a 32-bit unsigned long).
912  */
913 struct bcm2835_clock {
914 	struct clk_hw hw;
915 	struct bcm2835_cprman *cprman;
916 	const struct bcm2835_clock_data *data;
917 };
918 
919 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
920 {
921 	return container_of(hw, struct bcm2835_clock, hw);
922 }
923 
924 static int bcm2835_clock_is_on(struct clk_hw *hw)
925 {
926 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
927 	struct bcm2835_cprman *cprman = clock->cprman;
928 	const struct bcm2835_clock_data *data = clock->data;
929 
930 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
931 }
932 
933 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
934 				    unsigned long rate,
935 				    unsigned long parent_rate)
936 {
937 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
938 	const struct bcm2835_clock_data *data = clock->data;
939 	u32 unused_frac_mask =
940 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
941 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
942 	u64 rem;
943 	u32 div, mindiv, maxdiv;
944 
945 	rem = do_div(temp, rate);
946 	div = temp;
947 	div &= ~unused_frac_mask;
948 
949 	/* different clamping limits apply for a mash clock */
950 	if (data->is_mash_clock) {
951 		/* clamp to min divider of 2 */
952 		mindiv = 2 << CM_DIV_FRAC_BITS;
953 		/* clamp to the highest possible integer divider */
954 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
955 	} else {
956 		/* clamp to min divider of 1 */
957 		mindiv = 1 << CM_DIV_FRAC_BITS;
958 		/* clamp to the highest possible fractional divider */
959 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
960 				 CM_DIV_FRAC_BITS - data->frac_bits);
961 	}
962 
963 	/* apply the clamping  limits */
964 	div = max_t(u32, div, mindiv);
965 	div = min_t(u32, div, maxdiv);
966 
967 	return div;
968 }
969 
970 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
971 					    unsigned long parent_rate,
972 					    u32 div)
973 {
974 	const struct bcm2835_clock_data *data = clock->data;
975 	u64 temp;
976 
977 	if (data->int_bits == 0 && data->frac_bits == 0)
978 		return parent_rate;
979 
980 	/*
981 	 * The divisor is a 12.12 fixed point field, but only some of
982 	 * the bits are populated in any given clock.
983 	 */
984 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
985 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
986 
987 	if (div == 0)
988 		return 0;
989 
990 	temp = (u64)parent_rate << data->frac_bits;
991 
992 	do_div(temp, div);
993 
994 	return temp;
995 }
996 
997 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
998 					    unsigned long parent_rate)
999 {
1000 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1001 	struct bcm2835_cprman *cprman = clock->cprman;
1002 	const struct bcm2835_clock_data *data = clock->data;
1003 	u32 div;
1004 
1005 	if (data->int_bits == 0 && data->frac_bits == 0)
1006 		return parent_rate;
1007 
1008 	div = cprman_read(cprman, data->div_reg);
1009 
1010 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1011 }
1012 
1013 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1014 {
1015 	struct bcm2835_cprman *cprman = clock->cprman;
1016 	const struct bcm2835_clock_data *data = clock->data;
1017 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1018 
1019 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1020 		if (ktime_after(ktime_get(), timeout)) {
1021 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1022 				clk_hw_get_name(&clock->hw));
1023 			return;
1024 		}
1025 		cpu_relax();
1026 	}
1027 }
1028 
1029 static void bcm2835_clock_off(struct clk_hw *hw)
1030 {
1031 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1032 	struct bcm2835_cprman *cprman = clock->cprman;
1033 	const struct bcm2835_clock_data *data = clock->data;
1034 
1035 	spin_lock(&cprman->regs_lock);
1036 	cprman_write(cprman, data->ctl_reg,
1037 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1038 	spin_unlock(&cprman->regs_lock);
1039 
1040 	/* BUSY will remain high until the divider completes its cycle. */
1041 	bcm2835_clock_wait_busy(clock);
1042 }
1043 
1044 static int bcm2835_clock_on(struct clk_hw *hw)
1045 {
1046 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1047 	struct bcm2835_cprman *cprman = clock->cprman;
1048 	const struct bcm2835_clock_data *data = clock->data;
1049 
1050 	spin_lock(&cprman->regs_lock);
1051 	cprman_write(cprman, data->ctl_reg,
1052 		     cprman_read(cprman, data->ctl_reg) |
1053 		     CM_ENABLE |
1054 		     CM_GATE);
1055 	spin_unlock(&cprman->regs_lock);
1056 
1057 	/* Debug code to measure the clock once it's turned on to see
1058 	 * if it's ticking at the rate we expect.
1059 	 */
1060 	if (data->tcnt_mux && false) {
1061 		dev_info(cprman->dev,
1062 			 "clk %s: rate %ld, measure %ld\n",
1063 			 data->name,
1064 			 clk_hw_get_rate(hw),
1065 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1072 				  unsigned long rate, unsigned long parent_rate)
1073 {
1074 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1075 	struct bcm2835_cprman *cprman = clock->cprman;
1076 	const struct bcm2835_clock_data *data = clock->data;
1077 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1078 	u32 ctl;
1079 
1080 	spin_lock(&cprman->regs_lock);
1081 
1082 	/*
1083 	 * Setting up frac support
1084 	 *
1085 	 * In principle it is recommended to stop/start the clock first,
1086 	 * but as we set CLK_SET_RATE_GATE during registration of the
1087 	 * clock this requirement should be take care of by the
1088 	 * clk-framework.
1089 	 */
1090 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1091 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1092 	cprman_write(cprman, data->ctl_reg, ctl);
1093 
1094 	cprman_write(cprman, data->div_reg, div);
1095 
1096 	spin_unlock(&cprman->regs_lock);
1097 
1098 	return 0;
1099 }
1100 
1101 static bool
1102 bcm2835_clk_is_pllc(struct clk_hw *hw)
1103 {
1104 	if (!hw)
1105 		return false;
1106 
1107 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1108 }
1109 
1110 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1111 							int parent_idx,
1112 							unsigned long rate,
1113 							u32 *div,
1114 							unsigned long *prate,
1115 							unsigned long *avgrate)
1116 {
1117 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1118 	struct bcm2835_cprman *cprman = clock->cprman;
1119 	const struct bcm2835_clock_data *data = clock->data;
1120 	unsigned long best_rate = 0;
1121 	u32 curdiv, mindiv, maxdiv;
1122 	struct clk_hw *parent;
1123 
1124 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1125 
1126 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1127 		*prate = clk_hw_get_rate(parent);
1128 		*div = bcm2835_clock_choose_div(hw, rate, *prate);
1129 
1130 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1131 
1132 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1133 			unsigned long high, low;
1134 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1135 
1136 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1137 							       int_div);
1138 			int_div += CM_DIV_FRAC_MASK + 1;
1139 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1140 							      int_div);
1141 
1142 			/*
1143 			 * Return a value which is the maximum deviation
1144 			 * below the ideal rate, for use as a metric.
1145 			 */
1146 			return *avgrate - max(*avgrate - low, high - *avgrate);
1147 		}
1148 		return *avgrate;
1149 	}
1150 
1151 	if (data->frac_bits)
1152 		dev_warn(cprman->dev,
1153 			"frac bits are not used when propagating rate change");
1154 
1155 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1156 	mindiv = data->is_mash_clock ? 2 : 1;
1157 	maxdiv = BIT(data->int_bits) - 1;
1158 
1159 	/* TODO: Be smart, and only test a subset of the available divisors. */
1160 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1161 		unsigned long tmp_rate;
1162 
1163 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1164 		tmp_rate /= curdiv;
1165 		if (curdiv == mindiv ||
1166 		    (tmp_rate > best_rate && tmp_rate <= rate))
1167 			best_rate = tmp_rate;
1168 
1169 		if (best_rate == rate)
1170 			break;
1171 	}
1172 
1173 	*div = curdiv << CM_DIV_FRAC_BITS;
1174 	*prate = curdiv * best_rate;
1175 	*avgrate = best_rate;
1176 
1177 	return best_rate;
1178 }
1179 
1180 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1181 					struct clk_rate_request *req)
1182 {
1183 	struct clk_hw *parent, *best_parent = NULL;
1184 	bool current_parent_is_pllc;
1185 	unsigned long rate, best_rate = 0;
1186 	unsigned long prate, best_prate = 0;
1187 	unsigned long avgrate, best_avgrate = 0;
1188 	size_t i;
1189 	u32 div;
1190 
1191 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1192 
1193 	/*
1194 	 * Select parent clock that results in the closest but lower rate
1195 	 */
1196 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1197 		parent = clk_hw_get_parent_by_index(hw, i);
1198 		if (!parent)
1199 			continue;
1200 
1201 		/*
1202 		 * Don't choose a PLLC-derived clock as our parent
1203 		 * unless it had been manually set that way.  PLLC's
1204 		 * frequency gets adjusted by the firmware due to
1205 		 * over-temp or under-voltage conditions, without
1206 		 * prior notification to our clock consumer.
1207 		 */
1208 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1209 			continue;
1210 
1211 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1212 							  &div, &prate,
1213 							  &avgrate);
1214 		if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1215 			best_parent = parent;
1216 			best_prate = prate;
1217 			best_rate = rate;
1218 			best_avgrate = avgrate;
1219 		}
1220 	}
1221 
1222 	if (!best_parent)
1223 		return -EINVAL;
1224 
1225 	req->best_parent_hw = best_parent;
1226 	req->best_parent_rate = best_prate;
1227 
1228 	req->rate = best_avgrate;
1229 
1230 	return 0;
1231 }
1232 
1233 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1234 {
1235 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1236 	struct bcm2835_cprman *cprman = clock->cprman;
1237 	const struct bcm2835_clock_data *data = clock->data;
1238 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1239 
1240 	cprman_write(cprman, data->ctl_reg, src);
1241 	return 0;
1242 }
1243 
1244 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1245 {
1246 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1247 	struct bcm2835_cprman *cprman = clock->cprman;
1248 	const struct bcm2835_clock_data *data = clock->data;
1249 	u32 src = cprman_read(cprman, data->ctl_reg);
1250 
1251 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1252 }
1253 
1254 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1255 	{
1256 		.name = "ctl",
1257 		.offset = 0,
1258 	},
1259 	{
1260 		.name = "div",
1261 		.offset = 4,
1262 	},
1263 };
1264 
1265 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1266 				    struct dentry *dentry)
1267 {
1268 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1269 	struct bcm2835_cprman *cprman = clock->cprman;
1270 	const struct bcm2835_clock_data *data = clock->data;
1271 
1272 	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1273 		bcm2835_debugfs_clock_reg32,
1274 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1275 		dentry);
1276 }
1277 
1278 static const struct clk_ops bcm2835_clock_clk_ops = {
1279 	.is_prepared = bcm2835_clock_is_on,
1280 	.prepare = bcm2835_clock_on,
1281 	.unprepare = bcm2835_clock_off,
1282 	.recalc_rate = bcm2835_clock_get_rate,
1283 	.set_rate = bcm2835_clock_set_rate,
1284 	.determine_rate = bcm2835_clock_determine_rate,
1285 	.set_parent = bcm2835_clock_set_parent,
1286 	.get_parent = bcm2835_clock_get_parent,
1287 	.debug_init = bcm2835_clock_debug_init,
1288 };
1289 
1290 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1291 {
1292 	return true;
1293 }
1294 
1295 /*
1296  * The VPU clock can never be disabled (it doesn't have an ENABLE
1297  * bit), so it gets its own set of clock ops.
1298  */
1299 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1300 	.is_prepared = bcm2835_vpu_clock_is_on,
1301 	.recalc_rate = bcm2835_clock_get_rate,
1302 	.set_rate = bcm2835_clock_set_rate,
1303 	.determine_rate = bcm2835_clock_determine_rate,
1304 	.set_parent = bcm2835_clock_set_parent,
1305 	.get_parent = bcm2835_clock_get_parent,
1306 	.debug_init = bcm2835_clock_debug_init,
1307 };
1308 
1309 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1310 					   const void *data)
1311 {
1312 	const struct bcm2835_pll_data *pll_data = data;
1313 	struct bcm2835_pll *pll;
1314 	struct clk_init_data init;
1315 	int ret;
1316 
1317 	memset(&init, 0, sizeof(init));
1318 
1319 	/* All of the PLLs derive from the external oscillator. */
1320 	init.parent_names = &cprman->real_parent_names[0];
1321 	init.num_parents = 1;
1322 	init.name = pll_data->name;
1323 	init.ops = &bcm2835_pll_clk_ops;
1324 	init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1325 
1326 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1327 	if (!pll)
1328 		return NULL;
1329 
1330 	pll->cprman = cprman;
1331 	pll->data = pll_data;
1332 	pll->hw.init = &init;
1333 
1334 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1335 	if (ret) {
1336 		kfree(pll);
1337 		return NULL;
1338 	}
1339 	return &pll->hw;
1340 }
1341 
1342 static struct clk_hw *
1343 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1344 			     const void *data)
1345 {
1346 	const struct bcm2835_pll_divider_data *divider_data = data;
1347 	struct bcm2835_pll_divider *divider;
1348 	struct clk_init_data init;
1349 	const char *divider_name;
1350 	int ret;
1351 
1352 	if (divider_data->fixed_divider != 1) {
1353 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1354 					      "%s_prediv", divider_data->name);
1355 		if (!divider_name)
1356 			return NULL;
1357 	} else {
1358 		divider_name = divider_data->name;
1359 	}
1360 
1361 	memset(&init, 0, sizeof(init));
1362 
1363 	init.parent_names = &divider_data->source_pll;
1364 	init.num_parents = 1;
1365 	init.name = divider_name;
1366 	init.ops = &bcm2835_pll_divider_clk_ops;
1367 	init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1368 
1369 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1370 	if (!divider)
1371 		return NULL;
1372 
1373 	divider->div.reg = cprman->regs + divider_data->a2w_reg;
1374 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1375 	divider->div.width = A2W_PLL_DIV_BITS;
1376 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1377 	divider->div.lock = &cprman->regs_lock;
1378 	divider->div.hw.init = &init;
1379 	divider->div.table = NULL;
1380 
1381 	divider->cprman = cprman;
1382 	divider->data = divider_data;
1383 
1384 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1385 	if (ret)
1386 		return ERR_PTR(ret);
1387 
1388 	/*
1389 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1390 	 * is what our consumers are actually using.
1391 	 */
1392 	if (divider_data->fixed_divider != 1) {
1393 		return clk_hw_register_fixed_factor(cprman->dev,
1394 						    divider_data->name,
1395 						    divider_name,
1396 						    CLK_SET_RATE_PARENT,
1397 						    1,
1398 						    divider_data->fixed_divider);
1399 	}
1400 
1401 	return &divider->div.hw;
1402 }
1403 
1404 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1405 					     const void *data)
1406 {
1407 	const struct bcm2835_clock_data *clock_data = data;
1408 	struct bcm2835_clock *clock;
1409 	struct clk_init_data init;
1410 	const char *parents[1 << CM_SRC_BITS];
1411 	size_t i;
1412 	int ret;
1413 
1414 	/*
1415 	 * Replace our strings referencing parent clocks with the
1416 	 * actual clock-output-name of the parent.
1417 	 */
1418 	for (i = 0; i < clock_data->num_mux_parents; i++) {
1419 		parents[i] = clock_data->parents[i];
1420 
1421 		ret = match_string(cprman_parent_names,
1422 				   ARRAY_SIZE(cprman_parent_names),
1423 				   parents[i]);
1424 		if (ret >= 0)
1425 			parents[i] = cprman->real_parent_names[ret];
1426 	}
1427 
1428 	memset(&init, 0, sizeof(init));
1429 	init.parent_names = parents;
1430 	init.num_parents = clock_data->num_mux_parents;
1431 	init.name = clock_data->name;
1432 	init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1433 
1434 	/*
1435 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1436 	 * rate changes on at least of the parents.
1437 	 */
1438 	if (clock_data->set_rate_parent)
1439 		init.flags |= CLK_SET_RATE_PARENT;
1440 
1441 	if (clock_data->is_vpu_clock) {
1442 		init.ops = &bcm2835_vpu_clock_clk_ops;
1443 	} else {
1444 		init.ops = &bcm2835_clock_clk_ops;
1445 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1446 
1447 		/* If the clock wasn't actually enabled at boot, it's not
1448 		 * critical.
1449 		 */
1450 		if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1451 			init.flags &= ~CLK_IS_CRITICAL;
1452 	}
1453 
1454 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1455 	if (!clock)
1456 		return NULL;
1457 
1458 	clock->cprman = cprman;
1459 	clock->data = clock_data;
1460 	clock->hw.init = &init;
1461 
1462 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1463 	if (ret)
1464 		return ERR_PTR(ret);
1465 	return &clock->hw;
1466 }
1467 
1468 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1469 					    const void *data)
1470 {
1471 	const struct bcm2835_gate_data *gate_data = data;
1472 
1473 	return clk_hw_register_gate(cprman->dev, gate_data->name,
1474 				    gate_data->parent,
1475 				    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1476 				    cprman->regs + gate_data->ctl_reg,
1477 				    CM_GATE_BIT, 0, &cprman->regs_lock);
1478 }
1479 
1480 struct bcm2835_clk_desc {
1481 	struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1482 				       const void *data);
1483 	unsigned int supported;
1484 	const void *data;
1485 };
1486 
1487 /* assignment helper macros for different clock types */
1488 #define _REGISTER(f, s, ...) { .clk_register = f, \
1489 			       .supported = s,				\
1490 			       .data = __VA_ARGS__ }
1491 #define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1492 					  s,				\
1493 					  &(struct bcm2835_pll_data)	\
1494 					  {__VA_ARGS__})
1495 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1496 					   s,				  \
1497 					   &(struct bcm2835_pll_divider_data) \
1498 					   {__VA_ARGS__})
1499 #define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1500 					  s,				\
1501 					  &(struct bcm2835_clock_data)	\
1502 					  {__VA_ARGS__})
1503 #define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1504 					  s,				\
1505 					  &(struct bcm2835_gate_data)	\
1506 					  {__VA_ARGS__})
1507 
1508 /* parent mux arrays plus helper macros */
1509 
1510 /* main oscillator parent mux */
1511 static const char *const bcm2835_clock_osc_parents[] = {
1512 	"gnd",
1513 	"xosc",
1514 	"testdebug0",
1515 	"testdebug1"
1516 };
1517 
1518 #define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1519 	s,								\
1520 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1521 	.parents = bcm2835_clock_osc_parents,				\
1522 	__VA_ARGS__)
1523 
1524 /* main peripherial parent mux */
1525 static const char *const bcm2835_clock_per_parents[] = {
1526 	"gnd",
1527 	"xosc",
1528 	"testdebug0",
1529 	"testdebug1",
1530 	"plla_per",
1531 	"pllc_per",
1532 	"plld_per",
1533 	"pllh_aux",
1534 };
1535 
1536 #define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1537 	s,								\
1538 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1539 	.parents = bcm2835_clock_per_parents,				\
1540 	__VA_ARGS__)
1541 
1542 /*
1543  * Restrict clock sources for the PCM peripheral to the oscillator and
1544  * PLLD_PER because other source may have varying rates or be switched
1545  * off.
1546  *
1547  * Prevent other sources from being selected by replacing their names in
1548  * the list of potential parents with dummy entries (entry index is
1549  * significant).
1550  */
1551 static const char *const bcm2835_pcm_per_parents[] = {
1552 	"-",
1553 	"xosc",
1554 	"-",
1555 	"-",
1556 	"-",
1557 	"-",
1558 	"plld_per",
1559 	"-",
1560 };
1561 
1562 #define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1563 	s,								\
1564 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1565 	.parents = bcm2835_pcm_per_parents,				\
1566 	__VA_ARGS__)
1567 
1568 /* main vpu parent mux */
1569 static const char *const bcm2835_clock_vpu_parents[] = {
1570 	"gnd",
1571 	"xosc",
1572 	"testdebug0",
1573 	"testdebug1",
1574 	"plla_core",
1575 	"pllc_core0",
1576 	"plld_core",
1577 	"pllh_aux",
1578 	"pllc_core1",
1579 	"pllc_core2",
1580 };
1581 
1582 #define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1583 	s,								\
1584 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1585 	.parents = bcm2835_clock_vpu_parents,				\
1586 	__VA_ARGS__)
1587 
1588 /*
1589  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1590  * analog PHY.  The _inv variants are generated internally to cprman,
1591  * but we don't use them so they aren't hooked up.
1592  */
1593 static const char *const bcm2835_clock_dsi0_parents[] = {
1594 	"gnd",
1595 	"xosc",
1596 	"testdebug0",
1597 	"testdebug1",
1598 	"dsi0_ddr",
1599 	"dsi0_ddr_inv",
1600 	"dsi0_ddr2",
1601 	"dsi0_ddr2_inv",
1602 	"dsi0_byte",
1603 	"dsi0_byte_inv",
1604 };
1605 
1606 static const char *const bcm2835_clock_dsi1_parents[] = {
1607 	"gnd",
1608 	"xosc",
1609 	"testdebug0",
1610 	"testdebug1",
1611 	"dsi1_ddr",
1612 	"dsi1_ddr_inv",
1613 	"dsi1_ddr2",
1614 	"dsi1_ddr2_inv",
1615 	"dsi1_byte",
1616 	"dsi1_byte_inv",
1617 };
1618 
1619 #define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1620 	s,								\
1621 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1622 	.parents = bcm2835_clock_dsi0_parents,				\
1623 	__VA_ARGS__)
1624 
1625 #define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1626 	s,								\
1627 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1628 	.parents = bcm2835_clock_dsi1_parents,				\
1629 	__VA_ARGS__)
1630 
1631 /*
1632  * the real definition of all the pll, pll_dividers and clocks
1633  * these make use of the above REGISTER_* macros
1634  */
1635 static const struct bcm2835_clk_desc clk_desc_array[] = {
1636 	/* the PLL + PLL dividers */
1637 
1638 	/*
1639 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1640 	 * (Compact Camera Port 2) transmitter clock.
1641 	 *
1642 	 * It is in the PX LDO power domain, which is on when the
1643 	 * AUDIO domain is on.
1644 	 */
1645 	[BCM2835_PLLA]		= REGISTER_PLL(
1646 		SOC_ALL,
1647 		.name = "plla",
1648 		.cm_ctrl_reg = CM_PLLA,
1649 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1650 		.frac_reg = A2W_PLLA_FRAC,
1651 		.ana_reg_base = A2W_PLLA_ANA0,
1652 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1653 		.lock_mask = CM_LOCK_FLOCKA,
1654 
1655 		.ana = &bcm2835_ana_default,
1656 
1657 		.min_rate = 600000000u,
1658 		.max_rate = 2400000000u,
1659 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1660 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1661 		SOC_ALL,
1662 		.name = "plla_core",
1663 		.source_pll = "plla",
1664 		.cm_reg = CM_PLLA,
1665 		.a2w_reg = A2W_PLLA_CORE,
1666 		.load_mask = CM_PLLA_LOADCORE,
1667 		.hold_mask = CM_PLLA_HOLDCORE,
1668 		.fixed_divider = 1,
1669 		.flags = CLK_SET_RATE_PARENT),
1670 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1671 		SOC_ALL,
1672 		.name = "plla_per",
1673 		.source_pll = "plla",
1674 		.cm_reg = CM_PLLA,
1675 		.a2w_reg = A2W_PLLA_PER,
1676 		.load_mask = CM_PLLA_LOADPER,
1677 		.hold_mask = CM_PLLA_HOLDPER,
1678 		.fixed_divider = 1,
1679 		.flags = CLK_SET_RATE_PARENT),
1680 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1681 		SOC_ALL,
1682 		.name = "plla_dsi0",
1683 		.source_pll = "plla",
1684 		.cm_reg = CM_PLLA,
1685 		.a2w_reg = A2W_PLLA_DSI0,
1686 		.load_mask = CM_PLLA_LOADDSI0,
1687 		.hold_mask = CM_PLLA_HOLDDSI0,
1688 		.fixed_divider = 1),
1689 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1690 		SOC_ALL,
1691 		.name = "plla_ccp2",
1692 		.source_pll = "plla",
1693 		.cm_reg = CM_PLLA,
1694 		.a2w_reg = A2W_PLLA_CCP2,
1695 		.load_mask = CM_PLLA_LOADCCP2,
1696 		.hold_mask = CM_PLLA_HOLDCCP2,
1697 		.fixed_divider = 1,
1698 		.flags = CLK_SET_RATE_PARENT),
1699 
1700 	/* PLLB is used for the ARM's clock. */
1701 	[BCM2835_PLLB]		= REGISTER_PLL(
1702 		SOC_ALL,
1703 		.name = "pllb",
1704 		.cm_ctrl_reg = CM_PLLB,
1705 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1706 		.frac_reg = A2W_PLLB_FRAC,
1707 		.ana_reg_base = A2W_PLLB_ANA0,
1708 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1709 		.lock_mask = CM_LOCK_FLOCKB,
1710 
1711 		.ana = &bcm2835_ana_default,
1712 
1713 		.min_rate = 600000000u,
1714 		.max_rate = 3000000000u,
1715 		.max_fb_rate = BCM2835_MAX_FB_RATE,
1716 		.flags = CLK_GET_RATE_NOCACHE),
1717 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1718 		SOC_ALL,
1719 		.name = "pllb_arm",
1720 		.source_pll = "pllb",
1721 		.cm_reg = CM_PLLB,
1722 		.a2w_reg = A2W_PLLB_ARM,
1723 		.load_mask = CM_PLLB_LOADARM,
1724 		.hold_mask = CM_PLLB_HOLDARM,
1725 		.fixed_divider = 1,
1726 		.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1727 
1728 	/*
1729 	 * PLLC is the core PLL, used to drive the core VPU clock.
1730 	 *
1731 	 * It is in the PX LDO power domain, which is on when the
1732 	 * AUDIO domain is on.
1733 	 */
1734 	[BCM2835_PLLC]		= REGISTER_PLL(
1735 		SOC_ALL,
1736 		.name = "pllc",
1737 		.cm_ctrl_reg = CM_PLLC,
1738 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1739 		.frac_reg = A2W_PLLC_FRAC,
1740 		.ana_reg_base = A2W_PLLC_ANA0,
1741 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1742 		.lock_mask = CM_LOCK_FLOCKC,
1743 
1744 		.ana = &bcm2835_ana_default,
1745 
1746 		.min_rate = 600000000u,
1747 		.max_rate = 3000000000u,
1748 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1749 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1750 		SOC_ALL,
1751 		.name = "pllc_core0",
1752 		.source_pll = "pllc",
1753 		.cm_reg = CM_PLLC,
1754 		.a2w_reg = A2W_PLLC_CORE0,
1755 		.load_mask = CM_PLLC_LOADCORE0,
1756 		.hold_mask = CM_PLLC_HOLDCORE0,
1757 		.fixed_divider = 1,
1758 		.flags = CLK_SET_RATE_PARENT),
1759 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1760 		SOC_ALL,
1761 		.name = "pllc_core1",
1762 		.source_pll = "pllc",
1763 		.cm_reg = CM_PLLC,
1764 		.a2w_reg = A2W_PLLC_CORE1,
1765 		.load_mask = CM_PLLC_LOADCORE1,
1766 		.hold_mask = CM_PLLC_HOLDCORE1,
1767 		.fixed_divider = 1,
1768 		.flags = CLK_SET_RATE_PARENT),
1769 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1770 		SOC_ALL,
1771 		.name = "pllc_core2",
1772 		.source_pll = "pllc",
1773 		.cm_reg = CM_PLLC,
1774 		.a2w_reg = A2W_PLLC_CORE2,
1775 		.load_mask = CM_PLLC_LOADCORE2,
1776 		.hold_mask = CM_PLLC_HOLDCORE2,
1777 		.fixed_divider = 1,
1778 		.flags = CLK_SET_RATE_PARENT),
1779 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1780 		SOC_ALL,
1781 		.name = "pllc_per",
1782 		.source_pll = "pllc",
1783 		.cm_reg = CM_PLLC,
1784 		.a2w_reg = A2W_PLLC_PER,
1785 		.load_mask = CM_PLLC_LOADPER,
1786 		.hold_mask = CM_PLLC_HOLDPER,
1787 		.fixed_divider = 1,
1788 		.flags = CLK_SET_RATE_PARENT),
1789 
1790 	/*
1791 	 * PLLD is the display PLL, used to drive DSI display panels.
1792 	 *
1793 	 * It is in the PX LDO power domain, which is on when the
1794 	 * AUDIO domain is on.
1795 	 */
1796 	[BCM2835_PLLD]		= REGISTER_PLL(
1797 		SOC_ALL,
1798 		.name = "plld",
1799 		.cm_ctrl_reg = CM_PLLD,
1800 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1801 		.frac_reg = A2W_PLLD_FRAC,
1802 		.ana_reg_base = A2W_PLLD_ANA0,
1803 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1804 		.lock_mask = CM_LOCK_FLOCKD,
1805 
1806 		.ana = &bcm2835_ana_default,
1807 
1808 		.min_rate = 600000000u,
1809 		.max_rate = 2400000000u,
1810 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1811 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1812 		SOC_ALL,
1813 		.name = "plld_core",
1814 		.source_pll = "plld",
1815 		.cm_reg = CM_PLLD,
1816 		.a2w_reg = A2W_PLLD_CORE,
1817 		.load_mask = CM_PLLD_LOADCORE,
1818 		.hold_mask = CM_PLLD_HOLDCORE,
1819 		.fixed_divider = 1,
1820 		.flags = CLK_SET_RATE_PARENT),
1821 	/*
1822 	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1823 	 * Otherwise this could cause firmware lookups. That's why we mark
1824 	 * it as critical.
1825 	 */
1826 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1827 		SOC_ALL,
1828 		.name = "plld_per",
1829 		.source_pll = "plld",
1830 		.cm_reg = CM_PLLD,
1831 		.a2w_reg = A2W_PLLD_PER,
1832 		.load_mask = CM_PLLD_LOADPER,
1833 		.hold_mask = CM_PLLD_HOLDPER,
1834 		.fixed_divider = 1,
1835 		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1836 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1837 		SOC_ALL,
1838 		.name = "plld_dsi0",
1839 		.source_pll = "plld",
1840 		.cm_reg = CM_PLLD,
1841 		.a2w_reg = A2W_PLLD_DSI0,
1842 		.load_mask = CM_PLLD_LOADDSI0,
1843 		.hold_mask = CM_PLLD_HOLDDSI0,
1844 		.fixed_divider = 1),
1845 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1846 		SOC_ALL,
1847 		.name = "plld_dsi1",
1848 		.source_pll = "plld",
1849 		.cm_reg = CM_PLLD,
1850 		.a2w_reg = A2W_PLLD_DSI1,
1851 		.load_mask = CM_PLLD_LOADDSI1,
1852 		.hold_mask = CM_PLLD_HOLDDSI1,
1853 		.fixed_divider = 1),
1854 
1855 	/*
1856 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1857 	 * TV encoder.
1858 	 *
1859 	 * It is in the HDMI power domain.
1860 	 */
1861 	[BCM2835_PLLH]		= REGISTER_PLL(
1862 		SOC_BCM2835,
1863 		"pllh",
1864 		.cm_ctrl_reg = CM_PLLH,
1865 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1866 		.frac_reg = A2W_PLLH_FRAC,
1867 		.ana_reg_base = A2W_PLLH_ANA0,
1868 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1869 		.lock_mask = CM_LOCK_FLOCKH,
1870 
1871 		.ana = &bcm2835_ana_pllh,
1872 
1873 		.min_rate = 600000000u,
1874 		.max_rate = 3000000000u,
1875 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1876 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1877 		SOC_BCM2835,
1878 		.name = "pllh_rcal",
1879 		.source_pll = "pllh",
1880 		.cm_reg = CM_PLLH,
1881 		.a2w_reg = A2W_PLLH_RCAL,
1882 		.load_mask = CM_PLLH_LOADRCAL,
1883 		.hold_mask = 0,
1884 		.fixed_divider = 10,
1885 		.flags = CLK_SET_RATE_PARENT),
1886 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1887 		SOC_BCM2835,
1888 		.name = "pllh_aux",
1889 		.source_pll = "pllh",
1890 		.cm_reg = CM_PLLH,
1891 		.a2w_reg = A2W_PLLH_AUX,
1892 		.load_mask = CM_PLLH_LOADAUX,
1893 		.hold_mask = 0,
1894 		.fixed_divider = 1,
1895 		.flags = CLK_SET_RATE_PARENT),
1896 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1897 		SOC_BCM2835,
1898 		.name = "pllh_pix",
1899 		.source_pll = "pllh",
1900 		.cm_reg = CM_PLLH,
1901 		.a2w_reg = A2W_PLLH_PIX,
1902 		.load_mask = CM_PLLH_LOADPIX,
1903 		.hold_mask = 0,
1904 		.fixed_divider = 10,
1905 		.flags = CLK_SET_RATE_PARENT),
1906 
1907 	/* the clocks */
1908 
1909 	/* clocks with oscillator parent mux */
1910 
1911 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1912 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1913 		SOC_ALL,
1914 		.name = "otp",
1915 		.ctl_reg = CM_OTPCTL,
1916 		.div_reg = CM_OTPDIV,
1917 		.int_bits = 4,
1918 		.frac_bits = 0,
1919 		.tcnt_mux = 6),
1920 	/*
1921 	 * Used for a 1Mhz clock for the system clocksource, and also used
1922 	 * bythe watchdog timer and the camera pulse generator.
1923 	 */
1924 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1925 		SOC_ALL,
1926 		.name = "timer",
1927 		.ctl_reg = CM_TIMERCTL,
1928 		.div_reg = CM_TIMERDIV,
1929 		.int_bits = 6,
1930 		.frac_bits = 12),
1931 	/*
1932 	 * Clock for the temperature sensor.
1933 	 * Generally run at 2Mhz, max 5Mhz.
1934 	 */
1935 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1936 		SOC_ALL,
1937 		.name = "tsens",
1938 		.ctl_reg = CM_TSENSCTL,
1939 		.div_reg = CM_TSENSDIV,
1940 		.int_bits = 5,
1941 		.frac_bits = 0),
1942 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1943 		SOC_ALL,
1944 		.name = "tec",
1945 		.ctl_reg = CM_TECCTL,
1946 		.div_reg = CM_TECDIV,
1947 		.int_bits = 6,
1948 		.frac_bits = 0),
1949 
1950 	/* clocks with vpu parent mux */
1951 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1952 		SOC_ALL,
1953 		.name = "h264",
1954 		.ctl_reg = CM_H264CTL,
1955 		.div_reg = CM_H264DIV,
1956 		.int_bits = 4,
1957 		.frac_bits = 8,
1958 		.tcnt_mux = 1),
1959 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1960 		SOC_ALL,
1961 		.name = "isp",
1962 		.ctl_reg = CM_ISPCTL,
1963 		.div_reg = CM_ISPDIV,
1964 		.int_bits = 4,
1965 		.frac_bits = 8,
1966 		.tcnt_mux = 2),
1967 
1968 	/*
1969 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1970 	 * in the SDRAM controller can't be used.
1971 	 */
1972 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1973 		SOC_ALL,
1974 		.name = "sdram",
1975 		.ctl_reg = CM_SDCCTL,
1976 		.div_reg = CM_SDCDIV,
1977 		.int_bits = 6,
1978 		.frac_bits = 0,
1979 		.tcnt_mux = 3),
1980 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1981 		SOC_ALL,
1982 		.name = "v3d",
1983 		.ctl_reg = CM_V3DCTL,
1984 		.div_reg = CM_V3DDIV,
1985 		.int_bits = 4,
1986 		.frac_bits = 8,
1987 		.tcnt_mux = 4),
1988 	/*
1989 	 * VPU clock.  This doesn't have an enable bit, since it drives
1990 	 * the bus for everything else, and is special so it doesn't need
1991 	 * to be gated for rate changes.  It is also known as "clk_audio"
1992 	 * in various hardware documentation.
1993 	 */
1994 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1995 		SOC_ALL,
1996 		.name = "vpu",
1997 		.ctl_reg = CM_VPUCTL,
1998 		.div_reg = CM_VPUDIV,
1999 		.int_bits = 12,
2000 		.frac_bits = 8,
2001 		.flags = CLK_IS_CRITICAL,
2002 		.is_vpu_clock = true,
2003 		.tcnt_mux = 5),
2004 
2005 	/* clocks with per parent mux */
2006 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
2007 		SOC_ALL,
2008 		.name = "aveo",
2009 		.ctl_reg = CM_AVEOCTL,
2010 		.div_reg = CM_AVEODIV,
2011 		.int_bits = 4,
2012 		.frac_bits = 0,
2013 		.tcnt_mux = 38),
2014 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
2015 		SOC_ALL,
2016 		.name = "cam0",
2017 		.ctl_reg = CM_CAM0CTL,
2018 		.div_reg = CM_CAM0DIV,
2019 		.int_bits = 4,
2020 		.frac_bits = 8,
2021 		.tcnt_mux = 14),
2022 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
2023 		SOC_ALL,
2024 		.name = "cam1",
2025 		.ctl_reg = CM_CAM1CTL,
2026 		.div_reg = CM_CAM1DIV,
2027 		.int_bits = 4,
2028 		.frac_bits = 8,
2029 		.tcnt_mux = 15),
2030 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
2031 		SOC_ALL,
2032 		.name = "dft",
2033 		.ctl_reg = CM_DFTCTL,
2034 		.div_reg = CM_DFTDIV,
2035 		.int_bits = 5,
2036 		.frac_bits = 0),
2037 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
2038 		SOC_ALL,
2039 		.name = "dpi",
2040 		.ctl_reg = CM_DPICTL,
2041 		.div_reg = CM_DPIDIV,
2042 		.int_bits = 4,
2043 		.frac_bits = 8,
2044 		.tcnt_mux = 17),
2045 
2046 	/* Arasan EMMC clock */
2047 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2048 		SOC_ALL,
2049 		.name = "emmc",
2050 		.ctl_reg = CM_EMMCCTL,
2051 		.div_reg = CM_EMMCDIV,
2052 		.int_bits = 4,
2053 		.frac_bits = 8,
2054 		.tcnt_mux = 39),
2055 
2056 	/* EMMC2 clock (only available for BCM2711) */
2057 	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2058 		SOC_BCM2711,
2059 		.name = "emmc2",
2060 		.ctl_reg = CM_EMMC2CTL,
2061 		.div_reg = CM_EMMC2DIV,
2062 		.int_bits = 4,
2063 		.frac_bits = 8,
2064 		.tcnt_mux = 42),
2065 
2066 	/* General purpose (GPIO) clocks */
2067 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2068 		SOC_ALL,
2069 		.name = "gp0",
2070 		.ctl_reg = CM_GP0CTL,
2071 		.div_reg = CM_GP0DIV,
2072 		.int_bits = 12,
2073 		.frac_bits = 12,
2074 		.is_mash_clock = true,
2075 		.tcnt_mux = 20),
2076 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2077 		SOC_ALL,
2078 		.name = "gp1",
2079 		.ctl_reg = CM_GP1CTL,
2080 		.div_reg = CM_GP1DIV,
2081 		.int_bits = 12,
2082 		.frac_bits = 12,
2083 		.flags = CLK_IS_CRITICAL,
2084 		.is_mash_clock = true,
2085 		.tcnt_mux = 21),
2086 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2087 		SOC_ALL,
2088 		.name = "gp2",
2089 		.ctl_reg = CM_GP2CTL,
2090 		.div_reg = CM_GP2DIV,
2091 		.int_bits = 12,
2092 		.frac_bits = 12,
2093 		.flags = CLK_IS_CRITICAL),
2094 
2095 	/* HDMI state machine */
2096 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2097 		SOC_ALL,
2098 		.name = "hsm",
2099 		.ctl_reg = CM_HSMCTL,
2100 		.div_reg = CM_HSMDIV,
2101 		.int_bits = 4,
2102 		.frac_bits = 8,
2103 		.tcnt_mux = 22),
2104 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2105 		SOC_ALL,
2106 		.name = "pcm",
2107 		.ctl_reg = CM_PCMCTL,
2108 		.div_reg = CM_PCMDIV,
2109 		.int_bits = 12,
2110 		.frac_bits = 12,
2111 		.is_mash_clock = true,
2112 		.low_jitter = true,
2113 		.tcnt_mux = 23),
2114 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2115 		SOC_ALL,
2116 		.name = "pwm",
2117 		.ctl_reg = CM_PWMCTL,
2118 		.div_reg = CM_PWMDIV,
2119 		.int_bits = 12,
2120 		.frac_bits = 12,
2121 		.is_mash_clock = true,
2122 		.tcnt_mux = 24),
2123 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2124 		SOC_ALL,
2125 		.name = "slim",
2126 		.ctl_reg = CM_SLIMCTL,
2127 		.div_reg = CM_SLIMDIV,
2128 		.int_bits = 12,
2129 		.frac_bits = 12,
2130 		.is_mash_clock = true,
2131 		.tcnt_mux = 25),
2132 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2133 		SOC_ALL,
2134 		.name = "smi",
2135 		.ctl_reg = CM_SMICTL,
2136 		.div_reg = CM_SMIDIV,
2137 		.int_bits = 4,
2138 		.frac_bits = 8,
2139 		.tcnt_mux = 27),
2140 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2141 		SOC_ALL,
2142 		.name = "uart",
2143 		.ctl_reg = CM_UARTCTL,
2144 		.div_reg = CM_UARTDIV,
2145 		.int_bits = 10,
2146 		.frac_bits = 12,
2147 		.tcnt_mux = 28),
2148 
2149 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2150 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2151 		SOC_ALL,
2152 		.name = "vec",
2153 		.ctl_reg = CM_VECCTL,
2154 		.div_reg = CM_VECDIV,
2155 		.int_bits = 4,
2156 		.frac_bits = 0,
2157 		/*
2158 		 * Allow rate change propagation only on PLLH_AUX which is
2159 		 * assigned index 7 in the parent array.
2160 		 */
2161 		.set_rate_parent = BIT(7),
2162 		.tcnt_mux = 29),
2163 
2164 	/* dsi clocks */
2165 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2166 		SOC_ALL,
2167 		.name = "dsi0e",
2168 		.ctl_reg = CM_DSI0ECTL,
2169 		.div_reg = CM_DSI0EDIV,
2170 		.int_bits = 4,
2171 		.frac_bits = 8,
2172 		.tcnt_mux = 18),
2173 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2174 		SOC_ALL,
2175 		.name = "dsi1e",
2176 		.ctl_reg = CM_DSI1ECTL,
2177 		.div_reg = CM_DSI1EDIV,
2178 		.int_bits = 4,
2179 		.frac_bits = 8,
2180 		.tcnt_mux = 19),
2181 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2182 		SOC_ALL,
2183 		.name = "dsi0p",
2184 		.ctl_reg = CM_DSI0PCTL,
2185 		.div_reg = CM_DSI0PDIV,
2186 		.int_bits = 0,
2187 		.frac_bits = 0,
2188 		.tcnt_mux = 12),
2189 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2190 		SOC_ALL,
2191 		.name = "dsi1p",
2192 		.ctl_reg = CM_DSI1PCTL,
2193 		.div_reg = CM_DSI1PDIV,
2194 		.int_bits = 0,
2195 		.frac_bits = 0,
2196 		.tcnt_mux = 13),
2197 
2198 	/* the gates */
2199 
2200 	/*
2201 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2202 	 * you have the debug bit set in the power manager, which we
2203 	 * don't bother exposing) are individual gates off of the
2204 	 * non-stop vpu clock.
2205 	 */
2206 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2207 		SOC_ALL,
2208 		.name = "peri_image",
2209 		.parent = "vpu",
2210 		.ctl_reg = CM_PERIICTL),
2211 };
2212 
2213 /*
2214  * Permanently take a reference on the parent of the SDRAM clock.
2215  *
2216  * While the SDRAM is being driven by its dedicated PLL most of the
2217  * time, there is a little loop running in the firmware that
2218  * periodically switches the SDRAM to using our CM clock to do PVT
2219  * recalibration, with the assumption that the previously configured
2220  * SDRAM parent is still enabled and running.
2221  */
2222 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2223 {
2224 	struct clk *parent = clk_get_parent(sdc);
2225 
2226 	if (IS_ERR(parent))
2227 		return PTR_ERR(parent);
2228 
2229 	return clk_prepare_enable(parent);
2230 }
2231 
2232 static int bcm2835_clk_probe(struct platform_device *pdev)
2233 {
2234 	struct device *dev = &pdev->dev;
2235 	struct clk_hw **hws;
2236 	struct bcm2835_cprman *cprman;
2237 	const struct bcm2835_clk_desc *desc;
2238 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2239 	const struct cprman_plat_data *pdata;
2240 	size_t i;
2241 	int ret;
2242 
2243 	pdata = of_device_get_match_data(&pdev->dev);
2244 	if (!pdata)
2245 		return -ENODEV;
2246 
2247 	cprman = devm_kzalloc(dev,
2248 			      struct_size(cprman, onecell.hws, asize),
2249 			      GFP_KERNEL);
2250 	if (!cprman)
2251 		return -ENOMEM;
2252 
2253 	spin_lock_init(&cprman->regs_lock);
2254 	cprman->dev = dev;
2255 	cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2256 	if (IS_ERR(cprman->regs))
2257 		return PTR_ERR(cprman->regs);
2258 
2259 	memcpy(cprman->real_parent_names, cprman_parent_names,
2260 	       sizeof(cprman_parent_names));
2261 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2262 			   ARRAY_SIZE(cprman_parent_names));
2263 
2264 	/*
2265 	 * Make sure the external oscillator has been registered.
2266 	 *
2267 	 * The other (DSI) clocks are not present on older device
2268 	 * trees, which we still need to support for backwards
2269 	 * compatibility.
2270 	 */
2271 	if (!cprman->real_parent_names[0])
2272 		return -ENODEV;
2273 
2274 	platform_set_drvdata(pdev, cprman);
2275 
2276 	cprman->onecell.num = asize;
2277 	cprman->soc = pdata->soc;
2278 	hws = cprman->onecell.hws;
2279 
2280 	for (i = 0; i < asize; i++) {
2281 		desc = &clk_desc_array[i];
2282 		if (desc->clk_register && desc->data &&
2283 		    (desc->supported & pdata->soc)) {
2284 			hws[i] = desc->clk_register(cprman, desc->data);
2285 		}
2286 	}
2287 
2288 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2289 	if (ret)
2290 		return ret;
2291 
2292 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2293 				      &cprman->onecell);
2294 }
2295 
2296 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2297 	.soc = SOC_BCM2835,
2298 };
2299 
2300 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2301 	.soc = SOC_BCM2711,
2302 };
2303 
2304 static const struct of_device_id bcm2835_clk_of_match[] = {
2305 	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2306 	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2307 	{}
2308 };
2309 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2310 
2311 static struct platform_driver bcm2835_clk_driver = {
2312 	.driver = {
2313 		.name = "bcm2835-clk",
2314 		.of_match_table = bcm2835_clk_of_match,
2315 	},
2316 	.probe          = bcm2835_clk_probe,
2317 };
2318 
2319 builtin_platform_driver(bcm2835_clk_driver);
2320 
2321 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2322 MODULE_DESCRIPTION("BCM2835 clock driver");
2323 MODULE_LICENSE("GPL");
2324