xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36 
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/delay.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/platform_device.h>
46 #include <linux/slab.h>
47 #include <dt-bindings/clock/bcm2835.h>
48 
49 #define CM_PASSWORD		0x5a000000
50 
51 #define CM_GNRICCTL		0x000
52 #define CM_GNRICDIV		0x004
53 # define CM_DIV_FRAC_BITS	12
54 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55 
56 #define CM_VPUCTL		0x008
57 #define CM_VPUDIV		0x00c
58 #define CM_SYSCTL		0x010
59 #define CM_SYSDIV		0x014
60 #define CM_PERIACTL		0x018
61 #define CM_PERIADIV		0x01c
62 #define CM_PERIICTL		0x020
63 #define CM_PERIIDIV		0x024
64 #define CM_H264CTL		0x028
65 #define CM_H264DIV		0x02c
66 #define CM_ISPCTL		0x030
67 #define CM_ISPDIV		0x034
68 #define CM_V3DCTL		0x038
69 #define CM_V3DDIV		0x03c
70 #define CM_CAM0CTL		0x040
71 #define CM_CAM0DIV		0x044
72 #define CM_CAM1CTL		0x048
73 #define CM_CAM1DIV		0x04c
74 #define CM_CCP2CTL		0x050
75 #define CM_CCP2DIV		0x054
76 #define CM_DSI0ECTL		0x058
77 #define CM_DSI0EDIV		0x05c
78 #define CM_DSI0PCTL		0x060
79 #define CM_DSI0PDIV		0x064
80 #define CM_DPICTL		0x068
81 #define CM_DPIDIV		0x06c
82 #define CM_GP0CTL		0x070
83 #define CM_GP0DIV		0x074
84 #define CM_GP1CTL		0x078
85 #define CM_GP1DIV		0x07c
86 #define CM_GP2CTL		0x080
87 #define CM_GP2DIV		0x084
88 #define CM_HSMCTL		0x088
89 #define CM_HSMDIV		0x08c
90 #define CM_OTPCTL		0x090
91 #define CM_OTPDIV		0x094
92 #define CM_PCMCTL		0x098
93 #define CM_PCMDIV		0x09c
94 #define CM_PWMCTL		0x0a0
95 #define CM_PWMDIV		0x0a4
96 #define CM_SLIMCTL		0x0a8
97 #define CM_SLIMDIV		0x0ac
98 #define CM_SMICTL		0x0b0
99 #define CM_SMIDIV		0x0b4
100 /* no definition for 0x0b8  and 0x0bc */
101 #define CM_TCNTCTL		0x0c0
102 # define CM_TCNT_SRC1_SHIFT		12
103 #define CM_TCNTCNT		0x0c4
104 #define CM_TECCTL		0x0c8
105 #define CM_TECDIV		0x0cc
106 #define CM_TD0CTL		0x0d0
107 #define CM_TD0DIV		0x0d4
108 #define CM_TD1CTL		0x0d8
109 #define CM_TD1DIV		0x0dc
110 #define CM_TSENSCTL		0x0e0
111 #define CM_TSENSDIV		0x0e4
112 #define CM_TIMERCTL		0x0e8
113 #define CM_TIMERDIV		0x0ec
114 #define CM_UARTCTL		0x0f0
115 #define CM_UARTDIV		0x0f4
116 #define CM_VECCTL		0x0f8
117 #define CM_VECDIV		0x0fc
118 #define CM_PULSECTL		0x190
119 #define CM_PULSEDIV		0x194
120 #define CM_SDCCTL		0x1a8
121 #define CM_SDCDIV		0x1ac
122 #define CM_ARMCTL		0x1b0
123 #define CM_AVEOCTL		0x1b8
124 #define CM_AVEODIV		0x1bc
125 #define CM_EMMCCTL		0x1c0
126 #define CM_EMMCDIV		0x1c4
127 
128 /* General bits for the CM_*CTL regs */
129 # define CM_ENABLE			BIT(4)
130 # define CM_KILL			BIT(5)
131 # define CM_GATE_BIT			6
132 # define CM_GATE			BIT(CM_GATE_BIT)
133 # define CM_BUSY			BIT(7)
134 # define CM_BUSYD			BIT(8)
135 # define CM_FRAC			BIT(9)
136 # define CM_SRC_SHIFT			0
137 # define CM_SRC_BITS			4
138 # define CM_SRC_MASK			0xf
139 # define CM_SRC_GND			0
140 # define CM_SRC_OSC			1
141 # define CM_SRC_TESTDEBUG0		2
142 # define CM_SRC_TESTDEBUG1		3
143 # define CM_SRC_PLLA_CORE		4
144 # define CM_SRC_PLLA_PER		4
145 # define CM_SRC_PLLC_CORE0		5
146 # define CM_SRC_PLLC_PER		5
147 # define CM_SRC_PLLC_CORE1		8
148 # define CM_SRC_PLLD_CORE		6
149 # define CM_SRC_PLLD_PER		6
150 # define CM_SRC_PLLH_AUX		7
151 # define CM_SRC_PLLC_CORE1		8
152 # define CM_SRC_PLLC_CORE2		9
153 
154 #define CM_OSCCOUNT		0x100
155 
156 #define CM_PLLA			0x104
157 # define CM_PLL_ANARST			BIT(8)
158 # define CM_PLLA_HOLDPER		BIT(7)
159 # define CM_PLLA_LOADPER		BIT(6)
160 # define CM_PLLA_HOLDCORE		BIT(5)
161 # define CM_PLLA_LOADCORE		BIT(4)
162 # define CM_PLLA_HOLDCCP2		BIT(3)
163 # define CM_PLLA_LOADCCP2		BIT(2)
164 # define CM_PLLA_HOLDDSI0		BIT(1)
165 # define CM_PLLA_LOADDSI0		BIT(0)
166 
167 #define CM_PLLC			0x108
168 # define CM_PLLC_HOLDPER		BIT(7)
169 # define CM_PLLC_LOADPER		BIT(6)
170 # define CM_PLLC_HOLDCORE2		BIT(5)
171 # define CM_PLLC_LOADCORE2		BIT(4)
172 # define CM_PLLC_HOLDCORE1		BIT(3)
173 # define CM_PLLC_LOADCORE1		BIT(2)
174 # define CM_PLLC_HOLDCORE0		BIT(1)
175 # define CM_PLLC_LOADCORE0		BIT(0)
176 
177 #define CM_PLLD			0x10c
178 # define CM_PLLD_HOLDPER		BIT(7)
179 # define CM_PLLD_LOADPER		BIT(6)
180 # define CM_PLLD_HOLDCORE		BIT(5)
181 # define CM_PLLD_LOADCORE		BIT(4)
182 # define CM_PLLD_HOLDDSI1		BIT(3)
183 # define CM_PLLD_LOADDSI1		BIT(2)
184 # define CM_PLLD_HOLDDSI0		BIT(1)
185 # define CM_PLLD_LOADDSI0		BIT(0)
186 
187 #define CM_PLLH			0x110
188 # define CM_PLLH_LOADRCAL		BIT(2)
189 # define CM_PLLH_LOADAUX		BIT(1)
190 # define CM_PLLH_LOADPIX		BIT(0)
191 
192 #define CM_LOCK			0x114
193 # define CM_LOCK_FLOCKH			BIT(12)
194 # define CM_LOCK_FLOCKD			BIT(11)
195 # define CM_LOCK_FLOCKC			BIT(10)
196 # define CM_LOCK_FLOCKB			BIT(9)
197 # define CM_LOCK_FLOCKA			BIT(8)
198 
199 #define CM_EVENT		0x118
200 #define CM_DSI1ECTL		0x158
201 #define CM_DSI1EDIV		0x15c
202 #define CM_DSI1PCTL		0x160
203 #define CM_DSI1PDIV		0x164
204 #define CM_DFTCTL		0x168
205 #define CM_DFTDIV		0x16c
206 
207 #define CM_PLLB			0x170
208 # define CM_PLLB_HOLDARM		BIT(1)
209 # define CM_PLLB_LOADARM		BIT(0)
210 
211 #define A2W_PLLA_CTRL		0x1100
212 #define A2W_PLLC_CTRL		0x1120
213 #define A2W_PLLD_CTRL		0x1140
214 #define A2W_PLLH_CTRL		0x1160
215 #define A2W_PLLB_CTRL		0x11e0
216 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
217 # define A2W_PLL_CTRL_PWRDN		BIT(16)
218 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
219 # define A2W_PLL_CTRL_PDIV_SHIFT	12
220 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
221 # define A2W_PLL_CTRL_NDIV_SHIFT	0
222 
223 #define A2W_PLLA_ANA0		0x1010
224 #define A2W_PLLC_ANA0		0x1030
225 #define A2W_PLLD_ANA0		0x1050
226 #define A2W_PLLH_ANA0		0x1070
227 #define A2W_PLLB_ANA0		0x10f0
228 
229 #define A2W_PLL_KA_SHIFT	7
230 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
231 #define A2W_PLL_KI_SHIFT	19
232 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
233 #define A2W_PLL_KP_SHIFT	15
234 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
235 
236 #define A2W_PLLH_KA_SHIFT	19
237 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
238 #define A2W_PLLH_KI_LOW_SHIFT	22
239 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
240 #define A2W_PLLH_KI_HIGH_SHIFT	0
241 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
242 #define A2W_PLLH_KP_SHIFT	1
243 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
244 
245 #define A2W_XOSC_CTRL		0x1190
246 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
247 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
248 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
249 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
250 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
251 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
252 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
253 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
254 
255 #define A2W_PLLA_FRAC		0x1200
256 #define A2W_PLLC_FRAC		0x1220
257 #define A2W_PLLD_FRAC		0x1240
258 #define A2W_PLLH_FRAC		0x1260
259 #define A2W_PLLB_FRAC		0x12e0
260 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
261 # define A2W_PLL_FRAC_BITS		20
262 
263 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
264 #define A2W_PLL_DIV_BITS		8
265 #define A2W_PLL_DIV_SHIFT		0
266 
267 #define A2W_PLLA_DSI0		0x1300
268 #define A2W_PLLA_CORE		0x1400
269 #define A2W_PLLA_PER		0x1500
270 #define A2W_PLLA_CCP2		0x1600
271 
272 #define A2W_PLLC_CORE2		0x1320
273 #define A2W_PLLC_CORE1		0x1420
274 #define A2W_PLLC_PER		0x1520
275 #define A2W_PLLC_CORE0		0x1620
276 
277 #define A2W_PLLD_DSI0		0x1340
278 #define A2W_PLLD_CORE		0x1440
279 #define A2W_PLLD_PER		0x1540
280 #define A2W_PLLD_DSI1		0x1640
281 
282 #define A2W_PLLH_AUX		0x1360
283 #define A2W_PLLH_RCAL		0x1460
284 #define A2W_PLLH_PIX		0x1560
285 #define A2W_PLLH_STS		0x1660
286 
287 #define A2W_PLLH_CTRLR		0x1960
288 #define A2W_PLLH_FRACR		0x1a60
289 #define A2W_PLLH_AUXR		0x1b60
290 #define A2W_PLLH_RCALR		0x1c60
291 #define A2W_PLLH_PIXR		0x1d60
292 #define A2W_PLLH_STSR		0x1e60
293 
294 #define A2W_PLLB_ARM		0x13e0
295 #define A2W_PLLB_SP0		0x14e0
296 #define A2W_PLLB_SP1		0x15e0
297 #define A2W_PLLB_SP2		0x16e0
298 
299 #define LOCK_TIMEOUT_NS		100000000
300 #define BCM2835_MAX_FB_RATE	1750000000u
301 
302 /*
303  * Names of clocks used within the driver that need to be replaced
304  * with an external parent's name.  This array is in the order that
305  * the clocks node in the DT references external clocks.
306  */
307 static const char *const cprman_parent_names[] = {
308 	"xosc",
309 	"dsi0_byte",
310 	"dsi0_ddr2",
311 	"dsi0_ddr",
312 	"dsi1_byte",
313 	"dsi1_ddr2",
314 	"dsi1_ddr",
315 };
316 
317 struct bcm2835_cprman {
318 	struct device *dev;
319 	void __iomem *regs;
320 	spinlock_t regs_lock; /* spinlock for all clocks */
321 
322 	/*
323 	 * Real names of cprman clock parents looked up through
324 	 * of_clk_get_parent_name(), which will be used in the
325 	 * parent_names[] arrays for clock registration.
326 	 */
327 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
328 
329 	/* Must be last */
330 	struct clk_hw_onecell_data onecell;
331 };
332 
333 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334 {
335 	writel(CM_PASSWORD | val, cprman->regs + reg);
336 }
337 
338 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339 {
340 	return readl(cprman->regs + reg);
341 }
342 
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344  * source from many other clocks in the system.
345  */
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347 					      u32 tcnt_mux)
348 {
349 	u32 osccount = 19200; /* 1ms */
350 	u32 count;
351 	ktime_t timeout;
352 
353 	spin_lock(&cprman->regs_lock);
354 
355 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356 
357 	cprman_write(cprman, CM_TCNTCTL,
358 		     (tcnt_mux & CM_SRC_MASK) |
359 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360 
361 	cprman_write(cprman, CM_OSCCOUNT, osccount);
362 
363 	/* do a kind delay at the start */
364 	mdelay(1);
365 
366 	/* Finish off whatever is left of OSCCOUNT */
367 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368 	while (cprman_read(cprman, CM_OSCCOUNT)) {
369 		if (ktime_after(ktime_get(), timeout)) {
370 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371 			count = 0;
372 			goto out;
373 		}
374 		cpu_relax();
375 	}
376 
377 	/* Wait for BUSY to clear. */
378 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380 		if (ktime_after(ktime_get(), timeout)) {
381 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382 			count = 0;
383 			goto out;
384 		}
385 		cpu_relax();
386 	}
387 
388 	count = cprman_read(cprman, CM_TCNTCNT);
389 
390 	cprman_write(cprman, CM_TCNTCTL, 0);
391 
392 out:
393 	spin_unlock(&cprman->regs_lock);
394 
395 	return count * 1000;
396 }
397 
398 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399 				  struct debugfs_reg32 *regs, size_t nregs,
400 				  struct dentry *dentry)
401 {
402 	struct dentry *regdump;
403 	struct debugfs_regset32 *regset;
404 
405 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406 	if (!regset)
407 		return -ENOMEM;
408 
409 	regset->regs = regs;
410 	regset->nregs = nregs;
411 	regset->base = cprman->regs + base;
412 
413 	regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
414 					  regset);
415 
416 	return regdump ? 0 : -ENOMEM;
417 }
418 
419 /*
420  * These are fixed clocks. They're probably not all root clocks and it may
421  * be possible to turn them on and off but until this is mapped out better
422  * it's the only way they can be used.
423  */
424 void __init bcm2835_init_clocks(void)
425 {
426 	struct clk_hw *hw;
427 	int ret;
428 
429 	hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
430 	if (IS_ERR(hw))
431 		pr_err("apb_pclk not registered\n");
432 
433 	hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
434 	if (IS_ERR(hw))
435 		pr_err("uart0_pclk not registered\n");
436 	ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
437 	if (ret)
438 		pr_err("uart0_pclk alias not registered\n");
439 
440 	hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
441 	if (IS_ERR(hw))
442 		pr_err("uart1_pclk not registered\n");
443 	ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
444 	if (ret)
445 		pr_err("uart1_pclk alias not registered\n");
446 }
447 
448 struct bcm2835_pll_data {
449 	const char *name;
450 	u32 cm_ctrl_reg;
451 	u32 a2w_ctrl_reg;
452 	u32 frac_reg;
453 	u32 ana_reg_base;
454 	u32 reference_enable_mask;
455 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
456 	u32 lock_mask;
457 
458 	const struct bcm2835_pll_ana_bits *ana;
459 
460 	unsigned long min_rate;
461 	unsigned long max_rate;
462 	/*
463 	 * Highest rate for the VCO before we have to use the
464 	 * pre-divide-by-2.
465 	 */
466 	unsigned long max_fb_rate;
467 };
468 
469 struct bcm2835_pll_ana_bits {
470 	u32 mask0;
471 	u32 set0;
472 	u32 mask1;
473 	u32 set1;
474 	u32 mask3;
475 	u32 set3;
476 	u32 fb_prediv_mask;
477 };
478 
479 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
480 	.mask0 = 0,
481 	.set0 = 0,
482 	.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
483 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
484 	.mask3 = (u32)~A2W_PLL_KA_MASK,
485 	.set3 = (2 << A2W_PLL_KA_SHIFT),
486 	.fb_prediv_mask = BIT(14),
487 };
488 
489 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
490 	.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
491 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
492 	.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
493 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
494 	.mask3 = 0,
495 	.set3 = 0,
496 	.fb_prediv_mask = BIT(11),
497 };
498 
499 struct bcm2835_pll_divider_data {
500 	const char *name;
501 	const char *source_pll;
502 
503 	u32 cm_reg;
504 	u32 a2w_reg;
505 
506 	u32 load_mask;
507 	u32 hold_mask;
508 	u32 fixed_divider;
509 	u32 flags;
510 };
511 
512 struct bcm2835_clock_data {
513 	const char *name;
514 
515 	const char *const *parents;
516 	int num_mux_parents;
517 
518 	/* Bitmap encoding which parents accept rate change propagation. */
519 	unsigned int set_rate_parent;
520 
521 	u32 ctl_reg;
522 	u32 div_reg;
523 
524 	/* Number of integer bits in the divider */
525 	u32 int_bits;
526 	/* Number of fractional bits in the divider */
527 	u32 frac_bits;
528 
529 	u32 flags;
530 
531 	bool is_vpu_clock;
532 	bool is_mash_clock;
533 
534 	u32 tcnt_mux;
535 };
536 
537 struct bcm2835_gate_data {
538 	const char *name;
539 	const char *parent;
540 
541 	u32 ctl_reg;
542 };
543 
544 struct bcm2835_pll {
545 	struct clk_hw hw;
546 	struct bcm2835_cprman *cprman;
547 	const struct bcm2835_pll_data *data;
548 };
549 
550 static int bcm2835_pll_is_on(struct clk_hw *hw)
551 {
552 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
553 	struct bcm2835_cprman *cprman = pll->cprman;
554 	const struct bcm2835_pll_data *data = pll->data;
555 
556 	return cprman_read(cprman, data->a2w_ctrl_reg) &
557 		A2W_PLL_CTRL_PRST_DISABLE;
558 }
559 
560 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
561 					     unsigned long parent_rate,
562 					     u32 *ndiv, u32 *fdiv)
563 {
564 	u64 div;
565 
566 	div = (u64)rate << A2W_PLL_FRAC_BITS;
567 	do_div(div, parent_rate);
568 
569 	*ndiv = div >> A2W_PLL_FRAC_BITS;
570 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
571 }
572 
573 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
574 					   u32 ndiv, u32 fdiv, u32 pdiv)
575 {
576 	u64 rate;
577 
578 	if (pdiv == 0)
579 		return 0;
580 
581 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
582 	do_div(rate, pdiv);
583 	return rate >> A2W_PLL_FRAC_BITS;
584 }
585 
586 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
587 				   unsigned long *parent_rate)
588 {
589 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
590 	const struct bcm2835_pll_data *data = pll->data;
591 	u32 ndiv, fdiv;
592 
593 	rate = clamp(rate, data->min_rate, data->max_rate);
594 
595 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
596 
597 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
598 }
599 
600 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
601 					  unsigned long parent_rate)
602 {
603 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
604 	struct bcm2835_cprman *cprman = pll->cprman;
605 	const struct bcm2835_pll_data *data = pll->data;
606 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
607 	u32 ndiv, pdiv, fdiv;
608 	bool using_prediv;
609 
610 	if (parent_rate == 0)
611 		return 0;
612 
613 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
614 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
615 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
616 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
617 		data->ana->fb_prediv_mask;
618 
619 	if (using_prediv)
620 		ndiv *= 2;
621 
622 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
623 }
624 
625 static void bcm2835_pll_off(struct clk_hw *hw)
626 {
627 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
628 	struct bcm2835_cprman *cprman = pll->cprman;
629 	const struct bcm2835_pll_data *data = pll->data;
630 
631 	spin_lock(&cprman->regs_lock);
632 	cprman_write(cprman, data->cm_ctrl_reg,
633 		     cprman_read(cprman, data->cm_ctrl_reg) |
634 		     CM_PLL_ANARST);
635 	cprman_write(cprman, data->a2w_ctrl_reg,
636 		     cprman_read(cprman, data->a2w_ctrl_reg) |
637 		     A2W_PLL_CTRL_PWRDN);
638 	spin_unlock(&cprman->regs_lock);
639 }
640 
641 static int bcm2835_pll_on(struct clk_hw *hw)
642 {
643 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
644 	struct bcm2835_cprman *cprman = pll->cprman;
645 	const struct bcm2835_pll_data *data = pll->data;
646 	ktime_t timeout;
647 
648 	cprman_write(cprman, data->a2w_ctrl_reg,
649 		     cprman_read(cprman, data->a2w_ctrl_reg) &
650 		     ~A2W_PLL_CTRL_PWRDN);
651 
652 	/* Take the PLL out of reset. */
653 	cprman_write(cprman, data->cm_ctrl_reg,
654 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
655 
656 	/* Wait for the PLL to lock. */
657 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
658 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
659 		if (ktime_after(ktime_get(), timeout)) {
660 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
661 				clk_hw_get_name(hw));
662 			return -ETIMEDOUT;
663 		}
664 
665 		cpu_relax();
666 	}
667 
668 	return 0;
669 }
670 
671 static void
672 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
673 {
674 	int i;
675 
676 	/*
677 	 * ANA register setup is done as a series of writes to
678 	 * ANA3-ANA0, in that order.  This lets us write all 4
679 	 * registers as a single cycle of the serdes interface (taking
680 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
681 	 * 3 individually through their partial-write registers, each
682 	 * would be their own serdes cycle.
683 	 */
684 	for (i = 3; i >= 0; i--)
685 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
686 }
687 
688 static int bcm2835_pll_set_rate(struct clk_hw *hw,
689 				unsigned long rate, unsigned long parent_rate)
690 {
691 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
692 	struct bcm2835_cprman *cprman = pll->cprman;
693 	const struct bcm2835_pll_data *data = pll->data;
694 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
695 	u32 ndiv, fdiv, a2w_ctl;
696 	u32 ana[4];
697 	int i;
698 
699 	if (rate > data->max_fb_rate) {
700 		use_fb_prediv = true;
701 		rate /= 2;
702 	} else {
703 		use_fb_prediv = false;
704 	}
705 
706 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
707 
708 	for (i = 3; i >= 0; i--)
709 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
710 
711 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
712 
713 	ana[0] &= ~data->ana->mask0;
714 	ana[0] |= data->ana->set0;
715 	ana[1] &= ~data->ana->mask1;
716 	ana[1] |= data->ana->set1;
717 	ana[3] &= ~data->ana->mask3;
718 	ana[3] |= data->ana->set3;
719 
720 	if (was_using_prediv && !use_fb_prediv) {
721 		ana[1] &= ~data->ana->fb_prediv_mask;
722 		do_ana_setup_first = true;
723 	} else if (!was_using_prediv && use_fb_prediv) {
724 		ana[1] |= data->ana->fb_prediv_mask;
725 		do_ana_setup_first = false;
726 	} else {
727 		do_ana_setup_first = true;
728 	}
729 
730 	/* Unmask the reference clock from the oscillator. */
731 	cprman_write(cprman, A2W_XOSC_CTRL,
732 		     cprman_read(cprman, A2W_XOSC_CTRL) |
733 		     data->reference_enable_mask);
734 
735 	if (do_ana_setup_first)
736 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
737 
738 	/* Set the PLL multiplier from the oscillator. */
739 	cprman_write(cprman, data->frac_reg, fdiv);
740 
741 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
742 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
743 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
744 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
745 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
746 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
747 
748 	if (!do_ana_setup_first)
749 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
750 
751 	return 0;
752 }
753 
754 static int bcm2835_pll_debug_init(struct clk_hw *hw,
755 				  struct dentry *dentry)
756 {
757 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
758 	struct bcm2835_cprman *cprman = pll->cprman;
759 	const struct bcm2835_pll_data *data = pll->data;
760 	struct debugfs_reg32 *regs;
761 
762 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
763 	if (!regs)
764 		return -ENOMEM;
765 
766 	regs[0].name = "cm_ctrl";
767 	regs[0].offset = data->cm_ctrl_reg;
768 	regs[1].name = "a2w_ctrl";
769 	regs[1].offset = data->a2w_ctrl_reg;
770 	regs[2].name = "frac";
771 	regs[2].offset = data->frac_reg;
772 	regs[3].name = "ana0";
773 	regs[3].offset = data->ana_reg_base + 0 * 4;
774 	regs[4].name = "ana1";
775 	regs[4].offset = data->ana_reg_base + 1 * 4;
776 	regs[5].name = "ana2";
777 	regs[5].offset = data->ana_reg_base + 2 * 4;
778 	regs[6].name = "ana3";
779 	regs[6].offset = data->ana_reg_base + 3 * 4;
780 
781 	return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
782 }
783 
784 static const struct clk_ops bcm2835_pll_clk_ops = {
785 	.is_prepared = bcm2835_pll_is_on,
786 	.prepare = bcm2835_pll_on,
787 	.unprepare = bcm2835_pll_off,
788 	.recalc_rate = bcm2835_pll_get_rate,
789 	.set_rate = bcm2835_pll_set_rate,
790 	.round_rate = bcm2835_pll_round_rate,
791 	.debug_init = bcm2835_pll_debug_init,
792 };
793 
794 struct bcm2835_pll_divider {
795 	struct clk_divider div;
796 	struct bcm2835_cprman *cprman;
797 	const struct bcm2835_pll_divider_data *data;
798 };
799 
800 static struct bcm2835_pll_divider *
801 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
802 {
803 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
804 }
805 
806 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
807 {
808 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
809 	struct bcm2835_cprman *cprman = divider->cprman;
810 	const struct bcm2835_pll_divider_data *data = divider->data;
811 
812 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
813 }
814 
815 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
816 					   unsigned long rate,
817 					   unsigned long *parent_rate)
818 {
819 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
820 }
821 
822 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
823 						  unsigned long parent_rate)
824 {
825 	return clk_divider_ops.recalc_rate(hw, parent_rate);
826 }
827 
828 static void bcm2835_pll_divider_off(struct clk_hw *hw)
829 {
830 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
831 	struct bcm2835_cprman *cprman = divider->cprman;
832 	const struct bcm2835_pll_divider_data *data = divider->data;
833 
834 	spin_lock(&cprman->regs_lock);
835 	cprman_write(cprman, data->cm_reg,
836 		     (cprman_read(cprman, data->cm_reg) &
837 		      ~data->load_mask) | data->hold_mask);
838 	cprman_write(cprman, data->a2w_reg,
839 		     cprman_read(cprman, data->a2w_reg) |
840 		     A2W_PLL_CHANNEL_DISABLE);
841 	spin_unlock(&cprman->regs_lock);
842 }
843 
844 static int bcm2835_pll_divider_on(struct clk_hw *hw)
845 {
846 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
847 	struct bcm2835_cprman *cprman = divider->cprman;
848 	const struct bcm2835_pll_divider_data *data = divider->data;
849 
850 	spin_lock(&cprman->regs_lock);
851 	cprman_write(cprman, data->a2w_reg,
852 		     cprman_read(cprman, data->a2w_reg) &
853 		     ~A2W_PLL_CHANNEL_DISABLE);
854 
855 	cprman_write(cprman, data->cm_reg,
856 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
857 	spin_unlock(&cprman->regs_lock);
858 
859 	return 0;
860 }
861 
862 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
863 					unsigned long rate,
864 					unsigned long parent_rate)
865 {
866 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
867 	struct bcm2835_cprman *cprman = divider->cprman;
868 	const struct bcm2835_pll_divider_data *data = divider->data;
869 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
870 
871 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
872 
873 	div = min(div, max_div);
874 	if (div == max_div)
875 		div = 0;
876 
877 	cprman_write(cprman, data->a2w_reg, div);
878 	cm = cprman_read(cprman, data->cm_reg);
879 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
880 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
881 
882 	return 0;
883 }
884 
885 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
886 					  struct dentry *dentry)
887 {
888 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
889 	struct bcm2835_cprman *cprman = divider->cprman;
890 	const struct bcm2835_pll_divider_data *data = divider->data;
891 	struct debugfs_reg32 *regs;
892 
893 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
894 	if (!regs)
895 		return -ENOMEM;
896 
897 	regs[0].name = "cm";
898 	regs[0].offset = data->cm_reg;
899 	regs[1].name = "a2w";
900 	regs[1].offset = data->a2w_reg;
901 
902 	return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
903 }
904 
905 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
906 	.is_prepared = bcm2835_pll_divider_is_on,
907 	.prepare = bcm2835_pll_divider_on,
908 	.unprepare = bcm2835_pll_divider_off,
909 	.recalc_rate = bcm2835_pll_divider_get_rate,
910 	.set_rate = bcm2835_pll_divider_set_rate,
911 	.round_rate = bcm2835_pll_divider_round_rate,
912 	.debug_init = bcm2835_pll_divider_debug_init,
913 };
914 
915 /*
916  * The CM dividers do fixed-point division, so we can't use the
917  * generic integer divider code like the PLL dividers do (and we can't
918  * fake it by having some fixed shifts preceding it in the clock tree,
919  * because we'd run out of bits in a 32-bit unsigned long).
920  */
921 struct bcm2835_clock {
922 	struct clk_hw hw;
923 	struct bcm2835_cprman *cprman;
924 	const struct bcm2835_clock_data *data;
925 };
926 
927 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
928 {
929 	return container_of(hw, struct bcm2835_clock, hw);
930 }
931 
932 static int bcm2835_clock_is_on(struct clk_hw *hw)
933 {
934 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
935 	struct bcm2835_cprman *cprman = clock->cprman;
936 	const struct bcm2835_clock_data *data = clock->data;
937 
938 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
939 }
940 
941 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
942 				    unsigned long rate,
943 				    unsigned long parent_rate,
944 				    bool round_up)
945 {
946 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
947 	const struct bcm2835_clock_data *data = clock->data;
948 	u32 unused_frac_mask =
949 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
950 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
951 	u64 rem;
952 	u32 div, mindiv, maxdiv;
953 
954 	rem = do_div(temp, rate);
955 	div = temp;
956 
957 	/* Round up and mask off the unused bits */
958 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
959 		div += unused_frac_mask + 1;
960 	div &= ~unused_frac_mask;
961 
962 	/* different clamping limits apply for a mash clock */
963 	if (data->is_mash_clock) {
964 		/* clamp to min divider of 2 */
965 		mindiv = 2 << CM_DIV_FRAC_BITS;
966 		/* clamp to the highest possible integer divider */
967 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
968 	} else {
969 		/* clamp to min divider of 1 */
970 		mindiv = 1 << CM_DIV_FRAC_BITS;
971 		/* clamp to the highest possible fractional divider */
972 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
973 				 CM_DIV_FRAC_BITS - data->frac_bits);
974 	}
975 
976 	/* apply the clamping  limits */
977 	div = max_t(u32, div, mindiv);
978 	div = min_t(u32, div, maxdiv);
979 
980 	return div;
981 }
982 
983 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
984 					    unsigned long parent_rate,
985 					    u32 div)
986 {
987 	const struct bcm2835_clock_data *data = clock->data;
988 	u64 temp;
989 
990 	if (data->int_bits == 0 && data->frac_bits == 0)
991 		return parent_rate;
992 
993 	/*
994 	 * The divisor is a 12.12 fixed point field, but only some of
995 	 * the bits are populated in any given clock.
996 	 */
997 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
998 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
999 
1000 	if (div == 0)
1001 		return 0;
1002 
1003 	temp = (u64)parent_rate << data->frac_bits;
1004 
1005 	do_div(temp, div);
1006 
1007 	return temp;
1008 }
1009 
1010 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1011 					    unsigned long parent_rate)
1012 {
1013 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1014 	struct bcm2835_cprman *cprman = clock->cprman;
1015 	const struct bcm2835_clock_data *data = clock->data;
1016 	u32 div;
1017 
1018 	if (data->int_bits == 0 && data->frac_bits == 0)
1019 		return parent_rate;
1020 
1021 	div = cprman_read(cprman, data->div_reg);
1022 
1023 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1024 }
1025 
1026 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1027 {
1028 	struct bcm2835_cprman *cprman = clock->cprman;
1029 	const struct bcm2835_clock_data *data = clock->data;
1030 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1031 
1032 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1033 		if (ktime_after(ktime_get(), timeout)) {
1034 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1035 				clk_hw_get_name(&clock->hw));
1036 			return;
1037 		}
1038 		cpu_relax();
1039 	}
1040 }
1041 
1042 static void bcm2835_clock_off(struct clk_hw *hw)
1043 {
1044 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1045 	struct bcm2835_cprman *cprman = clock->cprman;
1046 	const struct bcm2835_clock_data *data = clock->data;
1047 
1048 	spin_lock(&cprman->regs_lock);
1049 	cprman_write(cprman, data->ctl_reg,
1050 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1051 	spin_unlock(&cprman->regs_lock);
1052 
1053 	/* BUSY will remain high until the divider completes its cycle. */
1054 	bcm2835_clock_wait_busy(clock);
1055 }
1056 
1057 static int bcm2835_clock_on(struct clk_hw *hw)
1058 {
1059 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1060 	struct bcm2835_cprman *cprman = clock->cprman;
1061 	const struct bcm2835_clock_data *data = clock->data;
1062 
1063 	spin_lock(&cprman->regs_lock);
1064 	cprman_write(cprman, data->ctl_reg,
1065 		     cprman_read(cprman, data->ctl_reg) |
1066 		     CM_ENABLE |
1067 		     CM_GATE);
1068 	spin_unlock(&cprman->regs_lock);
1069 
1070 	/* Debug code to measure the clock once it's turned on to see
1071 	 * if it's ticking at the rate we expect.
1072 	 */
1073 	if (data->tcnt_mux && false) {
1074 		dev_info(cprman->dev,
1075 			 "clk %s: rate %ld, measure %ld\n",
1076 			 data->name,
1077 			 clk_hw_get_rate(hw),
1078 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1085 				  unsigned long rate, unsigned long parent_rate)
1086 {
1087 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1088 	struct bcm2835_cprman *cprman = clock->cprman;
1089 	const struct bcm2835_clock_data *data = clock->data;
1090 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1091 	u32 ctl;
1092 
1093 	spin_lock(&cprman->regs_lock);
1094 
1095 	/*
1096 	 * Setting up frac support
1097 	 *
1098 	 * In principle it is recommended to stop/start the clock first,
1099 	 * but as we set CLK_SET_RATE_GATE during registration of the
1100 	 * clock this requirement should be take care of by the
1101 	 * clk-framework.
1102 	 */
1103 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1104 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1105 	cprman_write(cprman, data->ctl_reg, ctl);
1106 
1107 	cprman_write(cprman, data->div_reg, div);
1108 
1109 	spin_unlock(&cprman->regs_lock);
1110 
1111 	return 0;
1112 }
1113 
1114 static bool
1115 bcm2835_clk_is_pllc(struct clk_hw *hw)
1116 {
1117 	if (!hw)
1118 		return false;
1119 
1120 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1121 }
1122 
1123 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1124 							int parent_idx,
1125 							unsigned long rate,
1126 							u32 *div,
1127 							unsigned long *prate)
1128 {
1129 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1130 	struct bcm2835_cprman *cprman = clock->cprman;
1131 	const struct bcm2835_clock_data *data = clock->data;
1132 	unsigned long best_rate = 0;
1133 	u32 curdiv, mindiv, maxdiv;
1134 	struct clk_hw *parent;
1135 
1136 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1137 
1138 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1139 		*prate = clk_hw_get_rate(parent);
1140 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1141 
1142 		return bcm2835_clock_rate_from_divisor(clock, *prate,
1143 						       *div);
1144 	}
1145 
1146 	if (data->frac_bits)
1147 		dev_warn(cprman->dev,
1148 			"frac bits are not used when propagating rate change");
1149 
1150 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1151 	mindiv = data->is_mash_clock ? 2 : 1;
1152 	maxdiv = BIT(data->int_bits) - 1;
1153 
1154 	/* TODO: Be smart, and only test a subset of the available divisors. */
1155 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1156 		unsigned long tmp_rate;
1157 
1158 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1159 		tmp_rate /= curdiv;
1160 		if (curdiv == mindiv ||
1161 		    (tmp_rate > best_rate && tmp_rate <= rate))
1162 			best_rate = tmp_rate;
1163 
1164 		if (best_rate == rate)
1165 			break;
1166 	}
1167 
1168 	*div = curdiv << CM_DIV_FRAC_BITS;
1169 	*prate = curdiv * best_rate;
1170 
1171 	return best_rate;
1172 }
1173 
1174 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1175 					struct clk_rate_request *req)
1176 {
1177 	struct clk_hw *parent, *best_parent = NULL;
1178 	bool current_parent_is_pllc;
1179 	unsigned long rate, best_rate = 0;
1180 	unsigned long prate, best_prate = 0;
1181 	size_t i;
1182 	u32 div;
1183 
1184 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1185 
1186 	/*
1187 	 * Select parent clock that results in the closest but lower rate
1188 	 */
1189 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1190 		parent = clk_hw_get_parent_by_index(hw, i);
1191 		if (!parent)
1192 			continue;
1193 
1194 		/*
1195 		 * Don't choose a PLLC-derived clock as our parent
1196 		 * unless it had been manually set that way.  PLLC's
1197 		 * frequency gets adjusted by the firmware due to
1198 		 * over-temp or under-voltage conditions, without
1199 		 * prior notification to our clock consumer.
1200 		 */
1201 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1202 			continue;
1203 
1204 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1205 							  &div, &prate);
1206 		if (rate > best_rate && rate <= req->rate) {
1207 			best_parent = parent;
1208 			best_prate = prate;
1209 			best_rate = rate;
1210 		}
1211 	}
1212 
1213 	if (!best_parent)
1214 		return -EINVAL;
1215 
1216 	req->best_parent_hw = best_parent;
1217 	req->best_parent_rate = best_prate;
1218 
1219 	req->rate = best_rate;
1220 
1221 	return 0;
1222 }
1223 
1224 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1225 {
1226 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1227 	struct bcm2835_cprman *cprman = clock->cprman;
1228 	const struct bcm2835_clock_data *data = clock->data;
1229 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1230 
1231 	cprman_write(cprman, data->ctl_reg, src);
1232 	return 0;
1233 }
1234 
1235 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1236 {
1237 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1238 	struct bcm2835_cprman *cprman = clock->cprman;
1239 	const struct bcm2835_clock_data *data = clock->data;
1240 	u32 src = cprman_read(cprman, data->ctl_reg);
1241 
1242 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1243 }
1244 
1245 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1246 	{
1247 		.name = "ctl",
1248 		.offset = 0,
1249 	},
1250 	{
1251 		.name = "div",
1252 		.offset = 4,
1253 	},
1254 };
1255 
1256 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1257 				    struct dentry *dentry)
1258 {
1259 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1260 	struct bcm2835_cprman *cprman = clock->cprman;
1261 	const struct bcm2835_clock_data *data = clock->data;
1262 
1263 	return bcm2835_debugfs_regset(
1264 		cprman, data->ctl_reg,
1265 		bcm2835_debugfs_clock_reg32,
1266 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1267 		dentry);
1268 }
1269 
1270 static const struct clk_ops bcm2835_clock_clk_ops = {
1271 	.is_prepared = bcm2835_clock_is_on,
1272 	.prepare = bcm2835_clock_on,
1273 	.unprepare = bcm2835_clock_off,
1274 	.recalc_rate = bcm2835_clock_get_rate,
1275 	.set_rate = bcm2835_clock_set_rate,
1276 	.determine_rate = bcm2835_clock_determine_rate,
1277 	.set_parent = bcm2835_clock_set_parent,
1278 	.get_parent = bcm2835_clock_get_parent,
1279 	.debug_init = bcm2835_clock_debug_init,
1280 };
1281 
1282 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1283 {
1284 	return true;
1285 }
1286 
1287 /*
1288  * The VPU clock can never be disabled (it doesn't have an ENABLE
1289  * bit), so it gets its own set of clock ops.
1290  */
1291 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1292 	.is_prepared = bcm2835_vpu_clock_is_on,
1293 	.recalc_rate = bcm2835_clock_get_rate,
1294 	.set_rate = bcm2835_clock_set_rate,
1295 	.determine_rate = bcm2835_clock_determine_rate,
1296 	.set_parent = bcm2835_clock_set_parent,
1297 	.get_parent = bcm2835_clock_get_parent,
1298 	.debug_init = bcm2835_clock_debug_init,
1299 };
1300 
1301 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1302 					   const struct bcm2835_pll_data *data)
1303 {
1304 	struct bcm2835_pll *pll;
1305 	struct clk_init_data init;
1306 	int ret;
1307 
1308 	memset(&init, 0, sizeof(init));
1309 
1310 	/* All of the PLLs derive from the external oscillator. */
1311 	init.parent_names = &cprman->real_parent_names[0];
1312 	init.num_parents = 1;
1313 	init.name = data->name;
1314 	init.ops = &bcm2835_pll_clk_ops;
1315 	init.flags = CLK_IGNORE_UNUSED;
1316 
1317 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1318 	if (!pll)
1319 		return NULL;
1320 
1321 	pll->cprman = cprman;
1322 	pll->data = data;
1323 	pll->hw.init = &init;
1324 
1325 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1326 	if (ret)
1327 		return NULL;
1328 	return &pll->hw;
1329 }
1330 
1331 static struct clk_hw *
1332 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1333 			     const struct bcm2835_pll_divider_data *data)
1334 {
1335 	struct bcm2835_pll_divider *divider;
1336 	struct clk_init_data init;
1337 	const char *divider_name;
1338 	int ret;
1339 
1340 	if (data->fixed_divider != 1) {
1341 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1342 					      "%s_prediv", data->name);
1343 		if (!divider_name)
1344 			return NULL;
1345 	} else {
1346 		divider_name = data->name;
1347 	}
1348 
1349 	memset(&init, 0, sizeof(init));
1350 
1351 	init.parent_names = &data->source_pll;
1352 	init.num_parents = 1;
1353 	init.name = divider_name;
1354 	init.ops = &bcm2835_pll_divider_clk_ops;
1355 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1356 
1357 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1358 	if (!divider)
1359 		return NULL;
1360 
1361 	divider->div.reg = cprman->regs + data->a2w_reg;
1362 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1363 	divider->div.width = A2W_PLL_DIV_BITS;
1364 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1365 	divider->div.lock = &cprman->regs_lock;
1366 	divider->div.hw.init = &init;
1367 	divider->div.table = NULL;
1368 
1369 	divider->cprman = cprman;
1370 	divider->data = data;
1371 
1372 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1373 	if (ret)
1374 		return ERR_PTR(ret);
1375 
1376 	/*
1377 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1378 	 * is what our consumers are actually using.
1379 	 */
1380 	if (data->fixed_divider != 1) {
1381 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1382 						    divider_name,
1383 						    CLK_SET_RATE_PARENT,
1384 						    1,
1385 						    data->fixed_divider);
1386 	}
1387 
1388 	return &divider->div.hw;
1389 }
1390 
1391 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1392 					  const struct bcm2835_clock_data *data)
1393 {
1394 	struct bcm2835_clock *clock;
1395 	struct clk_init_data init;
1396 	const char *parents[1 << CM_SRC_BITS];
1397 	size_t i, j;
1398 	int ret;
1399 
1400 	/*
1401 	 * Replace our strings referencing parent clocks with the
1402 	 * actual clock-output-name of the parent.
1403 	 */
1404 	for (i = 0; i < data->num_mux_parents; i++) {
1405 		parents[i] = data->parents[i];
1406 
1407 		for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1408 			if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1409 				parents[i] = cprman->real_parent_names[j];
1410 				break;
1411 			}
1412 		}
1413 	}
1414 
1415 	memset(&init, 0, sizeof(init));
1416 	init.parent_names = parents;
1417 	init.num_parents = data->num_mux_parents;
1418 	init.name = data->name;
1419 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1420 
1421 	/*
1422 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1423 	 * rate changes on at least of the parents.
1424 	 */
1425 	if (data->set_rate_parent)
1426 		init.flags |= CLK_SET_RATE_PARENT;
1427 
1428 	if (data->is_vpu_clock) {
1429 		init.ops = &bcm2835_vpu_clock_clk_ops;
1430 	} else {
1431 		init.ops = &bcm2835_clock_clk_ops;
1432 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1433 
1434 		/* If the clock wasn't actually enabled at boot, it's not
1435 		 * critical.
1436 		 */
1437 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1438 			init.flags &= ~CLK_IS_CRITICAL;
1439 	}
1440 
1441 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1442 	if (!clock)
1443 		return NULL;
1444 
1445 	clock->cprman = cprman;
1446 	clock->data = data;
1447 	clock->hw.init = &init;
1448 
1449 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1450 	if (ret)
1451 		return ERR_PTR(ret);
1452 	return &clock->hw;
1453 }
1454 
1455 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1456 					 const struct bcm2835_gate_data *data)
1457 {
1458 	return clk_register_gate(cprman->dev, data->name, data->parent,
1459 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1460 				 cprman->regs + data->ctl_reg,
1461 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1462 }
1463 
1464 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1465 					       const void *data);
1466 struct bcm2835_clk_desc {
1467 	bcm2835_clk_register clk_register;
1468 	const void *data;
1469 };
1470 
1471 /* assignment helper macros for different clock types */
1472 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1473 			    .data = __VA_ARGS__ }
1474 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1475 					  &(struct bcm2835_pll_data)	\
1476 					  {__VA_ARGS__})
1477 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1478 					  &(struct bcm2835_pll_divider_data) \
1479 					  {__VA_ARGS__})
1480 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1481 					  &(struct bcm2835_clock_data)	\
1482 					  {__VA_ARGS__})
1483 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1484 					  &(struct bcm2835_gate_data)	\
1485 					  {__VA_ARGS__})
1486 
1487 /* parent mux arrays plus helper macros */
1488 
1489 /* main oscillator parent mux */
1490 static const char *const bcm2835_clock_osc_parents[] = {
1491 	"gnd",
1492 	"xosc",
1493 	"testdebug0",
1494 	"testdebug1"
1495 };
1496 
1497 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1498 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1499 	.parents = bcm2835_clock_osc_parents,				\
1500 	__VA_ARGS__)
1501 
1502 /* main peripherial parent mux */
1503 static const char *const bcm2835_clock_per_parents[] = {
1504 	"gnd",
1505 	"xosc",
1506 	"testdebug0",
1507 	"testdebug1",
1508 	"plla_per",
1509 	"pllc_per",
1510 	"plld_per",
1511 	"pllh_aux",
1512 };
1513 
1514 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1515 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1516 	.parents = bcm2835_clock_per_parents,				\
1517 	__VA_ARGS__)
1518 
1519 /* main vpu parent mux */
1520 static const char *const bcm2835_clock_vpu_parents[] = {
1521 	"gnd",
1522 	"xosc",
1523 	"testdebug0",
1524 	"testdebug1",
1525 	"plla_core",
1526 	"pllc_core0",
1527 	"plld_core",
1528 	"pllh_aux",
1529 	"pllc_core1",
1530 	"pllc_core2",
1531 };
1532 
1533 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1534 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1535 	.parents = bcm2835_clock_vpu_parents,				\
1536 	__VA_ARGS__)
1537 
1538 /*
1539  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1540  * analog PHY.  The _inv variants are generated internally to cprman,
1541  * but we don't use them so they aren't hooked up.
1542  */
1543 static const char *const bcm2835_clock_dsi0_parents[] = {
1544 	"gnd",
1545 	"xosc",
1546 	"testdebug0",
1547 	"testdebug1",
1548 	"dsi0_ddr",
1549 	"dsi0_ddr_inv",
1550 	"dsi0_ddr2",
1551 	"dsi0_ddr2_inv",
1552 	"dsi0_byte",
1553 	"dsi0_byte_inv",
1554 };
1555 
1556 static const char *const bcm2835_clock_dsi1_parents[] = {
1557 	"gnd",
1558 	"xosc",
1559 	"testdebug0",
1560 	"testdebug1",
1561 	"dsi1_ddr",
1562 	"dsi1_ddr_inv",
1563 	"dsi1_ddr2",
1564 	"dsi1_ddr2_inv",
1565 	"dsi1_byte",
1566 	"dsi1_byte_inv",
1567 };
1568 
1569 #define REGISTER_DSI0_CLK(...)	REGISTER_CLK(				\
1570 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1571 	.parents = bcm2835_clock_dsi0_parents,				\
1572 	__VA_ARGS__)
1573 
1574 #define REGISTER_DSI1_CLK(...)	REGISTER_CLK(				\
1575 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1576 	.parents = bcm2835_clock_dsi1_parents,				\
1577 	__VA_ARGS__)
1578 
1579 /*
1580  * the real definition of all the pll, pll_dividers and clocks
1581  * these make use of the above REGISTER_* macros
1582  */
1583 static const struct bcm2835_clk_desc clk_desc_array[] = {
1584 	/* the PLL + PLL dividers */
1585 
1586 	/*
1587 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1588 	 * (Compact Camera Port 2) transmitter clock.
1589 	 *
1590 	 * It is in the PX LDO power domain, which is on when the
1591 	 * AUDIO domain is on.
1592 	 */
1593 	[BCM2835_PLLA]		= REGISTER_PLL(
1594 		.name = "plla",
1595 		.cm_ctrl_reg = CM_PLLA,
1596 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1597 		.frac_reg = A2W_PLLA_FRAC,
1598 		.ana_reg_base = A2W_PLLA_ANA0,
1599 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1600 		.lock_mask = CM_LOCK_FLOCKA,
1601 
1602 		.ana = &bcm2835_ana_default,
1603 
1604 		.min_rate = 600000000u,
1605 		.max_rate = 2400000000u,
1606 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1607 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1608 		.name = "plla_core",
1609 		.source_pll = "plla",
1610 		.cm_reg = CM_PLLA,
1611 		.a2w_reg = A2W_PLLA_CORE,
1612 		.load_mask = CM_PLLA_LOADCORE,
1613 		.hold_mask = CM_PLLA_HOLDCORE,
1614 		.fixed_divider = 1,
1615 		.flags = CLK_SET_RATE_PARENT),
1616 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1617 		.name = "plla_per",
1618 		.source_pll = "plla",
1619 		.cm_reg = CM_PLLA,
1620 		.a2w_reg = A2W_PLLA_PER,
1621 		.load_mask = CM_PLLA_LOADPER,
1622 		.hold_mask = CM_PLLA_HOLDPER,
1623 		.fixed_divider = 1,
1624 		.flags = CLK_SET_RATE_PARENT),
1625 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1626 		.name = "plla_dsi0",
1627 		.source_pll = "plla",
1628 		.cm_reg = CM_PLLA,
1629 		.a2w_reg = A2W_PLLA_DSI0,
1630 		.load_mask = CM_PLLA_LOADDSI0,
1631 		.hold_mask = CM_PLLA_HOLDDSI0,
1632 		.fixed_divider = 1),
1633 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1634 		.name = "plla_ccp2",
1635 		.source_pll = "plla",
1636 		.cm_reg = CM_PLLA,
1637 		.a2w_reg = A2W_PLLA_CCP2,
1638 		.load_mask = CM_PLLA_LOADCCP2,
1639 		.hold_mask = CM_PLLA_HOLDCCP2,
1640 		.fixed_divider = 1,
1641 		.flags = CLK_SET_RATE_PARENT),
1642 
1643 	/* PLLB is used for the ARM's clock. */
1644 	[BCM2835_PLLB]		= REGISTER_PLL(
1645 		.name = "pllb",
1646 		.cm_ctrl_reg = CM_PLLB,
1647 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1648 		.frac_reg = A2W_PLLB_FRAC,
1649 		.ana_reg_base = A2W_PLLB_ANA0,
1650 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1651 		.lock_mask = CM_LOCK_FLOCKB,
1652 
1653 		.ana = &bcm2835_ana_default,
1654 
1655 		.min_rate = 600000000u,
1656 		.max_rate = 3000000000u,
1657 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1658 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1659 		.name = "pllb_arm",
1660 		.source_pll = "pllb",
1661 		.cm_reg = CM_PLLB,
1662 		.a2w_reg = A2W_PLLB_ARM,
1663 		.load_mask = CM_PLLB_LOADARM,
1664 		.hold_mask = CM_PLLB_HOLDARM,
1665 		.fixed_divider = 1,
1666 		.flags = CLK_SET_RATE_PARENT),
1667 
1668 	/*
1669 	 * PLLC is the core PLL, used to drive the core VPU clock.
1670 	 *
1671 	 * It is in the PX LDO power domain, which is on when the
1672 	 * AUDIO domain is on.
1673 	 */
1674 	[BCM2835_PLLC]		= REGISTER_PLL(
1675 		.name = "pllc",
1676 		.cm_ctrl_reg = CM_PLLC,
1677 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1678 		.frac_reg = A2W_PLLC_FRAC,
1679 		.ana_reg_base = A2W_PLLC_ANA0,
1680 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1681 		.lock_mask = CM_LOCK_FLOCKC,
1682 
1683 		.ana = &bcm2835_ana_default,
1684 
1685 		.min_rate = 600000000u,
1686 		.max_rate = 3000000000u,
1687 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1688 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1689 		.name = "pllc_core0",
1690 		.source_pll = "pllc",
1691 		.cm_reg = CM_PLLC,
1692 		.a2w_reg = A2W_PLLC_CORE0,
1693 		.load_mask = CM_PLLC_LOADCORE0,
1694 		.hold_mask = CM_PLLC_HOLDCORE0,
1695 		.fixed_divider = 1,
1696 		.flags = CLK_SET_RATE_PARENT),
1697 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1698 		.name = "pllc_core1",
1699 		.source_pll = "pllc",
1700 		.cm_reg = CM_PLLC,
1701 		.a2w_reg = A2W_PLLC_CORE1,
1702 		.load_mask = CM_PLLC_LOADCORE1,
1703 		.hold_mask = CM_PLLC_HOLDCORE1,
1704 		.fixed_divider = 1,
1705 		.flags = CLK_SET_RATE_PARENT),
1706 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1707 		.name = "pllc_core2",
1708 		.source_pll = "pllc",
1709 		.cm_reg = CM_PLLC,
1710 		.a2w_reg = A2W_PLLC_CORE2,
1711 		.load_mask = CM_PLLC_LOADCORE2,
1712 		.hold_mask = CM_PLLC_HOLDCORE2,
1713 		.fixed_divider = 1,
1714 		.flags = CLK_SET_RATE_PARENT),
1715 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1716 		.name = "pllc_per",
1717 		.source_pll = "pllc",
1718 		.cm_reg = CM_PLLC,
1719 		.a2w_reg = A2W_PLLC_PER,
1720 		.load_mask = CM_PLLC_LOADPER,
1721 		.hold_mask = CM_PLLC_HOLDPER,
1722 		.fixed_divider = 1,
1723 		.flags = CLK_SET_RATE_PARENT),
1724 
1725 	/*
1726 	 * PLLD is the display PLL, used to drive DSI display panels.
1727 	 *
1728 	 * It is in the PX LDO power domain, which is on when the
1729 	 * AUDIO domain is on.
1730 	 */
1731 	[BCM2835_PLLD]		= REGISTER_PLL(
1732 		.name = "plld",
1733 		.cm_ctrl_reg = CM_PLLD,
1734 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1735 		.frac_reg = A2W_PLLD_FRAC,
1736 		.ana_reg_base = A2W_PLLD_ANA0,
1737 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1738 		.lock_mask = CM_LOCK_FLOCKD,
1739 
1740 		.ana = &bcm2835_ana_default,
1741 
1742 		.min_rate = 600000000u,
1743 		.max_rate = 2400000000u,
1744 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1745 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1746 		.name = "plld_core",
1747 		.source_pll = "plld",
1748 		.cm_reg = CM_PLLD,
1749 		.a2w_reg = A2W_PLLD_CORE,
1750 		.load_mask = CM_PLLD_LOADCORE,
1751 		.hold_mask = CM_PLLD_HOLDCORE,
1752 		.fixed_divider = 1,
1753 		.flags = CLK_SET_RATE_PARENT),
1754 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1755 		.name = "plld_per",
1756 		.source_pll = "plld",
1757 		.cm_reg = CM_PLLD,
1758 		.a2w_reg = A2W_PLLD_PER,
1759 		.load_mask = CM_PLLD_LOADPER,
1760 		.hold_mask = CM_PLLD_HOLDPER,
1761 		.fixed_divider = 1,
1762 		.flags = CLK_SET_RATE_PARENT),
1763 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1764 		.name = "plld_dsi0",
1765 		.source_pll = "plld",
1766 		.cm_reg = CM_PLLD,
1767 		.a2w_reg = A2W_PLLD_DSI0,
1768 		.load_mask = CM_PLLD_LOADDSI0,
1769 		.hold_mask = CM_PLLD_HOLDDSI0,
1770 		.fixed_divider = 1),
1771 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1772 		.name = "plld_dsi1",
1773 		.source_pll = "plld",
1774 		.cm_reg = CM_PLLD,
1775 		.a2w_reg = A2W_PLLD_DSI1,
1776 		.load_mask = CM_PLLD_LOADDSI1,
1777 		.hold_mask = CM_PLLD_HOLDDSI1,
1778 		.fixed_divider = 1),
1779 
1780 	/*
1781 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1782 	 * TV encoder.
1783 	 *
1784 	 * It is in the HDMI power domain.
1785 	 */
1786 	[BCM2835_PLLH]		= REGISTER_PLL(
1787 		"pllh",
1788 		.cm_ctrl_reg = CM_PLLH,
1789 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1790 		.frac_reg = A2W_PLLH_FRAC,
1791 		.ana_reg_base = A2W_PLLH_ANA0,
1792 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1793 		.lock_mask = CM_LOCK_FLOCKH,
1794 
1795 		.ana = &bcm2835_ana_pllh,
1796 
1797 		.min_rate = 600000000u,
1798 		.max_rate = 3000000000u,
1799 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1800 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1801 		.name = "pllh_rcal",
1802 		.source_pll = "pllh",
1803 		.cm_reg = CM_PLLH,
1804 		.a2w_reg = A2W_PLLH_RCAL,
1805 		.load_mask = CM_PLLH_LOADRCAL,
1806 		.hold_mask = 0,
1807 		.fixed_divider = 10,
1808 		.flags = CLK_SET_RATE_PARENT),
1809 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1810 		.name = "pllh_aux",
1811 		.source_pll = "pllh",
1812 		.cm_reg = CM_PLLH,
1813 		.a2w_reg = A2W_PLLH_AUX,
1814 		.load_mask = CM_PLLH_LOADAUX,
1815 		.hold_mask = 0,
1816 		.fixed_divider = 1,
1817 		.flags = CLK_SET_RATE_PARENT),
1818 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1819 		.name = "pllh_pix",
1820 		.source_pll = "pllh",
1821 		.cm_reg = CM_PLLH,
1822 		.a2w_reg = A2W_PLLH_PIX,
1823 		.load_mask = CM_PLLH_LOADPIX,
1824 		.hold_mask = 0,
1825 		.fixed_divider = 10,
1826 		.flags = CLK_SET_RATE_PARENT),
1827 
1828 	/* the clocks */
1829 
1830 	/* clocks with oscillator parent mux */
1831 
1832 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1833 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1834 		.name = "otp",
1835 		.ctl_reg = CM_OTPCTL,
1836 		.div_reg = CM_OTPDIV,
1837 		.int_bits = 4,
1838 		.frac_bits = 0,
1839 		.tcnt_mux = 6),
1840 	/*
1841 	 * Used for a 1Mhz clock for the system clocksource, and also used
1842 	 * bythe watchdog timer and the camera pulse generator.
1843 	 */
1844 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1845 		.name = "timer",
1846 		.ctl_reg = CM_TIMERCTL,
1847 		.div_reg = CM_TIMERDIV,
1848 		.int_bits = 6,
1849 		.frac_bits = 12),
1850 	/*
1851 	 * Clock for the temperature sensor.
1852 	 * Generally run at 2Mhz, max 5Mhz.
1853 	 */
1854 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1855 		.name = "tsens",
1856 		.ctl_reg = CM_TSENSCTL,
1857 		.div_reg = CM_TSENSDIV,
1858 		.int_bits = 5,
1859 		.frac_bits = 0),
1860 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1861 		.name = "tec",
1862 		.ctl_reg = CM_TECCTL,
1863 		.div_reg = CM_TECDIV,
1864 		.int_bits = 6,
1865 		.frac_bits = 0),
1866 
1867 	/* clocks with vpu parent mux */
1868 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1869 		.name = "h264",
1870 		.ctl_reg = CM_H264CTL,
1871 		.div_reg = CM_H264DIV,
1872 		.int_bits = 4,
1873 		.frac_bits = 8,
1874 		.tcnt_mux = 1),
1875 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1876 		.name = "isp",
1877 		.ctl_reg = CM_ISPCTL,
1878 		.div_reg = CM_ISPDIV,
1879 		.int_bits = 4,
1880 		.frac_bits = 8,
1881 		.tcnt_mux = 2),
1882 
1883 	/*
1884 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1885 	 * in the SDRAM controller can't be used.
1886 	 */
1887 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1888 		.name = "sdram",
1889 		.ctl_reg = CM_SDCCTL,
1890 		.div_reg = CM_SDCDIV,
1891 		.int_bits = 6,
1892 		.frac_bits = 0,
1893 		.tcnt_mux = 3),
1894 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1895 		.name = "v3d",
1896 		.ctl_reg = CM_V3DCTL,
1897 		.div_reg = CM_V3DDIV,
1898 		.int_bits = 4,
1899 		.frac_bits = 8,
1900 		.tcnt_mux = 4),
1901 	/*
1902 	 * VPU clock.  This doesn't have an enable bit, since it drives
1903 	 * the bus for everything else, and is special so it doesn't need
1904 	 * to be gated for rate changes.  It is also known as "clk_audio"
1905 	 * in various hardware documentation.
1906 	 */
1907 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1908 		.name = "vpu",
1909 		.ctl_reg = CM_VPUCTL,
1910 		.div_reg = CM_VPUDIV,
1911 		.int_bits = 12,
1912 		.frac_bits = 8,
1913 		.flags = CLK_IS_CRITICAL,
1914 		.is_vpu_clock = true,
1915 		.tcnt_mux = 5),
1916 
1917 	/* clocks with per parent mux */
1918 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1919 		.name = "aveo",
1920 		.ctl_reg = CM_AVEOCTL,
1921 		.div_reg = CM_AVEODIV,
1922 		.int_bits = 4,
1923 		.frac_bits = 0,
1924 		.tcnt_mux = 38),
1925 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1926 		.name = "cam0",
1927 		.ctl_reg = CM_CAM0CTL,
1928 		.div_reg = CM_CAM0DIV,
1929 		.int_bits = 4,
1930 		.frac_bits = 8,
1931 		.tcnt_mux = 14),
1932 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1933 		.name = "cam1",
1934 		.ctl_reg = CM_CAM1CTL,
1935 		.div_reg = CM_CAM1DIV,
1936 		.int_bits = 4,
1937 		.frac_bits = 8,
1938 		.tcnt_mux = 15),
1939 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1940 		.name = "dft",
1941 		.ctl_reg = CM_DFTCTL,
1942 		.div_reg = CM_DFTDIV,
1943 		.int_bits = 5,
1944 		.frac_bits = 0),
1945 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1946 		.name = "dpi",
1947 		.ctl_reg = CM_DPICTL,
1948 		.div_reg = CM_DPIDIV,
1949 		.int_bits = 4,
1950 		.frac_bits = 8,
1951 		.tcnt_mux = 17),
1952 
1953 	/* Arasan EMMC clock */
1954 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
1955 		.name = "emmc",
1956 		.ctl_reg = CM_EMMCCTL,
1957 		.div_reg = CM_EMMCDIV,
1958 		.int_bits = 4,
1959 		.frac_bits = 8,
1960 		.tcnt_mux = 39),
1961 
1962 	/* General purpose (GPIO) clocks */
1963 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
1964 		.name = "gp0",
1965 		.ctl_reg = CM_GP0CTL,
1966 		.div_reg = CM_GP0DIV,
1967 		.int_bits = 12,
1968 		.frac_bits = 12,
1969 		.is_mash_clock = true,
1970 		.tcnt_mux = 20),
1971 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
1972 		.name = "gp1",
1973 		.ctl_reg = CM_GP1CTL,
1974 		.div_reg = CM_GP1DIV,
1975 		.int_bits = 12,
1976 		.frac_bits = 12,
1977 		.flags = CLK_IS_CRITICAL,
1978 		.is_mash_clock = true,
1979 		.tcnt_mux = 21),
1980 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
1981 		.name = "gp2",
1982 		.ctl_reg = CM_GP2CTL,
1983 		.div_reg = CM_GP2DIV,
1984 		.int_bits = 12,
1985 		.frac_bits = 12,
1986 		.flags = CLK_IS_CRITICAL),
1987 
1988 	/* HDMI state machine */
1989 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
1990 		.name = "hsm",
1991 		.ctl_reg = CM_HSMCTL,
1992 		.div_reg = CM_HSMDIV,
1993 		.int_bits = 4,
1994 		.frac_bits = 8,
1995 		.tcnt_mux = 22),
1996 	[BCM2835_CLOCK_PCM]	= REGISTER_PER_CLK(
1997 		.name = "pcm",
1998 		.ctl_reg = CM_PCMCTL,
1999 		.div_reg = CM_PCMDIV,
2000 		.int_bits = 12,
2001 		.frac_bits = 12,
2002 		.is_mash_clock = true,
2003 		.tcnt_mux = 23),
2004 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2005 		.name = "pwm",
2006 		.ctl_reg = CM_PWMCTL,
2007 		.div_reg = CM_PWMDIV,
2008 		.int_bits = 12,
2009 		.frac_bits = 12,
2010 		.is_mash_clock = true,
2011 		.tcnt_mux = 24),
2012 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2013 		.name = "slim",
2014 		.ctl_reg = CM_SLIMCTL,
2015 		.div_reg = CM_SLIMDIV,
2016 		.int_bits = 12,
2017 		.frac_bits = 12,
2018 		.is_mash_clock = true,
2019 		.tcnt_mux = 25),
2020 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2021 		.name = "smi",
2022 		.ctl_reg = CM_SMICTL,
2023 		.div_reg = CM_SMIDIV,
2024 		.int_bits = 4,
2025 		.frac_bits = 8,
2026 		.tcnt_mux = 27),
2027 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2028 		.name = "uart",
2029 		.ctl_reg = CM_UARTCTL,
2030 		.div_reg = CM_UARTDIV,
2031 		.int_bits = 10,
2032 		.frac_bits = 12,
2033 		.tcnt_mux = 28),
2034 
2035 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2036 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2037 		.name = "vec",
2038 		.ctl_reg = CM_VECCTL,
2039 		.div_reg = CM_VECDIV,
2040 		.int_bits = 4,
2041 		.frac_bits = 0,
2042 		/*
2043 		 * Allow rate change propagation only on PLLH_AUX which is
2044 		 * assigned index 7 in the parent array.
2045 		 */
2046 		.set_rate_parent = BIT(7),
2047 		.tcnt_mux = 29),
2048 
2049 	/* dsi clocks */
2050 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2051 		.name = "dsi0e",
2052 		.ctl_reg = CM_DSI0ECTL,
2053 		.div_reg = CM_DSI0EDIV,
2054 		.int_bits = 4,
2055 		.frac_bits = 8,
2056 		.tcnt_mux = 18),
2057 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2058 		.name = "dsi1e",
2059 		.ctl_reg = CM_DSI1ECTL,
2060 		.div_reg = CM_DSI1EDIV,
2061 		.int_bits = 4,
2062 		.frac_bits = 8,
2063 		.tcnt_mux = 19),
2064 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2065 		.name = "dsi0p",
2066 		.ctl_reg = CM_DSI0PCTL,
2067 		.div_reg = CM_DSI0PDIV,
2068 		.int_bits = 0,
2069 		.frac_bits = 0,
2070 		.tcnt_mux = 12),
2071 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2072 		.name = "dsi1p",
2073 		.ctl_reg = CM_DSI1PCTL,
2074 		.div_reg = CM_DSI1PDIV,
2075 		.int_bits = 0,
2076 		.frac_bits = 0,
2077 		.tcnt_mux = 13),
2078 
2079 	/* the gates */
2080 
2081 	/*
2082 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2083 	 * you have the debug bit set in the power manager, which we
2084 	 * don't bother exposing) are individual gates off of the
2085 	 * non-stop vpu clock.
2086 	 */
2087 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2088 		.name = "peri_image",
2089 		.parent = "vpu",
2090 		.ctl_reg = CM_PERIICTL),
2091 };
2092 
2093 /*
2094  * Permanently take a reference on the parent of the SDRAM clock.
2095  *
2096  * While the SDRAM is being driven by its dedicated PLL most of the
2097  * time, there is a little loop running in the firmware that
2098  * periodically switches the SDRAM to using our CM clock to do PVT
2099  * recalibration, with the assumption that the previously configured
2100  * SDRAM parent is still enabled and running.
2101  */
2102 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2103 {
2104 	struct clk *parent = clk_get_parent(sdc);
2105 
2106 	if (IS_ERR(parent))
2107 		return PTR_ERR(parent);
2108 
2109 	return clk_prepare_enable(parent);
2110 }
2111 
2112 static int bcm2835_clk_probe(struct platform_device *pdev)
2113 {
2114 	struct device *dev = &pdev->dev;
2115 	struct clk_hw **hws;
2116 	struct bcm2835_cprman *cprman;
2117 	struct resource *res;
2118 	const struct bcm2835_clk_desc *desc;
2119 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2120 	size_t i;
2121 	int ret;
2122 
2123 	cprman = devm_kzalloc(dev, sizeof(*cprman) +
2124 			      sizeof(*cprman->onecell.hws) * asize,
2125 			      GFP_KERNEL);
2126 	if (!cprman)
2127 		return -ENOMEM;
2128 
2129 	spin_lock_init(&cprman->regs_lock);
2130 	cprman->dev = dev;
2131 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2132 	cprman->regs = devm_ioremap_resource(dev, res);
2133 	if (IS_ERR(cprman->regs))
2134 		return PTR_ERR(cprman->regs);
2135 
2136 	memcpy(cprman->real_parent_names, cprman_parent_names,
2137 	       sizeof(cprman_parent_names));
2138 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2139 			   ARRAY_SIZE(cprman_parent_names));
2140 
2141 	/*
2142 	 * Make sure the external oscillator has been registered.
2143 	 *
2144 	 * The other (DSI) clocks are not present on older device
2145 	 * trees, which we still need to support for backwards
2146 	 * compatibility.
2147 	 */
2148 	if (!cprman->real_parent_names[0])
2149 		return -ENODEV;
2150 
2151 	platform_set_drvdata(pdev, cprman);
2152 
2153 	cprman->onecell.num = asize;
2154 	hws = cprman->onecell.hws;
2155 
2156 	for (i = 0; i < asize; i++) {
2157 		desc = &clk_desc_array[i];
2158 		if (desc->clk_register && desc->data)
2159 			hws[i] = desc->clk_register(cprman, desc->data);
2160 	}
2161 
2162 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2163 	if (ret)
2164 		return ret;
2165 
2166 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2167 				      &cprman->onecell);
2168 }
2169 
2170 static const struct of_device_id bcm2835_clk_of_match[] = {
2171 	{ .compatible = "brcm,bcm2835-cprman", },
2172 	{}
2173 };
2174 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2175 
2176 static struct platform_driver bcm2835_clk_driver = {
2177 	.driver = {
2178 		.name = "bcm2835-clk",
2179 		.of_match_table = bcm2835_clk_of_match,
2180 	},
2181 	.probe          = bcm2835_clk_probe,
2182 };
2183 
2184 builtin_platform_driver(bcm2835_clk_driver);
2185 
2186 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2187 MODULE_DESCRIPTION("BCM2835 clock driver");
2188 MODULE_LICENSE("GPL v2");
2189