xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision 4e1a33b1)
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36 
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
47 
48 #define CM_PASSWORD		0x5a000000
49 
50 #define CM_GNRICCTL		0x000
51 #define CM_GNRICDIV		0x004
52 # define CM_DIV_FRAC_BITS	12
53 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
54 
55 #define CM_VPUCTL		0x008
56 #define CM_VPUDIV		0x00c
57 #define CM_SYSCTL		0x010
58 #define CM_SYSDIV		0x014
59 #define CM_PERIACTL		0x018
60 #define CM_PERIADIV		0x01c
61 #define CM_PERIICTL		0x020
62 #define CM_PERIIDIV		0x024
63 #define CM_H264CTL		0x028
64 #define CM_H264DIV		0x02c
65 #define CM_ISPCTL		0x030
66 #define CM_ISPDIV		0x034
67 #define CM_V3DCTL		0x038
68 #define CM_V3DDIV		0x03c
69 #define CM_CAM0CTL		0x040
70 #define CM_CAM0DIV		0x044
71 #define CM_CAM1CTL		0x048
72 #define CM_CAM1DIV		0x04c
73 #define CM_CCP2CTL		0x050
74 #define CM_CCP2DIV		0x054
75 #define CM_DSI0ECTL		0x058
76 #define CM_DSI0EDIV		0x05c
77 #define CM_DSI0PCTL		0x060
78 #define CM_DSI0PDIV		0x064
79 #define CM_DPICTL		0x068
80 #define CM_DPIDIV		0x06c
81 #define CM_GP0CTL		0x070
82 #define CM_GP0DIV		0x074
83 #define CM_GP1CTL		0x078
84 #define CM_GP1DIV		0x07c
85 #define CM_GP2CTL		0x080
86 #define CM_GP2DIV		0x084
87 #define CM_HSMCTL		0x088
88 #define CM_HSMDIV		0x08c
89 #define CM_OTPCTL		0x090
90 #define CM_OTPDIV		0x094
91 #define CM_PCMCTL		0x098
92 #define CM_PCMDIV		0x09c
93 #define CM_PWMCTL		0x0a0
94 #define CM_PWMDIV		0x0a4
95 #define CM_SLIMCTL		0x0a8
96 #define CM_SLIMDIV		0x0ac
97 #define CM_SMICTL		0x0b0
98 #define CM_SMIDIV		0x0b4
99 /* no definition for 0x0b8  and 0x0bc */
100 #define CM_TCNTCTL		0x0c0
101 #define CM_TCNTDIV		0x0c4
102 #define CM_TECCTL		0x0c8
103 #define CM_TECDIV		0x0cc
104 #define CM_TD0CTL		0x0d0
105 #define CM_TD0DIV		0x0d4
106 #define CM_TD1CTL		0x0d8
107 #define CM_TD1DIV		0x0dc
108 #define CM_TSENSCTL		0x0e0
109 #define CM_TSENSDIV		0x0e4
110 #define CM_TIMERCTL		0x0e8
111 #define CM_TIMERDIV		0x0ec
112 #define CM_UARTCTL		0x0f0
113 #define CM_UARTDIV		0x0f4
114 #define CM_VECCTL		0x0f8
115 #define CM_VECDIV		0x0fc
116 #define CM_PULSECTL		0x190
117 #define CM_PULSEDIV		0x194
118 #define CM_SDCCTL		0x1a8
119 #define CM_SDCDIV		0x1ac
120 #define CM_ARMCTL		0x1b0
121 #define CM_AVEOCTL		0x1b8
122 #define CM_AVEODIV		0x1bc
123 #define CM_EMMCCTL		0x1c0
124 #define CM_EMMCDIV		0x1c4
125 
126 /* General bits for the CM_*CTL regs */
127 # define CM_ENABLE			BIT(4)
128 # define CM_KILL			BIT(5)
129 # define CM_GATE_BIT			6
130 # define CM_GATE			BIT(CM_GATE_BIT)
131 # define CM_BUSY			BIT(7)
132 # define CM_BUSYD			BIT(8)
133 # define CM_FRAC			BIT(9)
134 # define CM_SRC_SHIFT			0
135 # define CM_SRC_BITS			4
136 # define CM_SRC_MASK			0xf
137 # define CM_SRC_GND			0
138 # define CM_SRC_OSC			1
139 # define CM_SRC_TESTDEBUG0		2
140 # define CM_SRC_TESTDEBUG1		3
141 # define CM_SRC_PLLA_CORE		4
142 # define CM_SRC_PLLA_PER		4
143 # define CM_SRC_PLLC_CORE0		5
144 # define CM_SRC_PLLC_PER		5
145 # define CM_SRC_PLLC_CORE1		8
146 # define CM_SRC_PLLD_CORE		6
147 # define CM_SRC_PLLD_PER		6
148 # define CM_SRC_PLLH_AUX		7
149 # define CM_SRC_PLLC_CORE1		8
150 # define CM_SRC_PLLC_CORE2		9
151 
152 #define CM_OSCCOUNT		0x100
153 
154 #define CM_PLLA			0x104
155 # define CM_PLL_ANARST			BIT(8)
156 # define CM_PLLA_HOLDPER		BIT(7)
157 # define CM_PLLA_LOADPER		BIT(6)
158 # define CM_PLLA_HOLDCORE		BIT(5)
159 # define CM_PLLA_LOADCORE		BIT(4)
160 # define CM_PLLA_HOLDCCP2		BIT(3)
161 # define CM_PLLA_LOADCCP2		BIT(2)
162 # define CM_PLLA_HOLDDSI0		BIT(1)
163 # define CM_PLLA_LOADDSI0		BIT(0)
164 
165 #define CM_PLLC			0x108
166 # define CM_PLLC_HOLDPER		BIT(7)
167 # define CM_PLLC_LOADPER		BIT(6)
168 # define CM_PLLC_HOLDCORE2		BIT(5)
169 # define CM_PLLC_LOADCORE2		BIT(4)
170 # define CM_PLLC_HOLDCORE1		BIT(3)
171 # define CM_PLLC_LOADCORE1		BIT(2)
172 # define CM_PLLC_HOLDCORE0		BIT(1)
173 # define CM_PLLC_LOADCORE0		BIT(0)
174 
175 #define CM_PLLD			0x10c
176 # define CM_PLLD_HOLDPER		BIT(7)
177 # define CM_PLLD_LOADPER		BIT(6)
178 # define CM_PLLD_HOLDCORE		BIT(5)
179 # define CM_PLLD_LOADCORE		BIT(4)
180 # define CM_PLLD_HOLDDSI1		BIT(3)
181 # define CM_PLLD_LOADDSI1		BIT(2)
182 # define CM_PLLD_HOLDDSI0		BIT(1)
183 # define CM_PLLD_LOADDSI0		BIT(0)
184 
185 #define CM_PLLH			0x110
186 # define CM_PLLH_LOADRCAL		BIT(2)
187 # define CM_PLLH_LOADAUX		BIT(1)
188 # define CM_PLLH_LOADPIX		BIT(0)
189 
190 #define CM_LOCK			0x114
191 # define CM_LOCK_FLOCKH			BIT(12)
192 # define CM_LOCK_FLOCKD			BIT(11)
193 # define CM_LOCK_FLOCKC			BIT(10)
194 # define CM_LOCK_FLOCKB			BIT(9)
195 # define CM_LOCK_FLOCKA			BIT(8)
196 
197 #define CM_EVENT		0x118
198 #define CM_DSI1ECTL		0x158
199 #define CM_DSI1EDIV		0x15c
200 #define CM_DSI1PCTL		0x160
201 #define CM_DSI1PDIV		0x164
202 #define CM_DFTCTL		0x168
203 #define CM_DFTDIV		0x16c
204 
205 #define CM_PLLB			0x170
206 # define CM_PLLB_HOLDARM		BIT(1)
207 # define CM_PLLB_LOADARM		BIT(0)
208 
209 #define A2W_PLLA_CTRL		0x1100
210 #define A2W_PLLC_CTRL		0x1120
211 #define A2W_PLLD_CTRL		0x1140
212 #define A2W_PLLH_CTRL		0x1160
213 #define A2W_PLLB_CTRL		0x11e0
214 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
215 # define A2W_PLL_CTRL_PWRDN		BIT(16)
216 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
217 # define A2W_PLL_CTRL_PDIV_SHIFT	12
218 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
219 # define A2W_PLL_CTRL_NDIV_SHIFT	0
220 
221 #define A2W_PLLA_ANA0		0x1010
222 #define A2W_PLLC_ANA0		0x1030
223 #define A2W_PLLD_ANA0		0x1050
224 #define A2W_PLLH_ANA0		0x1070
225 #define A2W_PLLB_ANA0		0x10f0
226 
227 #define A2W_PLL_KA_SHIFT	7
228 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
229 #define A2W_PLL_KI_SHIFT	19
230 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
231 #define A2W_PLL_KP_SHIFT	15
232 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
233 
234 #define A2W_PLLH_KA_SHIFT	19
235 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
236 #define A2W_PLLH_KI_LOW_SHIFT	22
237 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
238 #define A2W_PLLH_KI_HIGH_SHIFT	0
239 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
240 #define A2W_PLLH_KP_SHIFT	1
241 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
242 
243 #define A2W_XOSC_CTRL		0x1190
244 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
245 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
246 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
247 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
248 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
249 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
250 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
251 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
252 
253 #define A2W_PLLA_FRAC		0x1200
254 #define A2W_PLLC_FRAC		0x1220
255 #define A2W_PLLD_FRAC		0x1240
256 #define A2W_PLLH_FRAC		0x1260
257 #define A2W_PLLB_FRAC		0x12e0
258 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
259 # define A2W_PLL_FRAC_BITS		20
260 
261 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
262 #define A2W_PLL_DIV_BITS		8
263 #define A2W_PLL_DIV_SHIFT		0
264 
265 #define A2W_PLLA_DSI0		0x1300
266 #define A2W_PLLA_CORE		0x1400
267 #define A2W_PLLA_PER		0x1500
268 #define A2W_PLLA_CCP2		0x1600
269 
270 #define A2W_PLLC_CORE2		0x1320
271 #define A2W_PLLC_CORE1		0x1420
272 #define A2W_PLLC_PER		0x1520
273 #define A2W_PLLC_CORE0		0x1620
274 
275 #define A2W_PLLD_DSI0		0x1340
276 #define A2W_PLLD_CORE		0x1440
277 #define A2W_PLLD_PER		0x1540
278 #define A2W_PLLD_DSI1		0x1640
279 
280 #define A2W_PLLH_AUX		0x1360
281 #define A2W_PLLH_RCAL		0x1460
282 #define A2W_PLLH_PIX		0x1560
283 #define A2W_PLLH_STS		0x1660
284 
285 #define A2W_PLLH_CTRLR		0x1960
286 #define A2W_PLLH_FRACR		0x1a60
287 #define A2W_PLLH_AUXR		0x1b60
288 #define A2W_PLLH_RCALR		0x1c60
289 #define A2W_PLLH_PIXR		0x1d60
290 #define A2W_PLLH_STSR		0x1e60
291 
292 #define A2W_PLLB_ARM		0x13e0
293 #define A2W_PLLB_SP0		0x14e0
294 #define A2W_PLLB_SP1		0x15e0
295 #define A2W_PLLB_SP2		0x16e0
296 
297 #define LOCK_TIMEOUT_NS		100000000
298 #define BCM2835_MAX_FB_RATE	1750000000u
299 
300 struct bcm2835_cprman {
301 	struct device *dev;
302 	void __iomem *regs;
303 	spinlock_t regs_lock; /* spinlock for all clocks */
304 	const char *osc_name;
305 
306 	/* Must be last */
307 	struct clk_hw_onecell_data onecell;
308 };
309 
310 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
311 {
312 	writel(CM_PASSWORD | val, cprman->regs + reg);
313 }
314 
315 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
316 {
317 	return readl(cprman->regs + reg);
318 }
319 
320 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
321 				  struct debugfs_reg32 *regs, size_t nregs,
322 				  struct dentry *dentry)
323 {
324 	struct dentry *regdump;
325 	struct debugfs_regset32 *regset;
326 
327 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
328 	if (!regset)
329 		return -ENOMEM;
330 
331 	regset->regs = regs;
332 	regset->nregs = nregs;
333 	regset->base = cprman->regs + base;
334 
335 	regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
336 					  regset);
337 
338 	return regdump ? 0 : -ENOMEM;
339 }
340 
341 /*
342  * These are fixed clocks. They're probably not all root clocks and it may
343  * be possible to turn them on and off but until this is mapped out better
344  * it's the only way they can be used.
345  */
346 void __init bcm2835_init_clocks(void)
347 {
348 	struct clk_hw *hw;
349 	int ret;
350 
351 	hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
352 	if (IS_ERR(hw))
353 		pr_err("apb_pclk not registered\n");
354 
355 	hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
356 	if (IS_ERR(hw))
357 		pr_err("uart0_pclk not registered\n");
358 	ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
359 	if (ret)
360 		pr_err("uart0_pclk alias not registered\n");
361 
362 	hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
363 	if (IS_ERR(hw))
364 		pr_err("uart1_pclk not registered\n");
365 	ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
366 	if (ret)
367 		pr_err("uart1_pclk alias not registered\n");
368 }
369 
370 struct bcm2835_pll_data {
371 	const char *name;
372 	u32 cm_ctrl_reg;
373 	u32 a2w_ctrl_reg;
374 	u32 frac_reg;
375 	u32 ana_reg_base;
376 	u32 reference_enable_mask;
377 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
378 	u32 lock_mask;
379 
380 	const struct bcm2835_pll_ana_bits *ana;
381 
382 	unsigned long min_rate;
383 	unsigned long max_rate;
384 	/*
385 	 * Highest rate for the VCO before we have to use the
386 	 * pre-divide-by-2.
387 	 */
388 	unsigned long max_fb_rate;
389 };
390 
391 struct bcm2835_pll_ana_bits {
392 	u32 mask0;
393 	u32 set0;
394 	u32 mask1;
395 	u32 set1;
396 	u32 mask3;
397 	u32 set3;
398 	u32 fb_prediv_mask;
399 };
400 
401 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
402 	.mask0 = 0,
403 	.set0 = 0,
404 	.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
405 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
406 	.mask3 = (u32)~A2W_PLL_KA_MASK,
407 	.set3 = (2 << A2W_PLL_KA_SHIFT),
408 	.fb_prediv_mask = BIT(14),
409 };
410 
411 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
412 	.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
413 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
414 	.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
415 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
416 	.mask3 = 0,
417 	.set3 = 0,
418 	.fb_prediv_mask = BIT(11),
419 };
420 
421 struct bcm2835_pll_divider_data {
422 	const char *name;
423 	const char *source_pll;
424 
425 	u32 cm_reg;
426 	u32 a2w_reg;
427 
428 	u32 load_mask;
429 	u32 hold_mask;
430 	u32 fixed_divider;
431 };
432 
433 struct bcm2835_clock_data {
434 	const char *name;
435 
436 	const char *const *parents;
437 	int num_mux_parents;
438 
439 	/* Bitmap encoding which parents accept rate change propagation. */
440 	unsigned int set_rate_parent;
441 
442 	u32 ctl_reg;
443 	u32 div_reg;
444 
445 	/* Number of integer bits in the divider */
446 	u32 int_bits;
447 	/* Number of fractional bits in the divider */
448 	u32 frac_bits;
449 
450 	u32 flags;
451 
452 	bool is_vpu_clock;
453 	bool is_mash_clock;
454 };
455 
456 struct bcm2835_gate_data {
457 	const char *name;
458 	const char *parent;
459 
460 	u32 ctl_reg;
461 };
462 
463 struct bcm2835_pll {
464 	struct clk_hw hw;
465 	struct bcm2835_cprman *cprman;
466 	const struct bcm2835_pll_data *data;
467 };
468 
469 static int bcm2835_pll_is_on(struct clk_hw *hw)
470 {
471 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
472 	struct bcm2835_cprman *cprman = pll->cprman;
473 	const struct bcm2835_pll_data *data = pll->data;
474 
475 	return cprman_read(cprman, data->a2w_ctrl_reg) &
476 		A2W_PLL_CTRL_PRST_DISABLE;
477 }
478 
479 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
480 					     unsigned long parent_rate,
481 					     u32 *ndiv, u32 *fdiv)
482 {
483 	u64 div;
484 
485 	div = (u64)rate << A2W_PLL_FRAC_BITS;
486 	do_div(div, parent_rate);
487 
488 	*ndiv = div >> A2W_PLL_FRAC_BITS;
489 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
490 }
491 
492 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
493 					   u32 ndiv, u32 fdiv, u32 pdiv)
494 {
495 	u64 rate;
496 
497 	if (pdiv == 0)
498 		return 0;
499 
500 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
501 	do_div(rate, pdiv);
502 	return rate >> A2W_PLL_FRAC_BITS;
503 }
504 
505 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
506 				   unsigned long *parent_rate)
507 {
508 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
509 	const struct bcm2835_pll_data *data = pll->data;
510 	u32 ndiv, fdiv;
511 
512 	rate = clamp(rate, data->min_rate, data->max_rate);
513 
514 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
515 
516 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
517 }
518 
519 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
520 					  unsigned long parent_rate)
521 {
522 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
523 	struct bcm2835_cprman *cprman = pll->cprman;
524 	const struct bcm2835_pll_data *data = pll->data;
525 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
526 	u32 ndiv, pdiv, fdiv;
527 	bool using_prediv;
528 
529 	if (parent_rate == 0)
530 		return 0;
531 
532 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
533 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
534 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
535 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
536 		data->ana->fb_prediv_mask;
537 
538 	if (using_prediv)
539 		ndiv *= 2;
540 
541 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
542 }
543 
544 static void bcm2835_pll_off(struct clk_hw *hw)
545 {
546 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
547 	struct bcm2835_cprman *cprman = pll->cprman;
548 	const struct bcm2835_pll_data *data = pll->data;
549 
550 	spin_lock(&cprman->regs_lock);
551 	cprman_write(cprman, data->cm_ctrl_reg,
552 		     cprman_read(cprman, data->cm_ctrl_reg) |
553 		     CM_PLL_ANARST);
554 	cprman_write(cprman, data->a2w_ctrl_reg,
555 		     cprman_read(cprman, data->a2w_ctrl_reg) |
556 		     A2W_PLL_CTRL_PWRDN);
557 	spin_unlock(&cprman->regs_lock);
558 }
559 
560 static int bcm2835_pll_on(struct clk_hw *hw)
561 {
562 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
563 	struct bcm2835_cprman *cprman = pll->cprman;
564 	const struct bcm2835_pll_data *data = pll->data;
565 	ktime_t timeout;
566 
567 	cprman_write(cprman, data->a2w_ctrl_reg,
568 		     cprman_read(cprman, data->a2w_ctrl_reg) &
569 		     ~A2W_PLL_CTRL_PWRDN);
570 
571 	/* Take the PLL out of reset. */
572 	cprman_write(cprman, data->cm_ctrl_reg,
573 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
574 
575 	/* Wait for the PLL to lock. */
576 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
577 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
578 		if (ktime_after(ktime_get(), timeout)) {
579 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
580 				clk_hw_get_name(hw));
581 			return -ETIMEDOUT;
582 		}
583 
584 		cpu_relax();
585 	}
586 
587 	return 0;
588 }
589 
590 static void
591 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
592 {
593 	int i;
594 
595 	/*
596 	 * ANA register setup is done as a series of writes to
597 	 * ANA3-ANA0, in that order.  This lets us write all 4
598 	 * registers as a single cycle of the serdes interface (taking
599 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
600 	 * 3 individually through their partial-write registers, each
601 	 * would be their own serdes cycle.
602 	 */
603 	for (i = 3; i >= 0; i--)
604 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
605 }
606 
607 static int bcm2835_pll_set_rate(struct clk_hw *hw,
608 				unsigned long rate, unsigned long parent_rate)
609 {
610 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
611 	struct bcm2835_cprman *cprman = pll->cprman;
612 	const struct bcm2835_pll_data *data = pll->data;
613 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
614 	u32 ndiv, fdiv, a2w_ctl;
615 	u32 ana[4];
616 	int i;
617 
618 	if (rate > data->max_fb_rate) {
619 		use_fb_prediv = true;
620 		rate /= 2;
621 	} else {
622 		use_fb_prediv = false;
623 	}
624 
625 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
626 
627 	for (i = 3; i >= 0; i--)
628 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
629 
630 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
631 
632 	ana[0] &= ~data->ana->mask0;
633 	ana[0] |= data->ana->set0;
634 	ana[1] &= ~data->ana->mask1;
635 	ana[1] |= data->ana->set1;
636 	ana[3] &= ~data->ana->mask3;
637 	ana[3] |= data->ana->set3;
638 
639 	if (was_using_prediv && !use_fb_prediv) {
640 		ana[1] &= ~data->ana->fb_prediv_mask;
641 		do_ana_setup_first = true;
642 	} else if (!was_using_prediv && use_fb_prediv) {
643 		ana[1] |= data->ana->fb_prediv_mask;
644 		do_ana_setup_first = false;
645 	} else {
646 		do_ana_setup_first = true;
647 	}
648 
649 	/* Unmask the reference clock from the oscillator. */
650 	cprman_write(cprman, A2W_XOSC_CTRL,
651 		     cprman_read(cprman, A2W_XOSC_CTRL) |
652 		     data->reference_enable_mask);
653 
654 	if (do_ana_setup_first)
655 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
656 
657 	/* Set the PLL multiplier from the oscillator. */
658 	cprman_write(cprman, data->frac_reg, fdiv);
659 
660 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
661 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
662 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
663 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
664 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
665 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
666 
667 	if (!do_ana_setup_first)
668 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
669 
670 	return 0;
671 }
672 
673 static int bcm2835_pll_debug_init(struct clk_hw *hw,
674 				  struct dentry *dentry)
675 {
676 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
677 	struct bcm2835_cprman *cprman = pll->cprman;
678 	const struct bcm2835_pll_data *data = pll->data;
679 	struct debugfs_reg32 *regs;
680 
681 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
682 	if (!regs)
683 		return -ENOMEM;
684 
685 	regs[0].name = "cm_ctrl";
686 	regs[0].offset = data->cm_ctrl_reg;
687 	regs[1].name = "a2w_ctrl";
688 	regs[1].offset = data->a2w_ctrl_reg;
689 	regs[2].name = "frac";
690 	regs[2].offset = data->frac_reg;
691 	regs[3].name = "ana0";
692 	regs[3].offset = data->ana_reg_base + 0 * 4;
693 	regs[4].name = "ana1";
694 	regs[4].offset = data->ana_reg_base + 1 * 4;
695 	regs[5].name = "ana2";
696 	regs[5].offset = data->ana_reg_base + 2 * 4;
697 	regs[6].name = "ana3";
698 	regs[6].offset = data->ana_reg_base + 3 * 4;
699 
700 	return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
701 }
702 
703 static const struct clk_ops bcm2835_pll_clk_ops = {
704 	.is_prepared = bcm2835_pll_is_on,
705 	.prepare = bcm2835_pll_on,
706 	.unprepare = bcm2835_pll_off,
707 	.recalc_rate = bcm2835_pll_get_rate,
708 	.set_rate = bcm2835_pll_set_rate,
709 	.round_rate = bcm2835_pll_round_rate,
710 	.debug_init = bcm2835_pll_debug_init,
711 };
712 
713 struct bcm2835_pll_divider {
714 	struct clk_divider div;
715 	struct bcm2835_cprman *cprman;
716 	const struct bcm2835_pll_divider_data *data;
717 };
718 
719 static struct bcm2835_pll_divider *
720 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
721 {
722 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
723 }
724 
725 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
726 {
727 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
728 	struct bcm2835_cprman *cprman = divider->cprman;
729 	const struct bcm2835_pll_divider_data *data = divider->data;
730 
731 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
732 }
733 
734 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
735 					   unsigned long rate,
736 					   unsigned long *parent_rate)
737 {
738 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
739 }
740 
741 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
742 						  unsigned long parent_rate)
743 {
744 	return clk_divider_ops.recalc_rate(hw, parent_rate);
745 }
746 
747 static void bcm2835_pll_divider_off(struct clk_hw *hw)
748 {
749 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
750 	struct bcm2835_cprman *cprman = divider->cprman;
751 	const struct bcm2835_pll_divider_data *data = divider->data;
752 
753 	spin_lock(&cprman->regs_lock);
754 	cprman_write(cprman, data->cm_reg,
755 		     (cprman_read(cprman, data->cm_reg) &
756 		      ~data->load_mask) | data->hold_mask);
757 	cprman_write(cprman, data->a2w_reg,
758 		     cprman_read(cprman, data->a2w_reg) |
759 		     A2W_PLL_CHANNEL_DISABLE);
760 	spin_unlock(&cprman->regs_lock);
761 }
762 
763 static int bcm2835_pll_divider_on(struct clk_hw *hw)
764 {
765 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
766 	struct bcm2835_cprman *cprman = divider->cprman;
767 	const struct bcm2835_pll_divider_data *data = divider->data;
768 
769 	spin_lock(&cprman->regs_lock);
770 	cprman_write(cprman, data->a2w_reg,
771 		     cprman_read(cprman, data->a2w_reg) &
772 		     ~A2W_PLL_CHANNEL_DISABLE);
773 
774 	cprman_write(cprman, data->cm_reg,
775 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
776 	spin_unlock(&cprman->regs_lock);
777 
778 	return 0;
779 }
780 
781 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
782 					unsigned long rate,
783 					unsigned long parent_rate)
784 {
785 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
786 	struct bcm2835_cprman *cprman = divider->cprman;
787 	const struct bcm2835_pll_divider_data *data = divider->data;
788 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
789 
790 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
791 
792 	div = min(div, max_div);
793 	if (div == max_div)
794 		div = 0;
795 
796 	cprman_write(cprman, data->a2w_reg, div);
797 	cm = cprman_read(cprman, data->cm_reg);
798 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
799 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
800 
801 	return 0;
802 }
803 
804 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
805 					  struct dentry *dentry)
806 {
807 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
808 	struct bcm2835_cprman *cprman = divider->cprman;
809 	const struct bcm2835_pll_divider_data *data = divider->data;
810 	struct debugfs_reg32 *regs;
811 
812 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
813 	if (!regs)
814 		return -ENOMEM;
815 
816 	regs[0].name = "cm";
817 	regs[0].offset = data->cm_reg;
818 	regs[1].name = "a2w";
819 	regs[1].offset = data->a2w_reg;
820 
821 	return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
822 }
823 
824 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
825 	.is_prepared = bcm2835_pll_divider_is_on,
826 	.prepare = bcm2835_pll_divider_on,
827 	.unprepare = bcm2835_pll_divider_off,
828 	.recalc_rate = bcm2835_pll_divider_get_rate,
829 	.set_rate = bcm2835_pll_divider_set_rate,
830 	.round_rate = bcm2835_pll_divider_round_rate,
831 	.debug_init = bcm2835_pll_divider_debug_init,
832 };
833 
834 /*
835  * The CM dividers do fixed-point division, so we can't use the
836  * generic integer divider code like the PLL dividers do (and we can't
837  * fake it by having some fixed shifts preceding it in the clock tree,
838  * because we'd run out of bits in a 32-bit unsigned long).
839  */
840 struct bcm2835_clock {
841 	struct clk_hw hw;
842 	struct bcm2835_cprman *cprman;
843 	const struct bcm2835_clock_data *data;
844 };
845 
846 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
847 {
848 	return container_of(hw, struct bcm2835_clock, hw);
849 }
850 
851 static int bcm2835_clock_is_on(struct clk_hw *hw)
852 {
853 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
854 	struct bcm2835_cprman *cprman = clock->cprman;
855 	const struct bcm2835_clock_data *data = clock->data;
856 
857 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
858 }
859 
860 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
861 				    unsigned long rate,
862 				    unsigned long parent_rate,
863 				    bool round_up)
864 {
865 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
866 	const struct bcm2835_clock_data *data = clock->data;
867 	u32 unused_frac_mask =
868 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
869 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
870 	u64 rem;
871 	u32 div, mindiv, maxdiv;
872 
873 	rem = do_div(temp, rate);
874 	div = temp;
875 
876 	/* Round up and mask off the unused bits */
877 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
878 		div += unused_frac_mask + 1;
879 	div &= ~unused_frac_mask;
880 
881 	/* different clamping limits apply for a mash clock */
882 	if (data->is_mash_clock) {
883 		/* clamp to min divider of 2 */
884 		mindiv = 2 << CM_DIV_FRAC_BITS;
885 		/* clamp to the highest possible integer divider */
886 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
887 	} else {
888 		/* clamp to min divider of 1 */
889 		mindiv = 1 << CM_DIV_FRAC_BITS;
890 		/* clamp to the highest possible fractional divider */
891 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
892 				 CM_DIV_FRAC_BITS - data->frac_bits);
893 	}
894 
895 	/* apply the clamping  limits */
896 	div = max_t(u32, div, mindiv);
897 	div = min_t(u32, div, maxdiv);
898 
899 	return div;
900 }
901 
902 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
903 					    unsigned long parent_rate,
904 					    u32 div)
905 {
906 	const struct bcm2835_clock_data *data = clock->data;
907 	u64 temp;
908 
909 	/*
910 	 * The divisor is a 12.12 fixed point field, but only some of
911 	 * the bits are populated in any given clock.
912 	 */
913 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
914 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
915 
916 	if (div == 0)
917 		return 0;
918 
919 	temp = (u64)parent_rate << data->frac_bits;
920 
921 	do_div(temp, div);
922 
923 	return temp;
924 }
925 
926 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
927 					    unsigned long parent_rate)
928 {
929 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
930 	struct bcm2835_cprman *cprman = clock->cprman;
931 	const struct bcm2835_clock_data *data = clock->data;
932 	u32 div = cprman_read(cprman, data->div_reg);
933 
934 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
935 }
936 
937 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
938 {
939 	struct bcm2835_cprman *cprman = clock->cprman;
940 	const struct bcm2835_clock_data *data = clock->data;
941 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
942 
943 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
944 		if (ktime_after(ktime_get(), timeout)) {
945 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
946 				clk_hw_get_name(&clock->hw));
947 			return;
948 		}
949 		cpu_relax();
950 	}
951 }
952 
953 static void bcm2835_clock_off(struct clk_hw *hw)
954 {
955 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
956 	struct bcm2835_cprman *cprman = clock->cprman;
957 	const struct bcm2835_clock_data *data = clock->data;
958 
959 	spin_lock(&cprman->regs_lock);
960 	cprman_write(cprman, data->ctl_reg,
961 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
962 	spin_unlock(&cprman->regs_lock);
963 
964 	/* BUSY will remain high until the divider completes its cycle. */
965 	bcm2835_clock_wait_busy(clock);
966 }
967 
968 static int bcm2835_clock_on(struct clk_hw *hw)
969 {
970 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
971 	struct bcm2835_cprman *cprman = clock->cprman;
972 	const struct bcm2835_clock_data *data = clock->data;
973 
974 	spin_lock(&cprman->regs_lock);
975 	cprman_write(cprman, data->ctl_reg,
976 		     cprman_read(cprman, data->ctl_reg) |
977 		     CM_ENABLE |
978 		     CM_GATE);
979 	spin_unlock(&cprman->regs_lock);
980 
981 	return 0;
982 }
983 
984 static int bcm2835_clock_set_rate(struct clk_hw *hw,
985 				  unsigned long rate, unsigned long parent_rate)
986 {
987 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
988 	struct bcm2835_cprman *cprman = clock->cprman;
989 	const struct bcm2835_clock_data *data = clock->data;
990 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
991 	u32 ctl;
992 
993 	spin_lock(&cprman->regs_lock);
994 
995 	/*
996 	 * Setting up frac support
997 	 *
998 	 * In principle it is recommended to stop/start the clock first,
999 	 * but as we set CLK_SET_RATE_GATE during registration of the
1000 	 * clock this requirement should be take care of by the
1001 	 * clk-framework.
1002 	 */
1003 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1004 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1005 	cprman_write(cprman, data->ctl_reg, ctl);
1006 
1007 	cprman_write(cprman, data->div_reg, div);
1008 
1009 	spin_unlock(&cprman->regs_lock);
1010 
1011 	return 0;
1012 }
1013 
1014 static bool
1015 bcm2835_clk_is_pllc(struct clk_hw *hw)
1016 {
1017 	if (!hw)
1018 		return false;
1019 
1020 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1021 }
1022 
1023 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1024 							int parent_idx,
1025 							unsigned long rate,
1026 							u32 *div,
1027 							unsigned long *prate)
1028 {
1029 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1030 	struct bcm2835_cprman *cprman = clock->cprman;
1031 	const struct bcm2835_clock_data *data = clock->data;
1032 	unsigned long best_rate = 0;
1033 	u32 curdiv, mindiv, maxdiv;
1034 	struct clk_hw *parent;
1035 
1036 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1037 
1038 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1039 		*prate = clk_hw_get_rate(parent);
1040 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1041 
1042 		return bcm2835_clock_rate_from_divisor(clock, *prate,
1043 						       *div);
1044 	}
1045 
1046 	if (data->frac_bits)
1047 		dev_warn(cprman->dev,
1048 			"frac bits are not used when propagating rate change");
1049 
1050 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1051 	mindiv = data->is_mash_clock ? 2 : 1;
1052 	maxdiv = BIT(data->int_bits) - 1;
1053 
1054 	/* TODO: Be smart, and only test a subset of the available divisors. */
1055 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1056 		unsigned long tmp_rate;
1057 
1058 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1059 		tmp_rate /= curdiv;
1060 		if (curdiv == mindiv ||
1061 		    (tmp_rate > best_rate && tmp_rate <= rate))
1062 			best_rate = tmp_rate;
1063 
1064 		if (best_rate == rate)
1065 			break;
1066 	}
1067 
1068 	*div = curdiv << CM_DIV_FRAC_BITS;
1069 	*prate = curdiv * best_rate;
1070 
1071 	return best_rate;
1072 }
1073 
1074 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1075 					struct clk_rate_request *req)
1076 {
1077 	struct clk_hw *parent, *best_parent = NULL;
1078 	bool current_parent_is_pllc;
1079 	unsigned long rate, best_rate = 0;
1080 	unsigned long prate, best_prate = 0;
1081 	size_t i;
1082 	u32 div;
1083 
1084 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1085 
1086 	/*
1087 	 * Select parent clock that results in the closest but lower rate
1088 	 */
1089 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1090 		parent = clk_hw_get_parent_by_index(hw, i);
1091 		if (!parent)
1092 			continue;
1093 
1094 		/*
1095 		 * Don't choose a PLLC-derived clock as our parent
1096 		 * unless it had been manually set that way.  PLLC's
1097 		 * frequency gets adjusted by the firmware due to
1098 		 * over-temp or under-voltage conditions, without
1099 		 * prior notification to our clock consumer.
1100 		 */
1101 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1102 			continue;
1103 
1104 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1105 							  &div, &prate);
1106 		if (rate > best_rate && rate <= req->rate) {
1107 			best_parent = parent;
1108 			best_prate = prate;
1109 			best_rate = rate;
1110 		}
1111 	}
1112 
1113 	if (!best_parent)
1114 		return -EINVAL;
1115 
1116 	req->best_parent_hw = best_parent;
1117 	req->best_parent_rate = best_prate;
1118 
1119 	req->rate = best_rate;
1120 
1121 	return 0;
1122 }
1123 
1124 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1125 {
1126 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1127 	struct bcm2835_cprman *cprman = clock->cprman;
1128 	const struct bcm2835_clock_data *data = clock->data;
1129 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1130 
1131 	cprman_write(cprman, data->ctl_reg, src);
1132 	return 0;
1133 }
1134 
1135 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1136 {
1137 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1138 	struct bcm2835_cprman *cprman = clock->cprman;
1139 	const struct bcm2835_clock_data *data = clock->data;
1140 	u32 src = cprman_read(cprman, data->ctl_reg);
1141 
1142 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1143 }
1144 
1145 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1146 	{
1147 		.name = "ctl",
1148 		.offset = 0,
1149 	},
1150 	{
1151 		.name = "div",
1152 		.offset = 4,
1153 	},
1154 };
1155 
1156 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1157 				    struct dentry *dentry)
1158 {
1159 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1160 	struct bcm2835_cprman *cprman = clock->cprman;
1161 	const struct bcm2835_clock_data *data = clock->data;
1162 
1163 	return bcm2835_debugfs_regset(
1164 		cprman, data->ctl_reg,
1165 		bcm2835_debugfs_clock_reg32,
1166 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1167 		dentry);
1168 }
1169 
1170 static const struct clk_ops bcm2835_clock_clk_ops = {
1171 	.is_prepared = bcm2835_clock_is_on,
1172 	.prepare = bcm2835_clock_on,
1173 	.unprepare = bcm2835_clock_off,
1174 	.recalc_rate = bcm2835_clock_get_rate,
1175 	.set_rate = bcm2835_clock_set_rate,
1176 	.determine_rate = bcm2835_clock_determine_rate,
1177 	.set_parent = bcm2835_clock_set_parent,
1178 	.get_parent = bcm2835_clock_get_parent,
1179 	.debug_init = bcm2835_clock_debug_init,
1180 };
1181 
1182 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1183 {
1184 	return true;
1185 }
1186 
1187 /*
1188  * The VPU clock can never be disabled (it doesn't have an ENABLE
1189  * bit), so it gets its own set of clock ops.
1190  */
1191 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1192 	.is_prepared = bcm2835_vpu_clock_is_on,
1193 	.recalc_rate = bcm2835_clock_get_rate,
1194 	.set_rate = bcm2835_clock_set_rate,
1195 	.determine_rate = bcm2835_clock_determine_rate,
1196 	.set_parent = bcm2835_clock_set_parent,
1197 	.get_parent = bcm2835_clock_get_parent,
1198 	.debug_init = bcm2835_clock_debug_init,
1199 };
1200 
1201 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1202 					   const struct bcm2835_pll_data *data)
1203 {
1204 	struct bcm2835_pll *pll;
1205 	struct clk_init_data init;
1206 	int ret;
1207 
1208 	memset(&init, 0, sizeof(init));
1209 
1210 	/* All of the PLLs derive from the external oscillator. */
1211 	init.parent_names = &cprman->osc_name;
1212 	init.num_parents = 1;
1213 	init.name = data->name;
1214 	init.ops = &bcm2835_pll_clk_ops;
1215 	init.flags = CLK_IGNORE_UNUSED;
1216 
1217 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1218 	if (!pll)
1219 		return NULL;
1220 
1221 	pll->cprman = cprman;
1222 	pll->data = data;
1223 	pll->hw.init = &init;
1224 
1225 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1226 	if (ret)
1227 		return NULL;
1228 	return &pll->hw;
1229 }
1230 
1231 static struct clk_hw *
1232 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1233 			     const struct bcm2835_pll_divider_data *data)
1234 {
1235 	struct bcm2835_pll_divider *divider;
1236 	struct clk_init_data init;
1237 	const char *divider_name;
1238 	int ret;
1239 
1240 	if (data->fixed_divider != 1) {
1241 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1242 					      "%s_prediv", data->name);
1243 		if (!divider_name)
1244 			return NULL;
1245 	} else {
1246 		divider_name = data->name;
1247 	}
1248 
1249 	memset(&init, 0, sizeof(init));
1250 
1251 	init.parent_names = &data->source_pll;
1252 	init.num_parents = 1;
1253 	init.name = divider_name;
1254 	init.ops = &bcm2835_pll_divider_clk_ops;
1255 	init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1256 
1257 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1258 	if (!divider)
1259 		return NULL;
1260 
1261 	divider->div.reg = cprman->regs + data->a2w_reg;
1262 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1263 	divider->div.width = A2W_PLL_DIV_BITS;
1264 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1265 	divider->div.lock = &cprman->regs_lock;
1266 	divider->div.hw.init = &init;
1267 	divider->div.table = NULL;
1268 
1269 	divider->cprman = cprman;
1270 	divider->data = data;
1271 
1272 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1273 	if (ret)
1274 		return ERR_PTR(ret);
1275 
1276 	/*
1277 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1278 	 * is what our consumers are actually using.
1279 	 */
1280 	if (data->fixed_divider != 1) {
1281 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1282 						    divider_name,
1283 						    CLK_SET_RATE_PARENT,
1284 						    1,
1285 						    data->fixed_divider);
1286 	}
1287 
1288 	return &divider->div.hw;
1289 }
1290 
1291 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1292 					  const struct bcm2835_clock_data *data)
1293 {
1294 	struct bcm2835_clock *clock;
1295 	struct clk_init_data init;
1296 	const char *parents[1 << CM_SRC_BITS];
1297 	size_t i;
1298 	int ret;
1299 
1300 	/*
1301 	 * Replace our "xosc" references with the oscillator's
1302 	 * actual name.
1303 	 */
1304 	for (i = 0; i < data->num_mux_parents; i++) {
1305 		if (strcmp(data->parents[i], "xosc") == 0)
1306 			parents[i] = cprman->osc_name;
1307 		else
1308 			parents[i] = data->parents[i];
1309 	}
1310 
1311 	memset(&init, 0, sizeof(init));
1312 	init.parent_names = parents;
1313 	init.num_parents = data->num_mux_parents;
1314 	init.name = data->name;
1315 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1316 
1317 	/*
1318 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1319 	 * rate changes on at least of the parents.
1320 	 */
1321 	if (data->set_rate_parent)
1322 		init.flags |= CLK_SET_RATE_PARENT;
1323 
1324 	if (data->is_vpu_clock) {
1325 		init.ops = &bcm2835_vpu_clock_clk_ops;
1326 	} else {
1327 		init.ops = &bcm2835_clock_clk_ops;
1328 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1329 
1330 		/* If the clock wasn't actually enabled at boot, it's not
1331 		 * critical.
1332 		 */
1333 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1334 			init.flags &= ~CLK_IS_CRITICAL;
1335 	}
1336 
1337 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1338 	if (!clock)
1339 		return NULL;
1340 
1341 	clock->cprman = cprman;
1342 	clock->data = data;
1343 	clock->hw.init = &init;
1344 
1345 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1346 	if (ret)
1347 		return ERR_PTR(ret);
1348 	return &clock->hw;
1349 }
1350 
1351 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1352 					 const struct bcm2835_gate_data *data)
1353 {
1354 	return clk_register_gate(cprman->dev, data->name, data->parent,
1355 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1356 				 cprman->regs + data->ctl_reg,
1357 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1358 }
1359 
1360 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1361 					       const void *data);
1362 struct bcm2835_clk_desc {
1363 	bcm2835_clk_register clk_register;
1364 	const void *data;
1365 };
1366 
1367 /* assignment helper macros for different clock types */
1368 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1369 			    .data = __VA_ARGS__ }
1370 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1371 					  &(struct bcm2835_pll_data)	\
1372 					  {__VA_ARGS__})
1373 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1374 					  &(struct bcm2835_pll_divider_data) \
1375 					  {__VA_ARGS__})
1376 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1377 					  &(struct bcm2835_clock_data)	\
1378 					  {__VA_ARGS__})
1379 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1380 					  &(struct bcm2835_gate_data)	\
1381 					  {__VA_ARGS__})
1382 
1383 /* parent mux arrays plus helper macros */
1384 
1385 /* main oscillator parent mux */
1386 static const char *const bcm2835_clock_osc_parents[] = {
1387 	"gnd",
1388 	"xosc",
1389 	"testdebug0",
1390 	"testdebug1"
1391 };
1392 
1393 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1394 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1395 	.parents = bcm2835_clock_osc_parents,				\
1396 	__VA_ARGS__)
1397 
1398 /* main peripherial parent mux */
1399 static const char *const bcm2835_clock_per_parents[] = {
1400 	"gnd",
1401 	"xosc",
1402 	"testdebug0",
1403 	"testdebug1",
1404 	"plla_per",
1405 	"pllc_per",
1406 	"plld_per",
1407 	"pllh_aux",
1408 };
1409 
1410 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1411 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1412 	.parents = bcm2835_clock_per_parents,				\
1413 	__VA_ARGS__)
1414 
1415 /* main vpu parent mux */
1416 static const char *const bcm2835_clock_vpu_parents[] = {
1417 	"gnd",
1418 	"xosc",
1419 	"testdebug0",
1420 	"testdebug1",
1421 	"plla_core",
1422 	"pllc_core0",
1423 	"plld_core",
1424 	"pllh_aux",
1425 	"pllc_core1",
1426 	"pllc_core2",
1427 };
1428 
1429 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1430 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1431 	.parents = bcm2835_clock_vpu_parents,				\
1432 	__VA_ARGS__)
1433 
1434 /*
1435  * the real definition of all the pll, pll_dividers and clocks
1436  * these make use of the above REGISTER_* macros
1437  */
1438 static const struct bcm2835_clk_desc clk_desc_array[] = {
1439 	/* the PLL + PLL dividers */
1440 
1441 	/*
1442 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1443 	 * (Compact Camera Port 2) transmitter clock.
1444 	 *
1445 	 * It is in the PX LDO power domain, which is on when the
1446 	 * AUDIO domain is on.
1447 	 */
1448 	[BCM2835_PLLA]		= REGISTER_PLL(
1449 		.name = "plla",
1450 		.cm_ctrl_reg = CM_PLLA,
1451 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1452 		.frac_reg = A2W_PLLA_FRAC,
1453 		.ana_reg_base = A2W_PLLA_ANA0,
1454 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1455 		.lock_mask = CM_LOCK_FLOCKA,
1456 
1457 		.ana = &bcm2835_ana_default,
1458 
1459 		.min_rate = 600000000u,
1460 		.max_rate = 2400000000u,
1461 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1462 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1463 		.name = "plla_core",
1464 		.source_pll = "plla",
1465 		.cm_reg = CM_PLLA,
1466 		.a2w_reg = A2W_PLLA_CORE,
1467 		.load_mask = CM_PLLA_LOADCORE,
1468 		.hold_mask = CM_PLLA_HOLDCORE,
1469 		.fixed_divider = 1),
1470 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1471 		.name = "plla_per",
1472 		.source_pll = "plla",
1473 		.cm_reg = CM_PLLA,
1474 		.a2w_reg = A2W_PLLA_PER,
1475 		.load_mask = CM_PLLA_LOADPER,
1476 		.hold_mask = CM_PLLA_HOLDPER,
1477 		.fixed_divider = 1),
1478 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1479 		.name = "plla_dsi0",
1480 		.source_pll = "plla",
1481 		.cm_reg = CM_PLLA,
1482 		.a2w_reg = A2W_PLLA_DSI0,
1483 		.load_mask = CM_PLLA_LOADDSI0,
1484 		.hold_mask = CM_PLLA_HOLDDSI0,
1485 		.fixed_divider = 1),
1486 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1487 		.name = "plla_ccp2",
1488 		.source_pll = "plla",
1489 		.cm_reg = CM_PLLA,
1490 		.a2w_reg = A2W_PLLA_CCP2,
1491 		.load_mask = CM_PLLA_LOADCCP2,
1492 		.hold_mask = CM_PLLA_HOLDCCP2,
1493 		.fixed_divider = 1),
1494 
1495 	/* PLLB is used for the ARM's clock. */
1496 	[BCM2835_PLLB]		= REGISTER_PLL(
1497 		.name = "pllb",
1498 		.cm_ctrl_reg = CM_PLLB,
1499 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1500 		.frac_reg = A2W_PLLB_FRAC,
1501 		.ana_reg_base = A2W_PLLB_ANA0,
1502 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1503 		.lock_mask = CM_LOCK_FLOCKB,
1504 
1505 		.ana = &bcm2835_ana_default,
1506 
1507 		.min_rate = 600000000u,
1508 		.max_rate = 3000000000u,
1509 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1510 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1511 		.name = "pllb_arm",
1512 		.source_pll = "pllb",
1513 		.cm_reg = CM_PLLB,
1514 		.a2w_reg = A2W_PLLB_ARM,
1515 		.load_mask = CM_PLLB_LOADARM,
1516 		.hold_mask = CM_PLLB_HOLDARM,
1517 		.fixed_divider = 1),
1518 
1519 	/*
1520 	 * PLLC is the core PLL, used to drive the core VPU clock.
1521 	 *
1522 	 * It is in the PX LDO power domain, which is on when the
1523 	 * AUDIO domain is on.
1524 	 */
1525 	[BCM2835_PLLC]		= REGISTER_PLL(
1526 		.name = "pllc",
1527 		.cm_ctrl_reg = CM_PLLC,
1528 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1529 		.frac_reg = A2W_PLLC_FRAC,
1530 		.ana_reg_base = A2W_PLLC_ANA0,
1531 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1532 		.lock_mask = CM_LOCK_FLOCKC,
1533 
1534 		.ana = &bcm2835_ana_default,
1535 
1536 		.min_rate = 600000000u,
1537 		.max_rate = 3000000000u,
1538 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1539 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1540 		.name = "pllc_core0",
1541 		.source_pll = "pllc",
1542 		.cm_reg = CM_PLLC,
1543 		.a2w_reg = A2W_PLLC_CORE0,
1544 		.load_mask = CM_PLLC_LOADCORE0,
1545 		.hold_mask = CM_PLLC_HOLDCORE0,
1546 		.fixed_divider = 1),
1547 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1548 		.name = "pllc_core1",
1549 		.source_pll = "pllc",
1550 		.cm_reg = CM_PLLC,
1551 		.a2w_reg = A2W_PLLC_CORE1,
1552 		.load_mask = CM_PLLC_LOADCORE1,
1553 		.hold_mask = CM_PLLC_HOLDCORE1,
1554 		.fixed_divider = 1),
1555 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1556 		.name = "pllc_core2",
1557 		.source_pll = "pllc",
1558 		.cm_reg = CM_PLLC,
1559 		.a2w_reg = A2W_PLLC_CORE2,
1560 		.load_mask = CM_PLLC_LOADCORE2,
1561 		.hold_mask = CM_PLLC_HOLDCORE2,
1562 		.fixed_divider = 1),
1563 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1564 		.name = "pllc_per",
1565 		.source_pll = "pllc",
1566 		.cm_reg = CM_PLLC,
1567 		.a2w_reg = A2W_PLLC_PER,
1568 		.load_mask = CM_PLLC_LOADPER,
1569 		.hold_mask = CM_PLLC_HOLDPER,
1570 		.fixed_divider = 1),
1571 
1572 	/*
1573 	 * PLLD is the display PLL, used to drive DSI display panels.
1574 	 *
1575 	 * It is in the PX LDO power domain, which is on when the
1576 	 * AUDIO domain is on.
1577 	 */
1578 	[BCM2835_PLLD]		= REGISTER_PLL(
1579 		.name = "plld",
1580 		.cm_ctrl_reg = CM_PLLD,
1581 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1582 		.frac_reg = A2W_PLLD_FRAC,
1583 		.ana_reg_base = A2W_PLLD_ANA0,
1584 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1585 		.lock_mask = CM_LOCK_FLOCKD,
1586 
1587 		.ana = &bcm2835_ana_default,
1588 
1589 		.min_rate = 600000000u,
1590 		.max_rate = 2400000000u,
1591 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1592 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1593 		.name = "plld_core",
1594 		.source_pll = "plld",
1595 		.cm_reg = CM_PLLD,
1596 		.a2w_reg = A2W_PLLD_CORE,
1597 		.load_mask = CM_PLLD_LOADCORE,
1598 		.hold_mask = CM_PLLD_HOLDCORE,
1599 		.fixed_divider = 1),
1600 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1601 		.name = "plld_per",
1602 		.source_pll = "plld",
1603 		.cm_reg = CM_PLLD,
1604 		.a2w_reg = A2W_PLLD_PER,
1605 		.load_mask = CM_PLLD_LOADPER,
1606 		.hold_mask = CM_PLLD_HOLDPER,
1607 		.fixed_divider = 1),
1608 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1609 		.name = "plld_dsi0",
1610 		.source_pll = "plld",
1611 		.cm_reg = CM_PLLD,
1612 		.a2w_reg = A2W_PLLD_DSI0,
1613 		.load_mask = CM_PLLD_LOADDSI0,
1614 		.hold_mask = CM_PLLD_HOLDDSI0,
1615 		.fixed_divider = 1),
1616 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1617 		.name = "plld_dsi1",
1618 		.source_pll = "plld",
1619 		.cm_reg = CM_PLLD,
1620 		.a2w_reg = A2W_PLLD_DSI1,
1621 		.load_mask = CM_PLLD_LOADDSI1,
1622 		.hold_mask = CM_PLLD_HOLDDSI1,
1623 		.fixed_divider = 1),
1624 
1625 	/*
1626 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1627 	 * TV encoder.
1628 	 *
1629 	 * It is in the HDMI power domain.
1630 	 */
1631 	[BCM2835_PLLH]		= REGISTER_PLL(
1632 		"pllh",
1633 		.cm_ctrl_reg = CM_PLLH,
1634 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1635 		.frac_reg = A2W_PLLH_FRAC,
1636 		.ana_reg_base = A2W_PLLH_ANA0,
1637 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1638 		.lock_mask = CM_LOCK_FLOCKH,
1639 
1640 		.ana = &bcm2835_ana_pllh,
1641 
1642 		.min_rate = 600000000u,
1643 		.max_rate = 3000000000u,
1644 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1645 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1646 		.name = "pllh_rcal",
1647 		.source_pll = "pllh",
1648 		.cm_reg = CM_PLLH,
1649 		.a2w_reg = A2W_PLLH_RCAL,
1650 		.load_mask = CM_PLLH_LOADRCAL,
1651 		.hold_mask = 0,
1652 		.fixed_divider = 10),
1653 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1654 		.name = "pllh_aux",
1655 		.source_pll = "pllh",
1656 		.cm_reg = CM_PLLH,
1657 		.a2w_reg = A2W_PLLH_AUX,
1658 		.load_mask = CM_PLLH_LOADAUX,
1659 		.hold_mask = 0,
1660 		.fixed_divider = 1),
1661 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1662 		.name = "pllh_pix",
1663 		.source_pll = "pllh",
1664 		.cm_reg = CM_PLLH,
1665 		.a2w_reg = A2W_PLLH_PIX,
1666 		.load_mask = CM_PLLH_LOADPIX,
1667 		.hold_mask = 0,
1668 		.fixed_divider = 10),
1669 
1670 	/* the clocks */
1671 
1672 	/* clocks with oscillator parent mux */
1673 
1674 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1675 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1676 		.name = "otp",
1677 		.ctl_reg = CM_OTPCTL,
1678 		.div_reg = CM_OTPDIV,
1679 		.int_bits = 4,
1680 		.frac_bits = 0),
1681 	/*
1682 	 * Used for a 1Mhz clock for the system clocksource, and also used
1683 	 * bythe watchdog timer and the camera pulse generator.
1684 	 */
1685 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1686 		.name = "timer",
1687 		.ctl_reg = CM_TIMERCTL,
1688 		.div_reg = CM_TIMERDIV,
1689 		.int_bits = 6,
1690 		.frac_bits = 12),
1691 	/*
1692 	 * Clock for the temperature sensor.
1693 	 * Generally run at 2Mhz, max 5Mhz.
1694 	 */
1695 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1696 		.name = "tsens",
1697 		.ctl_reg = CM_TSENSCTL,
1698 		.div_reg = CM_TSENSDIV,
1699 		.int_bits = 5,
1700 		.frac_bits = 0),
1701 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1702 		.name = "tec",
1703 		.ctl_reg = CM_TECCTL,
1704 		.div_reg = CM_TECDIV,
1705 		.int_bits = 6,
1706 		.frac_bits = 0),
1707 
1708 	/* clocks with vpu parent mux */
1709 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1710 		.name = "h264",
1711 		.ctl_reg = CM_H264CTL,
1712 		.div_reg = CM_H264DIV,
1713 		.int_bits = 4,
1714 		.frac_bits = 8),
1715 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1716 		.name = "isp",
1717 		.ctl_reg = CM_ISPCTL,
1718 		.div_reg = CM_ISPDIV,
1719 		.int_bits = 4,
1720 		.frac_bits = 8),
1721 
1722 	/*
1723 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1724 	 * in the SDRAM controller can't be used.
1725 	 */
1726 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1727 		.name = "sdram",
1728 		.ctl_reg = CM_SDCCTL,
1729 		.div_reg = CM_SDCDIV,
1730 		.int_bits = 6,
1731 		.frac_bits = 0),
1732 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1733 		.name = "v3d",
1734 		.ctl_reg = CM_V3DCTL,
1735 		.div_reg = CM_V3DDIV,
1736 		.int_bits = 4,
1737 		.frac_bits = 8),
1738 	/*
1739 	 * VPU clock.  This doesn't have an enable bit, since it drives
1740 	 * the bus for everything else, and is special so it doesn't need
1741 	 * to be gated for rate changes.  It is also known as "clk_audio"
1742 	 * in various hardware documentation.
1743 	 */
1744 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1745 		.name = "vpu",
1746 		.ctl_reg = CM_VPUCTL,
1747 		.div_reg = CM_VPUDIV,
1748 		.int_bits = 12,
1749 		.frac_bits = 8,
1750 		.flags = CLK_IS_CRITICAL,
1751 		.is_vpu_clock = true),
1752 
1753 	/* clocks with per parent mux */
1754 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1755 		.name = "aveo",
1756 		.ctl_reg = CM_AVEOCTL,
1757 		.div_reg = CM_AVEODIV,
1758 		.int_bits = 4,
1759 		.frac_bits = 0),
1760 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1761 		.name = "cam0",
1762 		.ctl_reg = CM_CAM0CTL,
1763 		.div_reg = CM_CAM0DIV,
1764 		.int_bits = 4,
1765 		.frac_bits = 8),
1766 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1767 		.name = "cam1",
1768 		.ctl_reg = CM_CAM1CTL,
1769 		.div_reg = CM_CAM1DIV,
1770 		.int_bits = 4,
1771 		.frac_bits = 8),
1772 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1773 		.name = "dft",
1774 		.ctl_reg = CM_DFTCTL,
1775 		.div_reg = CM_DFTDIV,
1776 		.int_bits = 5,
1777 		.frac_bits = 0),
1778 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1779 		.name = "dpi",
1780 		.ctl_reg = CM_DPICTL,
1781 		.div_reg = CM_DPIDIV,
1782 		.int_bits = 4,
1783 		.frac_bits = 8),
1784 
1785 	/* Arasan EMMC clock */
1786 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
1787 		.name = "emmc",
1788 		.ctl_reg = CM_EMMCCTL,
1789 		.div_reg = CM_EMMCDIV,
1790 		.int_bits = 4,
1791 		.frac_bits = 8),
1792 
1793 	/* General purpose (GPIO) clocks */
1794 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
1795 		.name = "gp0",
1796 		.ctl_reg = CM_GP0CTL,
1797 		.div_reg = CM_GP0DIV,
1798 		.int_bits = 12,
1799 		.frac_bits = 12,
1800 		.is_mash_clock = true),
1801 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
1802 		.name = "gp1",
1803 		.ctl_reg = CM_GP1CTL,
1804 		.div_reg = CM_GP1DIV,
1805 		.int_bits = 12,
1806 		.frac_bits = 12,
1807 		.flags = CLK_IS_CRITICAL,
1808 		.is_mash_clock = true),
1809 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
1810 		.name = "gp2",
1811 		.ctl_reg = CM_GP2CTL,
1812 		.div_reg = CM_GP2DIV,
1813 		.int_bits = 12,
1814 		.frac_bits = 12,
1815 		.flags = CLK_IS_CRITICAL),
1816 
1817 	/* HDMI state machine */
1818 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
1819 		.name = "hsm",
1820 		.ctl_reg = CM_HSMCTL,
1821 		.div_reg = CM_HSMDIV,
1822 		.int_bits = 4,
1823 		.frac_bits = 8),
1824 	[BCM2835_CLOCK_PCM]	= REGISTER_PER_CLK(
1825 		.name = "pcm",
1826 		.ctl_reg = CM_PCMCTL,
1827 		.div_reg = CM_PCMDIV,
1828 		.int_bits = 12,
1829 		.frac_bits = 12,
1830 		.is_mash_clock = true),
1831 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
1832 		.name = "pwm",
1833 		.ctl_reg = CM_PWMCTL,
1834 		.div_reg = CM_PWMDIV,
1835 		.int_bits = 12,
1836 		.frac_bits = 12,
1837 		.is_mash_clock = true),
1838 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
1839 		.name = "slim",
1840 		.ctl_reg = CM_SLIMCTL,
1841 		.div_reg = CM_SLIMDIV,
1842 		.int_bits = 12,
1843 		.frac_bits = 12,
1844 		.is_mash_clock = true),
1845 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
1846 		.name = "smi",
1847 		.ctl_reg = CM_SMICTL,
1848 		.div_reg = CM_SMIDIV,
1849 		.int_bits = 4,
1850 		.frac_bits = 8),
1851 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
1852 		.name = "uart",
1853 		.ctl_reg = CM_UARTCTL,
1854 		.div_reg = CM_UARTDIV,
1855 		.int_bits = 10,
1856 		.frac_bits = 12),
1857 
1858 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
1859 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
1860 		.name = "vec",
1861 		.ctl_reg = CM_VECCTL,
1862 		.div_reg = CM_VECDIV,
1863 		.int_bits = 4,
1864 		.frac_bits = 0,
1865 		/*
1866 		 * Allow rate change propagation only on PLLH_AUX which is
1867 		 * assigned index 7 in the parent array.
1868 		 */
1869 		.set_rate_parent = BIT(7)),
1870 
1871 	/* dsi clocks */
1872 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
1873 		.name = "dsi0e",
1874 		.ctl_reg = CM_DSI0ECTL,
1875 		.div_reg = CM_DSI0EDIV,
1876 		.int_bits = 4,
1877 		.frac_bits = 8),
1878 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
1879 		.name = "dsi1e",
1880 		.ctl_reg = CM_DSI1ECTL,
1881 		.div_reg = CM_DSI1EDIV,
1882 		.int_bits = 4,
1883 		.frac_bits = 8),
1884 
1885 	/* the gates */
1886 
1887 	/*
1888 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1889 	 * you have the debug bit set in the power manager, which we
1890 	 * don't bother exposing) are individual gates off of the
1891 	 * non-stop vpu clock.
1892 	 */
1893 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
1894 		.name = "peri_image",
1895 		.parent = "vpu",
1896 		.ctl_reg = CM_PERIICTL),
1897 };
1898 
1899 /*
1900  * Permanently take a reference on the parent of the SDRAM clock.
1901  *
1902  * While the SDRAM is being driven by its dedicated PLL most of the
1903  * time, there is a little loop running in the firmware that
1904  * periodically switches the SDRAM to using our CM clock to do PVT
1905  * recalibration, with the assumption that the previously configured
1906  * SDRAM parent is still enabled and running.
1907  */
1908 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
1909 {
1910 	struct clk *parent = clk_get_parent(sdc);
1911 
1912 	if (IS_ERR(parent))
1913 		return PTR_ERR(parent);
1914 
1915 	return clk_prepare_enable(parent);
1916 }
1917 
1918 static int bcm2835_clk_probe(struct platform_device *pdev)
1919 {
1920 	struct device *dev = &pdev->dev;
1921 	struct clk_hw **hws;
1922 	struct bcm2835_cprman *cprman;
1923 	struct resource *res;
1924 	const struct bcm2835_clk_desc *desc;
1925 	const size_t asize = ARRAY_SIZE(clk_desc_array);
1926 	size_t i;
1927 	int ret;
1928 
1929 	cprman = devm_kzalloc(dev, sizeof(*cprman) +
1930 			      sizeof(*cprman->onecell.hws) * asize,
1931 			      GFP_KERNEL);
1932 	if (!cprman)
1933 		return -ENOMEM;
1934 
1935 	spin_lock_init(&cprman->regs_lock);
1936 	cprman->dev = dev;
1937 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1938 	cprman->regs = devm_ioremap_resource(dev, res);
1939 	if (IS_ERR(cprman->regs))
1940 		return PTR_ERR(cprman->regs);
1941 
1942 	cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1943 	if (!cprman->osc_name)
1944 		return -ENODEV;
1945 
1946 	platform_set_drvdata(pdev, cprman);
1947 
1948 	cprman->onecell.num = asize;
1949 	hws = cprman->onecell.hws;
1950 
1951 	for (i = 0; i < asize; i++) {
1952 		desc = &clk_desc_array[i];
1953 		if (desc->clk_register && desc->data)
1954 			hws[i] = desc->clk_register(cprman, desc->data);
1955 	}
1956 
1957 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
1958 	if (ret)
1959 		return ret;
1960 
1961 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
1962 				      &cprman->onecell);
1963 }
1964 
1965 static const struct of_device_id bcm2835_clk_of_match[] = {
1966 	{ .compatible = "brcm,bcm2835-cprman", },
1967 	{}
1968 };
1969 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1970 
1971 static struct platform_driver bcm2835_clk_driver = {
1972 	.driver = {
1973 		.name = "bcm2835-clk",
1974 		.of_match_table = bcm2835_clk_of_match,
1975 	},
1976 	.probe          = bcm2835_clk_probe,
1977 };
1978 
1979 builtin_platform_driver(bcm2835_clk_driver);
1980 
1981 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1982 MODULE_DESCRIPTION("BCM2835 clock driver");
1983 MODULE_LICENSE("GPL v2");
1984