1 /* 2 * Copyright (C) 2010,2015 Broadcom 3 * Copyright (C) 2012 Stephen Warren 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 */ 16 17 /** 18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) 19 * 20 * The clock tree on the 2835 has several levels. There's a root 21 * oscillator running at 19.2Mhz. After the oscillator there are 5 22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", 23 * and "HDMI displays". Those 5 PLLs each can divide their output to 24 * produce up to 4 channels. Finally, there is the level of clocks to 25 * be consumed by other hardware components (like "H264" or "HDMI 26 * state machine"), which divide off of some subset of the PLL 27 * channels. 28 * 29 * All of the clocks in the tree are exposed in the DT, because the DT 30 * may want to make assignments of the final layer of clocks to the 31 * PLL channels, and some components of the hardware will actually 32 * skip layers of the tree (for example, the pixel clock comes 33 * directly from the PLLH PIX channel without using a CM_*CTL clock 34 * generator). 35 */ 36 37 #include <linux/clk-provider.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk.h> 40 #include <linux/debugfs.h> 41 #include <linux/delay.h> 42 #include <linux/module.h> 43 #include <linux/of.h> 44 #include <linux/platform_device.h> 45 #include <linux/slab.h> 46 #include <dt-bindings/clock/bcm2835.h> 47 48 #define CM_PASSWORD 0x5a000000 49 50 #define CM_GNRICCTL 0x000 51 #define CM_GNRICDIV 0x004 52 # define CM_DIV_FRAC_BITS 12 53 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0) 54 55 #define CM_VPUCTL 0x008 56 #define CM_VPUDIV 0x00c 57 #define CM_SYSCTL 0x010 58 #define CM_SYSDIV 0x014 59 #define CM_PERIACTL 0x018 60 #define CM_PERIADIV 0x01c 61 #define CM_PERIICTL 0x020 62 #define CM_PERIIDIV 0x024 63 #define CM_H264CTL 0x028 64 #define CM_H264DIV 0x02c 65 #define CM_ISPCTL 0x030 66 #define CM_ISPDIV 0x034 67 #define CM_V3DCTL 0x038 68 #define CM_V3DDIV 0x03c 69 #define CM_CAM0CTL 0x040 70 #define CM_CAM0DIV 0x044 71 #define CM_CAM1CTL 0x048 72 #define CM_CAM1DIV 0x04c 73 #define CM_CCP2CTL 0x050 74 #define CM_CCP2DIV 0x054 75 #define CM_DSI0ECTL 0x058 76 #define CM_DSI0EDIV 0x05c 77 #define CM_DSI0PCTL 0x060 78 #define CM_DSI0PDIV 0x064 79 #define CM_DPICTL 0x068 80 #define CM_DPIDIV 0x06c 81 #define CM_GP0CTL 0x070 82 #define CM_GP0DIV 0x074 83 #define CM_GP1CTL 0x078 84 #define CM_GP1DIV 0x07c 85 #define CM_GP2CTL 0x080 86 #define CM_GP2DIV 0x084 87 #define CM_HSMCTL 0x088 88 #define CM_HSMDIV 0x08c 89 #define CM_OTPCTL 0x090 90 #define CM_OTPDIV 0x094 91 #define CM_PCMCTL 0x098 92 #define CM_PCMDIV 0x09c 93 #define CM_PWMCTL 0x0a0 94 #define CM_PWMDIV 0x0a4 95 #define CM_SLIMCTL 0x0a8 96 #define CM_SLIMDIV 0x0ac 97 #define CM_SMICTL 0x0b0 98 #define CM_SMIDIV 0x0b4 99 /* no definition for 0x0b8 and 0x0bc */ 100 #define CM_TCNTCTL 0x0c0 101 # define CM_TCNT_SRC1_SHIFT 12 102 #define CM_TCNTCNT 0x0c4 103 #define CM_TECCTL 0x0c8 104 #define CM_TECDIV 0x0cc 105 #define CM_TD0CTL 0x0d0 106 #define CM_TD0DIV 0x0d4 107 #define CM_TD1CTL 0x0d8 108 #define CM_TD1DIV 0x0dc 109 #define CM_TSENSCTL 0x0e0 110 #define CM_TSENSDIV 0x0e4 111 #define CM_TIMERCTL 0x0e8 112 #define CM_TIMERDIV 0x0ec 113 #define CM_UARTCTL 0x0f0 114 #define CM_UARTDIV 0x0f4 115 #define CM_VECCTL 0x0f8 116 #define CM_VECDIV 0x0fc 117 #define CM_PULSECTL 0x190 118 #define CM_PULSEDIV 0x194 119 #define CM_SDCCTL 0x1a8 120 #define CM_SDCDIV 0x1ac 121 #define CM_ARMCTL 0x1b0 122 #define CM_AVEOCTL 0x1b8 123 #define CM_AVEODIV 0x1bc 124 #define CM_EMMCCTL 0x1c0 125 #define CM_EMMCDIV 0x1c4 126 127 /* General bits for the CM_*CTL regs */ 128 # define CM_ENABLE BIT(4) 129 # define CM_KILL BIT(5) 130 # define CM_GATE_BIT 6 131 # define CM_GATE BIT(CM_GATE_BIT) 132 # define CM_BUSY BIT(7) 133 # define CM_BUSYD BIT(8) 134 # define CM_FRAC BIT(9) 135 # define CM_SRC_SHIFT 0 136 # define CM_SRC_BITS 4 137 # define CM_SRC_MASK 0xf 138 # define CM_SRC_GND 0 139 # define CM_SRC_OSC 1 140 # define CM_SRC_TESTDEBUG0 2 141 # define CM_SRC_TESTDEBUG1 3 142 # define CM_SRC_PLLA_CORE 4 143 # define CM_SRC_PLLA_PER 4 144 # define CM_SRC_PLLC_CORE0 5 145 # define CM_SRC_PLLC_PER 5 146 # define CM_SRC_PLLC_CORE1 8 147 # define CM_SRC_PLLD_CORE 6 148 # define CM_SRC_PLLD_PER 6 149 # define CM_SRC_PLLH_AUX 7 150 # define CM_SRC_PLLC_CORE1 8 151 # define CM_SRC_PLLC_CORE2 9 152 153 #define CM_OSCCOUNT 0x100 154 155 #define CM_PLLA 0x104 156 # define CM_PLL_ANARST BIT(8) 157 # define CM_PLLA_HOLDPER BIT(7) 158 # define CM_PLLA_LOADPER BIT(6) 159 # define CM_PLLA_HOLDCORE BIT(5) 160 # define CM_PLLA_LOADCORE BIT(4) 161 # define CM_PLLA_HOLDCCP2 BIT(3) 162 # define CM_PLLA_LOADCCP2 BIT(2) 163 # define CM_PLLA_HOLDDSI0 BIT(1) 164 # define CM_PLLA_LOADDSI0 BIT(0) 165 166 #define CM_PLLC 0x108 167 # define CM_PLLC_HOLDPER BIT(7) 168 # define CM_PLLC_LOADPER BIT(6) 169 # define CM_PLLC_HOLDCORE2 BIT(5) 170 # define CM_PLLC_LOADCORE2 BIT(4) 171 # define CM_PLLC_HOLDCORE1 BIT(3) 172 # define CM_PLLC_LOADCORE1 BIT(2) 173 # define CM_PLLC_HOLDCORE0 BIT(1) 174 # define CM_PLLC_LOADCORE0 BIT(0) 175 176 #define CM_PLLD 0x10c 177 # define CM_PLLD_HOLDPER BIT(7) 178 # define CM_PLLD_LOADPER BIT(6) 179 # define CM_PLLD_HOLDCORE BIT(5) 180 # define CM_PLLD_LOADCORE BIT(4) 181 # define CM_PLLD_HOLDDSI1 BIT(3) 182 # define CM_PLLD_LOADDSI1 BIT(2) 183 # define CM_PLLD_HOLDDSI0 BIT(1) 184 # define CM_PLLD_LOADDSI0 BIT(0) 185 186 #define CM_PLLH 0x110 187 # define CM_PLLH_LOADRCAL BIT(2) 188 # define CM_PLLH_LOADAUX BIT(1) 189 # define CM_PLLH_LOADPIX BIT(0) 190 191 #define CM_LOCK 0x114 192 # define CM_LOCK_FLOCKH BIT(12) 193 # define CM_LOCK_FLOCKD BIT(11) 194 # define CM_LOCK_FLOCKC BIT(10) 195 # define CM_LOCK_FLOCKB BIT(9) 196 # define CM_LOCK_FLOCKA BIT(8) 197 198 #define CM_EVENT 0x118 199 #define CM_DSI1ECTL 0x158 200 #define CM_DSI1EDIV 0x15c 201 #define CM_DSI1PCTL 0x160 202 #define CM_DSI1PDIV 0x164 203 #define CM_DFTCTL 0x168 204 #define CM_DFTDIV 0x16c 205 206 #define CM_PLLB 0x170 207 # define CM_PLLB_HOLDARM BIT(1) 208 # define CM_PLLB_LOADARM BIT(0) 209 210 #define A2W_PLLA_CTRL 0x1100 211 #define A2W_PLLC_CTRL 0x1120 212 #define A2W_PLLD_CTRL 0x1140 213 #define A2W_PLLH_CTRL 0x1160 214 #define A2W_PLLB_CTRL 0x11e0 215 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) 216 # define A2W_PLL_CTRL_PWRDN BIT(16) 217 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 218 # define A2W_PLL_CTRL_PDIV_SHIFT 12 219 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff 220 # define A2W_PLL_CTRL_NDIV_SHIFT 0 221 222 #define A2W_PLLA_ANA0 0x1010 223 #define A2W_PLLC_ANA0 0x1030 224 #define A2W_PLLD_ANA0 0x1050 225 #define A2W_PLLH_ANA0 0x1070 226 #define A2W_PLLB_ANA0 0x10f0 227 228 #define A2W_PLL_KA_SHIFT 7 229 #define A2W_PLL_KA_MASK GENMASK(9, 7) 230 #define A2W_PLL_KI_SHIFT 19 231 #define A2W_PLL_KI_MASK GENMASK(21, 19) 232 #define A2W_PLL_KP_SHIFT 15 233 #define A2W_PLL_KP_MASK GENMASK(18, 15) 234 235 #define A2W_PLLH_KA_SHIFT 19 236 #define A2W_PLLH_KA_MASK GENMASK(21, 19) 237 #define A2W_PLLH_KI_LOW_SHIFT 22 238 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) 239 #define A2W_PLLH_KI_HIGH_SHIFT 0 240 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) 241 #define A2W_PLLH_KP_SHIFT 1 242 #define A2W_PLLH_KP_MASK GENMASK(4, 1) 243 244 #define A2W_XOSC_CTRL 0x1190 245 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) 246 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) 247 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) 248 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) 249 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) 250 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) 251 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) 252 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) 253 254 #define A2W_PLLA_FRAC 0x1200 255 #define A2W_PLLC_FRAC 0x1220 256 #define A2W_PLLD_FRAC 0x1240 257 #define A2W_PLLH_FRAC 0x1260 258 #define A2W_PLLB_FRAC 0x12e0 259 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) 260 # define A2W_PLL_FRAC_BITS 20 261 262 #define A2W_PLL_CHANNEL_DISABLE BIT(8) 263 #define A2W_PLL_DIV_BITS 8 264 #define A2W_PLL_DIV_SHIFT 0 265 266 #define A2W_PLLA_DSI0 0x1300 267 #define A2W_PLLA_CORE 0x1400 268 #define A2W_PLLA_PER 0x1500 269 #define A2W_PLLA_CCP2 0x1600 270 271 #define A2W_PLLC_CORE2 0x1320 272 #define A2W_PLLC_CORE1 0x1420 273 #define A2W_PLLC_PER 0x1520 274 #define A2W_PLLC_CORE0 0x1620 275 276 #define A2W_PLLD_DSI0 0x1340 277 #define A2W_PLLD_CORE 0x1440 278 #define A2W_PLLD_PER 0x1540 279 #define A2W_PLLD_DSI1 0x1640 280 281 #define A2W_PLLH_AUX 0x1360 282 #define A2W_PLLH_RCAL 0x1460 283 #define A2W_PLLH_PIX 0x1560 284 #define A2W_PLLH_STS 0x1660 285 286 #define A2W_PLLH_CTRLR 0x1960 287 #define A2W_PLLH_FRACR 0x1a60 288 #define A2W_PLLH_AUXR 0x1b60 289 #define A2W_PLLH_RCALR 0x1c60 290 #define A2W_PLLH_PIXR 0x1d60 291 #define A2W_PLLH_STSR 0x1e60 292 293 #define A2W_PLLB_ARM 0x13e0 294 #define A2W_PLLB_SP0 0x14e0 295 #define A2W_PLLB_SP1 0x15e0 296 #define A2W_PLLB_SP2 0x16e0 297 298 #define LOCK_TIMEOUT_NS 100000000 299 #define BCM2835_MAX_FB_RATE 1750000000u 300 301 /* 302 * Names of clocks used within the driver that need to be replaced 303 * with an external parent's name. This array is in the order that 304 * the clocks node in the DT references external clocks. 305 */ 306 static const char *const cprman_parent_names[] = { 307 "xosc", 308 "dsi0_byte", 309 "dsi0_ddr2", 310 "dsi0_ddr", 311 "dsi1_byte", 312 "dsi1_ddr2", 313 "dsi1_ddr", 314 }; 315 316 struct bcm2835_cprman { 317 struct device *dev; 318 void __iomem *regs; 319 spinlock_t regs_lock; /* spinlock for all clocks */ 320 321 /* 322 * Real names of cprman clock parents looked up through 323 * of_clk_get_parent_name(), which will be used in the 324 * parent_names[] arrays for clock registration. 325 */ 326 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)]; 327 328 /* Must be last */ 329 struct clk_hw_onecell_data onecell; 330 }; 331 332 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) 333 { 334 writel(CM_PASSWORD | val, cprman->regs + reg); 335 } 336 337 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) 338 { 339 return readl(cprman->regs + reg); 340 } 341 342 /* Does a cycle of measuring a clock through the TCNT clock, which may 343 * source from many other clocks in the system. 344 */ 345 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman, 346 u32 tcnt_mux) 347 { 348 u32 osccount = 19200; /* 1ms */ 349 u32 count; 350 ktime_t timeout; 351 352 spin_lock(&cprman->regs_lock); 353 354 cprman_write(cprman, CM_TCNTCTL, CM_KILL); 355 356 cprman_write(cprman, CM_TCNTCTL, 357 (tcnt_mux & CM_SRC_MASK) | 358 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT); 359 360 cprman_write(cprman, CM_OSCCOUNT, osccount); 361 362 /* do a kind delay at the start */ 363 mdelay(1); 364 365 /* Finish off whatever is left of OSCCOUNT */ 366 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 367 while (cprman_read(cprman, CM_OSCCOUNT)) { 368 if (ktime_after(ktime_get(), timeout)) { 369 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n"); 370 count = 0; 371 goto out; 372 } 373 cpu_relax(); 374 } 375 376 /* Wait for BUSY to clear. */ 377 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 378 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) { 379 if (ktime_after(ktime_get(), timeout)) { 380 dev_err(cprman->dev, "timeout waiting for !BUSY\n"); 381 count = 0; 382 goto out; 383 } 384 cpu_relax(); 385 } 386 387 count = cprman_read(cprman, CM_TCNTCNT); 388 389 cprman_write(cprman, CM_TCNTCTL, 0); 390 391 out: 392 spin_unlock(&cprman->regs_lock); 393 394 return count * 1000; 395 } 396 397 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base, 398 struct debugfs_reg32 *regs, size_t nregs, 399 struct dentry *dentry) 400 { 401 struct dentry *regdump; 402 struct debugfs_regset32 *regset; 403 404 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL); 405 if (!regset) 406 return -ENOMEM; 407 408 regset->regs = regs; 409 regset->nregs = nregs; 410 regset->base = cprman->regs + base; 411 412 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry, 413 regset); 414 415 return regdump ? 0 : -ENOMEM; 416 } 417 418 struct bcm2835_pll_data { 419 const char *name; 420 u32 cm_ctrl_reg; 421 u32 a2w_ctrl_reg; 422 u32 frac_reg; 423 u32 ana_reg_base; 424 u32 reference_enable_mask; 425 /* Bit in CM_LOCK to indicate when the PLL has locked. */ 426 u32 lock_mask; 427 428 const struct bcm2835_pll_ana_bits *ana; 429 430 unsigned long min_rate; 431 unsigned long max_rate; 432 /* 433 * Highest rate for the VCO before we have to use the 434 * pre-divide-by-2. 435 */ 436 unsigned long max_fb_rate; 437 }; 438 439 struct bcm2835_pll_ana_bits { 440 u32 mask0; 441 u32 set0; 442 u32 mask1; 443 u32 set1; 444 u32 mask3; 445 u32 set3; 446 u32 fb_prediv_mask; 447 }; 448 449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { 450 .mask0 = 0, 451 .set0 = 0, 452 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK, 453 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), 454 .mask3 = A2W_PLL_KA_MASK, 455 .set3 = (2 << A2W_PLL_KA_SHIFT), 456 .fb_prediv_mask = BIT(14), 457 }; 458 459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { 460 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK, 461 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), 462 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK, 463 .set1 = (6 << A2W_PLLH_KP_SHIFT), 464 .mask3 = 0, 465 .set3 = 0, 466 .fb_prediv_mask = BIT(11), 467 }; 468 469 struct bcm2835_pll_divider_data { 470 const char *name; 471 const char *source_pll; 472 473 u32 cm_reg; 474 u32 a2w_reg; 475 476 u32 load_mask; 477 u32 hold_mask; 478 u32 fixed_divider; 479 u32 flags; 480 }; 481 482 struct bcm2835_clock_data { 483 const char *name; 484 485 const char *const *parents; 486 int num_mux_parents; 487 488 /* Bitmap encoding which parents accept rate change propagation. */ 489 unsigned int set_rate_parent; 490 491 u32 ctl_reg; 492 u32 div_reg; 493 494 /* Number of integer bits in the divider */ 495 u32 int_bits; 496 /* Number of fractional bits in the divider */ 497 u32 frac_bits; 498 499 u32 flags; 500 501 bool is_vpu_clock; 502 bool is_mash_clock; 503 bool low_jitter; 504 505 u32 tcnt_mux; 506 }; 507 508 struct bcm2835_gate_data { 509 const char *name; 510 const char *parent; 511 512 u32 ctl_reg; 513 }; 514 515 struct bcm2835_pll { 516 struct clk_hw hw; 517 struct bcm2835_cprman *cprman; 518 const struct bcm2835_pll_data *data; 519 }; 520 521 static int bcm2835_pll_is_on(struct clk_hw *hw) 522 { 523 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 524 struct bcm2835_cprman *cprman = pll->cprman; 525 const struct bcm2835_pll_data *data = pll->data; 526 527 return cprman_read(cprman, data->a2w_ctrl_reg) & 528 A2W_PLL_CTRL_PRST_DISABLE; 529 } 530 531 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, 532 unsigned long parent_rate, 533 u32 *ndiv, u32 *fdiv) 534 { 535 u64 div; 536 537 div = (u64)rate << A2W_PLL_FRAC_BITS; 538 do_div(div, parent_rate); 539 540 *ndiv = div >> A2W_PLL_FRAC_BITS; 541 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); 542 } 543 544 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, 545 u32 ndiv, u32 fdiv, u32 pdiv) 546 { 547 u64 rate; 548 549 if (pdiv == 0) 550 return 0; 551 552 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); 553 do_div(rate, pdiv); 554 return rate >> A2W_PLL_FRAC_BITS; 555 } 556 557 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, 558 unsigned long *parent_rate) 559 { 560 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 561 const struct bcm2835_pll_data *data = pll->data; 562 u32 ndiv, fdiv; 563 564 rate = clamp(rate, data->min_rate, data->max_rate); 565 566 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); 567 568 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); 569 } 570 571 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, 572 unsigned long parent_rate) 573 { 574 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 575 struct bcm2835_cprman *cprman = pll->cprman; 576 const struct bcm2835_pll_data *data = pll->data; 577 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); 578 u32 ndiv, pdiv, fdiv; 579 bool using_prediv; 580 581 if (parent_rate == 0) 582 return 0; 583 584 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; 585 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; 586 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; 587 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & 588 data->ana->fb_prediv_mask; 589 590 if (using_prediv) { 591 ndiv *= 2; 592 fdiv *= 2; 593 } 594 595 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); 596 } 597 598 static void bcm2835_pll_off(struct clk_hw *hw) 599 { 600 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 601 struct bcm2835_cprman *cprman = pll->cprman; 602 const struct bcm2835_pll_data *data = pll->data; 603 604 spin_lock(&cprman->regs_lock); 605 cprman_write(cprman, data->cm_ctrl_reg, 606 cprman_read(cprman, data->cm_ctrl_reg) | 607 CM_PLL_ANARST); 608 cprman_write(cprman, data->a2w_ctrl_reg, 609 cprman_read(cprman, data->a2w_ctrl_reg) | 610 A2W_PLL_CTRL_PWRDN); 611 spin_unlock(&cprman->regs_lock); 612 } 613 614 static int bcm2835_pll_on(struct clk_hw *hw) 615 { 616 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 617 struct bcm2835_cprman *cprman = pll->cprman; 618 const struct bcm2835_pll_data *data = pll->data; 619 ktime_t timeout; 620 621 cprman_write(cprman, data->a2w_ctrl_reg, 622 cprman_read(cprman, data->a2w_ctrl_reg) & 623 ~A2W_PLL_CTRL_PWRDN); 624 625 /* Take the PLL out of reset. */ 626 spin_lock(&cprman->regs_lock); 627 cprman_write(cprman, data->cm_ctrl_reg, 628 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); 629 spin_unlock(&cprman->regs_lock); 630 631 /* Wait for the PLL to lock. */ 632 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 633 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { 634 if (ktime_after(ktime_get(), timeout)) { 635 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 636 clk_hw_get_name(hw)); 637 return -ETIMEDOUT; 638 } 639 640 cpu_relax(); 641 } 642 643 return 0; 644 } 645 646 static void 647 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) 648 { 649 int i; 650 651 /* 652 * ANA register setup is done as a series of writes to 653 * ANA3-ANA0, in that order. This lets us write all 4 654 * registers as a single cycle of the serdes interface (taking 655 * 100 xosc clocks), whereas if we were to update ana0, 1, and 656 * 3 individually through their partial-write registers, each 657 * would be their own serdes cycle. 658 */ 659 for (i = 3; i >= 0; i--) 660 cprman_write(cprman, ana_reg_base + i * 4, ana[i]); 661 } 662 663 static int bcm2835_pll_set_rate(struct clk_hw *hw, 664 unsigned long rate, unsigned long parent_rate) 665 { 666 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 667 struct bcm2835_cprman *cprman = pll->cprman; 668 const struct bcm2835_pll_data *data = pll->data; 669 bool was_using_prediv, use_fb_prediv, do_ana_setup_first; 670 u32 ndiv, fdiv, a2w_ctl; 671 u32 ana[4]; 672 int i; 673 674 if (rate > data->max_fb_rate) { 675 use_fb_prediv = true; 676 rate /= 2; 677 } else { 678 use_fb_prediv = false; 679 } 680 681 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); 682 683 for (i = 3; i >= 0; i--) 684 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); 685 686 was_using_prediv = ana[1] & data->ana->fb_prediv_mask; 687 688 ana[0] &= ~data->ana->mask0; 689 ana[0] |= data->ana->set0; 690 ana[1] &= ~data->ana->mask1; 691 ana[1] |= data->ana->set1; 692 ana[3] &= ~data->ana->mask3; 693 ana[3] |= data->ana->set3; 694 695 if (was_using_prediv && !use_fb_prediv) { 696 ana[1] &= ~data->ana->fb_prediv_mask; 697 do_ana_setup_first = true; 698 } else if (!was_using_prediv && use_fb_prediv) { 699 ana[1] |= data->ana->fb_prediv_mask; 700 do_ana_setup_first = false; 701 } else { 702 do_ana_setup_first = true; 703 } 704 705 /* Unmask the reference clock from the oscillator. */ 706 spin_lock(&cprman->regs_lock); 707 cprman_write(cprman, A2W_XOSC_CTRL, 708 cprman_read(cprman, A2W_XOSC_CTRL) | 709 data->reference_enable_mask); 710 spin_unlock(&cprman->regs_lock); 711 712 if (do_ana_setup_first) 713 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 714 715 /* Set the PLL multiplier from the oscillator. */ 716 cprman_write(cprman, data->frac_reg, fdiv); 717 718 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); 719 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; 720 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; 721 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; 722 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; 723 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); 724 725 if (!do_ana_setup_first) 726 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 727 728 return 0; 729 } 730 731 static int bcm2835_pll_debug_init(struct clk_hw *hw, 732 struct dentry *dentry) 733 { 734 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 735 struct bcm2835_cprman *cprman = pll->cprman; 736 const struct bcm2835_pll_data *data = pll->data; 737 struct debugfs_reg32 *regs; 738 739 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL); 740 if (!regs) 741 return -ENOMEM; 742 743 regs[0].name = "cm_ctrl"; 744 regs[0].offset = data->cm_ctrl_reg; 745 regs[1].name = "a2w_ctrl"; 746 regs[1].offset = data->a2w_ctrl_reg; 747 regs[2].name = "frac"; 748 regs[2].offset = data->frac_reg; 749 regs[3].name = "ana0"; 750 regs[3].offset = data->ana_reg_base + 0 * 4; 751 regs[4].name = "ana1"; 752 regs[4].offset = data->ana_reg_base + 1 * 4; 753 regs[5].name = "ana2"; 754 regs[5].offset = data->ana_reg_base + 2 * 4; 755 regs[6].name = "ana3"; 756 regs[6].offset = data->ana_reg_base + 3 * 4; 757 758 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry); 759 } 760 761 static const struct clk_ops bcm2835_pll_clk_ops = { 762 .is_prepared = bcm2835_pll_is_on, 763 .prepare = bcm2835_pll_on, 764 .unprepare = bcm2835_pll_off, 765 .recalc_rate = bcm2835_pll_get_rate, 766 .set_rate = bcm2835_pll_set_rate, 767 .round_rate = bcm2835_pll_round_rate, 768 .debug_init = bcm2835_pll_debug_init, 769 }; 770 771 struct bcm2835_pll_divider { 772 struct clk_divider div; 773 struct bcm2835_cprman *cprman; 774 const struct bcm2835_pll_divider_data *data; 775 }; 776 777 static struct bcm2835_pll_divider * 778 bcm2835_pll_divider_from_hw(struct clk_hw *hw) 779 { 780 return container_of(hw, struct bcm2835_pll_divider, div.hw); 781 } 782 783 static int bcm2835_pll_divider_is_on(struct clk_hw *hw) 784 { 785 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 786 struct bcm2835_cprman *cprman = divider->cprman; 787 const struct bcm2835_pll_divider_data *data = divider->data; 788 789 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); 790 } 791 792 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw, 793 unsigned long rate, 794 unsigned long *parent_rate) 795 { 796 return clk_divider_ops.round_rate(hw, rate, parent_rate); 797 } 798 799 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, 800 unsigned long parent_rate) 801 { 802 return clk_divider_ops.recalc_rate(hw, parent_rate); 803 } 804 805 static void bcm2835_pll_divider_off(struct clk_hw *hw) 806 { 807 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 808 struct bcm2835_cprman *cprman = divider->cprman; 809 const struct bcm2835_pll_divider_data *data = divider->data; 810 811 spin_lock(&cprman->regs_lock); 812 cprman_write(cprman, data->cm_reg, 813 (cprman_read(cprman, data->cm_reg) & 814 ~data->load_mask) | data->hold_mask); 815 cprman_write(cprman, data->a2w_reg, 816 cprman_read(cprman, data->a2w_reg) | 817 A2W_PLL_CHANNEL_DISABLE); 818 spin_unlock(&cprman->regs_lock); 819 } 820 821 static int bcm2835_pll_divider_on(struct clk_hw *hw) 822 { 823 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 824 struct bcm2835_cprman *cprman = divider->cprman; 825 const struct bcm2835_pll_divider_data *data = divider->data; 826 827 spin_lock(&cprman->regs_lock); 828 cprman_write(cprman, data->a2w_reg, 829 cprman_read(cprman, data->a2w_reg) & 830 ~A2W_PLL_CHANNEL_DISABLE); 831 832 cprman_write(cprman, data->cm_reg, 833 cprman_read(cprman, data->cm_reg) & ~data->hold_mask); 834 spin_unlock(&cprman->regs_lock); 835 836 return 0; 837 } 838 839 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, 840 unsigned long rate, 841 unsigned long parent_rate) 842 { 843 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 844 struct bcm2835_cprman *cprman = divider->cprman; 845 const struct bcm2835_pll_divider_data *data = divider->data; 846 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS; 847 848 div = DIV_ROUND_UP_ULL(parent_rate, rate); 849 850 div = min(div, max_div); 851 if (div == max_div) 852 div = 0; 853 854 cprman_write(cprman, data->a2w_reg, div); 855 cm = cprman_read(cprman, data->cm_reg); 856 cprman_write(cprman, data->cm_reg, cm | data->load_mask); 857 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); 858 859 return 0; 860 } 861 862 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw, 863 struct dentry *dentry) 864 { 865 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 866 struct bcm2835_cprman *cprman = divider->cprman; 867 const struct bcm2835_pll_divider_data *data = divider->data; 868 struct debugfs_reg32 *regs; 869 870 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL); 871 if (!regs) 872 return -ENOMEM; 873 874 regs[0].name = "cm"; 875 regs[0].offset = data->cm_reg; 876 regs[1].name = "a2w"; 877 regs[1].offset = data->a2w_reg; 878 879 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry); 880 } 881 882 static const struct clk_ops bcm2835_pll_divider_clk_ops = { 883 .is_prepared = bcm2835_pll_divider_is_on, 884 .prepare = bcm2835_pll_divider_on, 885 .unprepare = bcm2835_pll_divider_off, 886 .recalc_rate = bcm2835_pll_divider_get_rate, 887 .set_rate = bcm2835_pll_divider_set_rate, 888 .round_rate = bcm2835_pll_divider_round_rate, 889 .debug_init = bcm2835_pll_divider_debug_init, 890 }; 891 892 /* 893 * The CM dividers do fixed-point division, so we can't use the 894 * generic integer divider code like the PLL dividers do (and we can't 895 * fake it by having some fixed shifts preceding it in the clock tree, 896 * because we'd run out of bits in a 32-bit unsigned long). 897 */ 898 struct bcm2835_clock { 899 struct clk_hw hw; 900 struct bcm2835_cprman *cprman; 901 const struct bcm2835_clock_data *data; 902 }; 903 904 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) 905 { 906 return container_of(hw, struct bcm2835_clock, hw); 907 } 908 909 static int bcm2835_clock_is_on(struct clk_hw *hw) 910 { 911 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 912 struct bcm2835_cprman *cprman = clock->cprman; 913 const struct bcm2835_clock_data *data = clock->data; 914 915 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; 916 } 917 918 static u32 bcm2835_clock_choose_div(struct clk_hw *hw, 919 unsigned long rate, 920 unsigned long parent_rate, 921 bool round_up) 922 { 923 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 924 const struct bcm2835_clock_data *data = clock->data; 925 u32 unused_frac_mask = 926 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1; 927 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; 928 u64 rem; 929 u32 div, mindiv, maxdiv; 930 931 rem = do_div(temp, rate); 932 div = temp; 933 934 /* Round up and mask off the unused bits */ 935 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0)) 936 div += unused_frac_mask + 1; 937 div &= ~unused_frac_mask; 938 939 /* different clamping limits apply for a mash clock */ 940 if (data->is_mash_clock) { 941 /* clamp to min divider of 2 */ 942 mindiv = 2 << CM_DIV_FRAC_BITS; 943 /* clamp to the highest possible integer divider */ 944 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS; 945 } else { 946 /* clamp to min divider of 1 */ 947 mindiv = 1 << CM_DIV_FRAC_BITS; 948 /* clamp to the highest possible fractional divider */ 949 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, 950 CM_DIV_FRAC_BITS - data->frac_bits); 951 } 952 953 /* apply the clamping limits */ 954 div = max_t(u32, div, mindiv); 955 div = min_t(u32, div, maxdiv); 956 957 return div; 958 } 959 960 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, 961 unsigned long parent_rate, 962 u32 div) 963 { 964 const struct bcm2835_clock_data *data = clock->data; 965 u64 temp; 966 967 if (data->int_bits == 0 && data->frac_bits == 0) 968 return parent_rate; 969 970 /* 971 * The divisor is a 12.12 fixed point field, but only some of 972 * the bits are populated in any given clock. 973 */ 974 div >>= CM_DIV_FRAC_BITS - data->frac_bits; 975 div &= (1 << (data->int_bits + data->frac_bits)) - 1; 976 977 if (div == 0) 978 return 0; 979 980 temp = (u64)parent_rate << data->frac_bits; 981 982 do_div(temp, div); 983 984 return temp; 985 } 986 987 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, 988 unsigned long parent_rate) 989 { 990 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 991 struct bcm2835_cprman *cprman = clock->cprman; 992 const struct bcm2835_clock_data *data = clock->data; 993 u32 div; 994 995 if (data->int_bits == 0 && data->frac_bits == 0) 996 return parent_rate; 997 998 div = cprman_read(cprman, data->div_reg); 999 1000 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); 1001 } 1002 1003 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) 1004 { 1005 struct bcm2835_cprman *cprman = clock->cprman; 1006 const struct bcm2835_clock_data *data = clock->data; 1007 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 1008 1009 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { 1010 if (ktime_after(ktime_get(), timeout)) { 1011 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 1012 clk_hw_get_name(&clock->hw)); 1013 return; 1014 } 1015 cpu_relax(); 1016 } 1017 } 1018 1019 static void bcm2835_clock_off(struct clk_hw *hw) 1020 { 1021 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1022 struct bcm2835_cprman *cprman = clock->cprman; 1023 const struct bcm2835_clock_data *data = clock->data; 1024 1025 spin_lock(&cprman->regs_lock); 1026 cprman_write(cprman, data->ctl_reg, 1027 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); 1028 spin_unlock(&cprman->regs_lock); 1029 1030 /* BUSY will remain high until the divider completes its cycle. */ 1031 bcm2835_clock_wait_busy(clock); 1032 } 1033 1034 static int bcm2835_clock_on(struct clk_hw *hw) 1035 { 1036 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1037 struct bcm2835_cprman *cprman = clock->cprman; 1038 const struct bcm2835_clock_data *data = clock->data; 1039 1040 spin_lock(&cprman->regs_lock); 1041 cprman_write(cprman, data->ctl_reg, 1042 cprman_read(cprman, data->ctl_reg) | 1043 CM_ENABLE | 1044 CM_GATE); 1045 spin_unlock(&cprman->regs_lock); 1046 1047 /* Debug code to measure the clock once it's turned on to see 1048 * if it's ticking at the rate we expect. 1049 */ 1050 if (data->tcnt_mux && false) { 1051 dev_info(cprman->dev, 1052 "clk %s: rate %ld, measure %ld\n", 1053 data->name, 1054 clk_hw_get_rate(hw), 1055 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux)); 1056 } 1057 1058 return 0; 1059 } 1060 1061 static int bcm2835_clock_set_rate(struct clk_hw *hw, 1062 unsigned long rate, unsigned long parent_rate) 1063 { 1064 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1065 struct bcm2835_cprman *cprman = clock->cprman; 1066 const struct bcm2835_clock_data *data = clock->data; 1067 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false); 1068 u32 ctl; 1069 1070 spin_lock(&cprman->regs_lock); 1071 1072 /* 1073 * Setting up frac support 1074 * 1075 * In principle it is recommended to stop/start the clock first, 1076 * but as we set CLK_SET_RATE_GATE during registration of the 1077 * clock this requirement should be take care of by the 1078 * clk-framework. 1079 */ 1080 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC; 1081 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0; 1082 cprman_write(cprman, data->ctl_reg, ctl); 1083 1084 cprman_write(cprman, data->div_reg, div); 1085 1086 spin_unlock(&cprman->regs_lock); 1087 1088 return 0; 1089 } 1090 1091 static bool 1092 bcm2835_clk_is_pllc(struct clk_hw *hw) 1093 { 1094 if (!hw) 1095 return false; 1096 1097 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0; 1098 } 1099 1100 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw, 1101 int parent_idx, 1102 unsigned long rate, 1103 u32 *div, 1104 unsigned long *prate, 1105 unsigned long *avgrate) 1106 { 1107 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1108 struct bcm2835_cprman *cprman = clock->cprman; 1109 const struct bcm2835_clock_data *data = clock->data; 1110 unsigned long best_rate = 0; 1111 u32 curdiv, mindiv, maxdiv; 1112 struct clk_hw *parent; 1113 1114 parent = clk_hw_get_parent_by_index(hw, parent_idx); 1115 1116 if (!(BIT(parent_idx) & data->set_rate_parent)) { 1117 *prate = clk_hw_get_rate(parent); 1118 *div = bcm2835_clock_choose_div(hw, rate, *prate, true); 1119 1120 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div); 1121 1122 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) { 1123 unsigned long high, low; 1124 u32 int_div = *div & ~CM_DIV_FRAC_MASK; 1125 1126 high = bcm2835_clock_rate_from_divisor(clock, *prate, 1127 int_div); 1128 int_div += CM_DIV_FRAC_MASK + 1; 1129 low = bcm2835_clock_rate_from_divisor(clock, *prate, 1130 int_div); 1131 1132 /* 1133 * Return a value which is the maximum deviation 1134 * below the ideal rate, for use as a metric. 1135 */ 1136 return *avgrate - max(*avgrate - low, high - *avgrate); 1137 } 1138 return *avgrate; 1139 } 1140 1141 if (data->frac_bits) 1142 dev_warn(cprman->dev, 1143 "frac bits are not used when propagating rate change"); 1144 1145 /* clamp to min divider of 2 if we're dealing with a mash clock */ 1146 mindiv = data->is_mash_clock ? 2 : 1; 1147 maxdiv = BIT(data->int_bits) - 1; 1148 1149 /* TODO: Be smart, and only test a subset of the available divisors. */ 1150 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) { 1151 unsigned long tmp_rate; 1152 1153 tmp_rate = clk_hw_round_rate(parent, rate * curdiv); 1154 tmp_rate /= curdiv; 1155 if (curdiv == mindiv || 1156 (tmp_rate > best_rate && tmp_rate <= rate)) 1157 best_rate = tmp_rate; 1158 1159 if (best_rate == rate) 1160 break; 1161 } 1162 1163 *div = curdiv << CM_DIV_FRAC_BITS; 1164 *prate = curdiv * best_rate; 1165 *avgrate = best_rate; 1166 1167 return best_rate; 1168 } 1169 1170 static int bcm2835_clock_determine_rate(struct clk_hw *hw, 1171 struct clk_rate_request *req) 1172 { 1173 struct clk_hw *parent, *best_parent = NULL; 1174 bool current_parent_is_pllc; 1175 unsigned long rate, best_rate = 0; 1176 unsigned long prate, best_prate = 0; 1177 unsigned long avgrate, best_avgrate = 0; 1178 size_t i; 1179 u32 div; 1180 1181 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw)); 1182 1183 /* 1184 * Select parent clock that results in the closest but lower rate 1185 */ 1186 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) { 1187 parent = clk_hw_get_parent_by_index(hw, i); 1188 if (!parent) 1189 continue; 1190 1191 /* 1192 * Don't choose a PLLC-derived clock as our parent 1193 * unless it had been manually set that way. PLLC's 1194 * frequency gets adjusted by the firmware due to 1195 * over-temp or under-voltage conditions, without 1196 * prior notification to our clock consumer. 1197 */ 1198 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc) 1199 continue; 1200 1201 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate, 1202 &div, &prate, 1203 &avgrate); 1204 if (rate > best_rate && rate <= req->rate) { 1205 best_parent = parent; 1206 best_prate = prate; 1207 best_rate = rate; 1208 best_avgrate = avgrate; 1209 } 1210 } 1211 1212 if (!best_parent) 1213 return -EINVAL; 1214 1215 req->best_parent_hw = best_parent; 1216 req->best_parent_rate = best_prate; 1217 1218 req->rate = best_avgrate; 1219 1220 return 0; 1221 } 1222 1223 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index) 1224 { 1225 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1226 struct bcm2835_cprman *cprman = clock->cprman; 1227 const struct bcm2835_clock_data *data = clock->data; 1228 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK; 1229 1230 cprman_write(cprman, data->ctl_reg, src); 1231 return 0; 1232 } 1233 1234 static u8 bcm2835_clock_get_parent(struct clk_hw *hw) 1235 { 1236 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1237 struct bcm2835_cprman *cprman = clock->cprman; 1238 const struct bcm2835_clock_data *data = clock->data; 1239 u32 src = cprman_read(cprman, data->ctl_reg); 1240 1241 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT; 1242 } 1243 1244 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = { 1245 { 1246 .name = "ctl", 1247 .offset = 0, 1248 }, 1249 { 1250 .name = "div", 1251 .offset = 4, 1252 }, 1253 }; 1254 1255 static int bcm2835_clock_debug_init(struct clk_hw *hw, 1256 struct dentry *dentry) 1257 { 1258 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1259 struct bcm2835_cprman *cprman = clock->cprman; 1260 const struct bcm2835_clock_data *data = clock->data; 1261 1262 return bcm2835_debugfs_regset( 1263 cprman, data->ctl_reg, 1264 bcm2835_debugfs_clock_reg32, 1265 ARRAY_SIZE(bcm2835_debugfs_clock_reg32), 1266 dentry); 1267 } 1268 1269 static const struct clk_ops bcm2835_clock_clk_ops = { 1270 .is_prepared = bcm2835_clock_is_on, 1271 .prepare = bcm2835_clock_on, 1272 .unprepare = bcm2835_clock_off, 1273 .recalc_rate = bcm2835_clock_get_rate, 1274 .set_rate = bcm2835_clock_set_rate, 1275 .determine_rate = bcm2835_clock_determine_rate, 1276 .set_parent = bcm2835_clock_set_parent, 1277 .get_parent = bcm2835_clock_get_parent, 1278 .debug_init = bcm2835_clock_debug_init, 1279 }; 1280 1281 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) 1282 { 1283 return true; 1284 } 1285 1286 /* 1287 * The VPU clock can never be disabled (it doesn't have an ENABLE 1288 * bit), so it gets its own set of clock ops. 1289 */ 1290 static const struct clk_ops bcm2835_vpu_clock_clk_ops = { 1291 .is_prepared = bcm2835_vpu_clock_is_on, 1292 .recalc_rate = bcm2835_clock_get_rate, 1293 .set_rate = bcm2835_clock_set_rate, 1294 .determine_rate = bcm2835_clock_determine_rate, 1295 .set_parent = bcm2835_clock_set_parent, 1296 .get_parent = bcm2835_clock_get_parent, 1297 .debug_init = bcm2835_clock_debug_init, 1298 }; 1299 1300 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman, 1301 const struct bcm2835_pll_data *data) 1302 { 1303 struct bcm2835_pll *pll; 1304 struct clk_init_data init; 1305 int ret; 1306 1307 memset(&init, 0, sizeof(init)); 1308 1309 /* All of the PLLs derive from the external oscillator. */ 1310 init.parent_names = &cprman->real_parent_names[0]; 1311 init.num_parents = 1; 1312 init.name = data->name; 1313 init.ops = &bcm2835_pll_clk_ops; 1314 init.flags = CLK_IGNORE_UNUSED; 1315 1316 pll = kzalloc(sizeof(*pll), GFP_KERNEL); 1317 if (!pll) 1318 return NULL; 1319 1320 pll->cprman = cprman; 1321 pll->data = data; 1322 pll->hw.init = &init; 1323 1324 ret = devm_clk_hw_register(cprman->dev, &pll->hw); 1325 if (ret) 1326 return NULL; 1327 return &pll->hw; 1328 } 1329 1330 static struct clk_hw * 1331 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, 1332 const struct bcm2835_pll_divider_data *data) 1333 { 1334 struct bcm2835_pll_divider *divider; 1335 struct clk_init_data init; 1336 const char *divider_name; 1337 int ret; 1338 1339 if (data->fixed_divider != 1) { 1340 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, 1341 "%s_prediv", data->name); 1342 if (!divider_name) 1343 return NULL; 1344 } else { 1345 divider_name = data->name; 1346 } 1347 1348 memset(&init, 0, sizeof(init)); 1349 1350 init.parent_names = &data->source_pll; 1351 init.num_parents = 1; 1352 init.name = divider_name; 1353 init.ops = &bcm2835_pll_divider_clk_ops; 1354 init.flags = data->flags | CLK_IGNORE_UNUSED; 1355 1356 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); 1357 if (!divider) 1358 return NULL; 1359 1360 divider->div.reg = cprman->regs + data->a2w_reg; 1361 divider->div.shift = A2W_PLL_DIV_SHIFT; 1362 divider->div.width = A2W_PLL_DIV_BITS; 1363 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO; 1364 divider->div.lock = &cprman->regs_lock; 1365 divider->div.hw.init = &init; 1366 divider->div.table = NULL; 1367 1368 divider->cprman = cprman; 1369 divider->data = data; 1370 1371 ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw); 1372 if (ret) 1373 return ERR_PTR(ret); 1374 1375 /* 1376 * PLLH's channels have a fixed divide by 10 afterwards, which 1377 * is what our consumers are actually using. 1378 */ 1379 if (data->fixed_divider != 1) { 1380 return clk_hw_register_fixed_factor(cprman->dev, data->name, 1381 divider_name, 1382 CLK_SET_RATE_PARENT, 1383 1, 1384 data->fixed_divider); 1385 } 1386 1387 return ÷r->div.hw; 1388 } 1389 1390 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman, 1391 const struct bcm2835_clock_data *data) 1392 { 1393 struct bcm2835_clock *clock; 1394 struct clk_init_data init; 1395 const char *parents[1 << CM_SRC_BITS]; 1396 size_t i, j; 1397 int ret; 1398 1399 /* 1400 * Replace our strings referencing parent clocks with the 1401 * actual clock-output-name of the parent. 1402 */ 1403 for (i = 0; i < data->num_mux_parents; i++) { 1404 parents[i] = data->parents[i]; 1405 1406 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) { 1407 if (strcmp(parents[i], cprman_parent_names[j]) == 0) { 1408 parents[i] = cprman->real_parent_names[j]; 1409 break; 1410 } 1411 } 1412 } 1413 1414 memset(&init, 0, sizeof(init)); 1415 init.parent_names = parents; 1416 init.num_parents = data->num_mux_parents; 1417 init.name = data->name; 1418 init.flags = data->flags | CLK_IGNORE_UNUSED; 1419 1420 /* 1421 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate 1422 * rate changes on at least of the parents. 1423 */ 1424 if (data->set_rate_parent) 1425 init.flags |= CLK_SET_RATE_PARENT; 1426 1427 if (data->is_vpu_clock) { 1428 init.ops = &bcm2835_vpu_clock_clk_ops; 1429 } else { 1430 init.ops = &bcm2835_clock_clk_ops; 1431 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; 1432 1433 /* If the clock wasn't actually enabled at boot, it's not 1434 * critical. 1435 */ 1436 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE)) 1437 init.flags &= ~CLK_IS_CRITICAL; 1438 } 1439 1440 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); 1441 if (!clock) 1442 return NULL; 1443 1444 clock->cprman = cprman; 1445 clock->data = data; 1446 clock->hw.init = &init; 1447 1448 ret = devm_clk_hw_register(cprman->dev, &clock->hw); 1449 if (ret) 1450 return ERR_PTR(ret); 1451 return &clock->hw; 1452 } 1453 1454 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman, 1455 const struct bcm2835_gate_data *data) 1456 { 1457 return clk_register_gate(cprman->dev, data->name, data->parent, 1458 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, 1459 cprman->regs + data->ctl_reg, 1460 CM_GATE_BIT, 0, &cprman->regs_lock); 1461 } 1462 1463 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman, 1464 const void *data); 1465 struct bcm2835_clk_desc { 1466 bcm2835_clk_register clk_register; 1467 const void *data; 1468 }; 1469 1470 /* assignment helper macros for different clock types */ 1471 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \ 1472 .data = __VA_ARGS__ } 1473 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \ 1474 &(struct bcm2835_pll_data) \ 1475 {__VA_ARGS__}) 1476 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \ 1477 &(struct bcm2835_pll_divider_data) \ 1478 {__VA_ARGS__}) 1479 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \ 1480 &(struct bcm2835_clock_data) \ 1481 {__VA_ARGS__}) 1482 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \ 1483 &(struct bcm2835_gate_data) \ 1484 {__VA_ARGS__}) 1485 1486 /* parent mux arrays plus helper macros */ 1487 1488 /* main oscillator parent mux */ 1489 static const char *const bcm2835_clock_osc_parents[] = { 1490 "gnd", 1491 "xosc", 1492 "testdebug0", 1493 "testdebug1" 1494 }; 1495 1496 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \ 1497 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \ 1498 .parents = bcm2835_clock_osc_parents, \ 1499 __VA_ARGS__) 1500 1501 /* main peripherial parent mux */ 1502 static const char *const bcm2835_clock_per_parents[] = { 1503 "gnd", 1504 "xosc", 1505 "testdebug0", 1506 "testdebug1", 1507 "plla_per", 1508 "pllc_per", 1509 "plld_per", 1510 "pllh_aux", 1511 }; 1512 1513 #define REGISTER_PER_CLK(...) REGISTER_CLK( \ 1514 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \ 1515 .parents = bcm2835_clock_per_parents, \ 1516 __VA_ARGS__) 1517 1518 /* 1519 * Restrict clock sources for the PCM peripheral to the oscillator and 1520 * PLLD_PER because other source may have varying rates or be switched 1521 * off. 1522 * 1523 * Prevent other sources from being selected by replacing their names in 1524 * the list of potential parents with dummy entries (entry index is 1525 * significant). 1526 */ 1527 static const char *const bcm2835_pcm_per_parents[] = { 1528 "-", 1529 "xosc", 1530 "-", 1531 "-", 1532 "-", 1533 "-", 1534 "plld_per", 1535 "-", 1536 }; 1537 1538 #define REGISTER_PCM_CLK(...) REGISTER_CLK( \ 1539 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \ 1540 .parents = bcm2835_pcm_per_parents, \ 1541 __VA_ARGS__) 1542 1543 /* main vpu parent mux */ 1544 static const char *const bcm2835_clock_vpu_parents[] = { 1545 "gnd", 1546 "xosc", 1547 "testdebug0", 1548 "testdebug1", 1549 "plla_core", 1550 "pllc_core0", 1551 "plld_core", 1552 "pllh_aux", 1553 "pllc_core1", 1554 "pllc_core2", 1555 }; 1556 1557 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \ 1558 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \ 1559 .parents = bcm2835_clock_vpu_parents, \ 1560 __VA_ARGS__) 1561 1562 /* 1563 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI 1564 * analog PHY. The _inv variants are generated internally to cprman, 1565 * but we don't use them so they aren't hooked up. 1566 */ 1567 static const char *const bcm2835_clock_dsi0_parents[] = { 1568 "gnd", 1569 "xosc", 1570 "testdebug0", 1571 "testdebug1", 1572 "dsi0_ddr", 1573 "dsi0_ddr_inv", 1574 "dsi0_ddr2", 1575 "dsi0_ddr2_inv", 1576 "dsi0_byte", 1577 "dsi0_byte_inv", 1578 }; 1579 1580 static const char *const bcm2835_clock_dsi1_parents[] = { 1581 "gnd", 1582 "xosc", 1583 "testdebug0", 1584 "testdebug1", 1585 "dsi1_ddr", 1586 "dsi1_ddr_inv", 1587 "dsi1_ddr2", 1588 "dsi1_ddr2_inv", 1589 "dsi1_byte", 1590 "dsi1_byte_inv", 1591 }; 1592 1593 #define REGISTER_DSI0_CLK(...) REGISTER_CLK( \ 1594 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \ 1595 .parents = bcm2835_clock_dsi0_parents, \ 1596 __VA_ARGS__) 1597 1598 #define REGISTER_DSI1_CLK(...) REGISTER_CLK( \ 1599 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \ 1600 .parents = bcm2835_clock_dsi1_parents, \ 1601 __VA_ARGS__) 1602 1603 /* 1604 * the real definition of all the pll, pll_dividers and clocks 1605 * these make use of the above REGISTER_* macros 1606 */ 1607 static const struct bcm2835_clk_desc clk_desc_array[] = { 1608 /* the PLL + PLL dividers */ 1609 1610 /* 1611 * PLLA is the auxiliary PLL, used to drive the CCP2 1612 * (Compact Camera Port 2) transmitter clock. 1613 * 1614 * It is in the PX LDO power domain, which is on when the 1615 * AUDIO domain is on. 1616 */ 1617 [BCM2835_PLLA] = REGISTER_PLL( 1618 .name = "plla", 1619 .cm_ctrl_reg = CM_PLLA, 1620 .a2w_ctrl_reg = A2W_PLLA_CTRL, 1621 .frac_reg = A2W_PLLA_FRAC, 1622 .ana_reg_base = A2W_PLLA_ANA0, 1623 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, 1624 .lock_mask = CM_LOCK_FLOCKA, 1625 1626 .ana = &bcm2835_ana_default, 1627 1628 .min_rate = 600000000u, 1629 .max_rate = 2400000000u, 1630 .max_fb_rate = BCM2835_MAX_FB_RATE), 1631 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV( 1632 .name = "plla_core", 1633 .source_pll = "plla", 1634 .cm_reg = CM_PLLA, 1635 .a2w_reg = A2W_PLLA_CORE, 1636 .load_mask = CM_PLLA_LOADCORE, 1637 .hold_mask = CM_PLLA_HOLDCORE, 1638 .fixed_divider = 1, 1639 .flags = CLK_SET_RATE_PARENT), 1640 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV( 1641 .name = "plla_per", 1642 .source_pll = "plla", 1643 .cm_reg = CM_PLLA, 1644 .a2w_reg = A2W_PLLA_PER, 1645 .load_mask = CM_PLLA_LOADPER, 1646 .hold_mask = CM_PLLA_HOLDPER, 1647 .fixed_divider = 1, 1648 .flags = CLK_SET_RATE_PARENT), 1649 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV( 1650 .name = "plla_dsi0", 1651 .source_pll = "plla", 1652 .cm_reg = CM_PLLA, 1653 .a2w_reg = A2W_PLLA_DSI0, 1654 .load_mask = CM_PLLA_LOADDSI0, 1655 .hold_mask = CM_PLLA_HOLDDSI0, 1656 .fixed_divider = 1), 1657 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV( 1658 .name = "plla_ccp2", 1659 .source_pll = "plla", 1660 .cm_reg = CM_PLLA, 1661 .a2w_reg = A2W_PLLA_CCP2, 1662 .load_mask = CM_PLLA_LOADCCP2, 1663 .hold_mask = CM_PLLA_HOLDCCP2, 1664 .fixed_divider = 1, 1665 .flags = CLK_SET_RATE_PARENT), 1666 1667 /* PLLB is used for the ARM's clock. */ 1668 [BCM2835_PLLB] = REGISTER_PLL( 1669 .name = "pllb", 1670 .cm_ctrl_reg = CM_PLLB, 1671 .a2w_ctrl_reg = A2W_PLLB_CTRL, 1672 .frac_reg = A2W_PLLB_FRAC, 1673 .ana_reg_base = A2W_PLLB_ANA0, 1674 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE, 1675 .lock_mask = CM_LOCK_FLOCKB, 1676 1677 .ana = &bcm2835_ana_default, 1678 1679 .min_rate = 600000000u, 1680 .max_rate = 3000000000u, 1681 .max_fb_rate = BCM2835_MAX_FB_RATE), 1682 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV( 1683 .name = "pllb_arm", 1684 .source_pll = "pllb", 1685 .cm_reg = CM_PLLB, 1686 .a2w_reg = A2W_PLLB_ARM, 1687 .load_mask = CM_PLLB_LOADARM, 1688 .hold_mask = CM_PLLB_HOLDARM, 1689 .fixed_divider = 1, 1690 .flags = CLK_SET_RATE_PARENT), 1691 1692 /* 1693 * PLLC is the core PLL, used to drive the core VPU clock. 1694 * 1695 * It is in the PX LDO power domain, which is on when the 1696 * AUDIO domain is on. 1697 */ 1698 [BCM2835_PLLC] = REGISTER_PLL( 1699 .name = "pllc", 1700 .cm_ctrl_reg = CM_PLLC, 1701 .a2w_ctrl_reg = A2W_PLLC_CTRL, 1702 .frac_reg = A2W_PLLC_FRAC, 1703 .ana_reg_base = A2W_PLLC_ANA0, 1704 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1705 .lock_mask = CM_LOCK_FLOCKC, 1706 1707 .ana = &bcm2835_ana_default, 1708 1709 .min_rate = 600000000u, 1710 .max_rate = 3000000000u, 1711 .max_fb_rate = BCM2835_MAX_FB_RATE), 1712 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV( 1713 .name = "pllc_core0", 1714 .source_pll = "pllc", 1715 .cm_reg = CM_PLLC, 1716 .a2w_reg = A2W_PLLC_CORE0, 1717 .load_mask = CM_PLLC_LOADCORE0, 1718 .hold_mask = CM_PLLC_HOLDCORE0, 1719 .fixed_divider = 1, 1720 .flags = CLK_SET_RATE_PARENT), 1721 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV( 1722 .name = "pllc_core1", 1723 .source_pll = "pllc", 1724 .cm_reg = CM_PLLC, 1725 .a2w_reg = A2W_PLLC_CORE1, 1726 .load_mask = CM_PLLC_LOADCORE1, 1727 .hold_mask = CM_PLLC_HOLDCORE1, 1728 .fixed_divider = 1, 1729 .flags = CLK_SET_RATE_PARENT), 1730 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV( 1731 .name = "pllc_core2", 1732 .source_pll = "pllc", 1733 .cm_reg = CM_PLLC, 1734 .a2w_reg = A2W_PLLC_CORE2, 1735 .load_mask = CM_PLLC_LOADCORE2, 1736 .hold_mask = CM_PLLC_HOLDCORE2, 1737 .fixed_divider = 1, 1738 .flags = CLK_SET_RATE_PARENT), 1739 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV( 1740 .name = "pllc_per", 1741 .source_pll = "pllc", 1742 .cm_reg = CM_PLLC, 1743 .a2w_reg = A2W_PLLC_PER, 1744 .load_mask = CM_PLLC_LOADPER, 1745 .hold_mask = CM_PLLC_HOLDPER, 1746 .fixed_divider = 1, 1747 .flags = CLK_SET_RATE_PARENT), 1748 1749 /* 1750 * PLLD is the display PLL, used to drive DSI display panels. 1751 * 1752 * It is in the PX LDO power domain, which is on when the 1753 * AUDIO domain is on. 1754 */ 1755 [BCM2835_PLLD] = REGISTER_PLL( 1756 .name = "plld", 1757 .cm_ctrl_reg = CM_PLLD, 1758 .a2w_ctrl_reg = A2W_PLLD_CTRL, 1759 .frac_reg = A2W_PLLD_FRAC, 1760 .ana_reg_base = A2W_PLLD_ANA0, 1761 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, 1762 .lock_mask = CM_LOCK_FLOCKD, 1763 1764 .ana = &bcm2835_ana_default, 1765 1766 .min_rate = 600000000u, 1767 .max_rate = 2400000000u, 1768 .max_fb_rate = BCM2835_MAX_FB_RATE), 1769 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV( 1770 .name = "plld_core", 1771 .source_pll = "plld", 1772 .cm_reg = CM_PLLD, 1773 .a2w_reg = A2W_PLLD_CORE, 1774 .load_mask = CM_PLLD_LOADCORE, 1775 .hold_mask = CM_PLLD_HOLDCORE, 1776 .fixed_divider = 1, 1777 .flags = CLK_SET_RATE_PARENT), 1778 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV( 1779 .name = "plld_per", 1780 .source_pll = "plld", 1781 .cm_reg = CM_PLLD, 1782 .a2w_reg = A2W_PLLD_PER, 1783 .load_mask = CM_PLLD_LOADPER, 1784 .hold_mask = CM_PLLD_HOLDPER, 1785 .fixed_divider = 1, 1786 .flags = CLK_SET_RATE_PARENT), 1787 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV( 1788 .name = "plld_dsi0", 1789 .source_pll = "plld", 1790 .cm_reg = CM_PLLD, 1791 .a2w_reg = A2W_PLLD_DSI0, 1792 .load_mask = CM_PLLD_LOADDSI0, 1793 .hold_mask = CM_PLLD_HOLDDSI0, 1794 .fixed_divider = 1), 1795 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV( 1796 .name = "plld_dsi1", 1797 .source_pll = "plld", 1798 .cm_reg = CM_PLLD, 1799 .a2w_reg = A2W_PLLD_DSI1, 1800 .load_mask = CM_PLLD_LOADDSI1, 1801 .hold_mask = CM_PLLD_HOLDDSI1, 1802 .fixed_divider = 1), 1803 1804 /* 1805 * PLLH is used to supply the pixel clock or the AUX clock for the 1806 * TV encoder. 1807 * 1808 * It is in the HDMI power domain. 1809 */ 1810 [BCM2835_PLLH] = REGISTER_PLL( 1811 "pllh", 1812 .cm_ctrl_reg = CM_PLLH, 1813 .a2w_ctrl_reg = A2W_PLLH_CTRL, 1814 .frac_reg = A2W_PLLH_FRAC, 1815 .ana_reg_base = A2W_PLLH_ANA0, 1816 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1817 .lock_mask = CM_LOCK_FLOCKH, 1818 1819 .ana = &bcm2835_ana_pllh, 1820 1821 .min_rate = 600000000u, 1822 .max_rate = 3000000000u, 1823 .max_fb_rate = BCM2835_MAX_FB_RATE), 1824 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV( 1825 .name = "pllh_rcal", 1826 .source_pll = "pllh", 1827 .cm_reg = CM_PLLH, 1828 .a2w_reg = A2W_PLLH_RCAL, 1829 .load_mask = CM_PLLH_LOADRCAL, 1830 .hold_mask = 0, 1831 .fixed_divider = 10, 1832 .flags = CLK_SET_RATE_PARENT), 1833 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV( 1834 .name = "pllh_aux", 1835 .source_pll = "pllh", 1836 .cm_reg = CM_PLLH, 1837 .a2w_reg = A2W_PLLH_AUX, 1838 .load_mask = CM_PLLH_LOADAUX, 1839 .hold_mask = 0, 1840 .fixed_divider = 1, 1841 .flags = CLK_SET_RATE_PARENT), 1842 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV( 1843 .name = "pllh_pix", 1844 .source_pll = "pllh", 1845 .cm_reg = CM_PLLH, 1846 .a2w_reg = A2W_PLLH_PIX, 1847 .load_mask = CM_PLLH_LOADPIX, 1848 .hold_mask = 0, 1849 .fixed_divider = 10, 1850 .flags = CLK_SET_RATE_PARENT), 1851 1852 /* the clocks */ 1853 1854 /* clocks with oscillator parent mux */ 1855 1856 /* One Time Programmable Memory clock. Maximum 10Mhz. */ 1857 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK( 1858 .name = "otp", 1859 .ctl_reg = CM_OTPCTL, 1860 .div_reg = CM_OTPDIV, 1861 .int_bits = 4, 1862 .frac_bits = 0, 1863 .tcnt_mux = 6), 1864 /* 1865 * Used for a 1Mhz clock for the system clocksource, and also used 1866 * bythe watchdog timer and the camera pulse generator. 1867 */ 1868 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK( 1869 .name = "timer", 1870 .ctl_reg = CM_TIMERCTL, 1871 .div_reg = CM_TIMERDIV, 1872 .int_bits = 6, 1873 .frac_bits = 12), 1874 /* 1875 * Clock for the temperature sensor. 1876 * Generally run at 2Mhz, max 5Mhz. 1877 */ 1878 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK( 1879 .name = "tsens", 1880 .ctl_reg = CM_TSENSCTL, 1881 .div_reg = CM_TSENSDIV, 1882 .int_bits = 5, 1883 .frac_bits = 0), 1884 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK( 1885 .name = "tec", 1886 .ctl_reg = CM_TECCTL, 1887 .div_reg = CM_TECDIV, 1888 .int_bits = 6, 1889 .frac_bits = 0), 1890 1891 /* clocks with vpu parent mux */ 1892 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK( 1893 .name = "h264", 1894 .ctl_reg = CM_H264CTL, 1895 .div_reg = CM_H264DIV, 1896 .int_bits = 4, 1897 .frac_bits = 8, 1898 .tcnt_mux = 1), 1899 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK( 1900 .name = "isp", 1901 .ctl_reg = CM_ISPCTL, 1902 .div_reg = CM_ISPDIV, 1903 .int_bits = 4, 1904 .frac_bits = 8, 1905 .tcnt_mux = 2), 1906 1907 /* 1908 * Secondary SDRAM clock. Used for low-voltage modes when the PLL 1909 * in the SDRAM controller can't be used. 1910 */ 1911 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK( 1912 .name = "sdram", 1913 .ctl_reg = CM_SDCCTL, 1914 .div_reg = CM_SDCDIV, 1915 .int_bits = 6, 1916 .frac_bits = 0, 1917 .tcnt_mux = 3), 1918 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK( 1919 .name = "v3d", 1920 .ctl_reg = CM_V3DCTL, 1921 .div_reg = CM_V3DDIV, 1922 .int_bits = 4, 1923 .frac_bits = 8, 1924 .tcnt_mux = 4), 1925 /* 1926 * VPU clock. This doesn't have an enable bit, since it drives 1927 * the bus for everything else, and is special so it doesn't need 1928 * to be gated for rate changes. It is also known as "clk_audio" 1929 * in various hardware documentation. 1930 */ 1931 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK( 1932 .name = "vpu", 1933 .ctl_reg = CM_VPUCTL, 1934 .div_reg = CM_VPUDIV, 1935 .int_bits = 12, 1936 .frac_bits = 8, 1937 .flags = CLK_IS_CRITICAL, 1938 .is_vpu_clock = true, 1939 .tcnt_mux = 5), 1940 1941 /* clocks with per parent mux */ 1942 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK( 1943 .name = "aveo", 1944 .ctl_reg = CM_AVEOCTL, 1945 .div_reg = CM_AVEODIV, 1946 .int_bits = 4, 1947 .frac_bits = 0, 1948 .tcnt_mux = 38), 1949 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK( 1950 .name = "cam0", 1951 .ctl_reg = CM_CAM0CTL, 1952 .div_reg = CM_CAM0DIV, 1953 .int_bits = 4, 1954 .frac_bits = 8, 1955 .tcnt_mux = 14), 1956 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK( 1957 .name = "cam1", 1958 .ctl_reg = CM_CAM1CTL, 1959 .div_reg = CM_CAM1DIV, 1960 .int_bits = 4, 1961 .frac_bits = 8, 1962 .tcnt_mux = 15), 1963 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK( 1964 .name = "dft", 1965 .ctl_reg = CM_DFTCTL, 1966 .div_reg = CM_DFTDIV, 1967 .int_bits = 5, 1968 .frac_bits = 0), 1969 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK( 1970 .name = "dpi", 1971 .ctl_reg = CM_DPICTL, 1972 .div_reg = CM_DPIDIV, 1973 .int_bits = 4, 1974 .frac_bits = 8, 1975 .tcnt_mux = 17), 1976 1977 /* Arasan EMMC clock */ 1978 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK( 1979 .name = "emmc", 1980 .ctl_reg = CM_EMMCCTL, 1981 .div_reg = CM_EMMCDIV, 1982 .int_bits = 4, 1983 .frac_bits = 8, 1984 .tcnt_mux = 39), 1985 1986 /* General purpose (GPIO) clocks */ 1987 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK( 1988 .name = "gp0", 1989 .ctl_reg = CM_GP0CTL, 1990 .div_reg = CM_GP0DIV, 1991 .int_bits = 12, 1992 .frac_bits = 12, 1993 .is_mash_clock = true, 1994 .tcnt_mux = 20), 1995 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK( 1996 .name = "gp1", 1997 .ctl_reg = CM_GP1CTL, 1998 .div_reg = CM_GP1DIV, 1999 .int_bits = 12, 2000 .frac_bits = 12, 2001 .flags = CLK_IS_CRITICAL, 2002 .is_mash_clock = true, 2003 .tcnt_mux = 21), 2004 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK( 2005 .name = "gp2", 2006 .ctl_reg = CM_GP2CTL, 2007 .div_reg = CM_GP2DIV, 2008 .int_bits = 12, 2009 .frac_bits = 12, 2010 .flags = CLK_IS_CRITICAL), 2011 2012 /* HDMI state machine */ 2013 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK( 2014 .name = "hsm", 2015 .ctl_reg = CM_HSMCTL, 2016 .div_reg = CM_HSMDIV, 2017 .int_bits = 4, 2018 .frac_bits = 8, 2019 .tcnt_mux = 22), 2020 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK( 2021 .name = "pcm", 2022 .ctl_reg = CM_PCMCTL, 2023 .div_reg = CM_PCMDIV, 2024 .int_bits = 12, 2025 .frac_bits = 12, 2026 .is_mash_clock = true, 2027 .low_jitter = true, 2028 .tcnt_mux = 23), 2029 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK( 2030 .name = "pwm", 2031 .ctl_reg = CM_PWMCTL, 2032 .div_reg = CM_PWMDIV, 2033 .int_bits = 12, 2034 .frac_bits = 12, 2035 .is_mash_clock = true, 2036 .tcnt_mux = 24), 2037 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK( 2038 .name = "slim", 2039 .ctl_reg = CM_SLIMCTL, 2040 .div_reg = CM_SLIMDIV, 2041 .int_bits = 12, 2042 .frac_bits = 12, 2043 .is_mash_clock = true, 2044 .tcnt_mux = 25), 2045 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK( 2046 .name = "smi", 2047 .ctl_reg = CM_SMICTL, 2048 .div_reg = CM_SMIDIV, 2049 .int_bits = 4, 2050 .frac_bits = 8, 2051 .tcnt_mux = 27), 2052 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK( 2053 .name = "uart", 2054 .ctl_reg = CM_UARTCTL, 2055 .div_reg = CM_UARTDIV, 2056 .int_bits = 10, 2057 .frac_bits = 12, 2058 .tcnt_mux = 28), 2059 2060 /* TV encoder clock. Only operating frequency is 108Mhz. */ 2061 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK( 2062 .name = "vec", 2063 .ctl_reg = CM_VECCTL, 2064 .div_reg = CM_VECDIV, 2065 .int_bits = 4, 2066 .frac_bits = 0, 2067 /* 2068 * Allow rate change propagation only on PLLH_AUX which is 2069 * assigned index 7 in the parent array. 2070 */ 2071 .set_rate_parent = BIT(7), 2072 .tcnt_mux = 29), 2073 2074 /* dsi clocks */ 2075 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK( 2076 .name = "dsi0e", 2077 .ctl_reg = CM_DSI0ECTL, 2078 .div_reg = CM_DSI0EDIV, 2079 .int_bits = 4, 2080 .frac_bits = 8, 2081 .tcnt_mux = 18), 2082 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK( 2083 .name = "dsi1e", 2084 .ctl_reg = CM_DSI1ECTL, 2085 .div_reg = CM_DSI1EDIV, 2086 .int_bits = 4, 2087 .frac_bits = 8, 2088 .tcnt_mux = 19), 2089 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK( 2090 .name = "dsi0p", 2091 .ctl_reg = CM_DSI0PCTL, 2092 .div_reg = CM_DSI0PDIV, 2093 .int_bits = 0, 2094 .frac_bits = 0, 2095 .tcnt_mux = 12), 2096 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK( 2097 .name = "dsi1p", 2098 .ctl_reg = CM_DSI1PCTL, 2099 .div_reg = CM_DSI1PDIV, 2100 .int_bits = 0, 2101 .frac_bits = 0, 2102 .tcnt_mux = 13), 2103 2104 /* the gates */ 2105 2106 /* 2107 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if 2108 * you have the debug bit set in the power manager, which we 2109 * don't bother exposing) are individual gates off of the 2110 * non-stop vpu clock. 2111 */ 2112 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE( 2113 .name = "peri_image", 2114 .parent = "vpu", 2115 .ctl_reg = CM_PERIICTL), 2116 }; 2117 2118 /* 2119 * Permanently take a reference on the parent of the SDRAM clock. 2120 * 2121 * While the SDRAM is being driven by its dedicated PLL most of the 2122 * time, there is a little loop running in the firmware that 2123 * periodically switches the SDRAM to using our CM clock to do PVT 2124 * recalibration, with the assumption that the previously configured 2125 * SDRAM parent is still enabled and running. 2126 */ 2127 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc) 2128 { 2129 struct clk *parent = clk_get_parent(sdc); 2130 2131 if (IS_ERR(parent)) 2132 return PTR_ERR(parent); 2133 2134 return clk_prepare_enable(parent); 2135 } 2136 2137 static int bcm2835_clk_probe(struct platform_device *pdev) 2138 { 2139 struct device *dev = &pdev->dev; 2140 struct clk_hw **hws; 2141 struct bcm2835_cprman *cprman; 2142 struct resource *res; 2143 const struct bcm2835_clk_desc *desc; 2144 const size_t asize = ARRAY_SIZE(clk_desc_array); 2145 size_t i; 2146 int ret; 2147 2148 cprman = devm_kzalloc(dev, sizeof(*cprman) + 2149 sizeof(*cprman->onecell.hws) * asize, 2150 GFP_KERNEL); 2151 if (!cprman) 2152 return -ENOMEM; 2153 2154 spin_lock_init(&cprman->regs_lock); 2155 cprman->dev = dev; 2156 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2157 cprman->regs = devm_ioremap_resource(dev, res); 2158 if (IS_ERR(cprman->regs)) 2159 return PTR_ERR(cprman->regs); 2160 2161 memcpy(cprman->real_parent_names, cprman_parent_names, 2162 sizeof(cprman_parent_names)); 2163 of_clk_parent_fill(dev->of_node, cprman->real_parent_names, 2164 ARRAY_SIZE(cprman_parent_names)); 2165 2166 /* 2167 * Make sure the external oscillator has been registered. 2168 * 2169 * The other (DSI) clocks are not present on older device 2170 * trees, which we still need to support for backwards 2171 * compatibility. 2172 */ 2173 if (!cprman->real_parent_names[0]) 2174 return -ENODEV; 2175 2176 platform_set_drvdata(pdev, cprman); 2177 2178 cprman->onecell.num = asize; 2179 hws = cprman->onecell.hws; 2180 2181 for (i = 0; i < asize; i++) { 2182 desc = &clk_desc_array[i]; 2183 if (desc->clk_register && desc->data) 2184 hws[i] = desc->clk_register(cprman, desc->data); 2185 } 2186 2187 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk); 2188 if (ret) 2189 return ret; 2190 2191 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, 2192 &cprman->onecell); 2193 } 2194 2195 static const struct of_device_id bcm2835_clk_of_match[] = { 2196 { .compatible = "brcm,bcm2835-cprman", }, 2197 {} 2198 }; 2199 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); 2200 2201 static struct platform_driver bcm2835_clk_driver = { 2202 .driver = { 2203 .name = "bcm2835-clk", 2204 .of_match_table = bcm2835_clk_of_match, 2205 }, 2206 .probe = bcm2835_clk_probe, 2207 }; 2208 2209 builtin_platform_driver(bcm2835_clk_driver); 2210 2211 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); 2212 MODULE_DESCRIPTION("BCM2835 clock driver"); 2213 MODULE_LICENSE("GPL v2"); 2214