1 /* 2 * Copyright (C) 2010,2015 Broadcom 3 * Copyright (C) 2012 Stephen Warren 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 */ 16 17 /** 18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) 19 * 20 * The clock tree on the 2835 has several levels. There's a root 21 * oscillator running at 19.2Mhz. After the oscillator there are 5 22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", 23 * and "HDMI displays". Those 5 PLLs each can divide their output to 24 * produce up to 4 channels. Finally, there is the level of clocks to 25 * be consumed by other hardware components (like "H264" or "HDMI 26 * state machine"), which divide off of some subset of the PLL 27 * channels. 28 * 29 * All of the clocks in the tree are exposed in the DT, because the DT 30 * may want to make assignments of the final layer of clocks to the 31 * PLL channels, and some components of the hardware will actually 32 * skip layers of the tree (for example, the pixel clock comes 33 * directly from the PLLH PIX channel without using a CM_*CTL clock 34 * generator). 35 */ 36 37 #include <linux/clk-provider.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk.h> 40 #include <linux/debugfs.h> 41 #include <linux/delay.h> 42 #include <linux/module.h> 43 #include <linux/of.h> 44 #include <linux/platform_device.h> 45 #include <linux/slab.h> 46 #include <dt-bindings/clock/bcm2835.h> 47 48 #define CM_PASSWORD 0x5a000000 49 50 #define CM_GNRICCTL 0x000 51 #define CM_GNRICDIV 0x004 52 # define CM_DIV_FRAC_BITS 12 53 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0) 54 55 #define CM_VPUCTL 0x008 56 #define CM_VPUDIV 0x00c 57 #define CM_SYSCTL 0x010 58 #define CM_SYSDIV 0x014 59 #define CM_PERIACTL 0x018 60 #define CM_PERIADIV 0x01c 61 #define CM_PERIICTL 0x020 62 #define CM_PERIIDIV 0x024 63 #define CM_H264CTL 0x028 64 #define CM_H264DIV 0x02c 65 #define CM_ISPCTL 0x030 66 #define CM_ISPDIV 0x034 67 #define CM_V3DCTL 0x038 68 #define CM_V3DDIV 0x03c 69 #define CM_CAM0CTL 0x040 70 #define CM_CAM0DIV 0x044 71 #define CM_CAM1CTL 0x048 72 #define CM_CAM1DIV 0x04c 73 #define CM_CCP2CTL 0x050 74 #define CM_CCP2DIV 0x054 75 #define CM_DSI0ECTL 0x058 76 #define CM_DSI0EDIV 0x05c 77 #define CM_DSI0PCTL 0x060 78 #define CM_DSI0PDIV 0x064 79 #define CM_DPICTL 0x068 80 #define CM_DPIDIV 0x06c 81 #define CM_GP0CTL 0x070 82 #define CM_GP0DIV 0x074 83 #define CM_GP1CTL 0x078 84 #define CM_GP1DIV 0x07c 85 #define CM_GP2CTL 0x080 86 #define CM_GP2DIV 0x084 87 #define CM_HSMCTL 0x088 88 #define CM_HSMDIV 0x08c 89 #define CM_OTPCTL 0x090 90 #define CM_OTPDIV 0x094 91 #define CM_PCMCTL 0x098 92 #define CM_PCMDIV 0x09c 93 #define CM_PWMCTL 0x0a0 94 #define CM_PWMDIV 0x0a4 95 #define CM_SLIMCTL 0x0a8 96 #define CM_SLIMDIV 0x0ac 97 #define CM_SMICTL 0x0b0 98 #define CM_SMIDIV 0x0b4 99 /* no definition for 0x0b8 and 0x0bc */ 100 #define CM_TCNTCTL 0x0c0 101 # define CM_TCNT_SRC1_SHIFT 12 102 #define CM_TCNTCNT 0x0c4 103 #define CM_TECCTL 0x0c8 104 #define CM_TECDIV 0x0cc 105 #define CM_TD0CTL 0x0d0 106 #define CM_TD0DIV 0x0d4 107 #define CM_TD1CTL 0x0d8 108 #define CM_TD1DIV 0x0dc 109 #define CM_TSENSCTL 0x0e0 110 #define CM_TSENSDIV 0x0e4 111 #define CM_TIMERCTL 0x0e8 112 #define CM_TIMERDIV 0x0ec 113 #define CM_UARTCTL 0x0f0 114 #define CM_UARTDIV 0x0f4 115 #define CM_VECCTL 0x0f8 116 #define CM_VECDIV 0x0fc 117 #define CM_PULSECTL 0x190 118 #define CM_PULSEDIV 0x194 119 #define CM_SDCCTL 0x1a8 120 #define CM_SDCDIV 0x1ac 121 #define CM_ARMCTL 0x1b0 122 #define CM_AVEOCTL 0x1b8 123 #define CM_AVEODIV 0x1bc 124 #define CM_EMMCCTL 0x1c0 125 #define CM_EMMCDIV 0x1c4 126 127 /* General bits for the CM_*CTL regs */ 128 # define CM_ENABLE BIT(4) 129 # define CM_KILL BIT(5) 130 # define CM_GATE_BIT 6 131 # define CM_GATE BIT(CM_GATE_BIT) 132 # define CM_BUSY BIT(7) 133 # define CM_BUSYD BIT(8) 134 # define CM_FRAC BIT(9) 135 # define CM_SRC_SHIFT 0 136 # define CM_SRC_BITS 4 137 # define CM_SRC_MASK 0xf 138 # define CM_SRC_GND 0 139 # define CM_SRC_OSC 1 140 # define CM_SRC_TESTDEBUG0 2 141 # define CM_SRC_TESTDEBUG1 3 142 # define CM_SRC_PLLA_CORE 4 143 # define CM_SRC_PLLA_PER 4 144 # define CM_SRC_PLLC_CORE0 5 145 # define CM_SRC_PLLC_PER 5 146 # define CM_SRC_PLLC_CORE1 8 147 # define CM_SRC_PLLD_CORE 6 148 # define CM_SRC_PLLD_PER 6 149 # define CM_SRC_PLLH_AUX 7 150 # define CM_SRC_PLLC_CORE1 8 151 # define CM_SRC_PLLC_CORE2 9 152 153 #define CM_OSCCOUNT 0x100 154 155 #define CM_PLLA 0x104 156 # define CM_PLL_ANARST BIT(8) 157 # define CM_PLLA_HOLDPER BIT(7) 158 # define CM_PLLA_LOADPER BIT(6) 159 # define CM_PLLA_HOLDCORE BIT(5) 160 # define CM_PLLA_LOADCORE BIT(4) 161 # define CM_PLLA_HOLDCCP2 BIT(3) 162 # define CM_PLLA_LOADCCP2 BIT(2) 163 # define CM_PLLA_HOLDDSI0 BIT(1) 164 # define CM_PLLA_LOADDSI0 BIT(0) 165 166 #define CM_PLLC 0x108 167 # define CM_PLLC_HOLDPER BIT(7) 168 # define CM_PLLC_LOADPER BIT(6) 169 # define CM_PLLC_HOLDCORE2 BIT(5) 170 # define CM_PLLC_LOADCORE2 BIT(4) 171 # define CM_PLLC_HOLDCORE1 BIT(3) 172 # define CM_PLLC_LOADCORE1 BIT(2) 173 # define CM_PLLC_HOLDCORE0 BIT(1) 174 # define CM_PLLC_LOADCORE0 BIT(0) 175 176 #define CM_PLLD 0x10c 177 # define CM_PLLD_HOLDPER BIT(7) 178 # define CM_PLLD_LOADPER BIT(6) 179 # define CM_PLLD_HOLDCORE BIT(5) 180 # define CM_PLLD_LOADCORE BIT(4) 181 # define CM_PLLD_HOLDDSI1 BIT(3) 182 # define CM_PLLD_LOADDSI1 BIT(2) 183 # define CM_PLLD_HOLDDSI0 BIT(1) 184 # define CM_PLLD_LOADDSI0 BIT(0) 185 186 #define CM_PLLH 0x110 187 # define CM_PLLH_LOADRCAL BIT(2) 188 # define CM_PLLH_LOADAUX BIT(1) 189 # define CM_PLLH_LOADPIX BIT(0) 190 191 #define CM_LOCK 0x114 192 # define CM_LOCK_FLOCKH BIT(12) 193 # define CM_LOCK_FLOCKD BIT(11) 194 # define CM_LOCK_FLOCKC BIT(10) 195 # define CM_LOCK_FLOCKB BIT(9) 196 # define CM_LOCK_FLOCKA BIT(8) 197 198 #define CM_EVENT 0x118 199 #define CM_DSI1ECTL 0x158 200 #define CM_DSI1EDIV 0x15c 201 #define CM_DSI1PCTL 0x160 202 #define CM_DSI1PDIV 0x164 203 #define CM_DFTCTL 0x168 204 #define CM_DFTDIV 0x16c 205 206 #define CM_PLLB 0x170 207 # define CM_PLLB_HOLDARM BIT(1) 208 # define CM_PLLB_LOADARM BIT(0) 209 210 #define A2W_PLLA_CTRL 0x1100 211 #define A2W_PLLC_CTRL 0x1120 212 #define A2W_PLLD_CTRL 0x1140 213 #define A2W_PLLH_CTRL 0x1160 214 #define A2W_PLLB_CTRL 0x11e0 215 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) 216 # define A2W_PLL_CTRL_PWRDN BIT(16) 217 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 218 # define A2W_PLL_CTRL_PDIV_SHIFT 12 219 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff 220 # define A2W_PLL_CTRL_NDIV_SHIFT 0 221 222 #define A2W_PLLA_ANA0 0x1010 223 #define A2W_PLLC_ANA0 0x1030 224 #define A2W_PLLD_ANA0 0x1050 225 #define A2W_PLLH_ANA0 0x1070 226 #define A2W_PLLB_ANA0 0x10f0 227 228 #define A2W_PLL_KA_SHIFT 7 229 #define A2W_PLL_KA_MASK GENMASK(9, 7) 230 #define A2W_PLL_KI_SHIFT 19 231 #define A2W_PLL_KI_MASK GENMASK(21, 19) 232 #define A2W_PLL_KP_SHIFT 15 233 #define A2W_PLL_KP_MASK GENMASK(18, 15) 234 235 #define A2W_PLLH_KA_SHIFT 19 236 #define A2W_PLLH_KA_MASK GENMASK(21, 19) 237 #define A2W_PLLH_KI_LOW_SHIFT 22 238 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) 239 #define A2W_PLLH_KI_HIGH_SHIFT 0 240 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) 241 #define A2W_PLLH_KP_SHIFT 1 242 #define A2W_PLLH_KP_MASK GENMASK(4, 1) 243 244 #define A2W_XOSC_CTRL 0x1190 245 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) 246 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) 247 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) 248 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) 249 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) 250 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) 251 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) 252 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) 253 254 #define A2W_PLLA_FRAC 0x1200 255 #define A2W_PLLC_FRAC 0x1220 256 #define A2W_PLLD_FRAC 0x1240 257 #define A2W_PLLH_FRAC 0x1260 258 #define A2W_PLLB_FRAC 0x12e0 259 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) 260 # define A2W_PLL_FRAC_BITS 20 261 262 #define A2W_PLL_CHANNEL_DISABLE BIT(8) 263 #define A2W_PLL_DIV_BITS 8 264 #define A2W_PLL_DIV_SHIFT 0 265 266 #define A2W_PLLA_DSI0 0x1300 267 #define A2W_PLLA_CORE 0x1400 268 #define A2W_PLLA_PER 0x1500 269 #define A2W_PLLA_CCP2 0x1600 270 271 #define A2W_PLLC_CORE2 0x1320 272 #define A2W_PLLC_CORE1 0x1420 273 #define A2W_PLLC_PER 0x1520 274 #define A2W_PLLC_CORE0 0x1620 275 276 #define A2W_PLLD_DSI0 0x1340 277 #define A2W_PLLD_CORE 0x1440 278 #define A2W_PLLD_PER 0x1540 279 #define A2W_PLLD_DSI1 0x1640 280 281 #define A2W_PLLH_AUX 0x1360 282 #define A2W_PLLH_RCAL 0x1460 283 #define A2W_PLLH_PIX 0x1560 284 #define A2W_PLLH_STS 0x1660 285 286 #define A2W_PLLH_CTRLR 0x1960 287 #define A2W_PLLH_FRACR 0x1a60 288 #define A2W_PLLH_AUXR 0x1b60 289 #define A2W_PLLH_RCALR 0x1c60 290 #define A2W_PLLH_PIXR 0x1d60 291 #define A2W_PLLH_STSR 0x1e60 292 293 #define A2W_PLLB_ARM 0x13e0 294 #define A2W_PLLB_SP0 0x14e0 295 #define A2W_PLLB_SP1 0x15e0 296 #define A2W_PLLB_SP2 0x16e0 297 298 #define LOCK_TIMEOUT_NS 100000000 299 #define BCM2835_MAX_FB_RATE 1750000000u 300 301 /* 302 * Names of clocks used within the driver that need to be replaced 303 * with an external parent's name. This array is in the order that 304 * the clocks node in the DT references external clocks. 305 */ 306 static const char *const cprman_parent_names[] = { 307 "xosc", 308 "dsi0_byte", 309 "dsi0_ddr2", 310 "dsi0_ddr", 311 "dsi1_byte", 312 "dsi1_ddr2", 313 "dsi1_ddr", 314 }; 315 316 struct bcm2835_cprman { 317 struct device *dev; 318 void __iomem *regs; 319 spinlock_t regs_lock; /* spinlock for all clocks */ 320 321 /* 322 * Real names of cprman clock parents looked up through 323 * of_clk_get_parent_name(), which will be used in the 324 * parent_names[] arrays for clock registration. 325 */ 326 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)]; 327 328 /* Must be last */ 329 struct clk_hw_onecell_data onecell; 330 }; 331 332 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) 333 { 334 writel(CM_PASSWORD | val, cprman->regs + reg); 335 } 336 337 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) 338 { 339 return readl(cprman->regs + reg); 340 } 341 342 /* Does a cycle of measuring a clock through the TCNT clock, which may 343 * source from many other clocks in the system. 344 */ 345 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman, 346 u32 tcnt_mux) 347 { 348 u32 osccount = 19200; /* 1ms */ 349 u32 count; 350 ktime_t timeout; 351 352 spin_lock(&cprman->regs_lock); 353 354 cprman_write(cprman, CM_TCNTCTL, CM_KILL); 355 356 cprman_write(cprman, CM_TCNTCTL, 357 (tcnt_mux & CM_SRC_MASK) | 358 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT); 359 360 cprman_write(cprman, CM_OSCCOUNT, osccount); 361 362 /* do a kind delay at the start */ 363 mdelay(1); 364 365 /* Finish off whatever is left of OSCCOUNT */ 366 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 367 while (cprman_read(cprman, CM_OSCCOUNT)) { 368 if (ktime_after(ktime_get(), timeout)) { 369 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n"); 370 count = 0; 371 goto out; 372 } 373 cpu_relax(); 374 } 375 376 /* Wait for BUSY to clear. */ 377 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 378 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) { 379 if (ktime_after(ktime_get(), timeout)) { 380 dev_err(cprman->dev, "timeout waiting for !BUSY\n"); 381 count = 0; 382 goto out; 383 } 384 cpu_relax(); 385 } 386 387 count = cprman_read(cprman, CM_TCNTCNT); 388 389 cprman_write(cprman, CM_TCNTCTL, 0); 390 391 out: 392 spin_unlock(&cprman->regs_lock); 393 394 return count * 1000; 395 } 396 397 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base, 398 struct debugfs_reg32 *regs, size_t nregs, 399 struct dentry *dentry) 400 { 401 struct dentry *regdump; 402 struct debugfs_regset32 *regset; 403 404 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL); 405 if (!regset) 406 return -ENOMEM; 407 408 regset->regs = regs; 409 regset->nregs = nregs; 410 regset->base = cprman->regs + base; 411 412 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry, 413 regset); 414 415 return regdump ? 0 : -ENOMEM; 416 } 417 418 struct bcm2835_pll_data { 419 const char *name; 420 u32 cm_ctrl_reg; 421 u32 a2w_ctrl_reg; 422 u32 frac_reg; 423 u32 ana_reg_base; 424 u32 reference_enable_mask; 425 /* Bit in CM_LOCK to indicate when the PLL has locked. */ 426 u32 lock_mask; 427 428 const struct bcm2835_pll_ana_bits *ana; 429 430 unsigned long min_rate; 431 unsigned long max_rate; 432 /* 433 * Highest rate for the VCO before we have to use the 434 * pre-divide-by-2. 435 */ 436 unsigned long max_fb_rate; 437 }; 438 439 struct bcm2835_pll_ana_bits { 440 u32 mask0; 441 u32 set0; 442 u32 mask1; 443 u32 set1; 444 u32 mask3; 445 u32 set3; 446 u32 fb_prediv_mask; 447 }; 448 449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { 450 .mask0 = 0, 451 .set0 = 0, 452 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK, 453 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), 454 .mask3 = A2W_PLL_KA_MASK, 455 .set3 = (2 << A2W_PLL_KA_SHIFT), 456 .fb_prediv_mask = BIT(14), 457 }; 458 459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { 460 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK, 461 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), 462 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK, 463 .set1 = (6 << A2W_PLLH_KP_SHIFT), 464 .mask3 = 0, 465 .set3 = 0, 466 .fb_prediv_mask = BIT(11), 467 }; 468 469 struct bcm2835_pll_divider_data { 470 const char *name; 471 const char *source_pll; 472 473 u32 cm_reg; 474 u32 a2w_reg; 475 476 u32 load_mask; 477 u32 hold_mask; 478 u32 fixed_divider; 479 u32 flags; 480 }; 481 482 struct bcm2835_clock_data { 483 const char *name; 484 485 const char *const *parents; 486 int num_mux_parents; 487 488 /* Bitmap encoding which parents accept rate change propagation. */ 489 unsigned int set_rate_parent; 490 491 u32 ctl_reg; 492 u32 div_reg; 493 494 /* Number of integer bits in the divider */ 495 u32 int_bits; 496 /* Number of fractional bits in the divider */ 497 u32 frac_bits; 498 499 u32 flags; 500 501 bool is_vpu_clock; 502 bool is_mash_clock; 503 bool low_jitter; 504 505 u32 tcnt_mux; 506 }; 507 508 struct bcm2835_gate_data { 509 const char *name; 510 const char *parent; 511 512 u32 ctl_reg; 513 }; 514 515 struct bcm2835_pll { 516 struct clk_hw hw; 517 struct bcm2835_cprman *cprman; 518 const struct bcm2835_pll_data *data; 519 }; 520 521 static int bcm2835_pll_is_on(struct clk_hw *hw) 522 { 523 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 524 struct bcm2835_cprman *cprman = pll->cprman; 525 const struct bcm2835_pll_data *data = pll->data; 526 527 return cprman_read(cprman, data->a2w_ctrl_reg) & 528 A2W_PLL_CTRL_PRST_DISABLE; 529 } 530 531 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, 532 unsigned long parent_rate, 533 u32 *ndiv, u32 *fdiv) 534 { 535 u64 div; 536 537 div = (u64)rate << A2W_PLL_FRAC_BITS; 538 do_div(div, parent_rate); 539 540 *ndiv = div >> A2W_PLL_FRAC_BITS; 541 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); 542 } 543 544 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, 545 u32 ndiv, u32 fdiv, u32 pdiv) 546 { 547 u64 rate; 548 549 if (pdiv == 0) 550 return 0; 551 552 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); 553 do_div(rate, pdiv); 554 return rate >> A2W_PLL_FRAC_BITS; 555 } 556 557 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, 558 unsigned long *parent_rate) 559 { 560 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 561 const struct bcm2835_pll_data *data = pll->data; 562 u32 ndiv, fdiv; 563 564 rate = clamp(rate, data->min_rate, data->max_rate); 565 566 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); 567 568 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); 569 } 570 571 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, 572 unsigned long parent_rate) 573 { 574 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 575 struct bcm2835_cprman *cprman = pll->cprman; 576 const struct bcm2835_pll_data *data = pll->data; 577 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); 578 u32 ndiv, pdiv, fdiv; 579 bool using_prediv; 580 581 if (parent_rate == 0) 582 return 0; 583 584 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; 585 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; 586 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; 587 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & 588 data->ana->fb_prediv_mask; 589 590 if (using_prediv) { 591 ndiv *= 2; 592 fdiv *= 2; 593 } 594 595 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); 596 } 597 598 static void bcm2835_pll_off(struct clk_hw *hw) 599 { 600 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 601 struct bcm2835_cprman *cprman = pll->cprman; 602 const struct bcm2835_pll_data *data = pll->data; 603 604 spin_lock(&cprman->regs_lock); 605 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST); 606 cprman_write(cprman, data->a2w_ctrl_reg, 607 cprman_read(cprman, data->a2w_ctrl_reg) | 608 A2W_PLL_CTRL_PWRDN); 609 spin_unlock(&cprman->regs_lock); 610 } 611 612 static int bcm2835_pll_on(struct clk_hw *hw) 613 { 614 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 615 struct bcm2835_cprman *cprman = pll->cprman; 616 const struct bcm2835_pll_data *data = pll->data; 617 ktime_t timeout; 618 619 cprman_write(cprman, data->a2w_ctrl_reg, 620 cprman_read(cprman, data->a2w_ctrl_reg) & 621 ~A2W_PLL_CTRL_PWRDN); 622 623 /* Take the PLL out of reset. */ 624 spin_lock(&cprman->regs_lock); 625 cprman_write(cprman, data->cm_ctrl_reg, 626 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); 627 spin_unlock(&cprman->regs_lock); 628 629 /* Wait for the PLL to lock. */ 630 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 631 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { 632 if (ktime_after(ktime_get(), timeout)) { 633 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 634 clk_hw_get_name(hw)); 635 return -ETIMEDOUT; 636 } 637 638 cpu_relax(); 639 } 640 641 cprman_write(cprman, data->a2w_ctrl_reg, 642 cprman_read(cprman, data->a2w_ctrl_reg) | 643 A2W_PLL_CTRL_PRST_DISABLE); 644 645 return 0; 646 } 647 648 static void 649 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) 650 { 651 int i; 652 653 /* 654 * ANA register setup is done as a series of writes to 655 * ANA3-ANA0, in that order. This lets us write all 4 656 * registers as a single cycle of the serdes interface (taking 657 * 100 xosc clocks), whereas if we were to update ana0, 1, and 658 * 3 individually through their partial-write registers, each 659 * would be their own serdes cycle. 660 */ 661 for (i = 3; i >= 0; i--) 662 cprman_write(cprman, ana_reg_base + i * 4, ana[i]); 663 } 664 665 static int bcm2835_pll_set_rate(struct clk_hw *hw, 666 unsigned long rate, unsigned long parent_rate) 667 { 668 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 669 struct bcm2835_cprman *cprman = pll->cprman; 670 const struct bcm2835_pll_data *data = pll->data; 671 bool was_using_prediv, use_fb_prediv, do_ana_setup_first; 672 u32 ndiv, fdiv, a2w_ctl; 673 u32 ana[4]; 674 int i; 675 676 if (rate > data->max_fb_rate) { 677 use_fb_prediv = true; 678 rate /= 2; 679 } else { 680 use_fb_prediv = false; 681 } 682 683 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); 684 685 for (i = 3; i >= 0; i--) 686 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); 687 688 was_using_prediv = ana[1] & data->ana->fb_prediv_mask; 689 690 ana[0] &= ~data->ana->mask0; 691 ana[0] |= data->ana->set0; 692 ana[1] &= ~data->ana->mask1; 693 ana[1] |= data->ana->set1; 694 ana[3] &= ~data->ana->mask3; 695 ana[3] |= data->ana->set3; 696 697 if (was_using_prediv && !use_fb_prediv) { 698 ana[1] &= ~data->ana->fb_prediv_mask; 699 do_ana_setup_first = true; 700 } else if (!was_using_prediv && use_fb_prediv) { 701 ana[1] |= data->ana->fb_prediv_mask; 702 do_ana_setup_first = false; 703 } else { 704 do_ana_setup_first = true; 705 } 706 707 /* Unmask the reference clock from the oscillator. */ 708 spin_lock(&cprman->regs_lock); 709 cprman_write(cprman, A2W_XOSC_CTRL, 710 cprman_read(cprman, A2W_XOSC_CTRL) | 711 data->reference_enable_mask); 712 spin_unlock(&cprman->regs_lock); 713 714 if (do_ana_setup_first) 715 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 716 717 /* Set the PLL multiplier from the oscillator. */ 718 cprman_write(cprman, data->frac_reg, fdiv); 719 720 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); 721 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; 722 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; 723 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; 724 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; 725 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); 726 727 if (!do_ana_setup_first) 728 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 729 730 return 0; 731 } 732 733 static int bcm2835_pll_debug_init(struct clk_hw *hw, 734 struct dentry *dentry) 735 { 736 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 737 struct bcm2835_cprman *cprman = pll->cprman; 738 const struct bcm2835_pll_data *data = pll->data; 739 struct debugfs_reg32 *regs; 740 741 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL); 742 if (!regs) 743 return -ENOMEM; 744 745 regs[0].name = "cm_ctrl"; 746 regs[0].offset = data->cm_ctrl_reg; 747 regs[1].name = "a2w_ctrl"; 748 regs[1].offset = data->a2w_ctrl_reg; 749 regs[2].name = "frac"; 750 regs[2].offset = data->frac_reg; 751 regs[3].name = "ana0"; 752 regs[3].offset = data->ana_reg_base + 0 * 4; 753 regs[4].name = "ana1"; 754 regs[4].offset = data->ana_reg_base + 1 * 4; 755 regs[5].name = "ana2"; 756 regs[5].offset = data->ana_reg_base + 2 * 4; 757 regs[6].name = "ana3"; 758 regs[6].offset = data->ana_reg_base + 3 * 4; 759 760 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry); 761 } 762 763 static const struct clk_ops bcm2835_pll_clk_ops = { 764 .is_prepared = bcm2835_pll_is_on, 765 .prepare = bcm2835_pll_on, 766 .unprepare = bcm2835_pll_off, 767 .recalc_rate = bcm2835_pll_get_rate, 768 .set_rate = bcm2835_pll_set_rate, 769 .round_rate = bcm2835_pll_round_rate, 770 .debug_init = bcm2835_pll_debug_init, 771 }; 772 773 struct bcm2835_pll_divider { 774 struct clk_divider div; 775 struct bcm2835_cprman *cprman; 776 const struct bcm2835_pll_divider_data *data; 777 }; 778 779 static struct bcm2835_pll_divider * 780 bcm2835_pll_divider_from_hw(struct clk_hw *hw) 781 { 782 return container_of(hw, struct bcm2835_pll_divider, div.hw); 783 } 784 785 static int bcm2835_pll_divider_is_on(struct clk_hw *hw) 786 { 787 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 788 struct bcm2835_cprman *cprman = divider->cprman; 789 const struct bcm2835_pll_divider_data *data = divider->data; 790 791 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); 792 } 793 794 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw, 795 unsigned long rate, 796 unsigned long *parent_rate) 797 { 798 return clk_divider_ops.round_rate(hw, rate, parent_rate); 799 } 800 801 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, 802 unsigned long parent_rate) 803 { 804 return clk_divider_ops.recalc_rate(hw, parent_rate); 805 } 806 807 static void bcm2835_pll_divider_off(struct clk_hw *hw) 808 { 809 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 810 struct bcm2835_cprman *cprman = divider->cprman; 811 const struct bcm2835_pll_divider_data *data = divider->data; 812 813 spin_lock(&cprman->regs_lock); 814 cprman_write(cprman, data->cm_reg, 815 (cprman_read(cprman, data->cm_reg) & 816 ~data->load_mask) | data->hold_mask); 817 cprman_write(cprman, data->a2w_reg, 818 cprman_read(cprman, data->a2w_reg) | 819 A2W_PLL_CHANNEL_DISABLE); 820 spin_unlock(&cprman->regs_lock); 821 } 822 823 static int bcm2835_pll_divider_on(struct clk_hw *hw) 824 { 825 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 826 struct bcm2835_cprman *cprman = divider->cprman; 827 const struct bcm2835_pll_divider_data *data = divider->data; 828 829 spin_lock(&cprman->regs_lock); 830 cprman_write(cprman, data->a2w_reg, 831 cprman_read(cprman, data->a2w_reg) & 832 ~A2W_PLL_CHANNEL_DISABLE); 833 834 cprman_write(cprman, data->cm_reg, 835 cprman_read(cprman, data->cm_reg) & ~data->hold_mask); 836 spin_unlock(&cprman->regs_lock); 837 838 return 0; 839 } 840 841 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, 842 unsigned long rate, 843 unsigned long parent_rate) 844 { 845 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 846 struct bcm2835_cprman *cprman = divider->cprman; 847 const struct bcm2835_pll_divider_data *data = divider->data; 848 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS; 849 850 div = DIV_ROUND_UP_ULL(parent_rate, rate); 851 852 div = min(div, max_div); 853 if (div == max_div) 854 div = 0; 855 856 cprman_write(cprman, data->a2w_reg, div); 857 cm = cprman_read(cprman, data->cm_reg); 858 cprman_write(cprman, data->cm_reg, cm | data->load_mask); 859 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); 860 861 return 0; 862 } 863 864 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw, 865 struct dentry *dentry) 866 { 867 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 868 struct bcm2835_cprman *cprman = divider->cprman; 869 const struct bcm2835_pll_divider_data *data = divider->data; 870 struct debugfs_reg32 *regs; 871 872 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL); 873 if (!regs) 874 return -ENOMEM; 875 876 regs[0].name = "cm"; 877 regs[0].offset = data->cm_reg; 878 regs[1].name = "a2w"; 879 regs[1].offset = data->a2w_reg; 880 881 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry); 882 } 883 884 static const struct clk_ops bcm2835_pll_divider_clk_ops = { 885 .is_prepared = bcm2835_pll_divider_is_on, 886 .prepare = bcm2835_pll_divider_on, 887 .unprepare = bcm2835_pll_divider_off, 888 .recalc_rate = bcm2835_pll_divider_get_rate, 889 .set_rate = bcm2835_pll_divider_set_rate, 890 .round_rate = bcm2835_pll_divider_round_rate, 891 .debug_init = bcm2835_pll_divider_debug_init, 892 }; 893 894 /* 895 * The CM dividers do fixed-point division, so we can't use the 896 * generic integer divider code like the PLL dividers do (and we can't 897 * fake it by having some fixed shifts preceding it in the clock tree, 898 * because we'd run out of bits in a 32-bit unsigned long). 899 */ 900 struct bcm2835_clock { 901 struct clk_hw hw; 902 struct bcm2835_cprman *cprman; 903 const struct bcm2835_clock_data *data; 904 }; 905 906 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) 907 { 908 return container_of(hw, struct bcm2835_clock, hw); 909 } 910 911 static int bcm2835_clock_is_on(struct clk_hw *hw) 912 { 913 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 914 struct bcm2835_cprman *cprman = clock->cprman; 915 const struct bcm2835_clock_data *data = clock->data; 916 917 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; 918 } 919 920 static u32 bcm2835_clock_choose_div(struct clk_hw *hw, 921 unsigned long rate, 922 unsigned long parent_rate, 923 bool round_up) 924 { 925 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 926 const struct bcm2835_clock_data *data = clock->data; 927 u32 unused_frac_mask = 928 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1; 929 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; 930 u64 rem; 931 u32 div, mindiv, maxdiv; 932 933 rem = do_div(temp, rate); 934 div = temp; 935 936 /* Round up and mask off the unused bits */ 937 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0)) 938 div += unused_frac_mask + 1; 939 div &= ~unused_frac_mask; 940 941 /* different clamping limits apply for a mash clock */ 942 if (data->is_mash_clock) { 943 /* clamp to min divider of 2 */ 944 mindiv = 2 << CM_DIV_FRAC_BITS; 945 /* clamp to the highest possible integer divider */ 946 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS; 947 } else { 948 /* clamp to min divider of 1 */ 949 mindiv = 1 << CM_DIV_FRAC_BITS; 950 /* clamp to the highest possible fractional divider */ 951 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, 952 CM_DIV_FRAC_BITS - data->frac_bits); 953 } 954 955 /* apply the clamping limits */ 956 div = max_t(u32, div, mindiv); 957 div = min_t(u32, div, maxdiv); 958 959 return div; 960 } 961 962 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, 963 unsigned long parent_rate, 964 u32 div) 965 { 966 const struct bcm2835_clock_data *data = clock->data; 967 u64 temp; 968 969 if (data->int_bits == 0 && data->frac_bits == 0) 970 return parent_rate; 971 972 /* 973 * The divisor is a 12.12 fixed point field, but only some of 974 * the bits are populated in any given clock. 975 */ 976 div >>= CM_DIV_FRAC_BITS - data->frac_bits; 977 div &= (1 << (data->int_bits + data->frac_bits)) - 1; 978 979 if (div == 0) 980 return 0; 981 982 temp = (u64)parent_rate << data->frac_bits; 983 984 do_div(temp, div); 985 986 return temp; 987 } 988 989 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, 990 unsigned long parent_rate) 991 { 992 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 993 struct bcm2835_cprman *cprman = clock->cprman; 994 const struct bcm2835_clock_data *data = clock->data; 995 u32 div; 996 997 if (data->int_bits == 0 && data->frac_bits == 0) 998 return parent_rate; 999 1000 div = cprman_read(cprman, data->div_reg); 1001 1002 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); 1003 } 1004 1005 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) 1006 { 1007 struct bcm2835_cprman *cprman = clock->cprman; 1008 const struct bcm2835_clock_data *data = clock->data; 1009 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 1010 1011 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { 1012 if (ktime_after(ktime_get(), timeout)) { 1013 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 1014 clk_hw_get_name(&clock->hw)); 1015 return; 1016 } 1017 cpu_relax(); 1018 } 1019 } 1020 1021 static void bcm2835_clock_off(struct clk_hw *hw) 1022 { 1023 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1024 struct bcm2835_cprman *cprman = clock->cprman; 1025 const struct bcm2835_clock_data *data = clock->data; 1026 1027 spin_lock(&cprman->regs_lock); 1028 cprman_write(cprman, data->ctl_reg, 1029 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); 1030 spin_unlock(&cprman->regs_lock); 1031 1032 /* BUSY will remain high until the divider completes its cycle. */ 1033 bcm2835_clock_wait_busy(clock); 1034 } 1035 1036 static int bcm2835_clock_on(struct clk_hw *hw) 1037 { 1038 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1039 struct bcm2835_cprman *cprman = clock->cprman; 1040 const struct bcm2835_clock_data *data = clock->data; 1041 1042 spin_lock(&cprman->regs_lock); 1043 cprman_write(cprman, data->ctl_reg, 1044 cprman_read(cprman, data->ctl_reg) | 1045 CM_ENABLE | 1046 CM_GATE); 1047 spin_unlock(&cprman->regs_lock); 1048 1049 /* Debug code to measure the clock once it's turned on to see 1050 * if it's ticking at the rate we expect. 1051 */ 1052 if (data->tcnt_mux && false) { 1053 dev_info(cprman->dev, 1054 "clk %s: rate %ld, measure %ld\n", 1055 data->name, 1056 clk_hw_get_rate(hw), 1057 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux)); 1058 } 1059 1060 return 0; 1061 } 1062 1063 static int bcm2835_clock_set_rate(struct clk_hw *hw, 1064 unsigned long rate, unsigned long parent_rate) 1065 { 1066 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1067 struct bcm2835_cprman *cprman = clock->cprman; 1068 const struct bcm2835_clock_data *data = clock->data; 1069 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false); 1070 u32 ctl; 1071 1072 spin_lock(&cprman->regs_lock); 1073 1074 /* 1075 * Setting up frac support 1076 * 1077 * In principle it is recommended to stop/start the clock first, 1078 * but as we set CLK_SET_RATE_GATE during registration of the 1079 * clock this requirement should be take care of by the 1080 * clk-framework. 1081 */ 1082 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC; 1083 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0; 1084 cprman_write(cprman, data->ctl_reg, ctl); 1085 1086 cprman_write(cprman, data->div_reg, div); 1087 1088 spin_unlock(&cprman->regs_lock); 1089 1090 return 0; 1091 } 1092 1093 static bool 1094 bcm2835_clk_is_pllc(struct clk_hw *hw) 1095 { 1096 if (!hw) 1097 return false; 1098 1099 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0; 1100 } 1101 1102 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw, 1103 int parent_idx, 1104 unsigned long rate, 1105 u32 *div, 1106 unsigned long *prate, 1107 unsigned long *avgrate) 1108 { 1109 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1110 struct bcm2835_cprman *cprman = clock->cprman; 1111 const struct bcm2835_clock_data *data = clock->data; 1112 unsigned long best_rate = 0; 1113 u32 curdiv, mindiv, maxdiv; 1114 struct clk_hw *parent; 1115 1116 parent = clk_hw_get_parent_by_index(hw, parent_idx); 1117 1118 if (!(BIT(parent_idx) & data->set_rate_parent)) { 1119 *prate = clk_hw_get_rate(parent); 1120 *div = bcm2835_clock_choose_div(hw, rate, *prate, true); 1121 1122 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div); 1123 1124 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) { 1125 unsigned long high, low; 1126 u32 int_div = *div & ~CM_DIV_FRAC_MASK; 1127 1128 high = bcm2835_clock_rate_from_divisor(clock, *prate, 1129 int_div); 1130 int_div += CM_DIV_FRAC_MASK + 1; 1131 low = bcm2835_clock_rate_from_divisor(clock, *prate, 1132 int_div); 1133 1134 /* 1135 * Return a value which is the maximum deviation 1136 * below the ideal rate, for use as a metric. 1137 */ 1138 return *avgrate - max(*avgrate - low, high - *avgrate); 1139 } 1140 return *avgrate; 1141 } 1142 1143 if (data->frac_bits) 1144 dev_warn(cprman->dev, 1145 "frac bits are not used when propagating rate change"); 1146 1147 /* clamp to min divider of 2 if we're dealing with a mash clock */ 1148 mindiv = data->is_mash_clock ? 2 : 1; 1149 maxdiv = BIT(data->int_bits) - 1; 1150 1151 /* TODO: Be smart, and only test a subset of the available divisors. */ 1152 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) { 1153 unsigned long tmp_rate; 1154 1155 tmp_rate = clk_hw_round_rate(parent, rate * curdiv); 1156 tmp_rate /= curdiv; 1157 if (curdiv == mindiv || 1158 (tmp_rate > best_rate && tmp_rate <= rate)) 1159 best_rate = tmp_rate; 1160 1161 if (best_rate == rate) 1162 break; 1163 } 1164 1165 *div = curdiv << CM_DIV_FRAC_BITS; 1166 *prate = curdiv * best_rate; 1167 *avgrate = best_rate; 1168 1169 return best_rate; 1170 } 1171 1172 static int bcm2835_clock_determine_rate(struct clk_hw *hw, 1173 struct clk_rate_request *req) 1174 { 1175 struct clk_hw *parent, *best_parent = NULL; 1176 bool current_parent_is_pllc; 1177 unsigned long rate, best_rate = 0; 1178 unsigned long prate, best_prate = 0; 1179 unsigned long avgrate, best_avgrate = 0; 1180 size_t i; 1181 u32 div; 1182 1183 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw)); 1184 1185 /* 1186 * Select parent clock that results in the closest but lower rate 1187 */ 1188 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) { 1189 parent = clk_hw_get_parent_by_index(hw, i); 1190 if (!parent) 1191 continue; 1192 1193 /* 1194 * Don't choose a PLLC-derived clock as our parent 1195 * unless it had been manually set that way. PLLC's 1196 * frequency gets adjusted by the firmware due to 1197 * over-temp or under-voltage conditions, without 1198 * prior notification to our clock consumer. 1199 */ 1200 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc) 1201 continue; 1202 1203 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate, 1204 &div, &prate, 1205 &avgrate); 1206 if (rate > best_rate && rate <= req->rate) { 1207 best_parent = parent; 1208 best_prate = prate; 1209 best_rate = rate; 1210 best_avgrate = avgrate; 1211 } 1212 } 1213 1214 if (!best_parent) 1215 return -EINVAL; 1216 1217 req->best_parent_hw = best_parent; 1218 req->best_parent_rate = best_prate; 1219 1220 req->rate = best_avgrate; 1221 1222 return 0; 1223 } 1224 1225 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index) 1226 { 1227 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1228 struct bcm2835_cprman *cprman = clock->cprman; 1229 const struct bcm2835_clock_data *data = clock->data; 1230 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK; 1231 1232 cprman_write(cprman, data->ctl_reg, src); 1233 return 0; 1234 } 1235 1236 static u8 bcm2835_clock_get_parent(struct clk_hw *hw) 1237 { 1238 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1239 struct bcm2835_cprman *cprman = clock->cprman; 1240 const struct bcm2835_clock_data *data = clock->data; 1241 u32 src = cprman_read(cprman, data->ctl_reg); 1242 1243 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT; 1244 } 1245 1246 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = { 1247 { 1248 .name = "ctl", 1249 .offset = 0, 1250 }, 1251 { 1252 .name = "div", 1253 .offset = 4, 1254 }, 1255 }; 1256 1257 static int bcm2835_clock_debug_init(struct clk_hw *hw, 1258 struct dentry *dentry) 1259 { 1260 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1261 struct bcm2835_cprman *cprman = clock->cprman; 1262 const struct bcm2835_clock_data *data = clock->data; 1263 1264 return bcm2835_debugfs_regset( 1265 cprman, data->ctl_reg, 1266 bcm2835_debugfs_clock_reg32, 1267 ARRAY_SIZE(bcm2835_debugfs_clock_reg32), 1268 dentry); 1269 } 1270 1271 static const struct clk_ops bcm2835_clock_clk_ops = { 1272 .is_prepared = bcm2835_clock_is_on, 1273 .prepare = bcm2835_clock_on, 1274 .unprepare = bcm2835_clock_off, 1275 .recalc_rate = bcm2835_clock_get_rate, 1276 .set_rate = bcm2835_clock_set_rate, 1277 .determine_rate = bcm2835_clock_determine_rate, 1278 .set_parent = bcm2835_clock_set_parent, 1279 .get_parent = bcm2835_clock_get_parent, 1280 .debug_init = bcm2835_clock_debug_init, 1281 }; 1282 1283 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) 1284 { 1285 return true; 1286 } 1287 1288 /* 1289 * The VPU clock can never be disabled (it doesn't have an ENABLE 1290 * bit), so it gets its own set of clock ops. 1291 */ 1292 static const struct clk_ops bcm2835_vpu_clock_clk_ops = { 1293 .is_prepared = bcm2835_vpu_clock_is_on, 1294 .recalc_rate = bcm2835_clock_get_rate, 1295 .set_rate = bcm2835_clock_set_rate, 1296 .determine_rate = bcm2835_clock_determine_rate, 1297 .set_parent = bcm2835_clock_set_parent, 1298 .get_parent = bcm2835_clock_get_parent, 1299 .debug_init = bcm2835_clock_debug_init, 1300 }; 1301 1302 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman, 1303 const struct bcm2835_pll_data *data) 1304 { 1305 struct bcm2835_pll *pll; 1306 struct clk_init_data init; 1307 int ret; 1308 1309 memset(&init, 0, sizeof(init)); 1310 1311 /* All of the PLLs derive from the external oscillator. */ 1312 init.parent_names = &cprman->real_parent_names[0]; 1313 init.num_parents = 1; 1314 init.name = data->name; 1315 init.ops = &bcm2835_pll_clk_ops; 1316 init.flags = CLK_IGNORE_UNUSED; 1317 1318 pll = kzalloc(sizeof(*pll), GFP_KERNEL); 1319 if (!pll) 1320 return NULL; 1321 1322 pll->cprman = cprman; 1323 pll->data = data; 1324 pll->hw.init = &init; 1325 1326 ret = devm_clk_hw_register(cprman->dev, &pll->hw); 1327 if (ret) 1328 return NULL; 1329 return &pll->hw; 1330 } 1331 1332 static struct clk_hw * 1333 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, 1334 const struct bcm2835_pll_divider_data *data) 1335 { 1336 struct bcm2835_pll_divider *divider; 1337 struct clk_init_data init; 1338 const char *divider_name; 1339 int ret; 1340 1341 if (data->fixed_divider != 1) { 1342 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, 1343 "%s_prediv", data->name); 1344 if (!divider_name) 1345 return NULL; 1346 } else { 1347 divider_name = data->name; 1348 } 1349 1350 memset(&init, 0, sizeof(init)); 1351 1352 init.parent_names = &data->source_pll; 1353 init.num_parents = 1; 1354 init.name = divider_name; 1355 init.ops = &bcm2835_pll_divider_clk_ops; 1356 init.flags = data->flags | CLK_IGNORE_UNUSED; 1357 1358 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); 1359 if (!divider) 1360 return NULL; 1361 1362 divider->div.reg = cprman->regs + data->a2w_reg; 1363 divider->div.shift = A2W_PLL_DIV_SHIFT; 1364 divider->div.width = A2W_PLL_DIV_BITS; 1365 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO; 1366 divider->div.lock = &cprman->regs_lock; 1367 divider->div.hw.init = &init; 1368 divider->div.table = NULL; 1369 1370 divider->cprman = cprman; 1371 divider->data = data; 1372 1373 ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw); 1374 if (ret) 1375 return ERR_PTR(ret); 1376 1377 /* 1378 * PLLH's channels have a fixed divide by 10 afterwards, which 1379 * is what our consumers are actually using. 1380 */ 1381 if (data->fixed_divider != 1) { 1382 return clk_hw_register_fixed_factor(cprman->dev, data->name, 1383 divider_name, 1384 CLK_SET_RATE_PARENT, 1385 1, 1386 data->fixed_divider); 1387 } 1388 1389 return ÷r->div.hw; 1390 } 1391 1392 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman, 1393 const struct bcm2835_clock_data *data) 1394 { 1395 struct bcm2835_clock *clock; 1396 struct clk_init_data init; 1397 const char *parents[1 << CM_SRC_BITS]; 1398 size_t i, j; 1399 int ret; 1400 1401 /* 1402 * Replace our strings referencing parent clocks with the 1403 * actual clock-output-name of the parent. 1404 */ 1405 for (i = 0; i < data->num_mux_parents; i++) { 1406 parents[i] = data->parents[i]; 1407 1408 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) { 1409 if (strcmp(parents[i], cprman_parent_names[j]) == 0) { 1410 parents[i] = cprman->real_parent_names[j]; 1411 break; 1412 } 1413 } 1414 } 1415 1416 memset(&init, 0, sizeof(init)); 1417 init.parent_names = parents; 1418 init.num_parents = data->num_mux_parents; 1419 init.name = data->name; 1420 init.flags = data->flags | CLK_IGNORE_UNUSED; 1421 1422 /* 1423 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate 1424 * rate changes on at least of the parents. 1425 */ 1426 if (data->set_rate_parent) 1427 init.flags |= CLK_SET_RATE_PARENT; 1428 1429 if (data->is_vpu_clock) { 1430 init.ops = &bcm2835_vpu_clock_clk_ops; 1431 } else { 1432 init.ops = &bcm2835_clock_clk_ops; 1433 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; 1434 1435 /* If the clock wasn't actually enabled at boot, it's not 1436 * critical. 1437 */ 1438 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE)) 1439 init.flags &= ~CLK_IS_CRITICAL; 1440 } 1441 1442 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); 1443 if (!clock) 1444 return NULL; 1445 1446 clock->cprman = cprman; 1447 clock->data = data; 1448 clock->hw.init = &init; 1449 1450 ret = devm_clk_hw_register(cprman->dev, &clock->hw); 1451 if (ret) 1452 return ERR_PTR(ret); 1453 return &clock->hw; 1454 } 1455 1456 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman, 1457 const struct bcm2835_gate_data *data) 1458 { 1459 return clk_register_gate(cprman->dev, data->name, data->parent, 1460 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, 1461 cprman->regs + data->ctl_reg, 1462 CM_GATE_BIT, 0, &cprman->regs_lock); 1463 } 1464 1465 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman, 1466 const void *data); 1467 struct bcm2835_clk_desc { 1468 bcm2835_clk_register clk_register; 1469 const void *data; 1470 }; 1471 1472 /* assignment helper macros for different clock types */ 1473 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \ 1474 .data = __VA_ARGS__ } 1475 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \ 1476 &(struct bcm2835_pll_data) \ 1477 {__VA_ARGS__}) 1478 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \ 1479 &(struct bcm2835_pll_divider_data) \ 1480 {__VA_ARGS__}) 1481 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \ 1482 &(struct bcm2835_clock_data) \ 1483 {__VA_ARGS__}) 1484 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \ 1485 &(struct bcm2835_gate_data) \ 1486 {__VA_ARGS__}) 1487 1488 /* parent mux arrays plus helper macros */ 1489 1490 /* main oscillator parent mux */ 1491 static const char *const bcm2835_clock_osc_parents[] = { 1492 "gnd", 1493 "xosc", 1494 "testdebug0", 1495 "testdebug1" 1496 }; 1497 1498 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \ 1499 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \ 1500 .parents = bcm2835_clock_osc_parents, \ 1501 __VA_ARGS__) 1502 1503 /* main peripherial parent mux */ 1504 static const char *const bcm2835_clock_per_parents[] = { 1505 "gnd", 1506 "xosc", 1507 "testdebug0", 1508 "testdebug1", 1509 "plla_per", 1510 "pllc_per", 1511 "plld_per", 1512 "pllh_aux", 1513 }; 1514 1515 #define REGISTER_PER_CLK(...) REGISTER_CLK( \ 1516 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \ 1517 .parents = bcm2835_clock_per_parents, \ 1518 __VA_ARGS__) 1519 1520 /* 1521 * Restrict clock sources for the PCM peripheral to the oscillator and 1522 * PLLD_PER because other source may have varying rates or be switched 1523 * off. 1524 * 1525 * Prevent other sources from being selected by replacing their names in 1526 * the list of potential parents with dummy entries (entry index is 1527 * significant). 1528 */ 1529 static const char *const bcm2835_pcm_per_parents[] = { 1530 "-", 1531 "xosc", 1532 "-", 1533 "-", 1534 "-", 1535 "-", 1536 "plld_per", 1537 "-", 1538 }; 1539 1540 #define REGISTER_PCM_CLK(...) REGISTER_CLK( \ 1541 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \ 1542 .parents = bcm2835_pcm_per_parents, \ 1543 __VA_ARGS__) 1544 1545 /* main vpu parent mux */ 1546 static const char *const bcm2835_clock_vpu_parents[] = { 1547 "gnd", 1548 "xosc", 1549 "testdebug0", 1550 "testdebug1", 1551 "plla_core", 1552 "pllc_core0", 1553 "plld_core", 1554 "pllh_aux", 1555 "pllc_core1", 1556 "pllc_core2", 1557 }; 1558 1559 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \ 1560 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \ 1561 .parents = bcm2835_clock_vpu_parents, \ 1562 __VA_ARGS__) 1563 1564 /* 1565 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI 1566 * analog PHY. The _inv variants are generated internally to cprman, 1567 * but we don't use them so they aren't hooked up. 1568 */ 1569 static const char *const bcm2835_clock_dsi0_parents[] = { 1570 "gnd", 1571 "xosc", 1572 "testdebug0", 1573 "testdebug1", 1574 "dsi0_ddr", 1575 "dsi0_ddr_inv", 1576 "dsi0_ddr2", 1577 "dsi0_ddr2_inv", 1578 "dsi0_byte", 1579 "dsi0_byte_inv", 1580 }; 1581 1582 static const char *const bcm2835_clock_dsi1_parents[] = { 1583 "gnd", 1584 "xosc", 1585 "testdebug0", 1586 "testdebug1", 1587 "dsi1_ddr", 1588 "dsi1_ddr_inv", 1589 "dsi1_ddr2", 1590 "dsi1_ddr2_inv", 1591 "dsi1_byte", 1592 "dsi1_byte_inv", 1593 }; 1594 1595 #define REGISTER_DSI0_CLK(...) REGISTER_CLK( \ 1596 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \ 1597 .parents = bcm2835_clock_dsi0_parents, \ 1598 __VA_ARGS__) 1599 1600 #define REGISTER_DSI1_CLK(...) REGISTER_CLK( \ 1601 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \ 1602 .parents = bcm2835_clock_dsi1_parents, \ 1603 __VA_ARGS__) 1604 1605 /* 1606 * the real definition of all the pll, pll_dividers and clocks 1607 * these make use of the above REGISTER_* macros 1608 */ 1609 static const struct bcm2835_clk_desc clk_desc_array[] = { 1610 /* the PLL + PLL dividers */ 1611 1612 /* 1613 * PLLA is the auxiliary PLL, used to drive the CCP2 1614 * (Compact Camera Port 2) transmitter clock. 1615 * 1616 * It is in the PX LDO power domain, which is on when the 1617 * AUDIO domain is on. 1618 */ 1619 [BCM2835_PLLA] = REGISTER_PLL( 1620 .name = "plla", 1621 .cm_ctrl_reg = CM_PLLA, 1622 .a2w_ctrl_reg = A2W_PLLA_CTRL, 1623 .frac_reg = A2W_PLLA_FRAC, 1624 .ana_reg_base = A2W_PLLA_ANA0, 1625 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, 1626 .lock_mask = CM_LOCK_FLOCKA, 1627 1628 .ana = &bcm2835_ana_default, 1629 1630 .min_rate = 600000000u, 1631 .max_rate = 2400000000u, 1632 .max_fb_rate = BCM2835_MAX_FB_RATE), 1633 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV( 1634 .name = "plla_core", 1635 .source_pll = "plla", 1636 .cm_reg = CM_PLLA, 1637 .a2w_reg = A2W_PLLA_CORE, 1638 .load_mask = CM_PLLA_LOADCORE, 1639 .hold_mask = CM_PLLA_HOLDCORE, 1640 .fixed_divider = 1, 1641 .flags = CLK_SET_RATE_PARENT), 1642 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV( 1643 .name = "plla_per", 1644 .source_pll = "plla", 1645 .cm_reg = CM_PLLA, 1646 .a2w_reg = A2W_PLLA_PER, 1647 .load_mask = CM_PLLA_LOADPER, 1648 .hold_mask = CM_PLLA_HOLDPER, 1649 .fixed_divider = 1, 1650 .flags = CLK_SET_RATE_PARENT), 1651 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV( 1652 .name = "plla_dsi0", 1653 .source_pll = "plla", 1654 .cm_reg = CM_PLLA, 1655 .a2w_reg = A2W_PLLA_DSI0, 1656 .load_mask = CM_PLLA_LOADDSI0, 1657 .hold_mask = CM_PLLA_HOLDDSI0, 1658 .fixed_divider = 1), 1659 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV( 1660 .name = "plla_ccp2", 1661 .source_pll = "plla", 1662 .cm_reg = CM_PLLA, 1663 .a2w_reg = A2W_PLLA_CCP2, 1664 .load_mask = CM_PLLA_LOADCCP2, 1665 .hold_mask = CM_PLLA_HOLDCCP2, 1666 .fixed_divider = 1, 1667 .flags = CLK_SET_RATE_PARENT), 1668 1669 /* PLLB is used for the ARM's clock. */ 1670 [BCM2835_PLLB] = REGISTER_PLL( 1671 .name = "pllb", 1672 .cm_ctrl_reg = CM_PLLB, 1673 .a2w_ctrl_reg = A2W_PLLB_CTRL, 1674 .frac_reg = A2W_PLLB_FRAC, 1675 .ana_reg_base = A2W_PLLB_ANA0, 1676 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE, 1677 .lock_mask = CM_LOCK_FLOCKB, 1678 1679 .ana = &bcm2835_ana_default, 1680 1681 .min_rate = 600000000u, 1682 .max_rate = 3000000000u, 1683 .max_fb_rate = BCM2835_MAX_FB_RATE), 1684 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV( 1685 .name = "pllb_arm", 1686 .source_pll = "pllb", 1687 .cm_reg = CM_PLLB, 1688 .a2w_reg = A2W_PLLB_ARM, 1689 .load_mask = CM_PLLB_LOADARM, 1690 .hold_mask = CM_PLLB_HOLDARM, 1691 .fixed_divider = 1, 1692 .flags = CLK_SET_RATE_PARENT), 1693 1694 /* 1695 * PLLC is the core PLL, used to drive the core VPU clock. 1696 * 1697 * It is in the PX LDO power domain, which is on when the 1698 * AUDIO domain is on. 1699 */ 1700 [BCM2835_PLLC] = REGISTER_PLL( 1701 .name = "pllc", 1702 .cm_ctrl_reg = CM_PLLC, 1703 .a2w_ctrl_reg = A2W_PLLC_CTRL, 1704 .frac_reg = A2W_PLLC_FRAC, 1705 .ana_reg_base = A2W_PLLC_ANA0, 1706 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1707 .lock_mask = CM_LOCK_FLOCKC, 1708 1709 .ana = &bcm2835_ana_default, 1710 1711 .min_rate = 600000000u, 1712 .max_rate = 3000000000u, 1713 .max_fb_rate = BCM2835_MAX_FB_RATE), 1714 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV( 1715 .name = "pllc_core0", 1716 .source_pll = "pllc", 1717 .cm_reg = CM_PLLC, 1718 .a2w_reg = A2W_PLLC_CORE0, 1719 .load_mask = CM_PLLC_LOADCORE0, 1720 .hold_mask = CM_PLLC_HOLDCORE0, 1721 .fixed_divider = 1, 1722 .flags = CLK_SET_RATE_PARENT), 1723 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV( 1724 .name = "pllc_core1", 1725 .source_pll = "pllc", 1726 .cm_reg = CM_PLLC, 1727 .a2w_reg = A2W_PLLC_CORE1, 1728 .load_mask = CM_PLLC_LOADCORE1, 1729 .hold_mask = CM_PLLC_HOLDCORE1, 1730 .fixed_divider = 1, 1731 .flags = CLK_SET_RATE_PARENT), 1732 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV( 1733 .name = "pllc_core2", 1734 .source_pll = "pllc", 1735 .cm_reg = CM_PLLC, 1736 .a2w_reg = A2W_PLLC_CORE2, 1737 .load_mask = CM_PLLC_LOADCORE2, 1738 .hold_mask = CM_PLLC_HOLDCORE2, 1739 .fixed_divider = 1, 1740 .flags = CLK_SET_RATE_PARENT), 1741 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV( 1742 .name = "pllc_per", 1743 .source_pll = "pllc", 1744 .cm_reg = CM_PLLC, 1745 .a2w_reg = A2W_PLLC_PER, 1746 .load_mask = CM_PLLC_LOADPER, 1747 .hold_mask = CM_PLLC_HOLDPER, 1748 .fixed_divider = 1, 1749 .flags = CLK_SET_RATE_PARENT), 1750 1751 /* 1752 * PLLD is the display PLL, used to drive DSI display panels. 1753 * 1754 * It is in the PX LDO power domain, which is on when the 1755 * AUDIO domain is on. 1756 */ 1757 [BCM2835_PLLD] = REGISTER_PLL( 1758 .name = "plld", 1759 .cm_ctrl_reg = CM_PLLD, 1760 .a2w_ctrl_reg = A2W_PLLD_CTRL, 1761 .frac_reg = A2W_PLLD_FRAC, 1762 .ana_reg_base = A2W_PLLD_ANA0, 1763 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, 1764 .lock_mask = CM_LOCK_FLOCKD, 1765 1766 .ana = &bcm2835_ana_default, 1767 1768 .min_rate = 600000000u, 1769 .max_rate = 2400000000u, 1770 .max_fb_rate = BCM2835_MAX_FB_RATE), 1771 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV( 1772 .name = "plld_core", 1773 .source_pll = "plld", 1774 .cm_reg = CM_PLLD, 1775 .a2w_reg = A2W_PLLD_CORE, 1776 .load_mask = CM_PLLD_LOADCORE, 1777 .hold_mask = CM_PLLD_HOLDCORE, 1778 .fixed_divider = 1, 1779 .flags = CLK_SET_RATE_PARENT), 1780 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV( 1781 .name = "plld_per", 1782 .source_pll = "plld", 1783 .cm_reg = CM_PLLD, 1784 .a2w_reg = A2W_PLLD_PER, 1785 .load_mask = CM_PLLD_LOADPER, 1786 .hold_mask = CM_PLLD_HOLDPER, 1787 .fixed_divider = 1, 1788 .flags = CLK_SET_RATE_PARENT), 1789 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV( 1790 .name = "plld_dsi0", 1791 .source_pll = "plld", 1792 .cm_reg = CM_PLLD, 1793 .a2w_reg = A2W_PLLD_DSI0, 1794 .load_mask = CM_PLLD_LOADDSI0, 1795 .hold_mask = CM_PLLD_HOLDDSI0, 1796 .fixed_divider = 1), 1797 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV( 1798 .name = "plld_dsi1", 1799 .source_pll = "plld", 1800 .cm_reg = CM_PLLD, 1801 .a2w_reg = A2W_PLLD_DSI1, 1802 .load_mask = CM_PLLD_LOADDSI1, 1803 .hold_mask = CM_PLLD_HOLDDSI1, 1804 .fixed_divider = 1), 1805 1806 /* 1807 * PLLH is used to supply the pixel clock or the AUX clock for the 1808 * TV encoder. 1809 * 1810 * It is in the HDMI power domain. 1811 */ 1812 [BCM2835_PLLH] = REGISTER_PLL( 1813 "pllh", 1814 .cm_ctrl_reg = CM_PLLH, 1815 .a2w_ctrl_reg = A2W_PLLH_CTRL, 1816 .frac_reg = A2W_PLLH_FRAC, 1817 .ana_reg_base = A2W_PLLH_ANA0, 1818 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1819 .lock_mask = CM_LOCK_FLOCKH, 1820 1821 .ana = &bcm2835_ana_pllh, 1822 1823 .min_rate = 600000000u, 1824 .max_rate = 3000000000u, 1825 .max_fb_rate = BCM2835_MAX_FB_RATE), 1826 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV( 1827 .name = "pllh_rcal", 1828 .source_pll = "pllh", 1829 .cm_reg = CM_PLLH, 1830 .a2w_reg = A2W_PLLH_RCAL, 1831 .load_mask = CM_PLLH_LOADRCAL, 1832 .hold_mask = 0, 1833 .fixed_divider = 10, 1834 .flags = CLK_SET_RATE_PARENT), 1835 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV( 1836 .name = "pllh_aux", 1837 .source_pll = "pllh", 1838 .cm_reg = CM_PLLH, 1839 .a2w_reg = A2W_PLLH_AUX, 1840 .load_mask = CM_PLLH_LOADAUX, 1841 .hold_mask = 0, 1842 .fixed_divider = 1, 1843 .flags = CLK_SET_RATE_PARENT), 1844 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV( 1845 .name = "pllh_pix", 1846 .source_pll = "pllh", 1847 .cm_reg = CM_PLLH, 1848 .a2w_reg = A2W_PLLH_PIX, 1849 .load_mask = CM_PLLH_LOADPIX, 1850 .hold_mask = 0, 1851 .fixed_divider = 10, 1852 .flags = CLK_SET_RATE_PARENT), 1853 1854 /* the clocks */ 1855 1856 /* clocks with oscillator parent mux */ 1857 1858 /* One Time Programmable Memory clock. Maximum 10Mhz. */ 1859 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK( 1860 .name = "otp", 1861 .ctl_reg = CM_OTPCTL, 1862 .div_reg = CM_OTPDIV, 1863 .int_bits = 4, 1864 .frac_bits = 0, 1865 .tcnt_mux = 6), 1866 /* 1867 * Used for a 1Mhz clock for the system clocksource, and also used 1868 * bythe watchdog timer and the camera pulse generator. 1869 */ 1870 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK( 1871 .name = "timer", 1872 .ctl_reg = CM_TIMERCTL, 1873 .div_reg = CM_TIMERDIV, 1874 .int_bits = 6, 1875 .frac_bits = 12), 1876 /* 1877 * Clock for the temperature sensor. 1878 * Generally run at 2Mhz, max 5Mhz. 1879 */ 1880 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK( 1881 .name = "tsens", 1882 .ctl_reg = CM_TSENSCTL, 1883 .div_reg = CM_TSENSDIV, 1884 .int_bits = 5, 1885 .frac_bits = 0), 1886 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK( 1887 .name = "tec", 1888 .ctl_reg = CM_TECCTL, 1889 .div_reg = CM_TECDIV, 1890 .int_bits = 6, 1891 .frac_bits = 0), 1892 1893 /* clocks with vpu parent mux */ 1894 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK( 1895 .name = "h264", 1896 .ctl_reg = CM_H264CTL, 1897 .div_reg = CM_H264DIV, 1898 .int_bits = 4, 1899 .frac_bits = 8, 1900 .tcnt_mux = 1), 1901 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK( 1902 .name = "isp", 1903 .ctl_reg = CM_ISPCTL, 1904 .div_reg = CM_ISPDIV, 1905 .int_bits = 4, 1906 .frac_bits = 8, 1907 .tcnt_mux = 2), 1908 1909 /* 1910 * Secondary SDRAM clock. Used for low-voltage modes when the PLL 1911 * in the SDRAM controller can't be used. 1912 */ 1913 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK( 1914 .name = "sdram", 1915 .ctl_reg = CM_SDCCTL, 1916 .div_reg = CM_SDCDIV, 1917 .int_bits = 6, 1918 .frac_bits = 0, 1919 .tcnt_mux = 3), 1920 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK( 1921 .name = "v3d", 1922 .ctl_reg = CM_V3DCTL, 1923 .div_reg = CM_V3DDIV, 1924 .int_bits = 4, 1925 .frac_bits = 8, 1926 .tcnt_mux = 4), 1927 /* 1928 * VPU clock. This doesn't have an enable bit, since it drives 1929 * the bus for everything else, and is special so it doesn't need 1930 * to be gated for rate changes. It is also known as "clk_audio" 1931 * in various hardware documentation. 1932 */ 1933 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK( 1934 .name = "vpu", 1935 .ctl_reg = CM_VPUCTL, 1936 .div_reg = CM_VPUDIV, 1937 .int_bits = 12, 1938 .frac_bits = 8, 1939 .flags = CLK_IS_CRITICAL, 1940 .is_vpu_clock = true, 1941 .tcnt_mux = 5), 1942 1943 /* clocks with per parent mux */ 1944 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK( 1945 .name = "aveo", 1946 .ctl_reg = CM_AVEOCTL, 1947 .div_reg = CM_AVEODIV, 1948 .int_bits = 4, 1949 .frac_bits = 0, 1950 .tcnt_mux = 38), 1951 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK( 1952 .name = "cam0", 1953 .ctl_reg = CM_CAM0CTL, 1954 .div_reg = CM_CAM0DIV, 1955 .int_bits = 4, 1956 .frac_bits = 8, 1957 .tcnt_mux = 14), 1958 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK( 1959 .name = "cam1", 1960 .ctl_reg = CM_CAM1CTL, 1961 .div_reg = CM_CAM1DIV, 1962 .int_bits = 4, 1963 .frac_bits = 8, 1964 .tcnt_mux = 15), 1965 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK( 1966 .name = "dft", 1967 .ctl_reg = CM_DFTCTL, 1968 .div_reg = CM_DFTDIV, 1969 .int_bits = 5, 1970 .frac_bits = 0), 1971 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK( 1972 .name = "dpi", 1973 .ctl_reg = CM_DPICTL, 1974 .div_reg = CM_DPIDIV, 1975 .int_bits = 4, 1976 .frac_bits = 8, 1977 .tcnt_mux = 17), 1978 1979 /* Arasan EMMC clock */ 1980 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK( 1981 .name = "emmc", 1982 .ctl_reg = CM_EMMCCTL, 1983 .div_reg = CM_EMMCDIV, 1984 .int_bits = 4, 1985 .frac_bits = 8, 1986 .tcnt_mux = 39), 1987 1988 /* General purpose (GPIO) clocks */ 1989 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK( 1990 .name = "gp0", 1991 .ctl_reg = CM_GP0CTL, 1992 .div_reg = CM_GP0DIV, 1993 .int_bits = 12, 1994 .frac_bits = 12, 1995 .is_mash_clock = true, 1996 .tcnt_mux = 20), 1997 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK( 1998 .name = "gp1", 1999 .ctl_reg = CM_GP1CTL, 2000 .div_reg = CM_GP1DIV, 2001 .int_bits = 12, 2002 .frac_bits = 12, 2003 .flags = CLK_IS_CRITICAL, 2004 .is_mash_clock = true, 2005 .tcnt_mux = 21), 2006 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK( 2007 .name = "gp2", 2008 .ctl_reg = CM_GP2CTL, 2009 .div_reg = CM_GP2DIV, 2010 .int_bits = 12, 2011 .frac_bits = 12, 2012 .flags = CLK_IS_CRITICAL), 2013 2014 /* HDMI state machine */ 2015 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK( 2016 .name = "hsm", 2017 .ctl_reg = CM_HSMCTL, 2018 .div_reg = CM_HSMDIV, 2019 .int_bits = 4, 2020 .frac_bits = 8, 2021 .tcnt_mux = 22), 2022 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK( 2023 .name = "pcm", 2024 .ctl_reg = CM_PCMCTL, 2025 .div_reg = CM_PCMDIV, 2026 .int_bits = 12, 2027 .frac_bits = 12, 2028 .is_mash_clock = true, 2029 .low_jitter = true, 2030 .tcnt_mux = 23), 2031 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK( 2032 .name = "pwm", 2033 .ctl_reg = CM_PWMCTL, 2034 .div_reg = CM_PWMDIV, 2035 .int_bits = 12, 2036 .frac_bits = 12, 2037 .is_mash_clock = true, 2038 .tcnt_mux = 24), 2039 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK( 2040 .name = "slim", 2041 .ctl_reg = CM_SLIMCTL, 2042 .div_reg = CM_SLIMDIV, 2043 .int_bits = 12, 2044 .frac_bits = 12, 2045 .is_mash_clock = true, 2046 .tcnt_mux = 25), 2047 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK( 2048 .name = "smi", 2049 .ctl_reg = CM_SMICTL, 2050 .div_reg = CM_SMIDIV, 2051 .int_bits = 4, 2052 .frac_bits = 8, 2053 .tcnt_mux = 27), 2054 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK( 2055 .name = "uart", 2056 .ctl_reg = CM_UARTCTL, 2057 .div_reg = CM_UARTDIV, 2058 .int_bits = 10, 2059 .frac_bits = 12, 2060 .tcnt_mux = 28), 2061 2062 /* TV encoder clock. Only operating frequency is 108Mhz. */ 2063 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK( 2064 .name = "vec", 2065 .ctl_reg = CM_VECCTL, 2066 .div_reg = CM_VECDIV, 2067 .int_bits = 4, 2068 .frac_bits = 0, 2069 /* 2070 * Allow rate change propagation only on PLLH_AUX which is 2071 * assigned index 7 in the parent array. 2072 */ 2073 .set_rate_parent = BIT(7), 2074 .tcnt_mux = 29), 2075 2076 /* dsi clocks */ 2077 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK( 2078 .name = "dsi0e", 2079 .ctl_reg = CM_DSI0ECTL, 2080 .div_reg = CM_DSI0EDIV, 2081 .int_bits = 4, 2082 .frac_bits = 8, 2083 .tcnt_mux = 18), 2084 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK( 2085 .name = "dsi1e", 2086 .ctl_reg = CM_DSI1ECTL, 2087 .div_reg = CM_DSI1EDIV, 2088 .int_bits = 4, 2089 .frac_bits = 8, 2090 .tcnt_mux = 19), 2091 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK( 2092 .name = "dsi0p", 2093 .ctl_reg = CM_DSI0PCTL, 2094 .div_reg = CM_DSI0PDIV, 2095 .int_bits = 0, 2096 .frac_bits = 0, 2097 .tcnt_mux = 12), 2098 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK( 2099 .name = "dsi1p", 2100 .ctl_reg = CM_DSI1PCTL, 2101 .div_reg = CM_DSI1PDIV, 2102 .int_bits = 0, 2103 .frac_bits = 0, 2104 .tcnt_mux = 13), 2105 2106 /* the gates */ 2107 2108 /* 2109 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if 2110 * you have the debug bit set in the power manager, which we 2111 * don't bother exposing) are individual gates off of the 2112 * non-stop vpu clock. 2113 */ 2114 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE( 2115 .name = "peri_image", 2116 .parent = "vpu", 2117 .ctl_reg = CM_PERIICTL), 2118 }; 2119 2120 /* 2121 * Permanently take a reference on the parent of the SDRAM clock. 2122 * 2123 * While the SDRAM is being driven by its dedicated PLL most of the 2124 * time, there is a little loop running in the firmware that 2125 * periodically switches the SDRAM to using our CM clock to do PVT 2126 * recalibration, with the assumption that the previously configured 2127 * SDRAM parent is still enabled and running. 2128 */ 2129 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc) 2130 { 2131 struct clk *parent = clk_get_parent(sdc); 2132 2133 if (IS_ERR(parent)) 2134 return PTR_ERR(parent); 2135 2136 return clk_prepare_enable(parent); 2137 } 2138 2139 static int bcm2835_clk_probe(struct platform_device *pdev) 2140 { 2141 struct device *dev = &pdev->dev; 2142 struct clk_hw **hws; 2143 struct bcm2835_cprman *cprman; 2144 struct resource *res; 2145 const struct bcm2835_clk_desc *desc; 2146 const size_t asize = ARRAY_SIZE(clk_desc_array); 2147 size_t i; 2148 int ret; 2149 2150 cprman = devm_kzalloc(dev, sizeof(*cprman) + 2151 sizeof(*cprman->onecell.hws) * asize, 2152 GFP_KERNEL); 2153 if (!cprman) 2154 return -ENOMEM; 2155 2156 spin_lock_init(&cprman->regs_lock); 2157 cprman->dev = dev; 2158 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2159 cprman->regs = devm_ioremap_resource(dev, res); 2160 if (IS_ERR(cprman->regs)) 2161 return PTR_ERR(cprman->regs); 2162 2163 memcpy(cprman->real_parent_names, cprman_parent_names, 2164 sizeof(cprman_parent_names)); 2165 of_clk_parent_fill(dev->of_node, cprman->real_parent_names, 2166 ARRAY_SIZE(cprman_parent_names)); 2167 2168 /* 2169 * Make sure the external oscillator has been registered. 2170 * 2171 * The other (DSI) clocks are not present on older device 2172 * trees, which we still need to support for backwards 2173 * compatibility. 2174 */ 2175 if (!cprman->real_parent_names[0]) 2176 return -ENODEV; 2177 2178 platform_set_drvdata(pdev, cprman); 2179 2180 cprman->onecell.num = asize; 2181 hws = cprman->onecell.hws; 2182 2183 for (i = 0; i < asize; i++) { 2184 desc = &clk_desc_array[i]; 2185 if (desc->clk_register && desc->data) 2186 hws[i] = desc->clk_register(cprman, desc->data); 2187 } 2188 2189 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk); 2190 if (ret) 2191 return ret; 2192 2193 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, 2194 &cprman->onecell); 2195 } 2196 2197 static const struct of_device_id bcm2835_clk_of_match[] = { 2198 { .compatible = "brcm,bcm2835-cprman", }, 2199 {} 2200 }; 2201 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); 2202 2203 static struct platform_driver bcm2835_clk_driver = { 2204 .driver = { 2205 .name = "bcm2835-clk", 2206 .of_match_table = bcm2835_clk_of_match, 2207 }, 2208 .probe = bcm2835_clk_probe, 2209 }; 2210 2211 builtin_platform_driver(bcm2835_clk_driver); 2212 2213 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); 2214 MODULE_DESCRIPTION("BCM2835 clock driver"); 2215 MODULE_LICENSE("GPL v2"); 2216