xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision 234489ac)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6 
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26 
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/math.h>
34 #include <linux/module.h>
35 #include <linux/of_device.h>
36 #include <linux/platform_device.h>
37 #include <linux/slab.h>
38 #include <dt-bindings/clock/bcm2835.h>
39 
40 #define CM_PASSWORD		0x5a000000
41 
42 #define CM_GNRICCTL		0x000
43 #define CM_GNRICDIV		0x004
44 # define CM_DIV_FRAC_BITS	12
45 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46 
47 #define CM_VPUCTL		0x008
48 #define CM_VPUDIV		0x00c
49 #define CM_SYSCTL		0x010
50 #define CM_SYSDIV		0x014
51 #define CM_PERIACTL		0x018
52 #define CM_PERIADIV		0x01c
53 #define CM_PERIICTL		0x020
54 #define CM_PERIIDIV		0x024
55 #define CM_H264CTL		0x028
56 #define CM_H264DIV		0x02c
57 #define CM_ISPCTL		0x030
58 #define CM_ISPDIV		0x034
59 #define CM_V3DCTL		0x038
60 #define CM_V3DDIV		0x03c
61 #define CM_CAM0CTL		0x040
62 #define CM_CAM0DIV		0x044
63 #define CM_CAM1CTL		0x048
64 #define CM_CAM1DIV		0x04c
65 #define CM_CCP2CTL		0x050
66 #define CM_CCP2DIV		0x054
67 #define CM_DSI0ECTL		0x058
68 #define CM_DSI0EDIV		0x05c
69 #define CM_DSI0PCTL		0x060
70 #define CM_DSI0PDIV		0x064
71 #define CM_DPICTL		0x068
72 #define CM_DPIDIV		0x06c
73 #define CM_GP0CTL		0x070
74 #define CM_GP0DIV		0x074
75 #define CM_GP1CTL		0x078
76 #define CM_GP1DIV		0x07c
77 #define CM_GP2CTL		0x080
78 #define CM_GP2DIV		0x084
79 #define CM_HSMCTL		0x088
80 #define CM_HSMDIV		0x08c
81 #define CM_OTPCTL		0x090
82 #define CM_OTPDIV		0x094
83 #define CM_PCMCTL		0x098
84 #define CM_PCMDIV		0x09c
85 #define CM_PWMCTL		0x0a0
86 #define CM_PWMDIV		0x0a4
87 #define CM_SLIMCTL		0x0a8
88 #define CM_SLIMDIV		0x0ac
89 #define CM_SMICTL		0x0b0
90 #define CM_SMIDIV		0x0b4
91 /* no definition for 0x0b8  and 0x0bc */
92 #define CM_TCNTCTL		0x0c0
93 # define CM_TCNT_SRC1_SHIFT		12
94 #define CM_TCNTCNT		0x0c4
95 #define CM_TECCTL		0x0c8
96 #define CM_TECDIV		0x0cc
97 #define CM_TD0CTL		0x0d0
98 #define CM_TD0DIV		0x0d4
99 #define CM_TD1CTL		0x0d8
100 #define CM_TD1DIV		0x0dc
101 #define CM_TSENSCTL		0x0e0
102 #define CM_TSENSDIV		0x0e4
103 #define CM_TIMERCTL		0x0e8
104 #define CM_TIMERDIV		0x0ec
105 #define CM_UARTCTL		0x0f0
106 #define CM_UARTDIV		0x0f4
107 #define CM_VECCTL		0x0f8
108 #define CM_VECDIV		0x0fc
109 #define CM_PULSECTL		0x190
110 #define CM_PULSEDIV		0x194
111 #define CM_SDCCTL		0x1a8
112 #define CM_SDCDIV		0x1ac
113 #define CM_ARMCTL		0x1b0
114 #define CM_AVEOCTL		0x1b8
115 #define CM_AVEODIV		0x1bc
116 #define CM_EMMCCTL		0x1c0
117 #define CM_EMMCDIV		0x1c4
118 #define CM_EMMC2CTL		0x1d0
119 #define CM_EMMC2DIV		0x1d4
120 
121 /* General bits for the CM_*CTL regs */
122 # define CM_ENABLE			BIT(4)
123 # define CM_KILL			BIT(5)
124 # define CM_GATE_BIT			6
125 # define CM_GATE			BIT(CM_GATE_BIT)
126 # define CM_BUSY			BIT(7)
127 # define CM_BUSYD			BIT(8)
128 # define CM_FRAC			BIT(9)
129 # define CM_SRC_SHIFT			0
130 # define CM_SRC_BITS			4
131 # define CM_SRC_MASK			0xf
132 # define CM_SRC_GND			0
133 # define CM_SRC_OSC			1
134 # define CM_SRC_TESTDEBUG0		2
135 # define CM_SRC_TESTDEBUG1		3
136 # define CM_SRC_PLLA_CORE		4
137 # define CM_SRC_PLLA_PER		4
138 # define CM_SRC_PLLC_CORE0		5
139 # define CM_SRC_PLLC_PER		5
140 # define CM_SRC_PLLC_CORE1		8
141 # define CM_SRC_PLLD_CORE		6
142 # define CM_SRC_PLLD_PER		6
143 # define CM_SRC_PLLH_AUX		7
144 # define CM_SRC_PLLC_CORE1		8
145 # define CM_SRC_PLLC_CORE2		9
146 
147 #define CM_OSCCOUNT		0x100
148 
149 #define CM_PLLA			0x104
150 # define CM_PLL_ANARST			BIT(8)
151 # define CM_PLLA_HOLDPER		BIT(7)
152 # define CM_PLLA_LOADPER		BIT(6)
153 # define CM_PLLA_HOLDCORE		BIT(5)
154 # define CM_PLLA_LOADCORE		BIT(4)
155 # define CM_PLLA_HOLDCCP2		BIT(3)
156 # define CM_PLLA_LOADCCP2		BIT(2)
157 # define CM_PLLA_HOLDDSI0		BIT(1)
158 # define CM_PLLA_LOADDSI0		BIT(0)
159 
160 #define CM_PLLC			0x108
161 # define CM_PLLC_HOLDPER		BIT(7)
162 # define CM_PLLC_LOADPER		BIT(6)
163 # define CM_PLLC_HOLDCORE2		BIT(5)
164 # define CM_PLLC_LOADCORE2		BIT(4)
165 # define CM_PLLC_HOLDCORE1		BIT(3)
166 # define CM_PLLC_LOADCORE1		BIT(2)
167 # define CM_PLLC_HOLDCORE0		BIT(1)
168 # define CM_PLLC_LOADCORE0		BIT(0)
169 
170 #define CM_PLLD			0x10c
171 # define CM_PLLD_HOLDPER		BIT(7)
172 # define CM_PLLD_LOADPER		BIT(6)
173 # define CM_PLLD_HOLDCORE		BIT(5)
174 # define CM_PLLD_LOADCORE		BIT(4)
175 # define CM_PLLD_HOLDDSI1		BIT(3)
176 # define CM_PLLD_LOADDSI1		BIT(2)
177 # define CM_PLLD_HOLDDSI0		BIT(1)
178 # define CM_PLLD_LOADDSI0		BIT(0)
179 
180 #define CM_PLLH			0x110
181 # define CM_PLLH_LOADRCAL		BIT(2)
182 # define CM_PLLH_LOADAUX		BIT(1)
183 # define CM_PLLH_LOADPIX		BIT(0)
184 
185 #define CM_LOCK			0x114
186 # define CM_LOCK_FLOCKH			BIT(12)
187 # define CM_LOCK_FLOCKD			BIT(11)
188 # define CM_LOCK_FLOCKC			BIT(10)
189 # define CM_LOCK_FLOCKB			BIT(9)
190 # define CM_LOCK_FLOCKA			BIT(8)
191 
192 #define CM_EVENT		0x118
193 #define CM_DSI1ECTL		0x158
194 #define CM_DSI1EDIV		0x15c
195 #define CM_DSI1PCTL		0x160
196 #define CM_DSI1PDIV		0x164
197 #define CM_DFTCTL		0x168
198 #define CM_DFTDIV		0x16c
199 
200 #define CM_PLLB			0x170
201 # define CM_PLLB_HOLDARM		BIT(1)
202 # define CM_PLLB_LOADARM		BIT(0)
203 
204 #define A2W_PLLA_CTRL		0x1100
205 #define A2W_PLLC_CTRL		0x1120
206 #define A2W_PLLD_CTRL		0x1140
207 #define A2W_PLLH_CTRL		0x1160
208 #define A2W_PLLB_CTRL		0x11e0
209 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
210 # define A2W_PLL_CTRL_PWRDN		BIT(16)
211 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
212 # define A2W_PLL_CTRL_PDIV_SHIFT	12
213 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
214 # define A2W_PLL_CTRL_NDIV_SHIFT	0
215 
216 #define A2W_PLLA_ANA0		0x1010
217 #define A2W_PLLC_ANA0		0x1030
218 #define A2W_PLLD_ANA0		0x1050
219 #define A2W_PLLH_ANA0		0x1070
220 #define A2W_PLLB_ANA0		0x10f0
221 
222 #define A2W_PLL_KA_SHIFT	7
223 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
224 #define A2W_PLL_KI_SHIFT	19
225 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
226 #define A2W_PLL_KP_SHIFT	15
227 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
228 
229 #define A2W_PLLH_KA_SHIFT	19
230 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
231 #define A2W_PLLH_KI_LOW_SHIFT	22
232 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
233 #define A2W_PLLH_KI_HIGH_SHIFT	0
234 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
235 #define A2W_PLLH_KP_SHIFT	1
236 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
237 
238 #define A2W_XOSC_CTRL		0x1190
239 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
240 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
241 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
242 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
243 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
244 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
245 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
246 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
247 
248 #define A2W_PLLA_FRAC		0x1200
249 #define A2W_PLLC_FRAC		0x1220
250 #define A2W_PLLD_FRAC		0x1240
251 #define A2W_PLLH_FRAC		0x1260
252 #define A2W_PLLB_FRAC		0x12e0
253 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
254 # define A2W_PLL_FRAC_BITS		20
255 
256 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
257 #define A2W_PLL_DIV_BITS		8
258 #define A2W_PLL_DIV_SHIFT		0
259 
260 #define A2W_PLLA_DSI0		0x1300
261 #define A2W_PLLA_CORE		0x1400
262 #define A2W_PLLA_PER		0x1500
263 #define A2W_PLLA_CCP2		0x1600
264 
265 #define A2W_PLLC_CORE2		0x1320
266 #define A2W_PLLC_CORE1		0x1420
267 #define A2W_PLLC_PER		0x1520
268 #define A2W_PLLC_CORE0		0x1620
269 
270 #define A2W_PLLD_DSI0		0x1340
271 #define A2W_PLLD_CORE		0x1440
272 #define A2W_PLLD_PER		0x1540
273 #define A2W_PLLD_DSI1		0x1640
274 
275 #define A2W_PLLH_AUX		0x1360
276 #define A2W_PLLH_RCAL		0x1460
277 #define A2W_PLLH_PIX		0x1560
278 #define A2W_PLLH_STS		0x1660
279 
280 #define A2W_PLLH_CTRLR		0x1960
281 #define A2W_PLLH_FRACR		0x1a60
282 #define A2W_PLLH_AUXR		0x1b60
283 #define A2W_PLLH_RCALR		0x1c60
284 #define A2W_PLLH_PIXR		0x1d60
285 #define A2W_PLLH_STSR		0x1e60
286 
287 #define A2W_PLLB_ARM		0x13e0
288 #define A2W_PLLB_SP0		0x14e0
289 #define A2W_PLLB_SP1		0x15e0
290 #define A2W_PLLB_SP2		0x16e0
291 
292 #define LOCK_TIMEOUT_NS		100000000
293 #define BCM2835_MAX_FB_RATE	1750000000u
294 
295 #define SOC_BCM2835		BIT(0)
296 #define SOC_BCM2711		BIT(1)
297 #define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
298 
299 /*
300  * Names of clocks used within the driver that need to be replaced
301  * with an external parent's name.  This array is in the order that
302  * the clocks node in the DT references external clocks.
303  */
304 static const char *const cprman_parent_names[] = {
305 	"xosc",
306 	"dsi0_byte",
307 	"dsi0_ddr2",
308 	"dsi0_ddr",
309 	"dsi1_byte",
310 	"dsi1_ddr2",
311 	"dsi1_ddr",
312 };
313 
314 struct bcm2835_cprman {
315 	struct device *dev;
316 	void __iomem *regs;
317 	spinlock_t regs_lock; /* spinlock for all clocks */
318 	unsigned int soc;
319 
320 	/*
321 	 * Real names of cprman clock parents looked up through
322 	 * of_clk_get_parent_name(), which will be used in the
323 	 * parent_names[] arrays for clock registration.
324 	 */
325 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
326 
327 	/* Must be last */
328 	struct clk_hw_onecell_data onecell;
329 };
330 
331 struct cprman_plat_data {
332 	unsigned int soc;
333 };
334 
335 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
336 {
337 	writel(CM_PASSWORD | val, cprman->regs + reg);
338 }
339 
340 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
341 {
342 	return readl(cprman->regs + reg);
343 }
344 
345 /* Does a cycle of measuring a clock through the TCNT clock, which may
346  * source from many other clocks in the system.
347  */
348 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
349 					      u32 tcnt_mux)
350 {
351 	u32 osccount = 19200; /* 1ms */
352 	u32 count;
353 	ktime_t timeout;
354 
355 	spin_lock(&cprman->regs_lock);
356 
357 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
358 
359 	cprman_write(cprman, CM_TCNTCTL,
360 		     (tcnt_mux & CM_SRC_MASK) |
361 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
362 
363 	cprman_write(cprman, CM_OSCCOUNT, osccount);
364 
365 	/* do a kind delay at the start */
366 	mdelay(1);
367 
368 	/* Finish off whatever is left of OSCCOUNT */
369 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
370 	while (cprman_read(cprman, CM_OSCCOUNT)) {
371 		if (ktime_after(ktime_get(), timeout)) {
372 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
373 			count = 0;
374 			goto out;
375 		}
376 		cpu_relax();
377 	}
378 
379 	/* Wait for BUSY to clear. */
380 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
381 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
382 		if (ktime_after(ktime_get(), timeout)) {
383 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
384 			count = 0;
385 			goto out;
386 		}
387 		cpu_relax();
388 	}
389 
390 	count = cprman_read(cprman, CM_TCNTCNT);
391 
392 	cprman_write(cprman, CM_TCNTCTL, 0);
393 
394 out:
395 	spin_unlock(&cprman->regs_lock);
396 
397 	return count * 1000;
398 }
399 
400 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
401 				   const struct debugfs_reg32 *regs,
402 				   size_t nregs, struct dentry *dentry)
403 {
404 	struct debugfs_regset32 *regset;
405 
406 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
407 	if (!regset)
408 		return;
409 
410 	regset->regs = regs;
411 	regset->nregs = nregs;
412 	regset->base = cprman->regs + base;
413 
414 	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
415 }
416 
417 struct bcm2835_pll_data {
418 	const char *name;
419 	u32 cm_ctrl_reg;
420 	u32 a2w_ctrl_reg;
421 	u32 frac_reg;
422 	u32 ana_reg_base;
423 	u32 reference_enable_mask;
424 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
425 	u32 lock_mask;
426 	u32 flags;
427 
428 	const struct bcm2835_pll_ana_bits *ana;
429 
430 	unsigned long min_rate;
431 	unsigned long max_rate;
432 	/*
433 	 * Highest rate for the VCO before we have to use the
434 	 * pre-divide-by-2.
435 	 */
436 	unsigned long max_fb_rate;
437 };
438 
439 struct bcm2835_pll_ana_bits {
440 	u32 mask0;
441 	u32 set0;
442 	u32 mask1;
443 	u32 set1;
444 	u32 mask3;
445 	u32 set3;
446 	u32 fb_prediv_mask;
447 };
448 
449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450 	.mask0 = 0,
451 	.set0 = 0,
452 	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
453 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
454 	.mask3 = A2W_PLL_KA_MASK,
455 	.set3 = (2 << A2W_PLL_KA_SHIFT),
456 	.fb_prediv_mask = BIT(14),
457 };
458 
459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
460 	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
461 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
462 	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
463 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
464 	.mask3 = 0,
465 	.set3 = 0,
466 	.fb_prediv_mask = BIT(11),
467 };
468 
469 struct bcm2835_pll_divider_data {
470 	const char *name;
471 	const char *source_pll;
472 
473 	u32 cm_reg;
474 	u32 a2w_reg;
475 
476 	u32 load_mask;
477 	u32 hold_mask;
478 	u32 fixed_divider;
479 	u32 flags;
480 };
481 
482 struct bcm2835_clock_data {
483 	const char *name;
484 
485 	const char *const *parents;
486 	int num_mux_parents;
487 
488 	/* Bitmap encoding which parents accept rate change propagation. */
489 	unsigned int set_rate_parent;
490 
491 	u32 ctl_reg;
492 	u32 div_reg;
493 
494 	/* Number of integer bits in the divider */
495 	u32 int_bits;
496 	/* Number of fractional bits in the divider */
497 	u32 frac_bits;
498 
499 	u32 flags;
500 
501 	bool is_vpu_clock;
502 	bool is_mash_clock;
503 	bool low_jitter;
504 
505 	u32 tcnt_mux;
506 
507 	bool round_up;
508 };
509 
510 struct bcm2835_gate_data {
511 	const char *name;
512 	const char *parent;
513 
514 	u32 ctl_reg;
515 };
516 
517 struct bcm2835_pll {
518 	struct clk_hw hw;
519 	struct bcm2835_cprman *cprman;
520 	const struct bcm2835_pll_data *data;
521 };
522 
523 static int bcm2835_pll_is_on(struct clk_hw *hw)
524 {
525 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
526 	struct bcm2835_cprman *cprman = pll->cprman;
527 	const struct bcm2835_pll_data *data = pll->data;
528 
529 	return cprman_read(cprman, data->a2w_ctrl_reg) &
530 		A2W_PLL_CTRL_PRST_DISABLE;
531 }
532 
533 static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
534 				       const struct bcm2835_pll_data *data)
535 {
536 	/*
537 	 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
538 	 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
539 	 * for to for VCO RANGE bits.
540 	 */
541 	if (cprman->soc & SOC_BCM2711)
542 		return 0;
543 
544 	return data->ana->fb_prediv_mask;
545 }
546 
547 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
548 					     unsigned long parent_rate,
549 					     u32 *ndiv, u32 *fdiv)
550 {
551 	u64 div;
552 
553 	div = (u64)rate << A2W_PLL_FRAC_BITS;
554 	do_div(div, parent_rate);
555 
556 	*ndiv = div >> A2W_PLL_FRAC_BITS;
557 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
558 }
559 
560 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
561 					   u32 ndiv, u32 fdiv, u32 pdiv)
562 {
563 	u64 rate;
564 
565 	if (pdiv == 0)
566 		return 0;
567 
568 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
569 	do_div(rate, pdiv);
570 	return rate >> A2W_PLL_FRAC_BITS;
571 }
572 
573 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
574 				   unsigned long *parent_rate)
575 {
576 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
577 	const struct bcm2835_pll_data *data = pll->data;
578 	u32 ndiv, fdiv;
579 
580 	rate = clamp(rate, data->min_rate, data->max_rate);
581 
582 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
583 
584 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
585 }
586 
587 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
588 					  unsigned long parent_rate)
589 {
590 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
591 	struct bcm2835_cprman *cprman = pll->cprman;
592 	const struct bcm2835_pll_data *data = pll->data;
593 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
594 	u32 ndiv, pdiv, fdiv;
595 	bool using_prediv;
596 
597 	if (parent_rate == 0)
598 		return 0;
599 
600 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
601 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
602 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
603 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
604 		       bcm2835_pll_get_prediv_mask(cprman, data);
605 
606 	if (using_prediv) {
607 		ndiv *= 2;
608 		fdiv *= 2;
609 	}
610 
611 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
612 }
613 
614 static void bcm2835_pll_off(struct clk_hw *hw)
615 {
616 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
617 	struct bcm2835_cprman *cprman = pll->cprman;
618 	const struct bcm2835_pll_data *data = pll->data;
619 
620 	spin_lock(&cprman->regs_lock);
621 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
622 	cprman_write(cprman, data->a2w_ctrl_reg,
623 		     cprman_read(cprman, data->a2w_ctrl_reg) |
624 		     A2W_PLL_CTRL_PWRDN);
625 	spin_unlock(&cprman->regs_lock);
626 }
627 
628 static int bcm2835_pll_on(struct clk_hw *hw)
629 {
630 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
631 	struct bcm2835_cprman *cprman = pll->cprman;
632 	const struct bcm2835_pll_data *data = pll->data;
633 	ktime_t timeout;
634 
635 	cprman_write(cprman, data->a2w_ctrl_reg,
636 		     cprman_read(cprman, data->a2w_ctrl_reg) &
637 		     ~A2W_PLL_CTRL_PWRDN);
638 
639 	/* Take the PLL out of reset. */
640 	spin_lock(&cprman->regs_lock);
641 	cprman_write(cprman, data->cm_ctrl_reg,
642 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
643 	spin_unlock(&cprman->regs_lock);
644 
645 	/* Wait for the PLL to lock. */
646 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
647 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
648 		if (ktime_after(ktime_get(), timeout)) {
649 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
650 				clk_hw_get_name(hw));
651 			return -ETIMEDOUT;
652 		}
653 
654 		cpu_relax();
655 	}
656 
657 	cprman_write(cprman, data->a2w_ctrl_reg,
658 		     cprman_read(cprman, data->a2w_ctrl_reg) |
659 		     A2W_PLL_CTRL_PRST_DISABLE);
660 
661 	return 0;
662 }
663 
664 static void
665 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
666 {
667 	int i;
668 
669 	/*
670 	 * ANA register setup is done as a series of writes to
671 	 * ANA3-ANA0, in that order.  This lets us write all 4
672 	 * registers as a single cycle of the serdes interface (taking
673 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
674 	 * 3 individually through their partial-write registers, each
675 	 * would be their own serdes cycle.
676 	 */
677 	for (i = 3; i >= 0; i--)
678 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
679 }
680 
681 static int bcm2835_pll_set_rate(struct clk_hw *hw,
682 				unsigned long rate, unsigned long parent_rate)
683 {
684 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
685 	struct bcm2835_cprman *cprman = pll->cprman;
686 	const struct bcm2835_pll_data *data = pll->data;
687 	u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
688 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
689 	u32 ndiv, fdiv, a2w_ctl;
690 	u32 ana[4];
691 	int i;
692 
693 	if (rate > data->max_fb_rate) {
694 		use_fb_prediv = true;
695 		rate /= 2;
696 	} else {
697 		use_fb_prediv = false;
698 	}
699 
700 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
701 
702 	for (i = 3; i >= 0; i--)
703 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
704 
705 	was_using_prediv = ana[1] & prediv_mask;
706 
707 	ana[0] &= ~data->ana->mask0;
708 	ana[0] |= data->ana->set0;
709 	ana[1] &= ~data->ana->mask1;
710 	ana[1] |= data->ana->set1;
711 	ana[3] &= ~data->ana->mask3;
712 	ana[3] |= data->ana->set3;
713 
714 	if (was_using_prediv && !use_fb_prediv) {
715 		ana[1] &= ~prediv_mask;
716 		do_ana_setup_first = true;
717 	} else if (!was_using_prediv && use_fb_prediv) {
718 		ana[1] |= prediv_mask;
719 		do_ana_setup_first = false;
720 	} else {
721 		do_ana_setup_first = true;
722 	}
723 
724 	/* Unmask the reference clock from the oscillator. */
725 	spin_lock(&cprman->regs_lock);
726 	cprman_write(cprman, A2W_XOSC_CTRL,
727 		     cprman_read(cprman, A2W_XOSC_CTRL) |
728 		     data->reference_enable_mask);
729 	spin_unlock(&cprman->regs_lock);
730 
731 	if (do_ana_setup_first)
732 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
733 
734 	/* Set the PLL multiplier from the oscillator. */
735 	cprman_write(cprman, data->frac_reg, fdiv);
736 
737 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
738 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
739 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
740 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
741 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
742 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
743 
744 	if (!do_ana_setup_first)
745 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
746 
747 	return 0;
748 }
749 
750 static void bcm2835_pll_debug_init(struct clk_hw *hw,
751 				  struct dentry *dentry)
752 {
753 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
754 	struct bcm2835_cprman *cprman = pll->cprman;
755 	const struct bcm2835_pll_data *data = pll->data;
756 	struct debugfs_reg32 *regs;
757 
758 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
759 	if (!regs)
760 		return;
761 
762 	regs[0].name = "cm_ctrl";
763 	regs[0].offset = data->cm_ctrl_reg;
764 	regs[1].name = "a2w_ctrl";
765 	regs[1].offset = data->a2w_ctrl_reg;
766 	regs[2].name = "frac";
767 	regs[2].offset = data->frac_reg;
768 	regs[3].name = "ana0";
769 	regs[3].offset = data->ana_reg_base + 0 * 4;
770 	regs[4].name = "ana1";
771 	regs[4].offset = data->ana_reg_base + 1 * 4;
772 	regs[5].name = "ana2";
773 	regs[5].offset = data->ana_reg_base + 2 * 4;
774 	regs[6].name = "ana3";
775 	regs[6].offset = data->ana_reg_base + 3 * 4;
776 
777 	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
778 }
779 
780 static const struct clk_ops bcm2835_pll_clk_ops = {
781 	.is_prepared = bcm2835_pll_is_on,
782 	.prepare = bcm2835_pll_on,
783 	.unprepare = bcm2835_pll_off,
784 	.recalc_rate = bcm2835_pll_get_rate,
785 	.set_rate = bcm2835_pll_set_rate,
786 	.round_rate = bcm2835_pll_round_rate,
787 	.debug_init = bcm2835_pll_debug_init,
788 };
789 
790 struct bcm2835_pll_divider {
791 	struct clk_divider div;
792 	struct bcm2835_cprman *cprman;
793 	const struct bcm2835_pll_divider_data *data;
794 };
795 
796 static struct bcm2835_pll_divider *
797 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
798 {
799 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
800 }
801 
802 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
803 {
804 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
805 	struct bcm2835_cprman *cprman = divider->cprman;
806 	const struct bcm2835_pll_divider_data *data = divider->data;
807 
808 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
809 }
810 
811 static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
812 					      struct clk_rate_request *req)
813 {
814 	return clk_divider_ops.determine_rate(hw, req);
815 }
816 
817 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
818 						  unsigned long parent_rate)
819 {
820 	return clk_divider_ops.recalc_rate(hw, parent_rate);
821 }
822 
823 static void bcm2835_pll_divider_off(struct clk_hw *hw)
824 {
825 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
826 	struct bcm2835_cprman *cprman = divider->cprman;
827 	const struct bcm2835_pll_divider_data *data = divider->data;
828 
829 	spin_lock(&cprman->regs_lock);
830 	cprman_write(cprman, data->cm_reg,
831 		     (cprman_read(cprman, data->cm_reg) &
832 		      ~data->load_mask) | data->hold_mask);
833 	cprman_write(cprman, data->a2w_reg,
834 		     cprman_read(cprman, data->a2w_reg) |
835 		     A2W_PLL_CHANNEL_DISABLE);
836 	spin_unlock(&cprman->regs_lock);
837 }
838 
839 static int bcm2835_pll_divider_on(struct clk_hw *hw)
840 {
841 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
842 	struct bcm2835_cprman *cprman = divider->cprman;
843 	const struct bcm2835_pll_divider_data *data = divider->data;
844 
845 	spin_lock(&cprman->regs_lock);
846 	cprman_write(cprman, data->a2w_reg,
847 		     cprman_read(cprman, data->a2w_reg) &
848 		     ~A2W_PLL_CHANNEL_DISABLE);
849 
850 	cprman_write(cprman, data->cm_reg,
851 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
852 	spin_unlock(&cprman->regs_lock);
853 
854 	return 0;
855 }
856 
857 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
858 					unsigned long rate,
859 					unsigned long parent_rate)
860 {
861 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
862 	struct bcm2835_cprman *cprman = divider->cprman;
863 	const struct bcm2835_pll_divider_data *data = divider->data;
864 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
865 
866 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
867 
868 	div = min(div, max_div);
869 	if (div == max_div)
870 		div = 0;
871 
872 	cprman_write(cprman, data->a2w_reg, div);
873 	cm = cprman_read(cprman, data->cm_reg);
874 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
875 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
876 
877 	return 0;
878 }
879 
880 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
881 					   struct dentry *dentry)
882 {
883 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
884 	struct bcm2835_cprman *cprman = divider->cprman;
885 	const struct bcm2835_pll_divider_data *data = divider->data;
886 	struct debugfs_reg32 *regs;
887 
888 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
889 	if (!regs)
890 		return;
891 
892 	regs[0].name = "cm";
893 	regs[0].offset = data->cm_reg;
894 	regs[1].name = "a2w";
895 	regs[1].offset = data->a2w_reg;
896 
897 	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
898 }
899 
900 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
901 	.is_prepared = bcm2835_pll_divider_is_on,
902 	.prepare = bcm2835_pll_divider_on,
903 	.unprepare = bcm2835_pll_divider_off,
904 	.recalc_rate = bcm2835_pll_divider_get_rate,
905 	.set_rate = bcm2835_pll_divider_set_rate,
906 	.determine_rate = bcm2835_pll_divider_determine_rate,
907 	.debug_init = bcm2835_pll_divider_debug_init,
908 };
909 
910 /*
911  * The CM dividers do fixed-point division, so we can't use the
912  * generic integer divider code like the PLL dividers do (and we can't
913  * fake it by having some fixed shifts preceding it in the clock tree,
914  * because we'd run out of bits in a 32-bit unsigned long).
915  */
916 struct bcm2835_clock {
917 	struct clk_hw hw;
918 	struct bcm2835_cprman *cprman;
919 	const struct bcm2835_clock_data *data;
920 };
921 
922 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
923 {
924 	return container_of(hw, struct bcm2835_clock, hw);
925 }
926 
927 static int bcm2835_clock_is_on(struct clk_hw *hw)
928 {
929 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
930 	struct bcm2835_cprman *cprman = clock->cprman;
931 	const struct bcm2835_clock_data *data = clock->data;
932 
933 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
934 }
935 
936 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
937 				    unsigned long rate,
938 				    unsigned long parent_rate)
939 {
940 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
941 	const struct bcm2835_clock_data *data = clock->data;
942 	u32 unused_frac_mask =
943 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
944 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
945 	u32 div, mindiv, maxdiv;
946 
947 	do_div(temp, rate);
948 	div = temp;
949 	div &= ~unused_frac_mask;
950 
951 	/* different clamping limits apply for a mash clock */
952 	if (data->is_mash_clock) {
953 		/* clamp to min divider of 2 */
954 		mindiv = 2 << CM_DIV_FRAC_BITS;
955 		/* clamp to the highest possible integer divider */
956 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
957 	} else {
958 		/* clamp to min divider of 1 */
959 		mindiv = 1 << CM_DIV_FRAC_BITS;
960 		/* clamp to the highest possible fractional divider */
961 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
962 				 CM_DIV_FRAC_BITS - data->frac_bits);
963 	}
964 
965 	/* apply the clamping  limits */
966 	div = max_t(u32, div, mindiv);
967 	div = min_t(u32, div, maxdiv);
968 
969 	return div;
970 }
971 
972 static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
973 						     unsigned long parent_rate,
974 						     u32 div)
975 {
976 	const struct bcm2835_clock_data *data = clock->data;
977 	u64 temp;
978 
979 	if (data->int_bits == 0 && data->frac_bits == 0)
980 		return parent_rate;
981 
982 	/*
983 	 * The divisor is a 12.12 fixed point field, but only some of
984 	 * the bits are populated in any given clock.
985 	 */
986 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
987 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
988 
989 	if (div == 0)
990 		return 0;
991 
992 	temp = (u64)parent_rate << data->frac_bits;
993 
994 	do_div(temp, div);
995 
996 	return temp;
997 }
998 
999 static unsigned long bcm2835_round_rate(unsigned long rate)
1000 {
1001 	unsigned long scaler;
1002 	unsigned long limit;
1003 
1004 	limit = rate / 100000;
1005 
1006 	scaler = 1;
1007 	while (scaler < limit)
1008 		scaler *= 10;
1009 
1010 	/*
1011 	 * If increasing a clock by less than 0.1% changes it
1012 	 * from ..999.. to ..000.., round up.
1013 	 */
1014 	if ((rate + scaler - 1) / scaler % 1000 == 0)
1015 		rate = roundup(rate, scaler);
1016 
1017 	return rate;
1018 }
1019 
1020 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1021 					    unsigned long parent_rate)
1022 {
1023 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1024 	struct bcm2835_cprman *cprman = clock->cprman;
1025 	const struct bcm2835_clock_data *data = clock->data;
1026 	unsigned long rate;
1027 	u32 div;
1028 
1029 	if (data->int_bits == 0 && data->frac_bits == 0)
1030 		return parent_rate;
1031 
1032 	div = cprman_read(cprman, data->div_reg);
1033 
1034 	rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1035 
1036 	if (data->round_up)
1037 		rate = bcm2835_round_rate(rate);
1038 
1039 	return rate;
1040 }
1041 
1042 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1043 {
1044 	struct bcm2835_cprman *cprman = clock->cprman;
1045 	const struct bcm2835_clock_data *data = clock->data;
1046 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1047 
1048 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1049 		if (ktime_after(ktime_get(), timeout)) {
1050 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1051 				clk_hw_get_name(&clock->hw));
1052 			return;
1053 		}
1054 		cpu_relax();
1055 	}
1056 }
1057 
1058 static void bcm2835_clock_off(struct clk_hw *hw)
1059 {
1060 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1061 	struct bcm2835_cprman *cprman = clock->cprman;
1062 	const struct bcm2835_clock_data *data = clock->data;
1063 
1064 	spin_lock(&cprman->regs_lock);
1065 	cprman_write(cprman, data->ctl_reg,
1066 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1067 	spin_unlock(&cprman->regs_lock);
1068 
1069 	/* BUSY will remain high until the divider completes its cycle. */
1070 	bcm2835_clock_wait_busy(clock);
1071 }
1072 
1073 static int bcm2835_clock_on(struct clk_hw *hw)
1074 {
1075 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1076 	struct bcm2835_cprman *cprman = clock->cprman;
1077 	const struct bcm2835_clock_data *data = clock->data;
1078 
1079 	spin_lock(&cprman->regs_lock);
1080 	cprman_write(cprman, data->ctl_reg,
1081 		     cprman_read(cprman, data->ctl_reg) |
1082 		     CM_ENABLE |
1083 		     CM_GATE);
1084 	spin_unlock(&cprman->regs_lock);
1085 
1086 	/* Debug code to measure the clock once it's turned on to see
1087 	 * if it's ticking at the rate we expect.
1088 	 */
1089 	if (data->tcnt_mux && false) {
1090 		dev_info(cprman->dev,
1091 			 "clk %s: rate %ld, measure %ld\n",
1092 			 data->name,
1093 			 clk_hw_get_rate(hw),
1094 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1101 				  unsigned long rate, unsigned long parent_rate)
1102 {
1103 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1104 	struct bcm2835_cprman *cprman = clock->cprman;
1105 	const struct bcm2835_clock_data *data = clock->data;
1106 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1107 	u32 ctl;
1108 
1109 	spin_lock(&cprman->regs_lock);
1110 
1111 	/*
1112 	 * Setting up frac support
1113 	 *
1114 	 * In principle it is recommended to stop/start the clock first,
1115 	 * but as we set CLK_SET_RATE_GATE during registration of the
1116 	 * clock this requirement should be take care of by the
1117 	 * clk-framework.
1118 	 */
1119 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1120 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1121 	cprman_write(cprman, data->ctl_reg, ctl);
1122 
1123 	cprman_write(cprman, data->div_reg, div);
1124 
1125 	spin_unlock(&cprman->regs_lock);
1126 
1127 	return 0;
1128 }
1129 
1130 static bool
1131 bcm2835_clk_is_pllc(struct clk_hw *hw)
1132 {
1133 	if (!hw)
1134 		return false;
1135 
1136 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1137 }
1138 
1139 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1140 							int parent_idx,
1141 							unsigned long rate,
1142 							u32 *div,
1143 							unsigned long *prate,
1144 							unsigned long *avgrate)
1145 {
1146 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1147 	struct bcm2835_cprman *cprman = clock->cprman;
1148 	const struct bcm2835_clock_data *data = clock->data;
1149 	unsigned long best_rate = 0;
1150 	u32 curdiv, mindiv, maxdiv;
1151 	struct clk_hw *parent;
1152 
1153 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1154 
1155 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1156 		*prate = clk_hw_get_rate(parent);
1157 		*div = bcm2835_clock_choose_div(hw, rate, *prate);
1158 
1159 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1160 
1161 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1162 			unsigned long high, low;
1163 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1164 
1165 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1166 							       int_div);
1167 			int_div += CM_DIV_FRAC_MASK + 1;
1168 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1169 							      int_div);
1170 
1171 			/*
1172 			 * Return a value which is the maximum deviation
1173 			 * below the ideal rate, for use as a metric.
1174 			 */
1175 			return *avgrate - max(*avgrate - low, high - *avgrate);
1176 		}
1177 		return *avgrate;
1178 	}
1179 
1180 	if (data->frac_bits)
1181 		dev_warn(cprman->dev,
1182 			"frac bits are not used when propagating rate change");
1183 
1184 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1185 	mindiv = data->is_mash_clock ? 2 : 1;
1186 	maxdiv = BIT(data->int_bits) - 1;
1187 
1188 	/* TODO: Be smart, and only test a subset of the available divisors. */
1189 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1190 		unsigned long tmp_rate;
1191 
1192 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1193 		tmp_rate /= curdiv;
1194 		if (curdiv == mindiv ||
1195 		    (tmp_rate > best_rate && tmp_rate <= rate))
1196 			best_rate = tmp_rate;
1197 
1198 		if (best_rate == rate)
1199 			break;
1200 	}
1201 
1202 	*div = curdiv << CM_DIV_FRAC_BITS;
1203 	*prate = curdiv * best_rate;
1204 	*avgrate = best_rate;
1205 
1206 	return best_rate;
1207 }
1208 
1209 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1210 					struct clk_rate_request *req)
1211 {
1212 	struct clk_hw *parent, *best_parent = NULL;
1213 	bool current_parent_is_pllc;
1214 	unsigned long rate, best_rate = 0;
1215 	unsigned long prate, best_prate = 0;
1216 	unsigned long avgrate, best_avgrate = 0;
1217 	size_t i;
1218 	u32 div;
1219 
1220 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1221 
1222 	/*
1223 	 * Select parent clock that results in the closest but lower rate
1224 	 */
1225 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1226 		parent = clk_hw_get_parent_by_index(hw, i);
1227 		if (!parent)
1228 			continue;
1229 
1230 		/*
1231 		 * Don't choose a PLLC-derived clock as our parent
1232 		 * unless it had been manually set that way.  PLLC's
1233 		 * frequency gets adjusted by the firmware due to
1234 		 * over-temp or under-voltage conditions, without
1235 		 * prior notification to our clock consumer.
1236 		 */
1237 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1238 			continue;
1239 
1240 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1241 							  &div, &prate,
1242 							  &avgrate);
1243 		if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1244 			best_parent = parent;
1245 			best_prate = prate;
1246 			best_rate = rate;
1247 			best_avgrate = avgrate;
1248 		}
1249 	}
1250 
1251 	if (!best_parent)
1252 		return -EINVAL;
1253 
1254 	req->best_parent_hw = best_parent;
1255 	req->best_parent_rate = best_prate;
1256 
1257 	req->rate = best_avgrate;
1258 
1259 	return 0;
1260 }
1261 
1262 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1263 {
1264 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1265 	struct bcm2835_cprman *cprman = clock->cprman;
1266 	const struct bcm2835_clock_data *data = clock->data;
1267 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1268 
1269 	cprman_write(cprman, data->ctl_reg, src);
1270 	return 0;
1271 }
1272 
1273 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1274 {
1275 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1276 	struct bcm2835_cprman *cprman = clock->cprman;
1277 	const struct bcm2835_clock_data *data = clock->data;
1278 	u32 src = cprman_read(cprman, data->ctl_reg);
1279 
1280 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1281 }
1282 
1283 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1284 	{
1285 		.name = "ctl",
1286 		.offset = 0,
1287 	},
1288 	{
1289 		.name = "div",
1290 		.offset = 4,
1291 	},
1292 };
1293 
1294 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1295 				    struct dentry *dentry)
1296 {
1297 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1298 	struct bcm2835_cprman *cprman = clock->cprman;
1299 	const struct bcm2835_clock_data *data = clock->data;
1300 
1301 	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1302 		bcm2835_debugfs_clock_reg32,
1303 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1304 		dentry);
1305 }
1306 
1307 static const struct clk_ops bcm2835_clock_clk_ops = {
1308 	.is_prepared = bcm2835_clock_is_on,
1309 	.prepare = bcm2835_clock_on,
1310 	.unprepare = bcm2835_clock_off,
1311 	.recalc_rate = bcm2835_clock_get_rate,
1312 	.set_rate = bcm2835_clock_set_rate,
1313 	.determine_rate = bcm2835_clock_determine_rate,
1314 	.set_parent = bcm2835_clock_set_parent,
1315 	.get_parent = bcm2835_clock_get_parent,
1316 	.debug_init = bcm2835_clock_debug_init,
1317 };
1318 
1319 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1320 {
1321 	return true;
1322 }
1323 
1324 /*
1325  * The VPU clock can never be disabled (it doesn't have an ENABLE
1326  * bit), so it gets its own set of clock ops.
1327  */
1328 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1329 	.is_prepared = bcm2835_vpu_clock_is_on,
1330 	.recalc_rate = bcm2835_clock_get_rate,
1331 	.set_rate = bcm2835_clock_set_rate,
1332 	.determine_rate = bcm2835_clock_determine_rate,
1333 	.set_parent = bcm2835_clock_set_parent,
1334 	.get_parent = bcm2835_clock_get_parent,
1335 	.debug_init = bcm2835_clock_debug_init,
1336 };
1337 
1338 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1339 					   const void *data)
1340 {
1341 	const struct bcm2835_pll_data *pll_data = data;
1342 	struct bcm2835_pll *pll;
1343 	struct clk_init_data init;
1344 	int ret;
1345 
1346 	memset(&init, 0, sizeof(init));
1347 
1348 	/* All of the PLLs derive from the external oscillator. */
1349 	init.parent_names = &cprman->real_parent_names[0];
1350 	init.num_parents = 1;
1351 	init.name = pll_data->name;
1352 	init.ops = &bcm2835_pll_clk_ops;
1353 	init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1354 
1355 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1356 	if (!pll)
1357 		return NULL;
1358 
1359 	pll->cprman = cprman;
1360 	pll->data = pll_data;
1361 	pll->hw.init = &init;
1362 
1363 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1364 	if (ret) {
1365 		kfree(pll);
1366 		return NULL;
1367 	}
1368 	return &pll->hw;
1369 }
1370 
1371 static struct clk_hw *
1372 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1373 			     const void *data)
1374 {
1375 	const struct bcm2835_pll_divider_data *divider_data = data;
1376 	struct bcm2835_pll_divider *divider;
1377 	struct clk_init_data init;
1378 	const char *divider_name;
1379 	int ret;
1380 
1381 	if (divider_data->fixed_divider != 1) {
1382 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1383 					      "%s_prediv", divider_data->name);
1384 		if (!divider_name)
1385 			return NULL;
1386 	} else {
1387 		divider_name = divider_data->name;
1388 	}
1389 
1390 	memset(&init, 0, sizeof(init));
1391 
1392 	init.parent_names = &divider_data->source_pll;
1393 	init.num_parents = 1;
1394 	init.name = divider_name;
1395 	init.ops = &bcm2835_pll_divider_clk_ops;
1396 	init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1397 
1398 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1399 	if (!divider)
1400 		return NULL;
1401 
1402 	divider->div.reg = cprman->regs + divider_data->a2w_reg;
1403 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1404 	divider->div.width = A2W_PLL_DIV_BITS;
1405 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1406 	divider->div.lock = &cprman->regs_lock;
1407 	divider->div.hw.init = &init;
1408 	divider->div.table = NULL;
1409 
1410 	divider->cprman = cprman;
1411 	divider->data = divider_data;
1412 
1413 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1414 	if (ret)
1415 		return ERR_PTR(ret);
1416 
1417 	/*
1418 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1419 	 * is what our consumers are actually using.
1420 	 */
1421 	if (divider_data->fixed_divider != 1) {
1422 		return clk_hw_register_fixed_factor(cprman->dev,
1423 						    divider_data->name,
1424 						    divider_name,
1425 						    CLK_SET_RATE_PARENT,
1426 						    1,
1427 						    divider_data->fixed_divider);
1428 	}
1429 
1430 	return &divider->div.hw;
1431 }
1432 
1433 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1434 					     const void *data)
1435 {
1436 	const struct bcm2835_clock_data *clock_data = data;
1437 	struct bcm2835_clock *clock;
1438 	struct clk_init_data init;
1439 	const char *parents[1 << CM_SRC_BITS];
1440 	size_t i;
1441 	int ret;
1442 
1443 	/*
1444 	 * Replace our strings referencing parent clocks with the
1445 	 * actual clock-output-name of the parent.
1446 	 */
1447 	for (i = 0; i < clock_data->num_mux_parents; i++) {
1448 		parents[i] = clock_data->parents[i];
1449 
1450 		ret = match_string(cprman_parent_names,
1451 				   ARRAY_SIZE(cprman_parent_names),
1452 				   parents[i]);
1453 		if (ret >= 0)
1454 			parents[i] = cprman->real_parent_names[ret];
1455 	}
1456 
1457 	memset(&init, 0, sizeof(init));
1458 	init.parent_names = parents;
1459 	init.num_parents = clock_data->num_mux_parents;
1460 	init.name = clock_data->name;
1461 	init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1462 
1463 	/*
1464 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1465 	 * rate changes on at least of the parents.
1466 	 */
1467 	if (clock_data->set_rate_parent)
1468 		init.flags |= CLK_SET_RATE_PARENT;
1469 
1470 	if (clock_data->is_vpu_clock) {
1471 		init.ops = &bcm2835_vpu_clock_clk_ops;
1472 	} else {
1473 		init.ops = &bcm2835_clock_clk_ops;
1474 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1475 
1476 		/* If the clock wasn't actually enabled at boot, it's not
1477 		 * critical.
1478 		 */
1479 		if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1480 			init.flags &= ~CLK_IS_CRITICAL;
1481 	}
1482 
1483 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1484 	if (!clock)
1485 		return NULL;
1486 
1487 	clock->cprman = cprman;
1488 	clock->data = clock_data;
1489 	clock->hw.init = &init;
1490 
1491 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1492 	if (ret)
1493 		return ERR_PTR(ret);
1494 	return &clock->hw;
1495 }
1496 
1497 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1498 					    const void *data)
1499 {
1500 	const struct bcm2835_gate_data *gate_data = data;
1501 
1502 	return clk_hw_register_gate(cprman->dev, gate_data->name,
1503 				    gate_data->parent,
1504 				    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1505 				    cprman->regs + gate_data->ctl_reg,
1506 				    CM_GATE_BIT, 0, &cprman->regs_lock);
1507 }
1508 
1509 struct bcm2835_clk_desc {
1510 	struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1511 				       const void *data);
1512 	unsigned int supported;
1513 	const void *data;
1514 };
1515 
1516 /* assignment helper macros for different clock types */
1517 #define _REGISTER(f, s, ...) { .clk_register = f, \
1518 			       .supported = s,				\
1519 			       .data = __VA_ARGS__ }
1520 #define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1521 					  s,				\
1522 					  &(struct bcm2835_pll_data)	\
1523 					  {__VA_ARGS__})
1524 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1525 					   s,				  \
1526 					   &(struct bcm2835_pll_divider_data) \
1527 					   {__VA_ARGS__})
1528 #define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1529 					  s,				\
1530 					  &(struct bcm2835_clock_data)	\
1531 					  {__VA_ARGS__})
1532 #define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1533 					  s,				\
1534 					  &(struct bcm2835_gate_data)	\
1535 					  {__VA_ARGS__})
1536 
1537 /* parent mux arrays plus helper macros */
1538 
1539 /* main oscillator parent mux */
1540 static const char *const bcm2835_clock_osc_parents[] = {
1541 	"gnd",
1542 	"xosc",
1543 	"testdebug0",
1544 	"testdebug1"
1545 };
1546 
1547 #define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1548 	s,								\
1549 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1550 	.parents = bcm2835_clock_osc_parents,				\
1551 	__VA_ARGS__)
1552 
1553 /* main peripherial parent mux */
1554 static const char *const bcm2835_clock_per_parents[] = {
1555 	"gnd",
1556 	"xosc",
1557 	"testdebug0",
1558 	"testdebug1",
1559 	"plla_per",
1560 	"pllc_per",
1561 	"plld_per",
1562 	"pllh_aux",
1563 };
1564 
1565 #define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1566 	s,								\
1567 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1568 	.parents = bcm2835_clock_per_parents,				\
1569 	__VA_ARGS__)
1570 
1571 /*
1572  * Restrict clock sources for the PCM peripheral to the oscillator and
1573  * PLLD_PER because other source may have varying rates or be switched
1574  * off.
1575  *
1576  * Prevent other sources from being selected by replacing their names in
1577  * the list of potential parents with dummy entries (entry index is
1578  * significant).
1579  */
1580 static const char *const bcm2835_pcm_per_parents[] = {
1581 	"-",
1582 	"xosc",
1583 	"-",
1584 	"-",
1585 	"-",
1586 	"-",
1587 	"plld_per",
1588 	"-",
1589 };
1590 
1591 #define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1592 	s,								\
1593 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1594 	.parents = bcm2835_pcm_per_parents,				\
1595 	__VA_ARGS__)
1596 
1597 /* main vpu parent mux */
1598 static const char *const bcm2835_clock_vpu_parents[] = {
1599 	"gnd",
1600 	"xosc",
1601 	"testdebug0",
1602 	"testdebug1",
1603 	"plla_core",
1604 	"pllc_core0",
1605 	"plld_core",
1606 	"pllh_aux",
1607 	"pllc_core1",
1608 	"pllc_core2",
1609 };
1610 
1611 #define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1612 	s,								\
1613 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1614 	.parents = bcm2835_clock_vpu_parents,				\
1615 	__VA_ARGS__)
1616 
1617 /*
1618  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1619  * analog PHY.  The _inv variants are generated internally to cprman,
1620  * but we don't use them so they aren't hooked up.
1621  */
1622 static const char *const bcm2835_clock_dsi0_parents[] = {
1623 	"gnd",
1624 	"xosc",
1625 	"testdebug0",
1626 	"testdebug1",
1627 	"dsi0_ddr",
1628 	"dsi0_ddr_inv",
1629 	"dsi0_ddr2",
1630 	"dsi0_ddr2_inv",
1631 	"dsi0_byte",
1632 	"dsi0_byte_inv",
1633 };
1634 
1635 static const char *const bcm2835_clock_dsi1_parents[] = {
1636 	"gnd",
1637 	"xosc",
1638 	"testdebug0",
1639 	"testdebug1",
1640 	"dsi1_ddr",
1641 	"dsi1_ddr_inv",
1642 	"dsi1_ddr2",
1643 	"dsi1_ddr2_inv",
1644 	"dsi1_byte",
1645 	"dsi1_byte_inv",
1646 };
1647 
1648 #define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1649 	s,								\
1650 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1651 	.parents = bcm2835_clock_dsi0_parents,				\
1652 	__VA_ARGS__)
1653 
1654 #define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1655 	s,								\
1656 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1657 	.parents = bcm2835_clock_dsi1_parents,				\
1658 	__VA_ARGS__)
1659 
1660 /*
1661  * the real definition of all the pll, pll_dividers and clocks
1662  * these make use of the above REGISTER_* macros
1663  */
1664 static const struct bcm2835_clk_desc clk_desc_array[] = {
1665 	/* the PLL + PLL dividers */
1666 
1667 	/*
1668 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1669 	 * (Compact Camera Port 2) transmitter clock.
1670 	 *
1671 	 * It is in the PX LDO power domain, which is on when the
1672 	 * AUDIO domain is on.
1673 	 */
1674 	[BCM2835_PLLA]		= REGISTER_PLL(
1675 		SOC_ALL,
1676 		.name = "plla",
1677 		.cm_ctrl_reg = CM_PLLA,
1678 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1679 		.frac_reg = A2W_PLLA_FRAC,
1680 		.ana_reg_base = A2W_PLLA_ANA0,
1681 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1682 		.lock_mask = CM_LOCK_FLOCKA,
1683 
1684 		.ana = &bcm2835_ana_default,
1685 
1686 		.min_rate = 600000000u,
1687 		.max_rate = 2400000000u,
1688 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1689 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1690 		SOC_ALL,
1691 		.name = "plla_core",
1692 		.source_pll = "plla",
1693 		.cm_reg = CM_PLLA,
1694 		.a2w_reg = A2W_PLLA_CORE,
1695 		.load_mask = CM_PLLA_LOADCORE,
1696 		.hold_mask = CM_PLLA_HOLDCORE,
1697 		.fixed_divider = 1,
1698 		.flags = CLK_SET_RATE_PARENT),
1699 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1700 		SOC_ALL,
1701 		.name = "plla_per",
1702 		.source_pll = "plla",
1703 		.cm_reg = CM_PLLA,
1704 		.a2w_reg = A2W_PLLA_PER,
1705 		.load_mask = CM_PLLA_LOADPER,
1706 		.hold_mask = CM_PLLA_HOLDPER,
1707 		.fixed_divider = 1,
1708 		.flags = CLK_SET_RATE_PARENT),
1709 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1710 		SOC_ALL,
1711 		.name = "plla_dsi0",
1712 		.source_pll = "plla",
1713 		.cm_reg = CM_PLLA,
1714 		.a2w_reg = A2W_PLLA_DSI0,
1715 		.load_mask = CM_PLLA_LOADDSI0,
1716 		.hold_mask = CM_PLLA_HOLDDSI0,
1717 		.fixed_divider = 1),
1718 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1719 		SOC_ALL,
1720 		.name = "plla_ccp2",
1721 		.source_pll = "plla",
1722 		.cm_reg = CM_PLLA,
1723 		.a2w_reg = A2W_PLLA_CCP2,
1724 		.load_mask = CM_PLLA_LOADCCP2,
1725 		.hold_mask = CM_PLLA_HOLDCCP2,
1726 		.fixed_divider = 1,
1727 		.flags = CLK_SET_RATE_PARENT),
1728 
1729 	/* PLLB is used for the ARM's clock. */
1730 	[BCM2835_PLLB]		= REGISTER_PLL(
1731 		SOC_ALL,
1732 		.name = "pllb",
1733 		.cm_ctrl_reg = CM_PLLB,
1734 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1735 		.frac_reg = A2W_PLLB_FRAC,
1736 		.ana_reg_base = A2W_PLLB_ANA0,
1737 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1738 		.lock_mask = CM_LOCK_FLOCKB,
1739 
1740 		.ana = &bcm2835_ana_default,
1741 
1742 		.min_rate = 600000000u,
1743 		.max_rate = 3000000000u,
1744 		.max_fb_rate = BCM2835_MAX_FB_RATE,
1745 		.flags = CLK_GET_RATE_NOCACHE),
1746 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1747 		SOC_ALL,
1748 		.name = "pllb_arm",
1749 		.source_pll = "pllb",
1750 		.cm_reg = CM_PLLB,
1751 		.a2w_reg = A2W_PLLB_ARM,
1752 		.load_mask = CM_PLLB_LOADARM,
1753 		.hold_mask = CM_PLLB_HOLDARM,
1754 		.fixed_divider = 1,
1755 		.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1756 
1757 	/*
1758 	 * PLLC is the core PLL, used to drive the core VPU clock.
1759 	 *
1760 	 * It is in the PX LDO power domain, which is on when the
1761 	 * AUDIO domain is on.
1762 	 */
1763 	[BCM2835_PLLC]		= REGISTER_PLL(
1764 		SOC_ALL,
1765 		.name = "pllc",
1766 		.cm_ctrl_reg = CM_PLLC,
1767 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1768 		.frac_reg = A2W_PLLC_FRAC,
1769 		.ana_reg_base = A2W_PLLC_ANA0,
1770 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1771 		.lock_mask = CM_LOCK_FLOCKC,
1772 
1773 		.ana = &bcm2835_ana_default,
1774 
1775 		.min_rate = 600000000u,
1776 		.max_rate = 3000000000u,
1777 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1778 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1779 		SOC_ALL,
1780 		.name = "pllc_core0",
1781 		.source_pll = "pllc",
1782 		.cm_reg = CM_PLLC,
1783 		.a2w_reg = A2W_PLLC_CORE0,
1784 		.load_mask = CM_PLLC_LOADCORE0,
1785 		.hold_mask = CM_PLLC_HOLDCORE0,
1786 		.fixed_divider = 1,
1787 		.flags = CLK_SET_RATE_PARENT),
1788 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1789 		SOC_ALL,
1790 		.name = "pllc_core1",
1791 		.source_pll = "pllc",
1792 		.cm_reg = CM_PLLC,
1793 		.a2w_reg = A2W_PLLC_CORE1,
1794 		.load_mask = CM_PLLC_LOADCORE1,
1795 		.hold_mask = CM_PLLC_HOLDCORE1,
1796 		.fixed_divider = 1,
1797 		.flags = CLK_SET_RATE_PARENT),
1798 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1799 		SOC_ALL,
1800 		.name = "pllc_core2",
1801 		.source_pll = "pllc",
1802 		.cm_reg = CM_PLLC,
1803 		.a2w_reg = A2W_PLLC_CORE2,
1804 		.load_mask = CM_PLLC_LOADCORE2,
1805 		.hold_mask = CM_PLLC_HOLDCORE2,
1806 		.fixed_divider = 1,
1807 		.flags = CLK_SET_RATE_PARENT),
1808 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1809 		SOC_ALL,
1810 		.name = "pllc_per",
1811 		.source_pll = "pllc",
1812 		.cm_reg = CM_PLLC,
1813 		.a2w_reg = A2W_PLLC_PER,
1814 		.load_mask = CM_PLLC_LOADPER,
1815 		.hold_mask = CM_PLLC_HOLDPER,
1816 		.fixed_divider = 1,
1817 		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1818 
1819 	/*
1820 	 * PLLD is the display PLL, used to drive DSI display panels.
1821 	 *
1822 	 * It is in the PX LDO power domain, which is on when the
1823 	 * AUDIO domain is on.
1824 	 */
1825 	[BCM2835_PLLD]		= REGISTER_PLL(
1826 		SOC_ALL,
1827 		.name = "plld",
1828 		.cm_ctrl_reg = CM_PLLD,
1829 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1830 		.frac_reg = A2W_PLLD_FRAC,
1831 		.ana_reg_base = A2W_PLLD_ANA0,
1832 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1833 		.lock_mask = CM_LOCK_FLOCKD,
1834 
1835 		.ana = &bcm2835_ana_default,
1836 
1837 		.min_rate = 600000000u,
1838 		.max_rate = 2400000000u,
1839 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1840 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1841 		SOC_ALL,
1842 		.name = "plld_core",
1843 		.source_pll = "plld",
1844 		.cm_reg = CM_PLLD,
1845 		.a2w_reg = A2W_PLLD_CORE,
1846 		.load_mask = CM_PLLD_LOADCORE,
1847 		.hold_mask = CM_PLLD_HOLDCORE,
1848 		.fixed_divider = 1,
1849 		.flags = CLK_SET_RATE_PARENT),
1850 	/*
1851 	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1852 	 * Otherwise this could cause firmware lookups. That's why we mark
1853 	 * it as critical.
1854 	 */
1855 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1856 		SOC_ALL,
1857 		.name = "plld_per",
1858 		.source_pll = "plld",
1859 		.cm_reg = CM_PLLD,
1860 		.a2w_reg = A2W_PLLD_PER,
1861 		.load_mask = CM_PLLD_LOADPER,
1862 		.hold_mask = CM_PLLD_HOLDPER,
1863 		.fixed_divider = 1,
1864 		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1865 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1866 		SOC_ALL,
1867 		.name = "plld_dsi0",
1868 		.source_pll = "plld",
1869 		.cm_reg = CM_PLLD,
1870 		.a2w_reg = A2W_PLLD_DSI0,
1871 		.load_mask = CM_PLLD_LOADDSI0,
1872 		.hold_mask = CM_PLLD_HOLDDSI0,
1873 		.fixed_divider = 1),
1874 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1875 		SOC_ALL,
1876 		.name = "plld_dsi1",
1877 		.source_pll = "plld",
1878 		.cm_reg = CM_PLLD,
1879 		.a2w_reg = A2W_PLLD_DSI1,
1880 		.load_mask = CM_PLLD_LOADDSI1,
1881 		.hold_mask = CM_PLLD_HOLDDSI1,
1882 		.fixed_divider = 1),
1883 
1884 	/*
1885 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1886 	 * TV encoder.
1887 	 *
1888 	 * It is in the HDMI power domain.
1889 	 */
1890 	[BCM2835_PLLH]		= REGISTER_PLL(
1891 		SOC_BCM2835,
1892 		"pllh",
1893 		.cm_ctrl_reg = CM_PLLH,
1894 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1895 		.frac_reg = A2W_PLLH_FRAC,
1896 		.ana_reg_base = A2W_PLLH_ANA0,
1897 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1898 		.lock_mask = CM_LOCK_FLOCKH,
1899 
1900 		.ana = &bcm2835_ana_pllh,
1901 
1902 		.min_rate = 600000000u,
1903 		.max_rate = 3000000000u,
1904 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1905 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1906 		SOC_BCM2835,
1907 		.name = "pllh_rcal",
1908 		.source_pll = "pllh",
1909 		.cm_reg = CM_PLLH,
1910 		.a2w_reg = A2W_PLLH_RCAL,
1911 		.load_mask = CM_PLLH_LOADRCAL,
1912 		.hold_mask = 0,
1913 		.fixed_divider = 10,
1914 		.flags = CLK_SET_RATE_PARENT),
1915 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1916 		SOC_BCM2835,
1917 		.name = "pllh_aux",
1918 		.source_pll = "pllh",
1919 		.cm_reg = CM_PLLH,
1920 		.a2w_reg = A2W_PLLH_AUX,
1921 		.load_mask = CM_PLLH_LOADAUX,
1922 		.hold_mask = 0,
1923 		.fixed_divider = 1,
1924 		.flags = CLK_SET_RATE_PARENT),
1925 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1926 		SOC_BCM2835,
1927 		.name = "pllh_pix",
1928 		.source_pll = "pllh",
1929 		.cm_reg = CM_PLLH,
1930 		.a2w_reg = A2W_PLLH_PIX,
1931 		.load_mask = CM_PLLH_LOADPIX,
1932 		.hold_mask = 0,
1933 		.fixed_divider = 10,
1934 		.flags = CLK_SET_RATE_PARENT),
1935 
1936 	/* the clocks */
1937 
1938 	/* clocks with oscillator parent mux */
1939 
1940 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1941 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1942 		SOC_ALL,
1943 		.name = "otp",
1944 		.ctl_reg = CM_OTPCTL,
1945 		.div_reg = CM_OTPDIV,
1946 		.int_bits = 4,
1947 		.frac_bits = 0,
1948 		.tcnt_mux = 6),
1949 	/*
1950 	 * Used for a 1Mhz clock for the system clocksource, and also used
1951 	 * bythe watchdog timer and the camera pulse generator.
1952 	 */
1953 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1954 		SOC_ALL,
1955 		.name = "timer",
1956 		.ctl_reg = CM_TIMERCTL,
1957 		.div_reg = CM_TIMERDIV,
1958 		.int_bits = 6,
1959 		.frac_bits = 12),
1960 	/*
1961 	 * Clock for the temperature sensor.
1962 	 * Generally run at 2Mhz, max 5Mhz.
1963 	 */
1964 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1965 		SOC_ALL,
1966 		.name = "tsens",
1967 		.ctl_reg = CM_TSENSCTL,
1968 		.div_reg = CM_TSENSDIV,
1969 		.int_bits = 5,
1970 		.frac_bits = 0),
1971 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1972 		SOC_ALL,
1973 		.name = "tec",
1974 		.ctl_reg = CM_TECCTL,
1975 		.div_reg = CM_TECDIV,
1976 		.int_bits = 6,
1977 		.frac_bits = 0),
1978 
1979 	/* clocks with vpu parent mux */
1980 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1981 		SOC_ALL,
1982 		.name = "h264",
1983 		.ctl_reg = CM_H264CTL,
1984 		.div_reg = CM_H264DIV,
1985 		.int_bits = 4,
1986 		.frac_bits = 8,
1987 		.tcnt_mux = 1),
1988 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1989 		SOC_ALL,
1990 		.name = "isp",
1991 		.ctl_reg = CM_ISPCTL,
1992 		.div_reg = CM_ISPDIV,
1993 		.int_bits = 4,
1994 		.frac_bits = 8,
1995 		.tcnt_mux = 2),
1996 
1997 	/*
1998 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1999 	 * in the SDRAM controller can't be used.
2000 	 */
2001 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
2002 		SOC_ALL,
2003 		.name = "sdram",
2004 		.ctl_reg = CM_SDCCTL,
2005 		.div_reg = CM_SDCDIV,
2006 		.int_bits = 6,
2007 		.frac_bits = 0,
2008 		.tcnt_mux = 3),
2009 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
2010 		SOC_ALL,
2011 		.name = "v3d",
2012 		.ctl_reg = CM_V3DCTL,
2013 		.div_reg = CM_V3DDIV,
2014 		.int_bits = 4,
2015 		.frac_bits = 8,
2016 		.tcnt_mux = 4),
2017 	/*
2018 	 * VPU clock.  This doesn't have an enable bit, since it drives
2019 	 * the bus for everything else, and is special so it doesn't need
2020 	 * to be gated for rate changes.  It is also known as "clk_audio"
2021 	 * in various hardware documentation.
2022 	 */
2023 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
2024 		SOC_ALL,
2025 		.name = "vpu",
2026 		.ctl_reg = CM_VPUCTL,
2027 		.div_reg = CM_VPUDIV,
2028 		.int_bits = 12,
2029 		.frac_bits = 8,
2030 		.flags = CLK_IS_CRITICAL,
2031 		.is_vpu_clock = true,
2032 		.tcnt_mux = 5),
2033 
2034 	/* clocks with per parent mux */
2035 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
2036 		SOC_ALL,
2037 		.name = "aveo",
2038 		.ctl_reg = CM_AVEOCTL,
2039 		.div_reg = CM_AVEODIV,
2040 		.int_bits = 4,
2041 		.frac_bits = 0,
2042 		.tcnt_mux = 38),
2043 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
2044 		SOC_ALL,
2045 		.name = "cam0",
2046 		.ctl_reg = CM_CAM0CTL,
2047 		.div_reg = CM_CAM0DIV,
2048 		.int_bits = 4,
2049 		.frac_bits = 8,
2050 		.tcnt_mux = 14),
2051 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
2052 		SOC_ALL,
2053 		.name = "cam1",
2054 		.ctl_reg = CM_CAM1CTL,
2055 		.div_reg = CM_CAM1DIV,
2056 		.int_bits = 4,
2057 		.frac_bits = 8,
2058 		.tcnt_mux = 15),
2059 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
2060 		SOC_ALL,
2061 		.name = "dft",
2062 		.ctl_reg = CM_DFTCTL,
2063 		.div_reg = CM_DFTDIV,
2064 		.int_bits = 5,
2065 		.frac_bits = 0),
2066 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
2067 		SOC_ALL,
2068 		.name = "dpi",
2069 		.ctl_reg = CM_DPICTL,
2070 		.div_reg = CM_DPIDIV,
2071 		.int_bits = 4,
2072 		.frac_bits = 8,
2073 		.tcnt_mux = 17),
2074 
2075 	/* Arasan EMMC clock */
2076 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2077 		SOC_ALL,
2078 		.name = "emmc",
2079 		.ctl_reg = CM_EMMCCTL,
2080 		.div_reg = CM_EMMCDIV,
2081 		.int_bits = 4,
2082 		.frac_bits = 8,
2083 		.tcnt_mux = 39),
2084 
2085 	/* EMMC2 clock (only available for BCM2711) */
2086 	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2087 		SOC_BCM2711,
2088 		.name = "emmc2",
2089 		.ctl_reg = CM_EMMC2CTL,
2090 		.div_reg = CM_EMMC2DIV,
2091 		.int_bits = 4,
2092 		.frac_bits = 8,
2093 		.tcnt_mux = 42),
2094 
2095 	/* General purpose (GPIO) clocks */
2096 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2097 		SOC_ALL,
2098 		.name = "gp0",
2099 		.ctl_reg = CM_GP0CTL,
2100 		.div_reg = CM_GP0DIV,
2101 		.int_bits = 12,
2102 		.frac_bits = 12,
2103 		.is_mash_clock = true,
2104 		.tcnt_mux = 20),
2105 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2106 		SOC_ALL,
2107 		.name = "gp1",
2108 		.ctl_reg = CM_GP1CTL,
2109 		.div_reg = CM_GP1DIV,
2110 		.int_bits = 12,
2111 		.frac_bits = 12,
2112 		.flags = CLK_IS_CRITICAL,
2113 		.is_mash_clock = true,
2114 		.tcnt_mux = 21),
2115 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2116 		SOC_ALL,
2117 		.name = "gp2",
2118 		.ctl_reg = CM_GP2CTL,
2119 		.div_reg = CM_GP2DIV,
2120 		.int_bits = 12,
2121 		.frac_bits = 12,
2122 		.flags = CLK_IS_CRITICAL),
2123 
2124 	/* HDMI state machine */
2125 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2126 		SOC_ALL,
2127 		.name = "hsm",
2128 		.ctl_reg = CM_HSMCTL,
2129 		.div_reg = CM_HSMDIV,
2130 		.int_bits = 4,
2131 		.frac_bits = 8,
2132 		.tcnt_mux = 22),
2133 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2134 		SOC_ALL,
2135 		.name = "pcm",
2136 		.ctl_reg = CM_PCMCTL,
2137 		.div_reg = CM_PCMDIV,
2138 		.int_bits = 12,
2139 		.frac_bits = 12,
2140 		.is_mash_clock = true,
2141 		.low_jitter = true,
2142 		.tcnt_mux = 23),
2143 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2144 		SOC_ALL,
2145 		.name = "pwm",
2146 		.ctl_reg = CM_PWMCTL,
2147 		.div_reg = CM_PWMDIV,
2148 		.int_bits = 12,
2149 		.frac_bits = 12,
2150 		.is_mash_clock = true,
2151 		.tcnt_mux = 24),
2152 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2153 		SOC_ALL,
2154 		.name = "slim",
2155 		.ctl_reg = CM_SLIMCTL,
2156 		.div_reg = CM_SLIMDIV,
2157 		.int_bits = 12,
2158 		.frac_bits = 12,
2159 		.is_mash_clock = true,
2160 		.tcnt_mux = 25),
2161 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2162 		SOC_ALL,
2163 		.name = "smi",
2164 		.ctl_reg = CM_SMICTL,
2165 		.div_reg = CM_SMIDIV,
2166 		.int_bits = 4,
2167 		.frac_bits = 8,
2168 		.tcnt_mux = 27),
2169 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2170 		SOC_ALL,
2171 		.name = "uart",
2172 		.ctl_reg = CM_UARTCTL,
2173 		.div_reg = CM_UARTDIV,
2174 		.int_bits = 10,
2175 		.frac_bits = 12,
2176 		.tcnt_mux = 28,
2177 		.round_up = true),
2178 
2179 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2180 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2181 		SOC_ALL,
2182 		.name = "vec",
2183 		.ctl_reg = CM_VECCTL,
2184 		.div_reg = CM_VECDIV,
2185 		.int_bits = 4,
2186 		.frac_bits = 0,
2187 		/*
2188 		 * Allow rate change propagation only on PLLH_AUX which is
2189 		 * assigned index 7 in the parent array.
2190 		 */
2191 		.set_rate_parent = BIT(7),
2192 		.tcnt_mux = 29),
2193 
2194 	/* dsi clocks */
2195 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2196 		SOC_ALL,
2197 		.name = "dsi0e",
2198 		.ctl_reg = CM_DSI0ECTL,
2199 		.div_reg = CM_DSI0EDIV,
2200 		.int_bits = 4,
2201 		.frac_bits = 8,
2202 		.tcnt_mux = 18),
2203 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2204 		SOC_ALL,
2205 		.name = "dsi1e",
2206 		.ctl_reg = CM_DSI1ECTL,
2207 		.div_reg = CM_DSI1EDIV,
2208 		.int_bits = 4,
2209 		.frac_bits = 8,
2210 		.tcnt_mux = 19),
2211 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2212 		SOC_ALL,
2213 		.name = "dsi0p",
2214 		.ctl_reg = CM_DSI0PCTL,
2215 		.div_reg = CM_DSI0PDIV,
2216 		.int_bits = 0,
2217 		.frac_bits = 0,
2218 		.tcnt_mux = 12),
2219 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2220 		SOC_ALL,
2221 		.name = "dsi1p",
2222 		.ctl_reg = CM_DSI1PCTL,
2223 		.div_reg = CM_DSI1PDIV,
2224 		.int_bits = 0,
2225 		.frac_bits = 0,
2226 		.tcnt_mux = 13),
2227 
2228 	/* the gates */
2229 
2230 	/*
2231 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2232 	 * you have the debug bit set in the power manager, which we
2233 	 * don't bother exposing) are individual gates off of the
2234 	 * non-stop vpu clock.
2235 	 */
2236 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2237 		SOC_ALL,
2238 		.name = "peri_image",
2239 		.parent = "vpu",
2240 		.ctl_reg = CM_PERIICTL),
2241 };
2242 
2243 /*
2244  * Permanently take a reference on the parent of the SDRAM clock.
2245  *
2246  * While the SDRAM is being driven by its dedicated PLL most of the
2247  * time, there is a little loop running in the firmware that
2248  * periodically switches the SDRAM to using our CM clock to do PVT
2249  * recalibration, with the assumption that the previously configured
2250  * SDRAM parent is still enabled and running.
2251  */
2252 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2253 {
2254 	struct clk *parent = clk_get_parent(sdc);
2255 
2256 	if (IS_ERR(parent))
2257 		return PTR_ERR(parent);
2258 
2259 	return clk_prepare_enable(parent);
2260 }
2261 
2262 static int bcm2835_clk_probe(struct platform_device *pdev)
2263 {
2264 	struct device *dev = &pdev->dev;
2265 	struct clk_hw **hws;
2266 	struct bcm2835_cprman *cprman;
2267 	const struct bcm2835_clk_desc *desc;
2268 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2269 	const struct cprman_plat_data *pdata;
2270 	size_t i;
2271 	int ret;
2272 
2273 	pdata = of_device_get_match_data(&pdev->dev);
2274 	if (!pdata)
2275 		return -ENODEV;
2276 
2277 	cprman = devm_kzalloc(dev,
2278 			      struct_size(cprman, onecell.hws, asize),
2279 			      GFP_KERNEL);
2280 	if (!cprman)
2281 		return -ENOMEM;
2282 
2283 	spin_lock_init(&cprman->regs_lock);
2284 	cprman->dev = dev;
2285 	cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2286 	if (IS_ERR(cprman->regs))
2287 		return PTR_ERR(cprman->regs);
2288 
2289 	memcpy(cprman->real_parent_names, cprman_parent_names,
2290 	       sizeof(cprman_parent_names));
2291 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2292 			   ARRAY_SIZE(cprman_parent_names));
2293 
2294 	/*
2295 	 * Make sure the external oscillator has been registered.
2296 	 *
2297 	 * The other (DSI) clocks are not present on older device
2298 	 * trees, which we still need to support for backwards
2299 	 * compatibility.
2300 	 */
2301 	if (!cprman->real_parent_names[0])
2302 		return -ENODEV;
2303 
2304 	platform_set_drvdata(pdev, cprman);
2305 
2306 	cprman->onecell.num = asize;
2307 	cprman->soc = pdata->soc;
2308 	hws = cprman->onecell.hws;
2309 
2310 	for (i = 0; i < asize; i++) {
2311 		desc = &clk_desc_array[i];
2312 		if (desc->clk_register && desc->data &&
2313 		    (desc->supported & pdata->soc)) {
2314 			hws[i] = desc->clk_register(cprman, desc->data);
2315 		}
2316 	}
2317 
2318 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2319 	if (ret)
2320 		return ret;
2321 
2322 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2323 				      &cprman->onecell);
2324 }
2325 
2326 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2327 	.soc = SOC_BCM2835,
2328 };
2329 
2330 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2331 	.soc = SOC_BCM2711,
2332 };
2333 
2334 static const struct of_device_id bcm2835_clk_of_match[] = {
2335 	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2336 	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2337 	{}
2338 };
2339 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2340 
2341 static struct platform_driver bcm2835_clk_driver = {
2342 	.driver = {
2343 		.name = "bcm2835-clk",
2344 		.of_match_table = bcm2835_clk_of_match,
2345 	},
2346 	.probe          = bcm2835_clk_probe,
2347 };
2348 
2349 builtin_platform_driver(bcm2835_clk_driver);
2350 
2351 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2352 MODULE_DESCRIPTION("BCM2835 clock driver");
2353