1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2010,2015 Broadcom 4 * Copyright (C) 2012 Stephen Warren 5 */ 6 7 /** 8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) 9 * 10 * The clock tree on the 2835 has several levels. There's a root 11 * oscillator running at 19.2Mhz. After the oscillator there are 5 12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", 13 * and "HDMI displays". Those 5 PLLs each can divide their output to 14 * produce up to 4 channels. Finally, there is the level of clocks to 15 * be consumed by other hardware components (like "H264" or "HDMI 16 * state machine"), which divide off of some subset of the PLL 17 * channels. 18 * 19 * All of the clocks in the tree are exposed in the DT, because the DT 20 * may want to make assignments of the final layer of clocks to the 21 * PLL channels, and some components of the hardware will actually 22 * skip layers of the tree (for example, the pixel clock comes 23 * directly from the PLLH PIX channel without using a CM_*CTL clock 24 * generator). 25 */ 26 27 #include <linux/clk-provider.h> 28 #include <linux/clkdev.h> 29 #include <linux/clk.h> 30 #include <linux/debugfs.h> 31 #include <linux/delay.h> 32 #include <linux/io.h> 33 #include <linux/math.h> 34 #include <linux/module.h> 35 #include <linux/of_device.h> 36 #include <linux/platform_device.h> 37 #include <linux/slab.h> 38 #include <dt-bindings/clock/bcm2835.h> 39 40 #define CM_PASSWORD 0x5a000000 41 42 #define CM_GNRICCTL 0x000 43 #define CM_GNRICDIV 0x004 44 # define CM_DIV_FRAC_BITS 12 45 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0) 46 47 #define CM_VPUCTL 0x008 48 #define CM_VPUDIV 0x00c 49 #define CM_SYSCTL 0x010 50 #define CM_SYSDIV 0x014 51 #define CM_PERIACTL 0x018 52 #define CM_PERIADIV 0x01c 53 #define CM_PERIICTL 0x020 54 #define CM_PERIIDIV 0x024 55 #define CM_H264CTL 0x028 56 #define CM_H264DIV 0x02c 57 #define CM_ISPCTL 0x030 58 #define CM_ISPDIV 0x034 59 #define CM_V3DCTL 0x038 60 #define CM_V3DDIV 0x03c 61 #define CM_CAM0CTL 0x040 62 #define CM_CAM0DIV 0x044 63 #define CM_CAM1CTL 0x048 64 #define CM_CAM1DIV 0x04c 65 #define CM_CCP2CTL 0x050 66 #define CM_CCP2DIV 0x054 67 #define CM_DSI0ECTL 0x058 68 #define CM_DSI0EDIV 0x05c 69 #define CM_DSI0PCTL 0x060 70 #define CM_DSI0PDIV 0x064 71 #define CM_DPICTL 0x068 72 #define CM_DPIDIV 0x06c 73 #define CM_GP0CTL 0x070 74 #define CM_GP0DIV 0x074 75 #define CM_GP1CTL 0x078 76 #define CM_GP1DIV 0x07c 77 #define CM_GP2CTL 0x080 78 #define CM_GP2DIV 0x084 79 #define CM_HSMCTL 0x088 80 #define CM_HSMDIV 0x08c 81 #define CM_OTPCTL 0x090 82 #define CM_OTPDIV 0x094 83 #define CM_PCMCTL 0x098 84 #define CM_PCMDIV 0x09c 85 #define CM_PWMCTL 0x0a0 86 #define CM_PWMDIV 0x0a4 87 #define CM_SLIMCTL 0x0a8 88 #define CM_SLIMDIV 0x0ac 89 #define CM_SMICTL 0x0b0 90 #define CM_SMIDIV 0x0b4 91 /* no definition for 0x0b8 and 0x0bc */ 92 #define CM_TCNTCTL 0x0c0 93 # define CM_TCNT_SRC1_SHIFT 12 94 #define CM_TCNTCNT 0x0c4 95 #define CM_TECCTL 0x0c8 96 #define CM_TECDIV 0x0cc 97 #define CM_TD0CTL 0x0d0 98 #define CM_TD0DIV 0x0d4 99 #define CM_TD1CTL 0x0d8 100 #define CM_TD1DIV 0x0dc 101 #define CM_TSENSCTL 0x0e0 102 #define CM_TSENSDIV 0x0e4 103 #define CM_TIMERCTL 0x0e8 104 #define CM_TIMERDIV 0x0ec 105 #define CM_UARTCTL 0x0f0 106 #define CM_UARTDIV 0x0f4 107 #define CM_VECCTL 0x0f8 108 #define CM_VECDIV 0x0fc 109 #define CM_PULSECTL 0x190 110 #define CM_PULSEDIV 0x194 111 #define CM_SDCCTL 0x1a8 112 #define CM_SDCDIV 0x1ac 113 #define CM_ARMCTL 0x1b0 114 #define CM_AVEOCTL 0x1b8 115 #define CM_AVEODIV 0x1bc 116 #define CM_EMMCCTL 0x1c0 117 #define CM_EMMCDIV 0x1c4 118 #define CM_EMMC2CTL 0x1d0 119 #define CM_EMMC2DIV 0x1d4 120 121 /* General bits for the CM_*CTL regs */ 122 # define CM_ENABLE BIT(4) 123 # define CM_KILL BIT(5) 124 # define CM_GATE_BIT 6 125 # define CM_GATE BIT(CM_GATE_BIT) 126 # define CM_BUSY BIT(7) 127 # define CM_BUSYD BIT(8) 128 # define CM_FRAC BIT(9) 129 # define CM_SRC_SHIFT 0 130 # define CM_SRC_BITS 4 131 # define CM_SRC_MASK 0xf 132 # define CM_SRC_GND 0 133 # define CM_SRC_OSC 1 134 # define CM_SRC_TESTDEBUG0 2 135 # define CM_SRC_TESTDEBUG1 3 136 # define CM_SRC_PLLA_CORE 4 137 # define CM_SRC_PLLA_PER 4 138 # define CM_SRC_PLLC_CORE0 5 139 # define CM_SRC_PLLC_PER 5 140 # define CM_SRC_PLLC_CORE1 8 141 # define CM_SRC_PLLD_CORE 6 142 # define CM_SRC_PLLD_PER 6 143 # define CM_SRC_PLLH_AUX 7 144 # define CM_SRC_PLLC_CORE1 8 145 # define CM_SRC_PLLC_CORE2 9 146 147 #define CM_OSCCOUNT 0x100 148 149 #define CM_PLLA 0x104 150 # define CM_PLL_ANARST BIT(8) 151 # define CM_PLLA_HOLDPER BIT(7) 152 # define CM_PLLA_LOADPER BIT(6) 153 # define CM_PLLA_HOLDCORE BIT(5) 154 # define CM_PLLA_LOADCORE BIT(4) 155 # define CM_PLLA_HOLDCCP2 BIT(3) 156 # define CM_PLLA_LOADCCP2 BIT(2) 157 # define CM_PLLA_HOLDDSI0 BIT(1) 158 # define CM_PLLA_LOADDSI0 BIT(0) 159 160 #define CM_PLLC 0x108 161 # define CM_PLLC_HOLDPER BIT(7) 162 # define CM_PLLC_LOADPER BIT(6) 163 # define CM_PLLC_HOLDCORE2 BIT(5) 164 # define CM_PLLC_LOADCORE2 BIT(4) 165 # define CM_PLLC_HOLDCORE1 BIT(3) 166 # define CM_PLLC_LOADCORE1 BIT(2) 167 # define CM_PLLC_HOLDCORE0 BIT(1) 168 # define CM_PLLC_LOADCORE0 BIT(0) 169 170 #define CM_PLLD 0x10c 171 # define CM_PLLD_HOLDPER BIT(7) 172 # define CM_PLLD_LOADPER BIT(6) 173 # define CM_PLLD_HOLDCORE BIT(5) 174 # define CM_PLLD_LOADCORE BIT(4) 175 # define CM_PLLD_HOLDDSI1 BIT(3) 176 # define CM_PLLD_LOADDSI1 BIT(2) 177 # define CM_PLLD_HOLDDSI0 BIT(1) 178 # define CM_PLLD_LOADDSI0 BIT(0) 179 180 #define CM_PLLH 0x110 181 # define CM_PLLH_LOADRCAL BIT(2) 182 # define CM_PLLH_LOADAUX BIT(1) 183 # define CM_PLLH_LOADPIX BIT(0) 184 185 #define CM_LOCK 0x114 186 # define CM_LOCK_FLOCKH BIT(12) 187 # define CM_LOCK_FLOCKD BIT(11) 188 # define CM_LOCK_FLOCKC BIT(10) 189 # define CM_LOCK_FLOCKB BIT(9) 190 # define CM_LOCK_FLOCKA BIT(8) 191 192 #define CM_EVENT 0x118 193 #define CM_DSI1ECTL 0x158 194 #define CM_DSI1EDIV 0x15c 195 #define CM_DSI1PCTL 0x160 196 #define CM_DSI1PDIV 0x164 197 #define CM_DFTCTL 0x168 198 #define CM_DFTDIV 0x16c 199 200 #define CM_PLLB 0x170 201 # define CM_PLLB_HOLDARM BIT(1) 202 # define CM_PLLB_LOADARM BIT(0) 203 204 #define A2W_PLLA_CTRL 0x1100 205 #define A2W_PLLC_CTRL 0x1120 206 #define A2W_PLLD_CTRL 0x1140 207 #define A2W_PLLH_CTRL 0x1160 208 #define A2W_PLLB_CTRL 0x11e0 209 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) 210 # define A2W_PLL_CTRL_PWRDN BIT(16) 211 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 212 # define A2W_PLL_CTRL_PDIV_SHIFT 12 213 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff 214 # define A2W_PLL_CTRL_NDIV_SHIFT 0 215 216 #define A2W_PLLA_ANA0 0x1010 217 #define A2W_PLLC_ANA0 0x1030 218 #define A2W_PLLD_ANA0 0x1050 219 #define A2W_PLLH_ANA0 0x1070 220 #define A2W_PLLB_ANA0 0x10f0 221 222 #define A2W_PLL_KA_SHIFT 7 223 #define A2W_PLL_KA_MASK GENMASK(9, 7) 224 #define A2W_PLL_KI_SHIFT 19 225 #define A2W_PLL_KI_MASK GENMASK(21, 19) 226 #define A2W_PLL_KP_SHIFT 15 227 #define A2W_PLL_KP_MASK GENMASK(18, 15) 228 229 #define A2W_PLLH_KA_SHIFT 19 230 #define A2W_PLLH_KA_MASK GENMASK(21, 19) 231 #define A2W_PLLH_KI_LOW_SHIFT 22 232 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) 233 #define A2W_PLLH_KI_HIGH_SHIFT 0 234 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) 235 #define A2W_PLLH_KP_SHIFT 1 236 #define A2W_PLLH_KP_MASK GENMASK(4, 1) 237 238 #define A2W_XOSC_CTRL 0x1190 239 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) 240 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) 241 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) 242 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) 243 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) 244 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) 245 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) 246 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) 247 248 #define A2W_PLLA_FRAC 0x1200 249 #define A2W_PLLC_FRAC 0x1220 250 #define A2W_PLLD_FRAC 0x1240 251 #define A2W_PLLH_FRAC 0x1260 252 #define A2W_PLLB_FRAC 0x12e0 253 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) 254 # define A2W_PLL_FRAC_BITS 20 255 256 #define A2W_PLL_CHANNEL_DISABLE BIT(8) 257 #define A2W_PLL_DIV_BITS 8 258 #define A2W_PLL_DIV_SHIFT 0 259 260 #define A2W_PLLA_DSI0 0x1300 261 #define A2W_PLLA_CORE 0x1400 262 #define A2W_PLLA_PER 0x1500 263 #define A2W_PLLA_CCP2 0x1600 264 265 #define A2W_PLLC_CORE2 0x1320 266 #define A2W_PLLC_CORE1 0x1420 267 #define A2W_PLLC_PER 0x1520 268 #define A2W_PLLC_CORE0 0x1620 269 270 #define A2W_PLLD_DSI0 0x1340 271 #define A2W_PLLD_CORE 0x1440 272 #define A2W_PLLD_PER 0x1540 273 #define A2W_PLLD_DSI1 0x1640 274 275 #define A2W_PLLH_AUX 0x1360 276 #define A2W_PLLH_RCAL 0x1460 277 #define A2W_PLLH_PIX 0x1560 278 #define A2W_PLLH_STS 0x1660 279 280 #define A2W_PLLH_CTRLR 0x1960 281 #define A2W_PLLH_FRACR 0x1a60 282 #define A2W_PLLH_AUXR 0x1b60 283 #define A2W_PLLH_RCALR 0x1c60 284 #define A2W_PLLH_PIXR 0x1d60 285 #define A2W_PLLH_STSR 0x1e60 286 287 #define A2W_PLLB_ARM 0x13e0 288 #define A2W_PLLB_SP0 0x14e0 289 #define A2W_PLLB_SP1 0x15e0 290 #define A2W_PLLB_SP2 0x16e0 291 292 #define LOCK_TIMEOUT_NS 100000000 293 #define BCM2835_MAX_FB_RATE 1750000000u 294 295 #define SOC_BCM2835 BIT(0) 296 #define SOC_BCM2711 BIT(1) 297 #define SOC_ALL (SOC_BCM2835 | SOC_BCM2711) 298 299 /* 300 * Names of clocks used within the driver that need to be replaced 301 * with an external parent's name. This array is in the order that 302 * the clocks node in the DT references external clocks. 303 */ 304 static const char *const cprman_parent_names[] = { 305 "xosc", 306 "dsi0_byte", 307 "dsi0_ddr2", 308 "dsi0_ddr", 309 "dsi1_byte", 310 "dsi1_ddr2", 311 "dsi1_ddr", 312 }; 313 314 struct bcm2835_cprman { 315 struct device *dev; 316 void __iomem *regs; 317 spinlock_t regs_lock; /* spinlock for all clocks */ 318 unsigned int soc; 319 320 /* 321 * Real names of cprman clock parents looked up through 322 * of_clk_get_parent_name(), which will be used in the 323 * parent_names[] arrays for clock registration. 324 */ 325 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)]; 326 327 /* Must be last */ 328 struct clk_hw_onecell_data onecell; 329 }; 330 331 struct cprman_plat_data { 332 unsigned int soc; 333 }; 334 335 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) 336 { 337 writel(CM_PASSWORD | val, cprman->regs + reg); 338 } 339 340 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) 341 { 342 return readl(cprman->regs + reg); 343 } 344 345 /* Does a cycle of measuring a clock through the TCNT clock, which may 346 * source from many other clocks in the system. 347 */ 348 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman, 349 u32 tcnt_mux) 350 { 351 u32 osccount = 19200; /* 1ms */ 352 u32 count; 353 ktime_t timeout; 354 355 spin_lock(&cprman->regs_lock); 356 357 cprman_write(cprman, CM_TCNTCTL, CM_KILL); 358 359 cprman_write(cprman, CM_TCNTCTL, 360 (tcnt_mux & CM_SRC_MASK) | 361 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT); 362 363 cprman_write(cprman, CM_OSCCOUNT, osccount); 364 365 /* do a kind delay at the start */ 366 mdelay(1); 367 368 /* Finish off whatever is left of OSCCOUNT */ 369 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 370 while (cprman_read(cprman, CM_OSCCOUNT)) { 371 if (ktime_after(ktime_get(), timeout)) { 372 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n"); 373 count = 0; 374 goto out; 375 } 376 cpu_relax(); 377 } 378 379 /* Wait for BUSY to clear. */ 380 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 381 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) { 382 if (ktime_after(ktime_get(), timeout)) { 383 dev_err(cprman->dev, "timeout waiting for !BUSY\n"); 384 count = 0; 385 goto out; 386 } 387 cpu_relax(); 388 } 389 390 count = cprman_read(cprman, CM_TCNTCNT); 391 392 cprman_write(cprman, CM_TCNTCTL, 0); 393 394 out: 395 spin_unlock(&cprman->regs_lock); 396 397 return count * 1000; 398 } 399 400 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base, 401 const struct debugfs_reg32 *regs, 402 size_t nregs, struct dentry *dentry) 403 { 404 struct debugfs_regset32 *regset; 405 406 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL); 407 if (!regset) 408 return; 409 410 regset->regs = regs; 411 regset->nregs = nregs; 412 regset->base = cprman->regs + base; 413 414 debugfs_create_regset32("regdump", S_IRUGO, dentry, regset); 415 } 416 417 struct bcm2835_pll_data { 418 const char *name; 419 u32 cm_ctrl_reg; 420 u32 a2w_ctrl_reg; 421 u32 frac_reg; 422 u32 ana_reg_base; 423 u32 reference_enable_mask; 424 /* Bit in CM_LOCK to indicate when the PLL has locked. */ 425 u32 lock_mask; 426 u32 flags; 427 428 const struct bcm2835_pll_ana_bits *ana; 429 430 unsigned long min_rate; 431 unsigned long max_rate; 432 /* 433 * Highest rate for the VCO before we have to use the 434 * pre-divide-by-2. 435 */ 436 unsigned long max_fb_rate; 437 }; 438 439 struct bcm2835_pll_ana_bits { 440 u32 mask0; 441 u32 set0; 442 u32 mask1; 443 u32 set1; 444 u32 mask3; 445 u32 set3; 446 u32 fb_prediv_mask; 447 }; 448 449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { 450 .mask0 = 0, 451 .set0 = 0, 452 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK, 453 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), 454 .mask3 = A2W_PLL_KA_MASK, 455 .set3 = (2 << A2W_PLL_KA_SHIFT), 456 .fb_prediv_mask = BIT(14), 457 }; 458 459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { 460 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK, 461 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), 462 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK, 463 .set1 = (6 << A2W_PLLH_KP_SHIFT), 464 .mask3 = 0, 465 .set3 = 0, 466 .fb_prediv_mask = BIT(11), 467 }; 468 469 struct bcm2835_pll_divider_data { 470 const char *name; 471 const char *source_pll; 472 473 u32 cm_reg; 474 u32 a2w_reg; 475 476 u32 load_mask; 477 u32 hold_mask; 478 u32 fixed_divider; 479 u32 flags; 480 }; 481 482 struct bcm2835_clock_data { 483 const char *name; 484 485 const char *const *parents; 486 int num_mux_parents; 487 488 /* Bitmap encoding which parents accept rate change propagation. */ 489 unsigned int set_rate_parent; 490 491 u32 ctl_reg; 492 u32 div_reg; 493 494 /* Number of integer bits in the divider */ 495 u32 int_bits; 496 /* Number of fractional bits in the divider */ 497 u32 frac_bits; 498 499 u32 flags; 500 501 bool is_vpu_clock; 502 bool is_mash_clock; 503 bool low_jitter; 504 505 u32 tcnt_mux; 506 507 bool round_up; 508 }; 509 510 struct bcm2835_gate_data { 511 const char *name; 512 const char *parent; 513 514 u32 ctl_reg; 515 }; 516 517 struct bcm2835_pll { 518 struct clk_hw hw; 519 struct bcm2835_cprman *cprman; 520 const struct bcm2835_pll_data *data; 521 }; 522 523 static int bcm2835_pll_is_on(struct clk_hw *hw) 524 { 525 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 526 struct bcm2835_cprman *cprman = pll->cprman; 527 const struct bcm2835_pll_data *data = pll->data; 528 529 return cprman_read(cprman, data->a2w_ctrl_reg) & 530 A2W_PLL_CTRL_PRST_DISABLE; 531 } 532 533 static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman, 534 const struct bcm2835_pll_data *data) 535 { 536 /* 537 * On BCM2711 there isn't a pre-divisor available in the PLL feedback 538 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed 539 * for to for VCO RANGE bits. 540 */ 541 if (cprman->soc & SOC_BCM2711) 542 return 0; 543 544 return data->ana->fb_prediv_mask; 545 } 546 547 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, 548 unsigned long parent_rate, 549 u32 *ndiv, u32 *fdiv) 550 { 551 u64 div; 552 553 div = (u64)rate << A2W_PLL_FRAC_BITS; 554 do_div(div, parent_rate); 555 556 *ndiv = div >> A2W_PLL_FRAC_BITS; 557 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); 558 } 559 560 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, 561 u32 ndiv, u32 fdiv, u32 pdiv) 562 { 563 u64 rate; 564 565 if (pdiv == 0) 566 return 0; 567 568 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); 569 do_div(rate, pdiv); 570 return rate >> A2W_PLL_FRAC_BITS; 571 } 572 573 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, 574 unsigned long *parent_rate) 575 { 576 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 577 const struct bcm2835_pll_data *data = pll->data; 578 u32 ndiv, fdiv; 579 580 rate = clamp(rate, data->min_rate, data->max_rate); 581 582 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); 583 584 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); 585 } 586 587 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, 588 unsigned long parent_rate) 589 { 590 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 591 struct bcm2835_cprman *cprman = pll->cprman; 592 const struct bcm2835_pll_data *data = pll->data; 593 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); 594 u32 ndiv, pdiv, fdiv; 595 bool using_prediv; 596 597 if (parent_rate == 0) 598 return 0; 599 600 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; 601 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; 602 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; 603 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & 604 bcm2835_pll_get_prediv_mask(cprman, data); 605 606 if (using_prediv) { 607 ndiv *= 2; 608 fdiv *= 2; 609 } 610 611 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); 612 } 613 614 static void bcm2835_pll_off(struct clk_hw *hw) 615 { 616 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 617 struct bcm2835_cprman *cprman = pll->cprman; 618 const struct bcm2835_pll_data *data = pll->data; 619 620 spin_lock(&cprman->regs_lock); 621 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST); 622 cprman_write(cprman, data->a2w_ctrl_reg, 623 cprman_read(cprman, data->a2w_ctrl_reg) | 624 A2W_PLL_CTRL_PWRDN); 625 spin_unlock(&cprman->regs_lock); 626 } 627 628 static int bcm2835_pll_on(struct clk_hw *hw) 629 { 630 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 631 struct bcm2835_cprman *cprman = pll->cprman; 632 const struct bcm2835_pll_data *data = pll->data; 633 ktime_t timeout; 634 635 cprman_write(cprman, data->a2w_ctrl_reg, 636 cprman_read(cprman, data->a2w_ctrl_reg) & 637 ~A2W_PLL_CTRL_PWRDN); 638 639 /* Take the PLL out of reset. */ 640 spin_lock(&cprman->regs_lock); 641 cprman_write(cprman, data->cm_ctrl_reg, 642 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); 643 spin_unlock(&cprman->regs_lock); 644 645 /* Wait for the PLL to lock. */ 646 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 647 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { 648 if (ktime_after(ktime_get(), timeout)) { 649 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 650 clk_hw_get_name(hw)); 651 return -ETIMEDOUT; 652 } 653 654 cpu_relax(); 655 } 656 657 cprman_write(cprman, data->a2w_ctrl_reg, 658 cprman_read(cprman, data->a2w_ctrl_reg) | 659 A2W_PLL_CTRL_PRST_DISABLE); 660 661 return 0; 662 } 663 664 static void 665 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) 666 { 667 int i; 668 669 /* 670 * ANA register setup is done as a series of writes to 671 * ANA3-ANA0, in that order. This lets us write all 4 672 * registers as a single cycle of the serdes interface (taking 673 * 100 xosc clocks), whereas if we were to update ana0, 1, and 674 * 3 individually through their partial-write registers, each 675 * would be their own serdes cycle. 676 */ 677 for (i = 3; i >= 0; i--) 678 cprman_write(cprman, ana_reg_base + i * 4, ana[i]); 679 } 680 681 static int bcm2835_pll_set_rate(struct clk_hw *hw, 682 unsigned long rate, unsigned long parent_rate) 683 { 684 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 685 struct bcm2835_cprman *cprman = pll->cprman; 686 const struct bcm2835_pll_data *data = pll->data; 687 u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data); 688 bool was_using_prediv, use_fb_prediv, do_ana_setup_first; 689 u32 ndiv, fdiv, a2w_ctl; 690 u32 ana[4]; 691 int i; 692 693 if (rate > data->max_fb_rate) { 694 use_fb_prediv = true; 695 rate /= 2; 696 } else { 697 use_fb_prediv = false; 698 } 699 700 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); 701 702 for (i = 3; i >= 0; i--) 703 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); 704 705 was_using_prediv = ana[1] & prediv_mask; 706 707 ana[0] &= ~data->ana->mask0; 708 ana[0] |= data->ana->set0; 709 ana[1] &= ~data->ana->mask1; 710 ana[1] |= data->ana->set1; 711 ana[3] &= ~data->ana->mask3; 712 ana[3] |= data->ana->set3; 713 714 if (was_using_prediv && !use_fb_prediv) { 715 ana[1] &= ~prediv_mask; 716 do_ana_setup_first = true; 717 } else if (!was_using_prediv && use_fb_prediv) { 718 ana[1] |= prediv_mask; 719 do_ana_setup_first = false; 720 } else { 721 do_ana_setup_first = true; 722 } 723 724 /* Unmask the reference clock from the oscillator. */ 725 spin_lock(&cprman->regs_lock); 726 cprman_write(cprman, A2W_XOSC_CTRL, 727 cprman_read(cprman, A2W_XOSC_CTRL) | 728 data->reference_enable_mask); 729 spin_unlock(&cprman->regs_lock); 730 731 if (do_ana_setup_first) 732 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 733 734 /* Set the PLL multiplier from the oscillator. */ 735 cprman_write(cprman, data->frac_reg, fdiv); 736 737 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); 738 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; 739 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; 740 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; 741 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; 742 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); 743 744 if (!do_ana_setup_first) 745 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 746 747 return 0; 748 } 749 750 static void bcm2835_pll_debug_init(struct clk_hw *hw, 751 struct dentry *dentry) 752 { 753 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 754 struct bcm2835_cprman *cprman = pll->cprman; 755 const struct bcm2835_pll_data *data = pll->data; 756 struct debugfs_reg32 *regs; 757 758 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL); 759 if (!regs) 760 return; 761 762 regs[0].name = "cm_ctrl"; 763 regs[0].offset = data->cm_ctrl_reg; 764 regs[1].name = "a2w_ctrl"; 765 regs[1].offset = data->a2w_ctrl_reg; 766 regs[2].name = "frac"; 767 regs[2].offset = data->frac_reg; 768 regs[3].name = "ana0"; 769 regs[3].offset = data->ana_reg_base + 0 * 4; 770 regs[4].name = "ana1"; 771 regs[4].offset = data->ana_reg_base + 1 * 4; 772 regs[5].name = "ana2"; 773 regs[5].offset = data->ana_reg_base + 2 * 4; 774 regs[6].name = "ana3"; 775 regs[6].offset = data->ana_reg_base + 3 * 4; 776 777 bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry); 778 } 779 780 static const struct clk_ops bcm2835_pll_clk_ops = { 781 .is_prepared = bcm2835_pll_is_on, 782 .prepare = bcm2835_pll_on, 783 .unprepare = bcm2835_pll_off, 784 .recalc_rate = bcm2835_pll_get_rate, 785 .set_rate = bcm2835_pll_set_rate, 786 .round_rate = bcm2835_pll_round_rate, 787 .debug_init = bcm2835_pll_debug_init, 788 }; 789 790 struct bcm2835_pll_divider { 791 struct clk_divider div; 792 struct bcm2835_cprman *cprman; 793 const struct bcm2835_pll_divider_data *data; 794 }; 795 796 static struct bcm2835_pll_divider * 797 bcm2835_pll_divider_from_hw(struct clk_hw *hw) 798 { 799 return container_of(hw, struct bcm2835_pll_divider, div.hw); 800 } 801 802 static int bcm2835_pll_divider_is_on(struct clk_hw *hw) 803 { 804 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 805 struct bcm2835_cprman *cprman = divider->cprman; 806 const struct bcm2835_pll_divider_data *data = divider->data; 807 808 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); 809 } 810 811 static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw, 812 struct clk_rate_request *req) 813 { 814 return clk_divider_ops.determine_rate(hw, req); 815 } 816 817 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, 818 unsigned long parent_rate) 819 { 820 return clk_divider_ops.recalc_rate(hw, parent_rate); 821 } 822 823 static void bcm2835_pll_divider_off(struct clk_hw *hw) 824 { 825 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 826 struct bcm2835_cprman *cprman = divider->cprman; 827 const struct bcm2835_pll_divider_data *data = divider->data; 828 829 spin_lock(&cprman->regs_lock); 830 cprman_write(cprman, data->cm_reg, 831 (cprman_read(cprman, data->cm_reg) & 832 ~data->load_mask) | data->hold_mask); 833 cprman_write(cprman, data->a2w_reg, 834 cprman_read(cprman, data->a2w_reg) | 835 A2W_PLL_CHANNEL_DISABLE); 836 spin_unlock(&cprman->regs_lock); 837 } 838 839 static int bcm2835_pll_divider_on(struct clk_hw *hw) 840 { 841 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 842 struct bcm2835_cprman *cprman = divider->cprman; 843 const struct bcm2835_pll_divider_data *data = divider->data; 844 845 spin_lock(&cprman->regs_lock); 846 cprman_write(cprman, data->a2w_reg, 847 cprman_read(cprman, data->a2w_reg) & 848 ~A2W_PLL_CHANNEL_DISABLE); 849 850 cprman_write(cprman, data->cm_reg, 851 cprman_read(cprman, data->cm_reg) & ~data->hold_mask); 852 spin_unlock(&cprman->regs_lock); 853 854 return 0; 855 } 856 857 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, 858 unsigned long rate, 859 unsigned long parent_rate) 860 { 861 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 862 struct bcm2835_cprman *cprman = divider->cprman; 863 const struct bcm2835_pll_divider_data *data = divider->data; 864 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS; 865 866 div = DIV_ROUND_UP_ULL(parent_rate, rate); 867 868 div = min(div, max_div); 869 if (div == max_div) 870 div = 0; 871 872 cprman_write(cprman, data->a2w_reg, div); 873 cm = cprman_read(cprman, data->cm_reg); 874 cprman_write(cprman, data->cm_reg, cm | data->load_mask); 875 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); 876 877 return 0; 878 } 879 880 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw, 881 struct dentry *dentry) 882 { 883 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 884 struct bcm2835_cprman *cprman = divider->cprman; 885 const struct bcm2835_pll_divider_data *data = divider->data; 886 struct debugfs_reg32 *regs; 887 888 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL); 889 if (!regs) 890 return; 891 892 regs[0].name = "cm"; 893 regs[0].offset = data->cm_reg; 894 regs[1].name = "a2w"; 895 regs[1].offset = data->a2w_reg; 896 897 bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry); 898 } 899 900 static const struct clk_ops bcm2835_pll_divider_clk_ops = { 901 .is_prepared = bcm2835_pll_divider_is_on, 902 .prepare = bcm2835_pll_divider_on, 903 .unprepare = bcm2835_pll_divider_off, 904 .recalc_rate = bcm2835_pll_divider_get_rate, 905 .set_rate = bcm2835_pll_divider_set_rate, 906 .determine_rate = bcm2835_pll_divider_determine_rate, 907 .debug_init = bcm2835_pll_divider_debug_init, 908 }; 909 910 /* 911 * The CM dividers do fixed-point division, so we can't use the 912 * generic integer divider code like the PLL dividers do (and we can't 913 * fake it by having some fixed shifts preceding it in the clock tree, 914 * because we'd run out of bits in a 32-bit unsigned long). 915 */ 916 struct bcm2835_clock { 917 struct clk_hw hw; 918 struct bcm2835_cprman *cprman; 919 const struct bcm2835_clock_data *data; 920 }; 921 922 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) 923 { 924 return container_of(hw, struct bcm2835_clock, hw); 925 } 926 927 static int bcm2835_clock_is_on(struct clk_hw *hw) 928 { 929 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 930 struct bcm2835_cprman *cprman = clock->cprman; 931 const struct bcm2835_clock_data *data = clock->data; 932 933 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; 934 } 935 936 static u32 bcm2835_clock_choose_div(struct clk_hw *hw, 937 unsigned long rate, 938 unsigned long parent_rate) 939 { 940 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 941 const struct bcm2835_clock_data *data = clock->data; 942 u32 unused_frac_mask = 943 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1; 944 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; 945 u32 div, mindiv, maxdiv; 946 947 do_div(temp, rate); 948 div = temp; 949 div &= ~unused_frac_mask; 950 951 /* different clamping limits apply for a mash clock */ 952 if (data->is_mash_clock) { 953 /* clamp to min divider of 2 */ 954 mindiv = 2 << CM_DIV_FRAC_BITS; 955 /* clamp to the highest possible integer divider */ 956 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS; 957 } else { 958 /* clamp to min divider of 1 */ 959 mindiv = 1 << CM_DIV_FRAC_BITS; 960 /* clamp to the highest possible fractional divider */ 961 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, 962 CM_DIV_FRAC_BITS - data->frac_bits); 963 } 964 965 /* apply the clamping limits */ 966 div = max_t(u32, div, mindiv); 967 div = min_t(u32, div, maxdiv); 968 969 return div; 970 } 971 972 static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, 973 unsigned long parent_rate, 974 u32 div) 975 { 976 const struct bcm2835_clock_data *data = clock->data; 977 u64 temp; 978 979 if (data->int_bits == 0 && data->frac_bits == 0) 980 return parent_rate; 981 982 /* 983 * The divisor is a 12.12 fixed point field, but only some of 984 * the bits are populated in any given clock. 985 */ 986 div >>= CM_DIV_FRAC_BITS - data->frac_bits; 987 div &= (1 << (data->int_bits + data->frac_bits)) - 1; 988 989 if (div == 0) 990 return 0; 991 992 temp = (u64)parent_rate << data->frac_bits; 993 994 do_div(temp, div); 995 996 return temp; 997 } 998 999 static unsigned long bcm2835_round_rate(unsigned long rate) 1000 { 1001 unsigned long scaler; 1002 unsigned long limit; 1003 1004 limit = rate / 100000; 1005 1006 scaler = 1; 1007 while (scaler < limit) 1008 scaler *= 10; 1009 1010 /* 1011 * If increasing a clock by less than 0.1% changes it 1012 * from ..999.. to ..000.., round up. 1013 */ 1014 if ((rate + scaler - 1) / scaler % 1000 == 0) 1015 rate = roundup(rate, scaler); 1016 1017 return rate; 1018 } 1019 1020 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, 1021 unsigned long parent_rate) 1022 { 1023 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1024 struct bcm2835_cprman *cprman = clock->cprman; 1025 const struct bcm2835_clock_data *data = clock->data; 1026 unsigned long rate; 1027 u32 div; 1028 1029 if (data->int_bits == 0 && data->frac_bits == 0) 1030 return parent_rate; 1031 1032 div = cprman_read(cprman, data->div_reg); 1033 1034 rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div); 1035 1036 if (data->round_up) 1037 rate = bcm2835_round_rate(rate); 1038 1039 return rate; 1040 } 1041 1042 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) 1043 { 1044 struct bcm2835_cprman *cprman = clock->cprman; 1045 const struct bcm2835_clock_data *data = clock->data; 1046 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 1047 1048 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { 1049 if (ktime_after(ktime_get(), timeout)) { 1050 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 1051 clk_hw_get_name(&clock->hw)); 1052 return; 1053 } 1054 cpu_relax(); 1055 } 1056 } 1057 1058 static void bcm2835_clock_off(struct clk_hw *hw) 1059 { 1060 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1061 struct bcm2835_cprman *cprman = clock->cprman; 1062 const struct bcm2835_clock_data *data = clock->data; 1063 1064 spin_lock(&cprman->regs_lock); 1065 cprman_write(cprman, data->ctl_reg, 1066 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); 1067 spin_unlock(&cprman->regs_lock); 1068 1069 /* BUSY will remain high until the divider completes its cycle. */ 1070 bcm2835_clock_wait_busy(clock); 1071 } 1072 1073 static int bcm2835_clock_on(struct clk_hw *hw) 1074 { 1075 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1076 struct bcm2835_cprman *cprman = clock->cprman; 1077 const struct bcm2835_clock_data *data = clock->data; 1078 1079 spin_lock(&cprman->regs_lock); 1080 cprman_write(cprman, data->ctl_reg, 1081 cprman_read(cprman, data->ctl_reg) | 1082 CM_ENABLE | 1083 CM_GATE); 1084 spin_unlock(&cprman->regs_lock); 1085 1086 /* Debug code to measure the clock once it's turned on to see 1087 * if it's ticking at the rate we expect. 1088 */ 1089 if (data->tcnt_mux && false) { 1090 dev_info(cprman->dev, 1091 "clk %s: rate %ld, measure %ld\n", 1092 data->name, 1093 clk_hw_get_rate(hw), 1094 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux)); 1095 } 1096 1097 return 0; 1098 } 1099 1100 static int bcm2835_clock_set_rate(struct clk_hw *hw, 1101 unsigned long rate, unsigned long parent_rate) 1102 { 1103 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1104 struct bcm2835_cprman *cprman = clock->cprman; 1105 const struct bcm2835_clock_data *data = clock->data; 1106 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate); 1107 u32 ctl; 1108 1109 spin_lock(&cprman->regs_lock); 1110 1111 /* 1112 * Setting up frac support 1113 * 1114 * In principle it is recommended to stop/start the clock first, 1115 * but as we set CLK_SET_RATE_GATE during registration of the 1116 * clock this requirement should be take care of by the 1117 * clk-framework. 1118 */ 1119 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC; 1120 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0; 1121 cprman_write(cprman, data->ctl_reg, ctl); 1122 1123 cprman_write(cprman, data->div_reg, div); 1124 1125 spin_unlock(&cprman->regs_lock); 1126 1127 return 0; 1128 } 1129 1130 static bool 1131 bcm2835_clk_is_pllc(struct clk_hw *hw) 1132 { 1133 if (!hw) 1134 return false; 1135 1136 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0; 1137 } 1138 1139 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw, 1140 int parent_idx, 1141 unsigned long rate, 1142 u32 *div, 1143 unsigned long *prate, 1144 unsigned long *avgrate) 1145 { 1146 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1147 struct bcm2835_cprman *cprman = clock->cprman; 1148 const struct bcm2835_clock_data *data = clock->data; 1149 unsigned long best_rate = 0; 1150 u32 curdiv, mindiv, maxdiv; 1151 struct clk_hw *parent; 1152 1153 parent = clk_hw_get_parent_by_index(hw, parent_idx); 1154 1155 if (!(BIT(parent_idx) & data->set_rate_parent)) { 1156 *prate = clk_hw_get_rate(parent); 1157 *div = bcm2835_clock_choose_div(hw, rate, *prate); 1158 1159 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div); 1160 1161 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) { 1162 unsigned long high, low; 1163 u32 int_div = *div & ~CM_DIV_FRAC_MASK; 1164 1165 high = bcm2835_clock_rate_from_divisor(clock, *prate, 1166 int_div); 1167 int_div += CM_DIV_FRAC_MASK + 1; 1168 low = bcm2835_clock_rate_from_divisor(clock, *prate, 1169 int_div); 1170 1171 /* 1172 * Return a value which is the maximum deviation 1173 * below the ideal rate, for use as a metric. 1174 */ 1175 return *avgrate - max(*avgrate - low, high - *avgrate); 1176 } 1177 return *avgrate; 1178 } 1179 1180 if (data->frac_bits) 1181 dev_warn(cprman->dev, 1182 "frac bits are not used when propagating rate change"); 1183 1184 /* clamp to min divider of 2 if we're dealing with a mash clock */ 1185 mindiv = data->is_mash_clock ? 2 : 1; 1186 maxdiv = BIT(data->int_bits) - 1; 1187 1188 /* TODO: Be smart, and only test a subset of the available divisors. */ 1189 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) { 1190 unsigned long tmp_rate; 1191 1192 tmp_rate = clk_hw_round_rate(parent, rate * curdiv); 1193 tmp_rate /= curdiv; 1194 if (curdiv == mindiv || 1195 (tmp_rate > best_rate && tmp_rate <= rate)) 1196 best_rate = tmp_rate; 1197 1198 if (best_rate == rate) 1199 break; 1200 } 1201 1202 *div = curdiv << CM_DIV_FRAC_BITS; 1203 *prate = curdiv * best_rate; 1204 *avgrate = best_rate; 1205 1206 return best_rate; 1207 } 1208 1209 static int bcm2835_clock_determine_rate(struct clk_hw *hw, 1210 struct clk_rate_request *req) 1211 { 1212 struct clk_hw *parent, *best_parent = NULL; 1213 bool current_parent_is_pllc; 1214 unsigned long rate, best_rate = 0; 1215 unsigned long prate, best_prate = 0; 1216 unsigned long avgrate, best_avgrate = 0; 1217 size_t i; 1218 u32 div; 1219 1220 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw)); 1221 1222 /* 1223 * Select parent clock that results in the closest but lower rate 1224 */ 1225 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) { 1226 parent = clk_hw_get_parent_by_index(hw, i); 1227 if (!parent) 1228 continue; 1229 1230 /* 1231 * Don't choose a PLLC-derived clock as our parent 1232 * unless it had been manually set that way. PLLC's 1233 * frequency gets adjusted by the firmware due to 1234 * over-temp or under-voltage conditions, without 1235 * prior notification to our clock consumer. 1236 */ 1237 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc) 1238 continue; 1239 1240 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate, 1241 &div, &prate, 1242 &avgrate); 1243 if (abs(req->rate - rate) < abs(req->rate - best_rate)) { 1244 best_parent = parent; 1245 best_prate = prate; 1246 best_rate = rate; 1247 best_avgrate = avgrate; 1248 } 1249 } 1250 1251 if (!best_parent) 1252 return -EINVAL; 1253 1254 req->best_parent_hw = best_parent; 1255 req->best_parent_rate = best_prate; 1256 1257 req->rate = best_avgrate; 1258 1259 return 0; 1260 } 1261 1262 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index) 1263 { 1264 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1265 struct bcm2835_cprman *cprman = clock->cprman; 1266 const struct bcm2835_clock_data *data = clock->data; 1267 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK; 1268 1269 cprman_write(cprman, data->ctl_reg, src); 1270 return 0; 1271 } 1272 1273 static u8 bcm2835_clock_get_parent(struct clk_hw *hw) 1274 { 1275 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1276 struct bcm2835_cprman *cprman = clock->cprman; 1277 const struct bcm2835_clock_data *data = clock->data; 1278 u32 src = cprman_read(cprman, data->ctl_reg); 1279 1280 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT; 1281 } 1282 1283 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = { 1284 { 1285 .name = "ctl", 1286 .offset = 0, 1287 }, 1288 { 1289 .name = "div", 1290 .offset = 4, 1291 }, 1292 }; 1293 1294 static void bcm2835_clock_debug_init(struct clk_hw *hw, 1295 struct dentry *dentry) 1296 { 1297 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1298 struct bcm2835_cprman *cprman = clock->cprman; 1299 const struct bcm2835_clock_data *data = clock->data; 1300 1301 bcm2835_debugfs_regset(cprman, data->ctl_reg, 1302 bcm2835_debugfs_clock_reg32, 1303 ARRAY_SIZE(bcm2835_debugfs_clock_reg32), 1304 dentry); 1305 } 1306 1307 static const struct clk_ops bcm2835_clock_clk_ops = { 1308 .is_prepared = bcm2835_clock_is_on, 1309 .prepare = bcm2835_clock_on, 1310 .unprepare = bcm2835_clock_off, 1311 .recalc_rate = bcm2835_clock_get_rate, 1312 .set_rate = bcm2835_clock_set_rate, 1313 .determine_rate = bcm2835_clock_determine_rate, 1314 .set_parent = bcm2835_clock_set_parent, 1315 .get_parent = bcm2835_clock_get_parent, 1316 .debug_init = bcm2835_clock_debug_init, 1317 }; 1318 1319 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) 1320 { 1321 return true; 1322 } 1323 1324 /* 1325 * The VPU clock can never be disabled (it doesn't have an ENABLE 1326 * bit), so it gets its own set of clock ops. 1327 */ 1328 static const struct clk_ops bcm2835_vpu_clock_clk_ops = { 1329 .is_prepared = bcm2835_vpu_clock_is_on, 1330 .recalc_rate = bcm2835_clock_get_rate, 1331 .set_rate = bcm2835_clock_set_rate, 1332 .determine_rate = bcm2835_clock_determine_rate, 1333 .set_parent = bcm2835_clock_set_parent, 1334 .get_parent = bcm2835_clock_get_parent, 1335 .debug_init = bcm2835_clock_debug_init, 1336 }; 1337 1338 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman, 1339 const void *data) 1340 { 1341 const struct bcm2835_pll_data *pll_data = data; 1342 struct bcm2835_pll *pll; 1343 struct clk_init_data init; 1344 int ret; 1345 1346 memset(&init, 0, sizeof(init)); 1347 1348 /* All of the PLLs derive from the external oscillator. */ 1349 init.parent_names = &cprman->real_parent_names[0]; 1350 init.num_parents = 1; 1351 init.name = pll_data->name; 1352 init.ops = &bcm2835_pll_clk_ops; 1353 init.flags = pll_data->flags | CLK_IGNORE_UNUSED; 1354 1355 pll = kzalloc(sizeof(*pll), GFP_KERNEL); 1356 if (!pll) 1357 return NULL; 1358 1359 pll->cprman = cprman; 1360 pll->data = pll_data; 1361 pll->hw.init = &init; 1362 1363 ret = devm_clk_hw_register(cprman->dev, &pll->hw); 1364 if (ret) { 1365 kfree(pll); 1366 return NULL; 1367 } 1368 return &pll->hw; 1369 } 1370 1371 static struct clk_hw * 1372 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, 1373 const void *data) 1374 { 1375 const struct bcm2835_pll_divider_data *divider_data = data; 1376 struct bcm2835_pll_divider *divider; 1377 struct clk_init_data init; 1378 const char *divider_name; 1379 int ret; 1380 1381 if (divider_data->fixed_divider != 1) { 1382 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, 1383 "%s_prediv", divider_data->name); 1384 if (!divider_name) 1385 return NULL; 1386 } else { 1387 divider_name = divider_data->name; 1388 } 1389 1390 memset(&init, 0, sizeof(init)); 1391 1392 init.parent_names = ÷r_data->source_pll; 1393 init.num_parents = 1; 1394 init.name = divider_name; 1395 init.ops = &bcm2835_pll_divider_clk_ops; 1396 init.flags = divider_data->flags | CLK_IGNORE_UNUSED; 1397 1398 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); 1399 if (!divider) 1400 return NULL; 1401 1402 divider->div.reg = cprman->regs + divider_data->a2w_reg; 1403 divider->div.shift = A2W_PLL_DIV_SHIFT; 1404 divider->div.width = A2W_PLL_DIV_BITS; 1405 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO; 1406 divider->div.lock = &cprman->regs_lock; 1407 divider->div.hw.init = &init; 1408 divider->div.table = NULL; 1409 1410 divider->cprman = cprman; 1411 divider->data = divider_data; 1412 1413 ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw); 1414 if (ret) 1415 return ERR_PTR(ret); 1416 1417 /* 1418 * PLLH's channels have a fixed divide by 10 afterwards, which 1419 * is what our consumers are actually using. 1420 */ 1421 if (divider_data->fixed_divider != 1) { 1422 return clk_hw_register_fixed_factor(cprman->dev, 1423 divider_data->name, 1424 divider_name, 1425 CLK_SET_RATE_PARENT, 1426 1, 1427 divider_data->fixed_divider); 1428 } 1429 1430 return ÷r->div.hw; 1431 } 1432 1433 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman, 1434 const void *data) 1435 { 1436 const struct bcm2835_clock_data *clock_data = data; 1437 struct bcm2835_clock *clock; 1438 struct clk_init_data init; 1439 const char *parents[1 << CM_SRC_BITS]; 1440 size_t i; 1441 int ret; 1442 1443 /* 1444 * Replace our strings referencing parent clocks with the 1445 * actual clock-output-name of the parent. 1446 */ 1447 for (i = 0; i < clock_data->num_mux_parents; i++) { 1448 parents[i] = clock_data->parents[i]; 1449 1450 ret = match_string(cprman_parent_names, 1451 ARRAY_SIZE(cprman_parent_names), 1452 parents[i]); 1453 if (ret >= 0) 1454 parents[i] = cprman->real_parent_names[ret]; 1455 } 1456 1457 memset(&init, 0, sizeof(init)); 1458 init.parent_names = parents; 1459 init.num_parents = clock_data->num_mux_parents; 1460 init.name = clock_data->name; 1461 init.flags = clock_data->flags | CLK_IGNORE_UNUSED; 1462 1463 /* 1464 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate 1465 * rate changes on at least of the parents. 1466 */ 1467 if (clock_data->set_rate_parent) 1468 init.flags |= CLK_SET_RATE_PARENT; 1469 1470 if (clock_data->is_vpu_clock) { 1471 init.ops = &bcm2835_vpu_clock_clk_ops; 1472 } else { 1473 init.ops = &bcm2835_clock_clk_ops; 1474 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; 1475 1476 /* If the clock wasn't actually enabled at boot, it's not 1477 * critical. 1478 */ 1479 if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE)) 1480 init.flags &= ~CLK_IS_CRITICAL; 1481 } 1482 1483 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); 1484 if (!clock) 1485 return NULL; 1486 1487 clock->cprman = cprman; 1488 clock->data = clock_data; 1489 clock->hw.init = &init; 1490 1491 ret = devm_clk_hw_register(cprman->dev, &clock->hw); 1492 if (ret) 1493 return ERR_PTR(ret); 1494 return &clock->hw; 1495 } 1496 1497 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman, 1498 const void *data) 1499 { 1500 const struct bcm2835_gate_data *gate_data = data; 1501 1502 return clk_hw_register_gate(cprman->dev, gate_data->name, 1503 gate_data->parent, 1504 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, 1505 cprman->regs + gate_data->ctl_reg, 1506 CM_GATE_BIT, 0, &cprman->regs_lock); 1507 } 1508 1509 struct bcm2835_clk_desc { 1510 struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman, 1511 const void *data); 1512 unsigned int supported; 1513 const void *data; 1514 }; 1515 1516 /* assignment helper macros for different clock types */ 1517 #define _REGISTER(f, s, ...) { .clk_register = f, \ 1518 .supported = s, \ 1519 .data = __VA_ARGS__ } 1520 #define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \ 1521 s, \ 1522 &(struct bcm2835_pll_data) \ 1523 {__VA_ARGS__}) 1524 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \ 1525 s, \ 1526 &(struct bcm2835_pll_divider_data) \ 1527 {__VA_ARGS__}) 1528 #define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \ 1529 s, \ 1530 &(struct bcm2835_clock_data) \ 1531 {__VA_ARGS__}) 1532 #define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \ 1533 s, \ 1534 &(struct bcm2835_gate_data) \ 1535 {__VA_ARGS__}) 1536 1537 /* parent mux arrays plus helper macros */ 1538 1539 /* main oscillator parent mux */ 1540 static const char *const bcm2835_clock_osc_parents[] = { 1541 "gnd", 1542 "xosc", 1543 "testdebug0", 1544 "testdebug1" 1545 }; 1546 1547 #define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \ 1548 s, \ 1549 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \ 1550 .parents = bcm2835_clock_osc_parents, \ 1551 __VA_ARGS__) 1552 1553 /* main peripherial parent mux */ 1554 static const char *const bcm2835_clock_per_parents[] = { 1555 "gnd", 1556 "xosc", 1557 "testdebug0", 1558 "testdebug1", 1559 "plla_per", 1560 "pllc_per", 1561 "plld_per", 1562 "pllh_aux", 1563 }; 1564 1565 #define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \ 1566 s, \ 1567 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \ 1568 .parents = bcm2835_clock_per_parents, \ 1569 __VA_ARGS__) 1570 1571 /* 1572 * Restrict clock sources for the PCM peripheral to the oscillator and 1573 * PLLD_PER because other source may have varying rates or be switched 1574 * off. 1575 * 1576 * Prevent other sources from being selected by replacing their names in 1577 * the list of potential parents with dummy entries (entry index is 1578 * significant). 1579 */ 1580 static const char *const bcm2835_pcm_per_parents[] = { 1581 "-", 1582 "xosc", 1583 "-", 1584 "-", 1585 "-", 1586 "-", 1587 "plld_per", 1588 "-", 1589 }; 1590 1591 #define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \ 1592 s, \ 1593 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \ 1594 .parents = bcm2835_pcm_per_parents, \ 1595 __VA_ARGS__) 1596 1597 /* main vpu parent mux */ 1598 static const char *const bcm2835_clock_vpu_parents[] = { 1599 "gnd", 1600 "xosc", 1601 "testdebug0", 1602 "testdebug1", 1603 "plla_core", 1604 "pllc_core0", 1605 "plld_core", 1606 "pllh_aux", 1607 "pllc_core1", 1608 "pllc_core2", 1609 }; 1610 1611 #define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \ 1612 s, \ 1613 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \ 1614 .parents = bcm2835_clock_vpu_parents, \ 1615 __VA_ARGS__) 1616 1617 /* 1618 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI 1619 * analog PHY. The _inv variants are generated internally to cprman, 1620 * but we don't use them so they aren't hooked up. 1621 */ 1622 static const char *const bcm2835_clock_dsi0_parents[] = { 1623 "gnd", 1624 "xosc", 1625 "testdebug0", 1626 "testdebug1", 1627 "dsi0_ddr", 1628 "dsi0_ddr_inv", 1629 "dsi0_ddr2", 1630 "dsi0_ddr2_inv", 1631 "dsi0_byte", 1632 "dsi0_byte_inv", 1633 }; 1634 1635 static const char *const bcm2835_clock_dsi1_parents[] = { 1636 "gnd", 1637 "xosc", 1638 "testdebug0", 1639 "testdebug1", 1640 "dsi1_ddr", 1641 "dsi1_ddr_inv", 1642 "dsi1_ddr2", 1643 "dsi1_ddr2_inv", 1644 "dsi1_byte", 1645 "dsi1_byte_inv", 1646 }; 1647 1648 #define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \ 1649 s, \ 1650 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \ 1651 .parents = bcm2835_clock_dsi0_parents, \ 1652 __VA_ARGS__) 1653 1654 #define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \ 1655 s, \ 1656 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \ 1657 .parents = bcm2835_clock_dsi1_parents, \ 1658 __VA_ARGS__) 1659 1660 /* 1661 * the real definition of all the pll, pll_dividers and clocks 1662 * these make use of the above REGISTER_* macros 1663 */ 1664 static const struct bcm2835_clk_desc clk_desc_array[] = { 1665 /* the PLL + PLL dividers */ 1666 1667 /* 1668 * PLLA is the auxiliary PLL, used to drive the CCP2 1669 * (Compact Camera Port 2) transmitter clock. 1670 * 1671 * It is in the PX LDO power domain, which is on when the 1672 * AUDIO domain is on. 1673 */ 1674 [BCM2835_PLLA] = REGISTER_PLL( 1675 SOC_ALL, 1676 .name = "plla", 1677 .cm_ctrl_reg = CM_PLLA, 1678 .a2w_ctrl_reg = A2W_PLLA_CTRL, 1679 .frac_reg = A2W_PLLA_FRAC, 1680 .ana_reg_base = A2W_PLLA_ANA0, 1681 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, 1682 .lock_mask = CM_LOCK_FLOCKA, 1683 1684 .ana = &bcm2835_ana_default, 1685 1686 .min_rate = 600000000u, 1687 .max_rate = 2400000000u, 1688 .max_fb_rate = BCM2835_MAX_FB_RATE), 1689 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV( 1690 SOC_ALL, 1691 .name = "plla_core", 1692 .source_pll = "plla", 1693 .cm_reg = CM_PLLA, 1694 .a2w_reg = A2W_PLLA_CORE, 1695 .load_mask = CM_PLLA_LOADCORE, 1696 .hold_mask = CM_PLLA_HOLDCORE, 1697 .fixed_divider = 1, 1698 .flags = CLK_SET_RATE_PARENT), 1699 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV( 1700 SOC_ALL, 1701 .name = "plla_per", 1702 .source_pll = "plla", 1703 .cm_reg = CM_PLLA, 1704 .a2w_reg = A2W_PLLA_PER, 1705 .load_mask = CM_PLLA_LOADPER, 1706 .hold_mask = CM_PLLA_HOLDPER, 1707 .fixed_divider = 1, 1708 .flags = CLK_SET_RATE_PARENT), 1709 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV( 1710 SOC_ALL, 1711 .name = "plla_dsi0", 1712 .source_pll = "plla", 1713 .cm_reg = CM_PLLA, 1714 .a2w_reg = A2W_PLLA_DSI0, 1715 .load_mask = CM_PLLA_LOADDSI0, 1716 .hold_mask = CM_PLLA_HOLDDSI0, 1717 .fixed_divider = 1), 1718 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV( 1719 SOC_ALL, 1720 .name = "plla_ccp2", 1721 .source_pll = "plla", 1722 .cm_reg = CM_PLLA, 1723 .a2w_reg = A2W_PLLA_CCP2, 1724 .load_mask = CM_PLLA_LOADCCP2, 1725 .hold_mask = CM_PLLA_HOLDCCP2, 1726 .fixed_divider = 1, 1727 .flags = CLK_SET_RATE_PARENT), 1728 1729 /* PLLB is used for the ARM's clock. */ 1730 [BCM2835_PLLB] = REGISTER_PLL( 1731 SOC_ALL, 1732 .name = "pllb", 1733 .cm_ctrl_reg = CM_PLLB, 1734 .a2w_ctrl_reg = A2W_PLLB_CTRL, 1735 .frac_reg = A2W_PLLB_FRAC, 1736 .ana_reg_base = A2W_PLLB_ANA0, 1737 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE, 1738 .lock_mask = CM_LOCK_FLOCKB, 1739 1740 .ana = &bcm2835_ana_default, 1741 1742 .min_rate = 600000000u, 1743 .max_rate = 3000000000u, 1744 .max_fb_rate = BCM2835_MAX_FB_RATE, 1745 .flags = CLK_GET_RATE_NOCACHE), 1746 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV( 1747 SOC_ALL, 1748 .name = "pllb_arm", 1749 .source_pll = "pllb", 1750 .cm_reg = CM_PLLB, 1751 .a2w_reg = A2W_PLLB_ARM, 1752 .load_mask = CM_PLLB_LOADARM, 1753 .hold_mask = CM_PLLB_HOLDARM, 1754 .fixed_divider = 1, 1755 .flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE), 1756 1757 /* 1758 * PLLC is the core PLL, used to drive the core VPU clock. 1759 * 1760 * It is in the PX LDO power domain, which is on when the 1761 * AUDIO domain is on. 1762 */ 1763 [BCM2835_PLLC] = REGISTER_PLL( 1764 SOC_ALL, 1765 .name = "pllc", 1766 .cm_ctrl_reg = CM_PLLC, 1767 .a2w_ctrl_reg = A2W_PLLC_CTRL, 1768 .frac_reg = A2W_PLLC_FRAC, 1769 .ana_reg_base = A2W_PLLC_ANA0, 1770 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1771 .lock_mask = CM_LOCK_FLOCKC, 1772 1773 .ana = &bcm2835_ana_default, 1774 1775 .min_rate = 600000000u, 1776 .max_rate = 3000000000u, 1777 .max_fb_rate = BCM2835_MAX_FB_RATE), 1778 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV( 1779 SOC_ALL, 1780 .name = "pllc_core0", 1781 .source_pll = "pllc", 1782 .cm_reg = CM_PLLC, 1783 .a2w_reg = A2W_PLLC_CORE0, 1784 .load_mask = CM_PLLC_LOADCORE0, 1785 .hold_mask = CM_PLLC_HOLDCORE0, 1786 .fixed_divider = 1, 1787 .flags = CLK_SET_RATE_PARENT), 1788 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV( 1789 SOC_ALL, 1790 .name = "pllc_core1", 1791 .source_pll = "pllc", 1792 .cm_reg = CM_PLLC, 1793 .a2w_reg = A2W_PLLC_CORE1, 1794 .load_mask = CM_PLLC_LOADCORE1, 1795 .hold_mask = CM_PLLC_HOLDCORE1, 1796 .fixed_divider = 1, 1797 .flags = CLK_SET_RATE_PARENT), 1798 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV( 1799 SOC_ALL, 1800 .name = "pllc_core2", 1801 .source_pll = "pllc", 1802 .cm_reg = CM_PLLC, 1803 .a2w_reg = A2W_PLLC_CORE2, 1804 .load_mask = CM_PLLC_LOADCORE2, 1805 .hold_mask = CM_PLLC_HOLDCORE2, 1806 .fixed_divider = 1, 1807 .flags = CLK_SET_RATE_PARENT), 1808 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV( 1809 SOC_ALL, 1810 .name = "pllc_per", 1811 .source_pll = "pllc", 1812 .cm_reg = CM_PLLC, 1813 .a2w_reg = A2W_PLLC_PER, 1814 .load_mask = CM_PLLC_LOADPER, 1815 .hold_mask = CM_PLLC_HOLDPER, 1816 .fixed_divider = 1, 1817 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT), 1818 1819 /* 1820 * PLLD is the display PLL, used to drive DSI display panels. 1821 * 1822 * It is in the PX LDO power domain, which is on when the 1823 * AUDIO domain is on. 1824 */ 1825 [BCM2835_PLLD] = REGISTER_PLL( 1826 SOC_ALL, 1827 .name = "plld", 1828 .cm_ctrl_reg = CM_PLLD, 1829 .a2w_ctrl_reg = A2W_PLLD_CTRL, 1830 .frac_reg = A2W_PLLD_FRAC, 1831 .ana_reg_base = A2W_PLLD_ANA0, 1832 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, 1833 .lock_mask = CM_LOCK_FLOCKD, 1834 1835 .ana = &bcm2835_ana_default, 1836 1837 .min_rate = 600000000u, 1838 .max_rate = 2400000000u, 1839 .max_fb_rate = BCM2835_MAX_FB_RATE), 1840 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV( 1841 SOC_ALL, 1842 .name = "plld_core", 1843 .source_pll = "plld", 1844 .cm_reg = CM_PLLD, 1845 .a2w_reg = A2W_PLLD_CORE, 1846 .load_mask = CM_PLLD_LOADCORE, 1847 .hold_mask = CM_PLLD_HOLDCORE, 1848 .fixed_divider = 1, 1849 .flags = CLK_SET_RATE_PARENT), 1850 /* 1851 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core. 1852 * Otherwise this could cause firmware lookups. That's why we mark 1853 * it as critical. 1854 */ 1855 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV( 1856 SOC_ALL, 1857 .name = "plld_per", 1858 .source_pll = "plld", 1859 .cm_reg = CM_PLLD, 1860 .a2w_reg = A2W_PLLD_PER, 1861 .load_mask = CM_PLLD_LOADPER, 1862 .hold_mask = CM_PLLD_HOLDPER, 1863 .fixed_divider = 1, 1864 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT), 1865 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV( 1866 SOC_ALL, 1867 .name = "plld_dsi0", 1868 .source_pll = "plld", 1869 .cm_reg = CM_PLLD, 1870 .a2w_reg = A2W_PLLD_DSI0, 1871 .load_mask = CM_PLLD_LOADDSI0, 1872 .hold_mask = CM_PLLD_HOLDDSI0, 1873 .fixed_divider = 1), 1874 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV( 1875 SOC_ALL, 1876 .name = "plld_dsi1", 1877 .source_pll = "plld", 1878 .cm_reg = CM_PLLD, 1879 .a2w_reg = A2W_PLLD_DSI1, 1880 .load_mask = CM_PLLD_LOADDSI1, 1881 .hold_mask = CM_PLLD_HOLDDSI1, 1882 .fixed_divider = 1), 1883 1884 /* 1885 * PLLH is used to supply the pixel clock or the AUX clock for the 1886 * TV encoder. 1887 * 1888 * It is in the HDMI power domain. 1889 */ 1890 [BCM2835_PLLH] = REGISTER_PLL( 1891 SOC_BCM2835, 1892 "pllh", 1893 .cm_ctrl_reg = CM_PLLH, 1894 .a2w_ctrl_reg = A2W_PLLH_CTRL, 1895 .frac_reg = A2W_PLLH_FRAC, 1896 .ana_reg_base = A2W_PLLH_ANA0, 1897 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1898 .lock_mask = CM_LOCK_FLOCKH, 1899 1900 .ana = &bcm2835_ana_pllh, 1901 1902 .min_rate = 600000000u, 1903 .max_rate = 3000000000u, 1904 .max_fb_rate = BCM2835_MAX_FB_RATE), 1905 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV( 1906 SOC_BCM2835, 1907 .name = "pllh_rcal", 1908 .source_pll = "pllh", 1909 .cm_reg = CM_PLLH, 1910 .a2w_reg = A2W_PLLH_RCAL, 1911 .load_mask = CM_PLLH_LOADRCAL, 1912 .hold_mask = 0, 1913 .fixed_divider = 10, 1914 .flags = CLK_SET_RATE_PARENT), 1915 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV( 1916 SOC_BCM2835, 1917 .name = "pllh_aux", 1918 .source_pll = "pllh", 1919 .cm_reg = CM_PLLH, 1920 .a2w_reg = A2W_PLLH_AUX, 1921 .load_mask = CM_PLLH_LOADAUX, 1922 .hold_mask = 0, 1923 .fixed_divider = 1, 1924 .flags = CLK_SET_RATE_PARENT), 1925 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV( 1926 SOC_BCM2835, 1927 .name = "pllh_pix", 1928 .source_pll = "pllh", 1929 .cm_reg = CM_PLLH, 1930 .a2w_reg = A2W_PLLH_PIX, 1931 .load_mask = CM_PLLH_LOADPIX, 1932 .hold_mask = 0, 1933 .fixed_divider = 10, 1934 .flags = CLK_SET_RATE_PARENT), 1935 1936 /* the clocks */ 1937 1938 /* clocks with oscillator parent mux */ 1939 1940 /* One Time Programmable Memory clock. Maximum 10Mhz. */ 1941 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK( 1942 SOC_ALL, 1943 .name = "otp", 1944 .ctl_reg = CM_OTPCTL, 1945 .div_reg = CM_OTPDIV, 1946 .int_bits = 4, 1947 .frac_bits = 0, 1948 .tcnt_mux = 6), 1949 /* 1950 * Used for a 1Mhz clock for the system clocksource, and also used 1951 * bythe watchdog timer and the camera pulse generator. 1952 */ 1953 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK( 1954 SOC_ALL, 1955 .name = "timer", 1956 .ctl_reg = CM_TIMERCTL, 1957 .div_reg = CM_TIMERDIV, 1958 .int_bits = 6, 1959 .frac_bits = 12), 1960 /* 1961 * Clock for the temperature sensor. 1962 * Generally run at 2Mhz, max 5Mhz. 1963 */ 1964 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK( 1965 SOC_ALL, 1966 .name = "tsens", 1967 .ctl_reg = CM_TSENSCTL, 1968 .div_reg = CM_TSENSDIV, 1969 .int_bits = 5, 1970 .frac_bits = 0), 1971 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK( 1972 SOC_ALL, 1973 .name = "tec", 1974 .ctl_reg = CM_TECCTL, 1975 .div_reg = CM_TECDIV, 1976 .int_bits = 6, 1977 .frac_bits = 0), 1978 1979 /* clocks with vpu parent mux */ 1980 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK( 1981 SOC_ALL, 1982 .name = "h264", 1983 .ctl_reg = CM_H264CTL, 1984 .div_reg = CM_H264DIV, 1985 .int_bits = 4, 1986 .frac_bits = 8, 1987 .tcnt_mux = 1), 1988 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK( 1989 SOC_ALL, 1990 .name = "isp", 1991 .ctl_reg = CM_ISPCTL, 1992 .div_reg = CM_ISPDIV, 1993 .int_bits = 4, 1994 .frac_bits = 8, 1995 .tcnt_mux = 2), 1996 1997 /* 1998 * Secondary SDRAM clock. Used for low-voltage modes when the PLL 1999 * in the SDRAM controller can't be used. 2000 */ 2001 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK( 2002 SOC_ALL, 2003 .name = "sdram", 2004 .ctl_reg = CM_SDCCTL, 2005 .div_reg = CM_SDCDIV, 2006 .int_bits = 6, 2007 .frac_bits = 0, 2008 .tcnt_mux = 3), 2009 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK( 2010 SOC_ALL, 2011 .name = "v3d", 2012 .ctl_reg = CM_V3DCTL, 2013 .div_reg = CM_V3DDIV, 2014 .int_bits = 4, 2015 .frac_bits = 8, 2016 .tcnt_mux = 4), 2017 /* 2018 * VPU clock. This doesn't have an enable bit, since it drives 2019 * the bus for everything else, and is special so it doesn't need 2020 * to be gated for rate changes. It is also known as "clk_audio" 2021 * in various hardware documentation. 2022 */ 2023 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK( 2024 SOC_ALL, 2025 .name = "vpu", 2026 .ctl_reg = CM_VPUCTL, 2027 .div_reg = CM_VPUDIV, 2028 .int_bits = 12, 2029 .frac_bits = 8, 2030 .flags = CLK_IS_CRITICAL, 2031 .is_vpu_clock = true, 2032 .tcnt_mux = 5), 2033 2034 /* clocks with per parent mux */ 2035 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK( 2036 SOC_ALL, 2037 .name = "aveo", 2038 .ctl_reg = CM_AVEOCTL, 2039 .div_reg = CM_AVEODIV, 2040 .int_bits = 4, 2041 .frac_bits = 0, 2042 .tcnt_mux = 38), 2043 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK( 2044 SOC_ALL, 2045 .name = "cam0", 2046 .ctl_reg = CM_CAM0CTL, 2047 .div_reg = CM_CAM0DIV, 2048 .int_bits = 4, 2049 .frac_bits = 8, 2050 .tcnt_mux = 14), 2051 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK( 2052 SOC_ALL, 2053 .name = "cam1", 2054 .ctl_reg = CM_CAM1CTL, 2055 .div_reg = CM_CAM1DIV, 2056 .int_bits = 4, 2057 .frac_bits = 8, 2058 .tcnt_mux = 15), 2059 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK( 2060 SOC_ALL, 2061 .name = "dft", 2062 .ctl_reg = CM_DFTCTL, 2063 .div_reg = CM_DFTDIV, 2064 .int_bits = 5, 2065 .frac_bits = 0), 2066 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK( 2067 SOC_ALL, 2068 .name = "dpi", 2069 .ctl_reg = CM_DPICTL, 2070 .div_reg = CM_DPIDIV, 2071 .int_bits = 4, 2072 .frac_bits = 8, 2073 .tcnt_mux = 17), 2074 2075 /* Arasan EMMC clock */ 2076 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK( 2077 SOC_ALL, 2078 .name = "emmc", 2079 .ctl_reg = CM_EMMCCTL, 2080 .div_reg = CM_EMMCDIV, 2081 .int_bits = 4, 2082 .frac_bits = 8, 2083 .tcnt_mux = 39), 2084 2085 /* EMMC2 clock (only available for BCM2711) */ 2086 [BCM2711_CLOCK_EMMC2] = REGISTER_PER_CLK( 2087 SOC_BCM2711, 2088 .name = "emmc2", 2089 .ctl_reg = CM_EMMC2CTL, 2090 .div_reg = CM_EMMC2DIV, 2091 .int_bits = 4, 2092 .frac_bits = 8, 2093 .tcnt_mux = 42), 2094 2095 /* General purpose (GPIO) clocks */ 2096 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK( 2097 SOC_ALL, 2098 .name = "gp0", 2099 .ctl_reg = CM_GP0CTL, 2100 .div_reg = CM_GP0DIV, 2101 .int_bits = 12, 2102 .frac_bits = 12, 2103 .is_mash_clock = true, 2104 .tcnt_mux = 20), 2105 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK( 2106 SOC_ALL, 2107 .name = "gp1", 2108 .ctl_reg = CM_GP1CTL, 2109 .div_reg = CM_GP1DIV, 2110 .int_bits = 12, 2111 .frac_bits = 12, 2112 .flags = CLK_IS_CRITICAL, 2113 .is_mash_clock = true, 2114 .tcnt_mux = 21), 2115 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK( 2116 SOC_ALL, 2117 .name = "gp2", 2118 .ctl_reg = CM_GP2CTL, 2119 .div_reg = CM_GP2DIV, 2120 .int_bits = 12, 2121 .frac_bits = 12, 2122 .flags = CLK_IS_CRITICAL), 2123 2124 /* HDMI state machine */ 2125 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK( 2126 SOC_ALL, 2127 .name = "hsm", 2128 .ctl_reg = CM_HSMCTL, 2129 .div_reg = CM_HSMDIV, 2130 .int_bits = 4, 2131 .frac_bits = 8, 2132 .tcnt_mux = 22), 2133 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK( 2134 SOC_ALL, 2135 .name = "pcm", 2136 .ctl_reg = CM_PCMCTL, 2137 .div_reg = CM_PCMDIV, 2138 .int_bits = 12, 2139 .frac_bits = 12, 2140 .is_mash_clock = true, 2141 .low_jitter = true, 2142 .tcnt_mux = 23), 2143 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK( 2144 SOC_ALL, 2145 .name = "pwm", 2146 .ctl_reg = CM_PWMCTL, 2147 .div_reg = CM_PWMDIV, 2148 .int_bits = 12, 2149 .frac_bits = 12, 2150 .is_mash_clock = true, 2151 .tcnt_mux = 24), 2152 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK( 2153 SOC_ALL, 2154 .name = "slim", 2155 .ctl_reg = CM_SLIMCTL, 2156 .div_reg = CM_SLIMDIV, 2157 .int_bits = 12, 2158 .frac_bits = 12, 2159 .is_mash_clock = true, 2160 .tcnt_mux = 25), 2161 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK( 2162 SOC_ALL, 2163 .name = "smi", 2164 .ctl_reg = CM_SMICTL, 2165 .div_reg = CM_SMIDIV, 2166 .int_bits = 4, 2167 .frac_bits = 8, 2168 .tcnt_mux = 27), 2169 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK( 2170 SOC_ALL, 2171 .name = "uart", 2172 .ctl_reg = CM_UARTCTL, 2173 .div_reg = CM_UARTDIV, 2174 .int_bits = 10, 2175 .frac_bits = 12, 2176 .tcnt_mux = 28, 2177 .round_up = true), 2178 2179 /* TV encoder clock. Only operating frequency is 108Mhz. */ 2180 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK( 2181 SOC_ALL, 2182 .name = "vec", 2183 .ctl_reg = CM_VECCTL, 2184 .div_reg = CM_VECDIV, 2185 .int_bits = 4, 2186 .frac_bits = 0, 2187 /* 2188 * Allow rate change propagation only on PLLH_AUX which is 2189 * assigned index 7 in the parent array. 2190 */ 2191 .set_rate_parent = BIT(7), 2192 .tcnt_mux = 29), 2193 2194 /* dsi clocks */ 2195 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK( 2196 SOC_ALL, 2197 .name = "dsi0e", 2198 .ctl_reg = CM_DSI0ECTL, 2199 .div_reg = CM_DSI0EDIV, 2200 .int_bits = 4, 2201 .frac_bits = 8, 2202 .tcnt_mux = 18), 2203 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK( 2204 SOC_ALL, 2205 .name = "dsi1e", 2206 .ctl_reg = CM_DSI1ECTL, 2207 .div_reg = CM_DSI1EDIV, 2208 .int_bits = 4, 2209 .frac_bits = 8, 2210 .tcnt_mux = 19), 2211 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK( 2212 SOC_ALL, 2213 .name = "dsi0p", 2214 .ctl_reg = CM_DSI0PCTL, 2215 .div_reg = CM_DSI0PDIV, 2216 .int_bits = 0, 2217 .frac_bits = 0, 2218 .tcnt_mux = 12), 2219 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK( 2220 SOC_ALL, 2221 .name = "dsi1p", 2222 .ctl_reg = CM_DSI1PCTL, 2223 .div_reg = CM_DSI1PDIV, 2224 .int_bits = 0, 2225 .frac_bits = 0, 2226 .tcnt_mux = 13), 2227 2228 /* the gates */ 2229 2230 /* 2231 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if 2232 * you have the debug bit set in the power manager, which we 2233 * don't bother exposing) are individual gates off of the 2234 * non-stop vpu clock. 2235 */ 2236 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE( 2237 SOC_ALL, 2238 .name = "peri_image", 2239 .parent = "vpu", 2240 .ctl_reg = CM_PERIICTL), 2241 }; 2242 2243 /* 2244 * Permanently take a reference on the parent of the SDRAM clock. 2245 * 2246 * While the SDRAM is being driven by its dedicated PLL most of the 2247 * time, there is a little loop running in the firmware that 2248 * periodically switches the SDRAM to using our CM clock to do PVT 2249 * recalibration, with the assumption that the previously configured 2250 * SDRAM parent is still enabled and running. 2251 */ 2252 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc) 2253 { 2254 struct clk *parent = clk_get_parent(sdc); 2255 2256 if (IS_ERR(parent)) 2257 return PTR_ERR(parent); 2258 2259 return clk_prepare_enable(parent); 2260 } 2261 2262 static int bcm2835_clk_probe(struct platform_device *pdev) 2263 { 2264 struct device *dev = &pdev->dev; 2265 struct clk_hw **hws; 2266 struct bcm2835_cprman *cprman; 2267 const struct bcm2835_clk_desc *desc; 2268 const size_t asize = ARRAY_SIZE(clk_desc_array); 2269 const struct cprman_plat_data *pdata; 2270 size_t i; 2271 int ret; 2272 2273 pdata = of_device_get_match_data(&pdev->dev); 2274 if (!pdata) 2275 return -ENODEV; 2276 2277 cprman = devm_kzalloc(dev, 2278 struct_size(cprman, onecell.hws, asize), 2279 GFP_KERNEL); 2280 if (!cprman) 2281 return -ENOMEM; 2282 2283 spin_lock_init(&cprman->regs_lock); 2284 cprman->dev = dev; 2285 cprman->regs = devm_platform_ioremap_resource(pdev, 0); 2286 if (IS_ERR(cprman->regs)) 2287 return PTR_ERR(cprman->regs); 2288 2289 memcpy(cprman->real_parent_names, cprman_parent_names, 2290 sizeof(cprman_parent_names)); 2291 of_clk_parent_fill(dev->of_node, cprman->real_parent_names, 2292 ARRAY_SIZE(cprman_parent_names)); 2293 2294 /* 2295 * Make sure the external oscillator has been registered. 2296 * 2297 * The other (DSI) clocks are not present on older device 2298 * trees, which we still need to support for backwards 2299 * compatibility. 2300 */ 2301 if (!cprman->real_parent_names[0]) 2302 return -ENODEV; 2303 2304 platform_set_drvdata(pdev, cprman); 2305 2306 cprman->onecell.num = asize; 2307 cprman->soc = pdata->soc; 2308 hws = cprman->onecell.hws; 2309 2310 for (i = 0; i < asize; i++) { 2311 desc = &clk_desc_array[i]; 2312 if (desc->clk_register && desc->data && 2313 (desc->supported & pdata->soc)) { 2314 hws[i] = desc->clk_register(cprman, desc->data); 2315 } 2316 } 2317 2318 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk); 2319 if (ret) 2320 return ret; 2321 2322 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, 2323 &cprman->onecell); 2324 } 2325 2326 static const struct cprman_plat_data cprman_bcm2835_plat_data = { 2327 .soc = SOC_BCM2835, 2328 }; 2329 2330 static const struct cprman_plat_data cprman_bcm2711_plat_data = { 2331 .soc = SOC_BCM2711, 2332 }; 2333 2334 static const struct of_device_id bcm2835_clk_of_match[] = { 2335 { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data }, 2336 { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data }, 2337 {} 2338 }; 2339 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); 2340 2341 static struct platform_driver bcm2835_clk_driver = { 2342 .driver = { 2343 .name = "bcm2835-clk", 2344 .of_match_table = bcm2835_clk_of_match, 2345 }, 2346 .probe = bcm2835_clk_probe, 2347 }; 2348 2349 builtin_platform_driver(bcm2835_clk_driver); 2350 2351 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); 2352 MODULE_DESCRIPTION("BCM2835 clock driver"); 2353