xref: /openbmc/linux/drivers/clk/bcm/clk-bcm2835.c (revision 01a6e126)
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36 
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/debugfs.h>
41 #include <linux/delay.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
47 
48 #define CM_PASSWORD		0x5a000000
49 
50 #define CM_GNRICCTL		0x000
51 #define CM_GNRICDIV		0x004
52 # define CM_DIV_FRAC_BITS	12
53 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
54 
55 #define CM_VPUCTL		0x008
56 #define CM_VPUDIV		0x00c
57 #define CM_SYSCTL		0x010
58 #define CM_SYSDIV		0x014
59 #define CM_PERIACTL		0x018
60 #define CM_PERIADIV		0x01c
61 #define CM_PERIICTL		0x020
62 #define CM_PERIIDIV		0x024
63 #define CM_H264CTL		0x028
64 #define CM_H264DIV		0x02c
65 #define CM_ISPCTL		0x030
66 #define CM_ISPDIV		0x034
67 #define CM_V3DCTL		0x038
68 #define CM_V3DDIV		0x03c
69 #define CM_CAM0CTL		0x040
70 #define CM_CAM0DIV		0x044
71 #define CM_CAM1CTL		0x048
72 #define CM_CAM1DIV		0x04c
73 #define CM_CCP2CTL		0x050
74 #define CM_CCP2DIV		0x054
75 #define CM_DSI0ECTL		0x058
76 #define CM_DSI0EDIV		0x05c
77 #define CM_DSI0PCTL		0x060
78 #define CM_DSI0PDIV		0x064
79 #define CM_DPICTL		0x068
80 #define CM_DPIDIV		0x06c
81 #define CM_GP0CTL		0x070
82 #define CM_GP0DIV		0x074
83 #define CM_GP1CTL		0x078
84 #define CM_GP1DIV		0x07c
85 #define CM_GP2CTL		0x080
86 #define CM_GP2DIV		0x084
87 #define CM_HSMCTL		0x088
88 #define CM_HSMDIV		0x08c
89 #define CM_OTPCTL		0x090
90 #define CM_OTPDIV		0x094
91 #define CM_PCMCTL		0x098
92 #define CM_PCMDIV		0x09c
93 #define CM_PWMCTL		0x0a0
94 #define CM_PWMDIV		0x0a4
95 #define CM_SLIMCTL		0x0a8
96 #define CM_SLIMDIV		0x0ac
97 #define CM_SMICTL		0x0b0
98 #define CM_SMIDIV		0x0b4
99 /* no definition for 0x0b8  and 0x0bc */
100 #define CM_TCNTCTL		0x0c0
101 # define CM_TCNT_SRC1_SHIFT		12
102 #define CM_TCNTCNT		0x0c4
103 #define CM_TECCTL		0x0c8
104 #define CM_TECDIV		0x0cc
105 #define CM_TD0CTL		0x0d0
106 #define CM_TD0DIV		0x0d4
107 #define CM_TD1CTL		0x0d8
108 #define CM_TD1DIV		0x0dc
109 #define CM_TSENSCTL		0x0e0
110 #define CM_TSENSDIV		0x0e4
111 #define CM_TIMERCTL		0x0e8
112 #define CM_TIMERDIV		0x0ec
113 #define CM_UARTCTL		0x0f0
114 #define CM_UARTDIV		0x0f4
115 #define CM_VECCTL		0x0f8
116 #define CM_VECDIV		0x0fc
117 #define CM_PULSECTL		0x190
118 #define CM_PULSEDIV		0x194
119 #define CM_SDCCTL		0x1a8
120 #define CM_SDCDIV		0x1ac
121 #define CM_ARMCTL		0x1b0
122 #define CM_AVEOCTL		0x1b8
123 #define CM_AVEODIV		0x1bc
124 #define CM_EMMCCTL		0x1c0
125 #define CM_EMMCDIV		0x1c4
126 
127 /* General bits for the CM_*CTL regs */
128 # define CM_ENABLE			BIT(4)
129 # define CM_KILL			BIT(5)
130 # define CM_GATE_BIT			6
131 # define CM_GATE			BIT(CM_GATE_BIT)
132 # define CM_BUSY			BIT(7)
133 # define CM_BUSYD			BIT(8)
134 # define CM_FRAC			BIT(9)
135 # define CM_SRC_SHIFT			0
136 # define CM_SRC_BITS			4
137 # define CM_SRC_MASK			0xf
138 # define CM_SRC_GND			0
139 # define CM_SRC_OSC			1
140 # define CM_SRC_TESTDEBUG0		2
141 # define CM_SRC_TESTDEBUG1		3
142 # define CM_SRC_PLLA_CORE		4
143 # define CM_SRC_PLLA_PER		4
144 # define CM_SRC_PLLC_CORE0		5
145 # define CM_SRC_PLLC_PER		5
146 # define CM_SRC_PLLC_CORE1		8
147 # define CM_SRC_PLLD_CORE		6
148 # define CM_SRC_PLLD_PER		6
149 # define CM_SRC_PLLH_AUX		7
150 # define CM_SRC_PLLC_CORE1		8
151 # define CM_SRC_PLLC_CORE2		9
152 
153 #define CM_OSCCOUNT		0x100
154 
155 #define CM_PLLA			0x104
156 # define CM_PLL_ANARST			BIT(8)
157 # define CM_PLLA_HOLDPER		BIT(7)
158 # define CM_PLLA_LOADPER		BIT(6)
159 # define CM_PLLA_HOLDCORE		BIT(5)
160 # define CM_PLLA_LOADCORE		BIT(4)
161 # define CM_PLLA_HOLDCCP2		BIT(3)
162 # define CM_PLLA_LOADCCP2		BIT(2)
163 # define CM_PLLA_HOLDDSI0		BIT(1)
164 # define CM_PLLA_LOADDSI0		BIT(0)
165 
166 #define CM_PLLC			0x108
167 # define CM_PLLC_HOLDPER		BIT(7)
168 # define CM_PLLC_LOADPER		BIT(6)
169 # define CM_PLLC_HOLDCORE2		BIT(5)
170 # define CM_PLLC_LOADCORE2		BIT(4)
171 # define CM_PLLC_HOLDCORE1		BIT(3)
172 # define CM_PLLC_LOADCORE1		BIT(2)
173 # define CM_PLLC_HOLDCORE0		BIT(1)
174 # define CM_PLLC_LOADCORE0		BIT(0)
175 
176 #define CM_PLLD			0x10c
177 # define CM_PLLD_HOLDPER		BIT(7)
178 # define CM_PLLD_LOADPER		BIT(6)
179 # define CM_PLLD_HOLDCORE		BIT(5)
180 # define CM_PLLD_LOADCORE		BIT(4)
181 # define CM_PLLD_HOLDDSI1		BIT(3)
182 # define CM_PLLD_LOADDSI1		BIT(2)
183 # define CM_PLLD_HOLDDSI0		BIT(1)
184 # define CM_PLLD_LOADDSI0		BIT(0)
185 
186 #define CM_PLLH			0x110
187 # define CM_PLLH_LOADRCAL		BIT(2)
188 # define CM_PLLH_LOADAUX		BIT(1)
189 # define CM_PLLH_LOADPIX		BIT(0)
190 
191 #define CM_LOCK			0x114
192 # define CM_LOCK_FLOCKH			BIT(12)
193 # define CM_LOCK_FLOCKD			BIT(11)
194 # define CM_LOCK_FLOCKC			BIT(10)
195 # define CM_LOCK_FLOCKB			BIT(9)
196 # define CM_LOCK_FLOCKA			BIT(8)
197 
198 #define CM_EVENT		0x118
199 #define CM_DSI1ECTL		0x158
200 #define CM_DSI1EDIV		0x15c
201 #define CM_DSI1PCTL		0x160
202 #define CM_DSI1PDIV		0x164
203 #define CM_DFTCTL		0x168
204 #define CM_DFTDIV		0x16c
205 
206 #define CM_PLLB			0x170
207 # define CM_PLLB_HOLDARM		BIT(1)
208 # define CM_PLLB_LOADARM		BIT(0)
209 
210 #define A2W_PLLA_CTRL		0x1100
211 #define A2W_PLLC_CTRL		0x1120
212 #define A2W_PLLD_CTRL		0x1140
213 #define A2W_PLLH_CTRL		0x1160
214 #define A2W_PLLB_CTRL		0x11e0
215 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
216 # define A2W_PLL_CTRL_PWRDN		BIT(16)
217 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
218 # define A2W_PLL_CTRL_PDIV_SHIFT	12
219 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
220 # define A2W_PLL_CTRL_NDIV_SHIFT	0
221 
222 #define A2W_PLLA_ANA0		0x1010
223 #define A2W_PLLC_ANA0		0x1030
224 #define A2W_PLLD_ANA0		0x1050
225 #define A2W_PLLH_ANA0		0x1070
226 #define A2W_PLLB_ANA0		0x10f0
227 
228 #define A2W_PLL_KA_SHIFT	7
229 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
230 #define A2W_PLL_KI_SHIFT	19
231 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
232 #define A2W_PLL_KP_SHIFT	15
233 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
234 
235 #define A2W_PLLH_KA_SHIFT	19
236 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
237 #define A2W_PLLH_KI_LOW_SHIFT	22
238 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
239 #define A2W_PLLH_KI_HIGH_SHIFT	0
240 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
241 #define A2W_PLLH_KP_SHIFT	1
242 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
243 
244 #define A2W_XOSC_CTRL		0x1190
245 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
246 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
247 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
248 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
249 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
250 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
251 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
252 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
253 
254 #define A2W_PLLA_FRAC		0x1200
255 #define A2W_PLLC_FRAC		0x1220
256 #define A2W_PLLD_FRAC		0x1240
257 #define A2W_PLLH_FRAC		0x1260
258 #define A2W_PLLB_FRAC		0x12e0
259 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
260 # define A2W_PLL_FRAC_BITS		20
261 
262 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
263 #define A2W_PLL_DIV_BITS		8
264 #define A2W_PLL_DIV_SHIFT		0
265 
266 #define A2W_PLLA_DSI0		0x1300
267 #define A2W_PLLA_CORE		0x1400
268 #define A2W_PLLA_PER		0x1500
269 #define A2W_PLLA_CCP2		0x1600
270 
271 #define A2W_PLLC_CORE2		0x1320
272 #define A2W_PLLC_CORE1		0x1420
273 #define A2W_PLLC_PER		0x1520
274 #define A2W_PLLC_CORE0		0x1620
275 
276 #define A2W_PLLD_DSI0		0x1340
277 #define A2W_PLLD_CORE		0x1440
278 #define A2W_PLLD_PER		0x1540
279 #define A2W_PLLD_DSI1		0x1640
280 
281 #define A2W_PLLH_AUX		0x1360
282 #define A2W_PLLH_RCAL		0x1460
283 #define A2W_PLLH_PIX		0x1560
284 #define A2W_PLLH_STS		0x1660
285 
286 #define A2W_PLLH_CTRLR		0x1960
287 #define A2W_PLLH_FRACR		0x1a60
288 #define A2W_PLLH_AUXR		0x1b60
289 #define A2W_PLLH_RCALR		0x1c60
290 #define A2W_PLLH_PIXR		0x1d60
291 #define A2W_PLLH_STSR		0x1e60
292 
293 #define A2W_PLLB_ARM		0x13e0
294 #define A2W_PLLB_SP0		0x14e0
295 #define A2W_PLLB_SP1		0x15e0
296 #define A2W_PLLB_SP2		0x16e0
297 
298 #define LOCK_TIMEOUT_NS		100000000
299 #define BCM2835_MAX_FB_RATE	1750000000u
300 
301 /*
302  * Names of clocks used within the driver that need to be replaced
303  * with an external parent's name.  This array is in the order that
304  * the clocks node in the DT references external clocks.
305  */
306 static const char *const cprman_parent_names[] = {
307 	"xosc",
308 	"dsi0_byte",
309 	"dsi0_ddr2",
310 	"dsi0_ddr",
311 	"dsi1_byte",
312 	"dsi1_ddr2",
313 	"dsi1_ddr",
314 };
315 
316 struct bcm2835_cprman {
317 	struct device *dev;
318 	void __iomem *regs;
319 	spinlock_t regs_lock; /* spinlock for all clocks */
320 
321 	/*
322 	 * Real names of cprman clock parents looked up through
323 	 * of_clk_get_parent_name(), which will be used in the
324 	 * parent_names[] arrays for clock registration.
325 	 */
326 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
327 
328 	/* Must be last */
329 	struct clk_hw_onecell_data onecell;
330 };
331 
332 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
333 {
334 	writel(CM_PASSWORD | val, cprman->regs + reg);
335 }
336 
337 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
338 {
339 	return readl(cprman->regs + reg);
340 }
341 
342 /* Does a cycle of measuring a clock through the TCNT clock, which may
343  * source from many other clocks in the system.
344  */
345 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
346 					      u32 tcnt_mux)
347 {
348 	u32 osccount = 19200; /* 1ms */
349 	u32 count;
350 	ktime_t timeout;
351 
352 	spin_lock(&cprman->regs_lock);
353 
354 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
355 
356 	cprman_write(cprman, CM_TCNTCTL,
357 		     (tcnt_mux & CM_SRC_MASK) |
358 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
359 
360 	cprman_write(cprman, CM_OSCCOUNT, osccount);
361 
362 	/* do a kind delay at the start */
363 	mdelay(1);
364 
365 	/* Finish off whatever is left of OSCCOUNT */
366 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
367 	while (cprman_read(cprman, CM_OSCCOUNT)) {
368 		if (ktime_after(ktime_get(), timeout)) {
369 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
370 			count = 0;
371 			goto out;
372 		}
373 		cpu_relax();
374 	}
375 
376 	/* Wait for BUSY to clear. */
377 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
378 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
379 		if (ktime_after(ktime_get(), timeout)) {
380 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
381 			count = 0;
382 			goto out;
383 		}
384 		cpu_relax();
385 	}
386 
387 	count = cprman_read(cprman, CM_TCNTCNT);
388 
389 	cprman_write(cprman, CM_TCNTCTL, 0);
390 
391 out:
392 	spin_unlock(&cprman->regs_lock);
393 
394 	return count * 1000;
395 }
396 
397 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
398 				  struct debugfs_reg32 *regs, size_t nregs,
399 				  struct dentry *dentry)
400 {
401 	struct dentry *regdump;
402 	struct debugfs_regset32 *regset;
403 
404 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
405 	if (!regset)
406 		return -ENOMEM;
407 
408 	regset->regs = regs;
409 	regset->nregs = nregs;
410 	regset->base = cprman->regs + base;
411 
412 	regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
413 					  regset);
414 
415 	return regdump ? 0 : -ENOMEM;
416 }
417 
418 struct bcm2835_pll_data {
419 	const char *name;
420 	u32 cm_ctrl_reg;
421 	u32 a2w_ctrl_reg;
422 	u32 frac_reg;
423 	u32 ana_reg_base;
424 	u32 reference_enable_mask;
425 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
426 	u32 lock_mask;
427 
428 	const struct bcm2835_pll_ana_bits *ana;
429 
430 	unsigned long min_rate;
431 	unsigned long max_rate;
432 	/*
433 	 * Highest rate for the VCO before we have to use the
434 	 * pre-divide-by-2.
435 	 */
436 	unsigned long max_fb_rate;
437 };
438 
439 struct bcm2835_pll_ana_bits {
440 	u32 mask0;
441 	u32 set0;
442 	u32 mask1;
443 	u32 set1;
444 	u32 mask3;
445 	u32 set3;
446 	u32 fb_prediv_mask;
447 };
448 
449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450 	.mask0 = 0,
451 	.set0 = 0,
452 	.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
453 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
454 	.mask3 = (u32)~A2W_PLL_KA_MASK,
455 	.set3 = (2 << A2W_PLL_KA_SHIFT),
456 	.fb_prediv_mask = BIT(14),
457 };
458 
459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
460 	.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
461 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
462 	.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
463 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
464 	.mask3 = 0,
465 	.set3 = 0,
466 	.fb_prediv_mask = BIT(11),
467 };
468 
469 struct bcm2835_pll_divider_data {
470 	const char *name;
471 	const char *source_pll;
472 
473 	u32 cm_reg;
474 	u32 a2w_reg;
475 
476 	u32 load_mask;
477 	u32 hold_mask;
478 	u32 fixed_divider;
479 	u32 flags;
480 };
481 
482 struct bcm2835_clock_data {
483 	const char *name;
484 
485 	const char *const *parents;
486 	int num_mux_parents;
487 
488 	/* Bitmap encoding which parents accept rate change propagation. */
489 	unsigned int set_rate_parent;
490 
491 	u32 ctl_reg;
492 	u32 div_reg;
493 
494 	/* Number of integer bits in the divider */
495 	u32 int_bits;
496 	/* Number of fractional bits in the divider */
497 	u32 frac_bits;
498 
499 	u32 flags;
500 
501 	bool is_vpu_clock;
502 	bool is_mash_clock;
503 	bool low_jitter;
504 
505 	u32 tcnt_mux;
506 };
507 
508 struct bcm2835_gate_data {
509 	const char *name;
510 	const char *parent;
511 
512 	u32 ctl_reg;
513 };
514 
515 struct bcm2835_pll {
516 	struct clk_hw hw;
517 	struct bcm2835_cprman *cprman;
518 	const struct bcm2835_pll_data *data;
519 };
520 
521 static int bcm2835_pll_is_on(struct clk_hw *hw)
522 {
523 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
524 	struct bcm2835_cprman *cprman = pll->cprman;
525 	const struct bcm2835_pll_data *data = pll->data;
526 
527 	return cprman_read(cprman, data->a2w_ctrl_reg) &
528 		A2W_PLL_CTRL_PRST_DISABLE;
529 }
530 
531 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
532 					     unsigned long parent_rate,
533 					     u32 *ndiv, u32 *fdiv)
534 {
535 	u64 div;
536 
537 	div = (u64)rate << A2W_PLL_FRAC_BITS;
538 	do_div(div, parent_rate);
539 
540 	*ndiv = div >> A2W_PLL_FRAC_BITS;
541 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
542 }
543 
544 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
545 					   u32 ndiv, u32 fdiv, u32 pdiv)
546 {
547 	u64 rate;
548 
549 	if (pdiv == 0)
550 		return 0;
551 
552 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
553 	do_div(rate, pdiv);
554 	return rate >> A2W_PLL_FRAC_BITS;
555 }
556 
557 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
558 				   unsigned long *parent_rate)
559 {
560 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
561 	const struct bcm2835_pll_data *data = pll->data;
562 	u32 ndiv, fdiv;
563 
564 	rate = clamp(rate, data->min_rate, data->max_rate);
565 
566 	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
567 
568 	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
569 }
570 
571 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
572 					  unsigned long parent_rate)
573 {
574 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
575 	struct bcm2835_cprman *cprman = pll->cprman;
576 	const struct bcm2835_pll_data *data = pll->data;
577 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
578 	u32 ndiv, pdiv, fdiv;
579 	bool using_prediv;
580 
581 	if (parent_rate == 0)
582 		return 0;
583 
584 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
585 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
586 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
587 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
588 		data->ana->fb_prediv_mask;
589 
590 	if (using_prediv) {
591 		ndiv *= 2;
592 		fdiv *= 2;
593 	}
594 
595 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
596 }
597 
598 static void bcm2835_pll_off(struct clk_hw *hw)
599 {
600 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
601 	struct bcm2835_cprman *cprman = pll->cprman;
602 	const struct bcm2835_pll_data *data = pll->data;
603 
604 	spin_lock(&cprman->regs_lock);
605 	cprman_write(cprman, data->cm_ctrl_reg,
606 		     cprman_read(cprman, data->cm_ctrl_reg) |
607 		     CM_PLL_ANARST);
608 	cprman_write(cprman, data->a2w_ctrl_reg,
609 		     cprman_read(cprman, data->a2w_ctrl_reg) |
610 		     A2W_PLL_CTRL_PWRDN);
611 	spin_unlock(&cprman->regs_lock);
612 }
613 
614 static int bcm2835_pll_on(struct clk_hw *hw)
615 {
616 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
617 	struct bcm2835_cprman *cprman = pll->cprman;
618 	const struct bcm2835_pll_data *data = pll->data;
619 	ktime_t timeout;
620 
621 	cprman_write(cprman, data->a2w_ctrl_reg,
622 		     cprman_read(cprman, data->a2w_ctrl_reg) &
623 		     ~A2W_PLL_CTRL_PWRDN);
624 
625 	/* Take the PLL out of reset. */
626 	cprman_write(cprman, data->cm_ctrl_reg,
627 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
628 
629 	/* Wait for the PLL to lock. */
630 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
631 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
632 		if (ktime_after(ktime_get(), timeout)) {
633 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
634 				clk_hw_get_name(hw));
635 			return -ETIMEDOUT;
636 		}
637 
638 		cpu_relax();
639 	}
640 
641 	return 0;
642 }
643 
644 static void
645 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
646 {
647 	int i;
648 
649 	/*
650 	 * ANA register setup is done as a series of writes to
651 	 * ANA3-ANA0, in that order.  This lets us write all 4
652 	 * registers as a single cycle of the serdes interface (taking
653 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
654 	 * 3 individually through their partial-write registers, each
655 	 * would be their own serdes cycle.
656 	 */
657 	for (i = 3; i >= 0; i--)
658 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
659 }
660 
661 static int bcm2835_pll_set_rate(struct clk_hw *hw,
662 				unsigned long rate, unsigned long parent_rate)
663 {
664 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
665 	struct bcm2835_cprman *cprman = pll->cprman;
666 	const struct bcm2835_pll_data *data = pll->data;
667 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
668 	u32 ndiv, fdiv, a2w_ctl;
669 	u32 ana[4];
670 	int i;
671 
672 	if (rate > data->max_fb_rate) {
673 		use_fb_prediv = true;
674 		rate /= 2;
675 	} else {
676 		use_fb_prediv = false;
677 	}
678 
679 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
680 
681 	for (i = 3; i >= 0; i--)
682 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
683 
684 	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
685 
686 	ana[0] &= ~data->ana->mask0;
687 	ana[0] |= data->ana->set0;
688 	ana[1] &= ~data->ana->mask1;
689 	ana[1] |= data->ana->set1;
690 	ana[3] &= ~data->ana->mask3;
691 	ana[3] |= data->ana->set3;
692 
693 	if (was_using_prediv && !use_fb_prediv) {
694 		ana[1] &= ~data->ana->fb_prediv_mask;
695 		do_ana_setup_first = true;
696 	} else if (!was_using_prediv && use_fb_prediv) {
697 		ana[1] |= data->ana->fb_prediv_mask;
698 		do_ana_setup_first = false;
699 	} else {
700 		do_ana_setup_first = true;
701 	}
702 
703 	/* Unmask the reference clock from the oscillator. */
704 	cprman_write(cprman, A2W_XOSC_CTRL,
705 		     cprman_read(cprman, A2W_XOSC_CTRL) |
706 		     data->reference_enable_mask);
707 
708 	if (do_ana_setup_first)
709 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
710 
711 	/* Set the PLL multiplier from the oscillator. */
712 	cprman_write(cprman, data->frac_reg, fdiv);
713 
714 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
715 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
716 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
717 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
718 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
719 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
720 
721 	if (!do_ana_setup_first)
722 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
723 
724 	return 0;
725 }
726 
727 static int bcm2835_pll_debug_init(struct clk_hw *hw,
728 				  struct dentry *dentry)
729 {
730 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
731 	struct bcm2835_cprman *cprman = pll->cprman;
732 	const struct bcm2835_pll_data *data = pll->data;
733 	struct debugfs_reg32 *regs;
734 
735 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
736 	if (!regs)
737 		return -ENOMEM;
738 
739 	regs[0].name = "cm_ctrl";
740 	regs[0].offset = data->cm_ctrl_reg;
741 	regs[1].name = "a2w_ctrl";
742 	regs[1].offset = data->a2w_ctrl_reg;
743 	regs[2].name = "frac";
744 	regs[2].offset = data->frac_reg;
745 	regs[3].name = "ana0";
746 	regs[3].offset = data->ana_reg_base + 0 * 4;
747 	regs[4].name = "ana1";
748 	regs[4].offset = data->ana_reg_base + 1 * 4;
749 	regs[5].name = "ana2";
750 	regs[5].offset = data->ana_reg_base + 2 * 4;
751 	regs[6].name = "ana3";
752 	regs[6].offset = data->ana_reg_base + 3 * 4;
753 
754 	return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
755 }
756 
757 static const struct clk_ops bcm2835_pll_clk_ops = {
758 	.is_prepared = bcm2835_pll_is_on,
759 	.prepare = bcm2835_pll_on,
760 	.unprepare = bcm2835_pll_off,
761 	.recalc_rate = bcm2835_pll_get_rate,
762 	.set_rate = bcm2835_pll_set_rate,
763 	.round_rate = bcm2835_pll_round_rate,
764 	.debug_init = bcm2835_pll_debug_init,
765 };
766 
767 struct bcm2835_pll_divider {
768 	struct clk_divider div;
769 	struct bcm2835_cprman *cprman;
770 	const struct bcm2835_pll_divider_data *data;
771 };
772 
773 static struct bcm2835_pll_divider *
774 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
775 {
776 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
777 }
778 
779 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
780 {
781 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
782 	struct bcm2835_cprman *cprman = divider->cprman;
783 	const struct bcm2835_pll_divider_data *data = divider->data;
784 
785 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
786 }
787 
788 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
789 					   unsigned long rate,
790 					   unsigned long *parent_rate)
791 {
792 	return clk_divider_ops.round_rate(hw, rate, parent_rate);
793 }
794 
795 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
796 						  unsigned long parent_rate)
797 {
798 	return clk_divider_ops.recalc_rate(hw, parent_rate);
799 }
800 
801 static void bcm2835_pll_divider_off(struct clk_hw *hw)
802 {
803 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
804 	struct bcm2835_cprman *cprman = divider->cprman;
805 	const struct bcm2835_pll_divider_data *data = divider->data;
806 
807 	spin_lock(&cprman->regs_lock);
808 	cprman_write(cprman, data->cm_reg,
809 		     (cprman_read(cprman, data->cm_reg) &
810 		      ~data->load_mask) | data->hold_mask);
811 	cprman_write(cprman, data->a2w_reg,
812 		     cprman_read(cprman, data->a2w_reg) |
813 		     A2W_PLL_CHANNEL_DISABLE);
814 	spin_unlock(&cprman->regs_lock);
815 }
816 
817 static int bcm2835_pll_divider_on(struct clk_hw *hw)
818 {
819 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
820 	struct bcm2835_cprman *cprman = divider->cprman;
821 	const struct bcm2835_pll_divider_data *data = divider->data;
822 
823 	spin_lock(&cprman->regs_lock);
824 	cprman_write(cprman, data->a2w_reg,
825 		     cprman_read(cprman, data->a2w_reg) &
826 		     ~A2W_PLL_CHANNEL_DISABLE);
827 
828 	cprman_write(cprman, data->cm_reg,
829 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
830 	spin_unlock(&cprman->regs_lock);
831 
832 	return 0;
833 }
834 
835 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
836 					unsigned long rate,
837 					unsigned long parent_rate)
838 {
839 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
840 	struct bcm2835_cprman *cprman = divider->cprman;
841 	const struct bcm2835_pll_divider_data *data = divider->data;
842 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
843 
844 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
845 
846 	div = min(div, max_div);
847 	if (div == max_div)
848 		div = 0;
849 
850 	cprman_write(cprman, data->a2w_reg, div);
851 	cm = cprman_read(cprman, data->cm_reg);
852 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
853 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
854 
855 	return 0;
856 }
857 
858 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
859 					  struct dentry *dentry)
860 {
861 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
862 	struct bcm2835_cprman *cprman = divider->cprman;
863 	const struct bcm2835_pll_divider_data *data = divider->data;
864 	struct debugfs_reg32 *regs;
865 
866 	regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
867 	if (!regs)
868 		return -ENOMEM;
869 
870 	regs[0].name = "cm";
871 	regs[0].offset = data->cm_reg;
872 	regs[1].name = "a2w";
873 	regs[1].offset = data->a2w_reg;
874 
875 	return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
876 }
877 
878 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
879 	.is_prepared = bcm2835_pll_divider_is_on,
880 	.prepare = bcm2835_pll_divider_on,
881 	.unprepare = bcm2835_pll_divider_off,
882 	.recalc_rate = bcm2835_pll_divider_get_rate,
883 	.set_rate = bcm2835_pll_divider_set_rate,
884 	.round_rate = bcm2835_pll_divider_round_rate,
885 	.debug_init = bcm2835_pll_divider_debug_init,
886 };
887 
888 /*
889  * The CM dividers do fixed-point division, so we can't use the
890  * generic integer divider code like the PLL dividers do (and we can't
891  * fake it by having some fixed shifts preceding it in the clock tree,
892  * because we'd run out of bits in a 32-bit unsigned long).
893  */
894 struct bcm2835_clock {
895 	struct clk_hw hw;
896 	struct bcm2835_cprman *cprman;
897 	const struct bcm2835_clock_data *data;
898 };
899 
900 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
901 {
902 	return container_of(hw, struct bcm2835_clock, hw);
903 }
904 
905 static int bcm2835_clock_is_on(struct clk_hw *hw)
906 {
907 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
908 	struct bcm2835_cprman *cprman = clock->cprman;
909 	const struct bcm2835_clock_data *data = clock->data;
910 
911 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
912 }
913 
914 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
915 				    unsigned long rate,
916 				    unsigned long parent_rate,
917 				    bool round_up)
918 {
919 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
920 	const struct bcm2835_clock_data *data = clock->data;
921 	u32 unused_frac_mask =
922 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
923 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
924 	u64 rem;
925 	u32 div, mindiv, maxdiv;
926 
927 	rem = do_div(temp, rate);
928 	div = temp;
929 
930 	/* Round up and mask off the unused bits */
931 	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
932 		div += unused_frac_mask + 1;
933 	div &= ~unused_frac_mask;
934 
935 	/* different clamping limits apply for a mash clock */
936 	if (data->is_mash_clock) {
937 		/* clamp to min divider of 2 */
938 		mindiv = 2 << CM_DIV_FRAC_BITS;
939 		/* clamp to the highest possible integer divider */
940 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
941 	} else {
942 		/* clamp to min divider of 1 */
943 		mindiv = 1 << CM_DIV_FRAC_BITS;
944 		/* clamp to the highest possible fractional divider */
945 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
946 				 CM_DIV_FRAC_BITS - data->frac_bits);
947 	}
948 
949 	/* apply the clamping  limits */
950 	div = max_t(u32, div, mindiv);
951 	div = min_t(u32, div, maxdiv);
952 
953 	return div;
954 }
955 
956 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
957 					    unsigned long parent_rate,
958 					    u32 div)
959 {
960 	const struct bcm2835_clock_data *data = clock->data;
961 	u64 temp;
962 
963 	if (data->int_bits == 0 && data->frac_bits == 0)
964 		return parent_rate;
965 
966 	/*
967 	 * The divisor is a 12.12 fixed point field, but only some of
968 	 * the bits are populated in any given clock.
969 	 */
970 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
971 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
972 
973 	if (div == 0)
974 		return 0;
975 
976 	temp = (u64)parent_rate << data->frac_bits;
977 
978 	do_div(temp, div);
979 
980 	return temp;
981 }
982 
983 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
984 					    unsigned long parent_rate)
985 {
986 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
987 	struct bcm2835_cprman *cprman = clock->cprman;
988 	const struct bcm2835_clock_data *data = clock->data;
989 	u32 div;
990 
991 	if (data->int_bits == 0 && data->frac_bits == 0)
992 		return parent_rate;
993 
994 	div = cprman_read(cprman, data->div_reg);
995 
996 	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
997 }
998 
999 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1000 {
1001 	struct bcm2835_cprman *cprman = clock->cprman;
1002 	const struct bcm2835_clock_data *data = clock->data;
1003 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1004 
1005 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1006 		if (ktime_after(ktime_get(), timeout)) {
1007 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1008 				clk_hw_get_name(&clock->hw));
1009 			return;
1010 		}
1011 		cpu_relax();
1012 	}
1013 }
1014 
1015 static void bcm2835_clock_off(struct clk_hw *hw)
1016 {
1017 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1018 	struct bcm2835_cprman *cprman = clock->cprman;
1019 	const struct bcm2835_clock_data *data = clock->data;
1020 
1021 	spin_lock(&cprman->regs_lock);
1022 	cprman_write(cprman, data->ctl_reg,
1023 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1024 	spin_unlock(&cprman->regs_lock);
1025 
1026 	/* BUSY will remain high until the divider completes its cycle. */
1027 	bcm2835_clock_wait_busy(clock);
1028 }
1029 
1030 static int bcm2835_clock_on(struct clk_hw *hw)
1031 {
1032 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1033 	struct bcm2835_cprman *cprman = clock->cprman;
1034 	const struct bcm2835_clock_data *data = clock->data;
1035 
1036 	spin_lock(&cprman->regs_lock);
1037 	cprman_write(cprman, data->ctl_reg,
1038 		     cprman_read(cprman, data->ctl_reg) |
1039 		     CM_ENABLE |
1040 		     CM_GATE);
1041 	spin_unlock(&cprman->regs_lock);
1042 
1043 	/* Debug code to measure the clock once it's turned on to see
1044 	 * if it's ticking at the rate we expect.
1045 	 */
1046 	if (data->tcnt_mux && false) {
1047 		dev_info(cprman->dev,
1048 			 "clk %s: rate %ld, measure %ld\n",
1049 			 data->name,
1050 			 clk_hw_get_rate(hw),
1051 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1058 				  unsigned long rate, unsigned long parent_rate)
1059 {
1060 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1061 	struct bcm2835_cprman *cprman = clock->cprman;
1062 	const struct bcm2835_clock_data *data = clock->data;
1063 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1064 	u32 ctl;
1065 
1066 	spin_lock(&cprman->regs_lock);
1067 
1068 	/*
1069 	 * Setting up frac support
1070 	 *
1071 	 * In principle it is recommended to stop/start the clock first,
1072 	 * but as we set CLK_SET_RATE_GATE during registration of the
1073 	 * clock this requirement should be take care of by the
1074 	 * clk-framework.
1075 	 */
1076 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1077 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1078 	cprman_write(cprman, data->ctl_reg, ctl);
1079 
1080 	cprman_write(cprman, data->div_reg, div);
1081 
1082 	spin_unlock(&cprman->regs_lock);
1083 
1084 	return 0;
1085 }
1086 
1087 static bool
1088 bcm2835_clk_is_pllc(struct clk_hw *hw)
1089 {
1090 	if (!hw)
1091 		return false;
1092 
1093 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1094 }
1095 
1096 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1097 							int parent_idx,
1098 							unsigned long rate,
1099 							u32 *div,
1100 							unsigned long *prate,
1101 							unsigned long *avgrate)
1102 {
1103 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1104 	struct bcm2835_cprman *cprman = clock->cprman;
1105 	const struct bcm2835_clock_data *data = clock->data;
1106 	unsigned long best_rate = 0;
1107 	u32 curdiv, mindiv, maxdiv;
1108 	struct clk_hw *parent;
1109 
1110 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1111 
1112 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1113 		*prate = clk_hw_get_rate(parent);
1114 		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1115 
1116 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1117 
1118 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1119 			unsigned long high, low;
1120 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1121 
1122 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1123 							       int_div);
1124 			int_div += CM_DIV_FRAC_MASK + 1;
1125 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1126 							      int_div);
1127 
1128 			/*
1129 			 * Return a value which is the maximum deviation
1130 			 * below the ideal rate, for use as a metric.
1131 			 */
1132 			return *avgrate - max(*avgrate - low, high - *avgrate);
1133 		}
1134 		return *avgrate;
1135 	}
1136 
1137 	if (data->frac_bits)
1138 		dev_warn(cprman->dev,
1139 			"frac bits are not used when propagating rate change");
1140 
1141 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1142 	mindiv = data->is_mash_clock ? 2 : 1;
1143 	maxdiv = BIT(data->int_bits) - 1;
1144 
1145 	/* TODO: Be smart, and only test a subset of the available divisors. */
1146 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1147 		unsigned long tmp_rate;
1148 
1149 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1150 		tmp_rate /= curdiv;
1151 		if (curdiv == mindiv ||
1152 		    (tmp_rate > best_rate && tmp_rate <= rate))
1153 			best_rate = tmp_rate;
1154 
1155 		if (best_rate == rate)
1156 			break;
1157 	}
1158 
1159 	*div = curdiv << CM_DIV_FRAC_BITS;
1160 	*prate = curdiv * best_rate;
1161 	*avgrate = best_rate;
1162 
1163 	return best_rate;
1164 }
1165 
1166 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1167 					struct clk_rate_request *req)
1168 {
1169 	struct clk_hw *parent, *best_parent = NULL;
1170 	bool current_parent_is_pllc;
1171 	unsigned long rate, best_rate = 0;
1172 	unsigned long prate, best_prate = 0;
1173 	unsigned long avgrate, best_avgrate = 0;
1174 	size_t i;
1175 	u32 div;
1176 
1177 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1178 
1179 	/*
1180 	 * Select parent clock that results in the closest but lower rate
1181 	 */
1182 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1183 		parent = clk_hw_get_parent_by_index(hw, i);
1184 		if (!parent)
1185 			continue;
1186 
1187 		/*
1188 		 * Don't choose a PLLC-derived clock as our parent
1189 		 * unless it had been manually set that way.  PLLC's
1190 		 * frequency gets adjusted by the firmware due to
1191 		 * over-temp or under-voltage conditions, without
1192 		 * prior notification to our clock consumer.
1193 		 */
1194 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1195 			continue;
1196 
1197 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1198 							  &div, &prate,
1199 							  &avgrate);
1200 		if (rate > best_rate && rate <= req->rate) {
1201 			best_parent = parent;
1202 			best_prate = prate;
1203 			best_rate = rate;
1204 			best_avgrate = avgrate;
1205 		}
1206 	}
1207 
1208 	if (!best_parent)
1209 		return -EINVAL;
1210 
1211 	req->best_parent_hw = best_parent;
1212 	req->best_parent_rate = best_prate;
1213 
1214 	req->rate = best_avgrate;
1215 
1216 	return 0;
1217 }
1218 
1219 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1220 {
1221 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1222 	struct bcm2835_cprman *cprman = clock->cprman;
1223 	const struct bcm2835_clock_data *data = clock->data;
1224 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1225 
1226 	cprman_write(cprman, data->ctl_reg, src);
1227 	return 0;
1228 }
1229 
1230 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1231 {
1232 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1233 	struct bcm2835_cprman *cprman = clock->cprman;
1234 	const struct bcm2835_clock_data *data = clock->data;
1235 	u32 src = cprman_read(cprman, data->ctl_reg);
1236 
1237 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1238 }
1239 
1240 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1241 	{
1242 		.name = "ctl",
1243 		.offset = 0,
1244 	},
1245 	{
1246 		.name = "div",
1247 		.offset = 4,
1248 	},
1249 };
1250 
1251 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1252 				    struct dentry *dentry)
1253 {
1254 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1255 	struct bcm2835_cprman *cprman = clock->cprman;
1256 	const struct bcm2835_clock_data *data = clock->data;
1257 
1258 	return bcm2835_debugfs_regset(
1259 		cprman, data->ctl_reg,
1260 		bcm2835_debugfs_clock_reg32,
1261 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1262 		dentry);
1263 }
1264 
1265 static const struct clk_ops bcm2835_clock_clk_ops = {
1266 	.is_prepared = bcm2835_clock_is_on,
1267 	.prepare = bcm2835_clock_on,
1268 	.unprepare = bcm2835_clock_off,
1269 	.recalc_rate = bcm2835_clock_get_rate,
1270 	.set_rate = bcm2835_clock_set_rate,
1271 	.determine_rate = bcm2835_clock_determine_rate,
1272 	.set_parent = bcm2835_clock_set_parent,
1273 	.get_parent = bcm2835_clock_get_parent,
1274 	.debug_init = bcm2835_clock_debug_init,
1275 };
1276 
1277 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1278 {
1279 	return true;
1280 }
1281 
1282 /*
1283  * The VPU clock can never be disabled (it doesn't have an ENABLE
1284  * bit), so it gets its own set of clock ops.
1285  */
1286 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1287 	.is_prepared = bcm2835_vpu_clock_is_on,
1288 	.recalc_rate = bcm2835_clock_get_rate,
1289 	.set_rate = bcm2835_clock_set_rate,
1290 	.determine_rate = bcm2835_clock_determine_rate,
1291 	.set_parent = bcm2835_clock_set_parent,
1292 	.get_parent = bcm2835_clock_get_parent,
1293 	.debug_init = bcm2835_clock_debug_init,
1294 };
1295 
1296 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1297 					   const struct bcm2835_pll_data *data)
1298 {
1299 	struct bcm2835_pll *pll;
1300 	struct clk_init_data init;
1301 	int ret;
1302 
1303 	memset(&init, 0, sizeof(init));
1304 
1305 	/* All of the PLLs derive from the external oscillator. */
1306 	init.parent_names = &cprman->real_parent_names[0];
1307 	init.num_parents = 1;
1308 	init.name = data->name;
1309 	init.ops = &bcm2835_pll_clk_ops;
1310 	init.flags = CLK_IGNORE_UNUSED;
1311 
1312 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1313 	if (!pll)
1314 		return NULL;
1315 
1316 	pll->cprman = cprman;
1317 	pll->data = data;
1318 	pll->hw.init = &init;
1319 
1320 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1321 	if (ret)
1322 		return NULL;
1323 	return &pll->hw;
1324 }
1325 
1326 static struct clk_hw *
1327 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1328 			     const struct bcm2835_pll_divider_data *data)
1329 {
1330 	struct bcm2835_pll_divider *divider;
1331 	struct clk_init_data init;
1332 	const char *divider_name;
1333 	int ret;
1334 
1335 	if (data->fixed_divider != 1) {
1336 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1337 					      "%s_prediv", data->name);
1338 		if (!divider_name)
1339 			return NULL;
1340 	} else {
1341 		divider_name = data->name;
1342 	}
1343 
1344 	memset(&init, 0, sizeof(init));
1345 
1346 	init.parent_names = &data->source_pll;
1347 	init.num_parents = 1;
1348 	init.name = divider_name;
1349 	init.ops = &bcm2835_pll_divider_clk_ops;
1350 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1351 
1352 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1353 	if (!divider)
1354 		return NULL;
1355 
1356 	divider->div.reg = cprman->regs + data->a2w_reg;
1357 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1358 	divider->div.width = A2W_PLL_DIV_BITS;
1359 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1360 	divider->div.lock = &cprman->regs_lock;
1361 	divider->div.hw.init = &init;
1362 	divider->div.table = NULL;
1363 
1364 	divider->cprman = cprman;
1365 	divider->data = data;
1366 
1367 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1368 	if (ret)
1369 		return ERR_PTR(ret);
1370 
1371 	/*
1372 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1373 	 * is what our consumers are actually using.
1374 	 */
1375 	if (data->fixed_divider != 1) {
1376 		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1377 						    divider_name,
1378 						    CLK_SET_RATE_PARENT,
1379 						    1,
1380 						    data->fixed_divider);
1381 	}
1382 
1383 	return &divider->div.hw;
1384 }
1385 
1386 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1387 					  const struct bcm2835_clock_data *data)
1388 {
1389 	struct bcm2835_clock *clock;
1390 	struct clk_init_data init;
1391 	const char *parents[1 << CM_SRC_BITS];
1392 	size_t i, j;
1393 	int ret;
1394 
1395 	/*
1396 	 * Replace our strings referencing parent clocks with the
1397 	 * actual clock-output-name of the parent.
1398 	 */
1399 	for (i = 0; i < data->num_mux_parents; i++) {
1400 		parents[i] = data->parents[i];
1401 
1402 		for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1403 			if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1404 				parents[i] = cprman->real_parent_names[j];
1405 				break;
1406 			}
1407 		}
1408 	}
1409 
1410 	memset(&init, 0, sizeof(init));
1411 	init.parent_names = parents;
1412 	init.num_parents = data->num_mux_parents;
1413 	init.name = data->name;
1414 	init.flags = data->flags | CLK_IGNORE_UNUSED;
1415 
1416 	/*
1417 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1418 	 * rate changes on at least of the parents.
1419 	 */
1420 	if (data->set_rate_parent)
1421 		init.flags |= CLK_SET_RATE_PARENT;
1422 
1423 	if (data->is_vpu_clock) {
1424 		init.ops = &bcm2835_vpu_clock_clk_ops;
1425 	} else {
1426 		init.ops = &bcm2835_clock_clk_ops;
1427 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1428 
1429 		/* If the clock wasn't actually enabled at boot, it's not
1430 		 * critical.
1431 		 */
1432 		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1433 			init.flags &= ~CLK_IS_CRITICAL;
1434 	}
1435 
1436 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1437 	if (!clock)
1438 		return NULL;
1439 
1440 	clock->cprman = cprman;
1441 	clock->data = data;
1442 	clock->hw.init = &init;
1443 
1444 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1445 	if (ret)
1446 		return ERR_PTR(ret);
1447 	return &clock->hw;
1448 }
1449 
1450 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1451 					 const struct bcm2835_gate_data *data)
1452 {
1453 	return clk_register_gate(cprman->dev, data->name, data->parent,
1454 				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1455 				 cprman->regs + data->ctl_reg,
1456 				 CM_GATE_BIT, 0, &cprman->regs_lock);
1457 }
1458 
1459 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1460 					       const void *data);
1461 struct bcm2835_clk_desc {
1462 	bcm2835_clk_register clk_register;
1463 	const void *data;
1464 };
1465 
1466 /* assignment helper macros for different clock types */
1467 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1468 			    .data = __VA_ARGS__ }
1469 #define REGISTER_PLL(...)	_REGISTER(&bcm2835_register_pll,	\
1470 					  &(struct bcm2835_pll_data)	\
1471 					  {__VA_ARGS__})
1472 #define REGISTER_PLL_DIV(...)	_REGISTER(&bcm2835_register_pll_divider, \
1473 					  &(struct bcm2835_pll_divider_data) \
1474 					  {__VA_ARGS__})
1475 #define REGISTER_CLK(...)	_REGISTER(&bcm2835_register_clock,	\
1476 					  &(struct bcm2835_clock_data)	\
1477 					  {__VA_ARGS__})
1478 #define REGISTER_GATE(...)	_REGISTER(&bcm2835_register_gate,	\
1479 					  &(struct bcm2835_gate_data)	\
1480 					  {__VA_ARGS__})
1481 
1482 /* parent mux arrays plus helper macros */
1483 
1484 /* main oscillator parent mux */
1485 static const char *const bcm2835_clock_osc_parents[] = {
1486 	"gnd",
1487 	"xosc",
1488 	"testdebug0",
1489 	"testdebug1"
1490 };
1491 
1492 #define REGISTER_OSC_CLK(...)	REGISTER_CLK(				\
1493 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1494 	.parents = bcm2835_clock_osc_parents,				\
1495 	__VA_ARGS__)
1496 
1497 /* main peripherial parent mux */
1498 static const char *const bcm2835_clock_per_parents[] = {
1499 	"gnd",
1500 	"xosc",
1501 	"testdebug0",
1502 	"testdebug1",
1503 	"plla_per",
1504 	"pllc_per",
1505 	"plld_per",
1506 	"pllh_aux",
1507 };
1508 
1509 #define REGISTER_PER_CLK(...)	REGISTER_CLK(				\
1510 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1511 	.parents = bcm2835_clock_per_parents,				\
1512 	__VA_ARGS__)
1513 
1514 /*
1515  * Restrict clock sources for the PCM peripheral to the oscillator and
1516  * PLLD_PER because other source may have varying rates or be switched
1517  * off.
1518  *
1519  * Prevent other sources from being selected by replacing their names in
1520  * the list of potential parents with dummy entries (entry index is
1521  * significant).
1522  */
1523 static const char *const bcm2835_pcm_per_parents[] = {
1524 	"-",
1525 	"xosc",
1526 	"-",
1527 	"-",
1528 	"-",
1529 	"-",
1530 	"plld_per",
1531 	"-",
1532 };
1533 
1534 #define REGISTER_PCM_CLK(...)	REGISTER_CLK(				\
1535 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1536 	.parents = bcm2835_pcm_per_parents,				\
1537 	__VA_ARGS__)
1538 
1539 /* main vpu parent mux */
1540 static const char *const bcm2835_clock_vpu_parents[] = {
1541 	"gnd",
1542 	"xosc",
1543 	"testdebug0",
1544 	"testdebug1",
1545 	"plla_core",
1546 	"pllc_core0",
1547 	"plld_core",
1548 	"pllh_aux",
1549 	"pllc_core1",
1550 	"pllc_core2",
1551 };
1552 
1553 #define REGISTER_VPU_CLK(...)	REGISTER_CLK(				\
1554 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1555 	.parents = bcm2835_clock_vpu_parents,				\
1556 	__VA_ARGS__)
1557 
1558 /*
1559  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1560  * analog PHY.  The _inv variants are generated internally to cprman,
1561  * but we don't use them so they aren't hooked up.
1562  */
1563 static const char *const bcm2835_clock_dsi0_parents[] = {
1564 	"gnd",
1565 	"xosc",
1566 	"testdebug0",
1567 	"testdebug1",
1568 	"dsi0_ddr",
1569 	"dsi0_ddr_inv",
1570 	"dsi0_ddr2",
1571 	"dsi0_ddr2_inv",
1572 	"dsi0_byte",
1573 	"dsi0_byte_inv",
1574 };
1575 
1576 static const char *const bcm2835_clock_dsi1_parents[] = {
1577 	"gnd",
1578 	"xosc",
1579 	"testdebug0",
1580 	"testdebug1",
1581 	"dsi1_ddr",
1582 	"dsi1_ddr_inv",
1583 	"dsi1_ddr2",
1584 	"dsi1_ddr2_inv",
1585 	"dsi1_byte",
1586 	"dsi1_byte_inv",
1587 };
1588 
1589 #define REGISTER_DSI0_CLK(...)	REGISTER_CLK(				\
1590 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1591 	.parents = bcm2835_clock_dsi0_parents,				\
1592 	__VA_ARGS__)
1593 
1594 #define REGISTER_DSI1_CLK(...)	REGISTER_CLK(				\
1595 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1596 	.parents = bcm2835_clock_dsi1_parents,				\
1597 	__VA_ARGS__)
1598 
1599 /*
1600  * the real definition of all the pll, pll_dividers and clocks
1601  * these make use of the above REGISTER_* macros
1602  */
1603 static const struct bcm2835_clk_desc clk_desc_array[] = {
1604 	/* the PLL + PLL dividers */
1605 
1606 	/*
1607 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1608 	 * (Compact Camera Port 2) transmitter clock.
1609 	 *
1610 	 * It is in the PX LDO power domain, which is on when the
1611 	 * AUDIO domain is on.
1612 	 */
1613 	[BCM2835_PLLA]		= REGISTER_PLL(
1614 		.name = "plla",
1615 		.cm_ctrl_reg = CM_PLLA,
1616 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1617 		.frac_reg = A2W_PLLA_FRAC,
1618 		.ana_reg_base = A2W_PLLA_ANA0,
1619 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1620 		.lock_mask = CM_LOCK_FLOCKA,
1621 
1622 		.ana = &bcm2835_ana_default,
1623 
1624 		.min_rate = 600000000u,
1625 		.max_rate = 2400000000u,
1626 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1627 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1628 		.name = "plla_core",
1629 		.source_pll = "plla",
1630 		.cm_reg = CM_PLLA,
1631 		.a2w_reg = A2W_PLLA_CORE,
1632 		.load_mask = CM_PLLA_LOADCORE,
1633 		.hold_mask = CM_PLLA_HOLDCORE,
1634 		.fixed_divider = 1,
1635 		.flags = CLK_SET_RATE_PARENT),
1636 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1637 		.name = "plla_per",
1638 		.source_pll = "plla",
1639 		.cm_reg = CM_PLLA,
1640 		.a2w_reg = A2W_PLLA_PER,
1641 		.load_mask = CM_PLLA_LOADPER,
1642 		.hold_mask = CM_PLLA_HOLDPER,
1643 		.fixed_divider = 1,
1644 		.flags = CLK_SET_RATE_PARENT),
1645 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1646 		.name = "plla_dsi0",
1647 		.source_pll = "plla",
1648 		.cm_reg = CM_PLLA,
1649 		.a2w_reg = A2W_PLLA_DSI0,
1650 		.load_mask = CM_PLLA_LOADDSI0,
1651 		.hold_mask = CM_PLLA_HOLDDSI0,
1652 		.fixed_divider = 1),
1653 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1654 		.name = "plla_ccp2",
1655 		.source_pll = "plla",
1656 		.cm_reg = CM_PLLA,
1657 		.a2w_reg = A2W_PLLA_CCP2,
1658 		.load_mask = CM_PLLA_LOADCCP2,
1659 		.hold_mask = CM_PLLA_HOLDCCP2,
1660 		.fixed_divider = 1,
1661 		.flags = CLK_SET_RATE_PARENT),
1662 
1663 	/* PLLB is used for the ARM's clock. */
1664 	[BCM2835_PLLB]		= REGISTER_PLL(
1665 		.name = "pllb",
1666 		.cm_ctrl_reg = CM_PLLB,
1667 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1668 		.frac_reg = A2W_PLLB_FRAC,
1669 		.ana_reg_base = A2W_PLLB_ANA0,
1670 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1671 		.lock_mask = CM_LOCK_FLOCKB,
1672 
1673 		.ana = &bcm2835_ana_default,
1674 
1675 		.min_rate = 600000000u,
1676 		.max_rate = 3000000000u,
1677 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1678 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1679 		.name = "pllb_arm",
1680 		.source_pll = "pllb",
1681 		.cm_reg = CM_PLLB,
1682 		.a2w_reg = A2W_PLLB_ARM,
1683 		.load_mask = CM_PLLB_LOADARM,
1684 		.hold_mask = CM_PLLB_HOLDARM,
1685 		.fixed_divider = 1,
1686 		.flags = CLK_SET_RATE_PARENT),
1687 
1688 	/*
1689 	 * PLLC is the core PLL, used to drive the core VPU clock.
1690 	 *
1691 	 * It is in the PX LDO power domain, which is on when the
1692 	 * AUDIO domain is on.
1693 	 */
1694 	[BCM2835_PLLC]		= REGISTER_PLL(
1695 		.name = "pllc",
1696 		.cm_ctrl_reg = CM_PLLC,
1697 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1698 		.frac_reg = A2W_PLLC_FRAC,
1699 		.ana_reg_base = A2W_PLLC_ANA0,
1700 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1701 		.lock_mask = CM_LOCK_FLOCKC,
1702 
1703 		.ana = &bcm2835_ana_default,
1704 
1705 		.min_rate = 600000000u,
1706 		.max_rate = 3000000000u,
1707 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1708 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1709 		.name = "pllc_core0",
1710 		.source_pll = "pllc",
1711 		.cm_reg = CM_PLLC,
1712 		.a2w_reg = A2W_PLLC_CORE0,
1713 		.load_mask = CM_PLLC_LOADCORE0,
1714 		.hold_mask = CM_PLLC_HOLDCORE0,
1715 		.fixed_divider = 1,
1716 		.flags = CLK_SET_RATE_PARENT),
1717 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1718 		.name = "pllc_core1",
1719 		.source_pll = "pllc",
1720 		.cm_reg = CM_PLLC,
1721 		.a2w_reg = A2W_PLLC_CORE1,
1722 		.load_mask = CM_PLLC_LOADCORE1,
1723 		.hold_mask = CM_PLLC_HOLDCORE1,
1724 		.fixed_divider = 1,
1725 		.flags = CLK_SET_RATE_PARENT),
1726 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1727 		.name = "pllc_core2",
1728 		.source_pll = "pllc",
1729 		.cm_reg = CM_PLLC,
1730 		.a2w_reg = A2W_PLLC_CORE2,
1731 		.load_mask = CM_PLLC_LOADCORE2,
1732 		.hold_mask = CM_PLLC_HOLDCORE2,
1733 		.fixed_divider = 1,
1734 		.flags = CLK_SET_RATE_PARENT),
1735 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1736 		.name = "pllc_per",
1737 		.source_pll = "pllc",
1738 		.cm_reg = CM_PLLC,
1739 		.a2w_reg = A2W_PLLC_PER,
1740 		.load_mask = CM_PLLC_LOADPER,
1741 		.hold_mask = CM_PLLC_HOLDPER,
1742 		.fixed_divider = 1,
1743 		.flags = CLK_SET_RATE_PARENT),
1744 
1745 	/*
1746 	 * PLLD is the display PLL, used to drive DSI display panels.
1747 	 *
1748 	 * It is in the PX LDO power domain, which is on when the
1749 	 * AUDIO domain is on.
1750 	 */
1751 	[BCM2835_PLLD]		= REGISTER_PLL(
1752 		.name = "plld",
1753 		.cm_ctrl_reg = CM_PLLD,
1754 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1755 		.frac_reg = A2W_PLLD_FRAC,
1756 		.ana_reg_base = A2W_PLLD_ANA0,
1757 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1758 		.lock_mask = CM_LOCK_FLOCKD,
1759 
1760 		.ana = &bcm2835_ana_default,
1761 
1762 		.min_rate = 600000000u,
1763 		.max_rate = 2400000000u,
1764 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1765 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1766 		.name = "plld_core",
1767 		.source_pll = "plld",
1768 		.cm_reg = CM_PLLD,
1769 		.a2w_reg = A2W_PLLD_CORE,
1770 		.load_mask = CM_PLLD_LOADCORE,
1771 		.hold_mask = CM_PLLD_HOLDCORE,
1772 		.fixed_divider = 1,
1773 		.flags = CLK_SET_RATE_PARENT),
1774 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1775 		.name = "plld_per",
1776 		.source_pll = "plld",
1777 		.cm_reg = CM_PLLD,
1778 		.a2w_reg = A2W_PLLD_PER,
1779 		.load_mask = CM_PLLD_LOADPER,
1780 		.hold_mask = CM_PLLD_HOLDPER,
1781 		.fixed_divider = 1,
1782 		.flags = CLK_SET_RATE_PARENT),
1783 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1784 		.name = "plld_dsi0",
1785 		.source_pll = "plld",
1786 		.cm_reg = CM_PLLD,
1787 		.a2w_reg = A2W_PLLD_DSI0,
1788 		.load_mask = CM_PLLD_LOADDSI0,
1789 		.hold_mask = CM_PLLD_HOLDDSI0,
1790 		.fixed_divider = 1),
1791 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1792 		.name = "plld_dsi1",
1793 		.source_pll = "plld",
1794 		.cm_reg = CM_PLLD,
1795 		.a2w_reg = A2W_PLLD_DSI1,
1796 		.load_mask = CM_PLLD_LOADDSI1,
1797 		.hold_mask = CM_PLLD_HOLDDSI1,
1798 		.fixed_divider = 1),
1799 
1800 	/*
1801 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1802 	 * TV encoder.
1803 	 *
1804 	 * It is in the HDMI power domain.
1805 	 */
1806 	[BCM2835_PLLH]		= REGISTER_PLL(
1807 		"pllh",
1808 		.cm_ctrl_reg = CM_PLLH,
1809 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1810 		.frac_reg = A2W_PLLH_FRAC,
1811 		.ana_reg_base = A2W_PLLH_ANA0,
1812 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1813 		.lock_mask = CM_LOCK_FLOCKH,
1814 
1815 		.ana = &bcm2835_ana_pllh,
1816 
1817 		.min_rate = 600000000u,
1818 		.max_rate = 3000000000u,
1819 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1820 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1821 		.name = "pllh_rcal",
1822 		.source_pll = "pllh",
1823 		.cm_reg = CM_PLLH,
1824 		.a2w_reg = A2W_PLLH_RCAL,
1825 		.load_mask = CM_PLLH_LOADRCAL,
1826 		.hold_mask = 0,
1827 		.fixed_divider = 10,
1828 		.flags = CLK_SET_RATE_PARENT),
1829 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1830 		.name = "pllh_aux",
1831 		.source_pll = "pllh",
1832 		.cm_reg = CM_PLLH,
1833 		.a2w_reg = A2W_PLLH_AUX,
1834 		.load_mask = CM_PLLH_LOADAUX,
1835 		.hold_mask = 0,
1836 		.fixed_divider = 1,
1837 		.flags = CLK_SET_RATE_PARENT),
1838 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1839 		.name = "pllh_pix",
1840 		.source_pll = "pllh",
1841 		.cm_reg = CM_PLLH,
1842 		.a2w_reg = A2W_PLLH_PIX,
1843 		.load_mask = CM_PLLH_LOADPIX,
1844 		.hold_mask = 0,
1845 		.fixed_divider = 10,
1846 		.flags = CLK_SET_RATE_PARENT),
1847 
1848 	/* the clocks */
1849 
1850 	/* clocks with oscillator parent mux */
1851 
1852 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1853 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1854 		.name = "otp",
1855 		.ctl_reg = CM_OTPCTL,
1856 		.div_reg = CM_OTPDIV,
1857 		.int_bits = 4,
1858 		.frac_bits = 0,
1859 		.tcnt_mux = 6),
1860 	/*
1861 	 * Used for a 1Mhz clock for the system clocksource, and also used
1862 	 * bythe watchdog timer and the camera pulse generator.
1863 	 */
1864 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1865 		.name = "timer",
1866 		.ctl_reg = CM_TIMERCTL,
1867 		.div_reg = CM_TIMERDIV,
1868 		.int_bits = 6,
1869 		.frac_bits = 12),
1870 	/*
1871 	 * Clock for the temperature sensor.
1872 	 * Generally run at 2Mhz, max 5Mhz.
1873 	 */
1874 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1875 		.name = "tsens",
1876 		.ctl_reg = CM_TSENSCTL,
1877 		.div_reg = CM_TSENSDIV,
1878 		.int_bits = 5,
1879 		.frac_bits = 0),
1880 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1881 		.name = "tec",
1882 		.ctl_reg = CM_TECCTL,
1883 		.div_reg = CM_TECDIV,
1884 		.int_bits = 6,
1885 		.frac_bits = 0),
1886 
1887 	/* clocks with vpu parent mux */
1888 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1889 		.name = "h264",
1890 		.ctl_reg = CM_H264CTL,
1891 		.div_reg = CM_H264DIV,
1892 		.int_bits = 4,
1893 		.frac_bits = 8,
1894 		.tcnt_mux = 1),
1895 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1896 		.name = "isp",
1897 		.ctl_reg = CM_ISPCTL,
1898 		.div_reg = CM_ISPDIV,
1899 		.int_bits = 4,
1900 		.frac_bits = 8,
1901 		.tcnt_mux = 2),
1902 
1903 	/*
1904 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1905 	 * in the SDRAM controller can't be used.
1906 	 */
1907 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1908 		.name = "sdram",
1909 		.ctl_reg = CM_SDCCTL,
1910 		.div_reg = CM_SDCDIV,
1911 		.int_bits = 6,
1912 		.frac_bits = 0,
1913 		.tcnt_mux = 3),
1914 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1915 		.name = "v3d",
1916 		.ctl_reg = CM_V3DCTL,
1917 		.div_reg = CM_V3DDIV,
1918 		.int_bits = 4,
1919 		.frac_bits = 8,
1920 		.tcnt_mux = 4),
1921 	/*
1922 	 * VPU clock.  This doesn't have an enable bit, since it drives
1923 	 * the bus for everything else, and is special so it doesn't need
1924 	 * to be gated for rate changes.  It is also known as "clk_audio"
1925 	 * in various hardware documentation.
1926 	 */
1927 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1928 		.name = "vpu",
1929 		.ctl_reg = CM_VPUCTL,
1930 		.div_reg = CM_VPUDIV,
1931 		.int_bits = 12,
1932 		.frac_bits = 8,
1933 		.flags = CLK_IS_CRITICAL,
1934 		.is_vpu_clock = true,
1935 		.tcnt_mux = 5),
1936 
1937 	/* clocks with per parent mux */
1938 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1939 		.name = "aveo",
1940 		.ctl_reg = CM_AVEOCTL,
1941 		.div_reg = CM_AVEODIV,
1942 		.int_bits = 4,
1943 		.frac_bits = 0,
1944 		.tcnt_mux = 38),
1945 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1946 		.name = "cam0",
1947 		.ctl_reg = CM_CAM0CTL,
1948 		.div_reg = CM_CAM0DIV,
1949 		.int_bits = 4,
1950 		.frac_bits = 8,
1951 		.tcnt_mux = 14),
1952 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1953 		.name = "cam1",
1954 		.ctl_reg = CM_CAM1CTL,
1955 		.div_reg = CM_CAM1DIV,
1956 		.int_bits = 4,
1957 		.frac_bits = 8,
1958 		.tcnt_mux = 15),
1959 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1960 		.name = "dft",
1961 		.ctl_reg = CM_DFTCTL,
1962 		.div_reg = CM_DFTDIV,
1963 		.int_bits = 5,
1964 		.frac_bits = 0),
1965 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1966 		.name = "dpi",
1967 		.ctl_reg = CM_DPICTL,
1968 		.div_reg = CM_DPIDIV,
1969 		.int_bits = 4,
1970 		.frac_bits = 8,
1971 		.tcnt_mux = 17),
1972 
1973 	/* Arasan EMMC clock */
1974 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
1975 		.name = "emmc",
1976 		.ctl_reg = CM_EMMCCTL,
1977 		.div_reg = CM_EMMCDIV,
1978 		.int_bits = 4,
1979 		.frac_bits = 8,
1980 		.tcnt_mux = 39),
1981 
1982 	/* General purpose (GPIO) clocks */
1983 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
1984 		.name = "gp0",
1985 		.ctl_reg = CM_GP0CTL,
1986 		.div_reg = CM_GP0DIV,
1987 		.int_bits = 12,
1988 		.frac_bits = 12,
1989 		.is_mash_clock = true,
1990 		.tcnt_mux = 20),
1991 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
1992 		.name = "gp1",
1993 		.ctl_reg = CM_GP1CTL,
1994 		.div_reg = CM_GP1DIV,
1995 		.int_bits = 12,
1996 		.frac_bits = 12,
1997 		.flags = CLK_IS_CRITICAL,
1998 		.is_mash_clock = true,
1999 		.tcnt_mux = 21),
2000 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2001 		.name = "gp2",
2002 		.ctl_reg = CM_GP2CTL,
2003 		.div_reg = CM_GP2DIV,
2004 		.int_bits = 12,
2005 		.frac_bits = 12,
2006 		.flags = CLK_IS_CRITICAL),
2007 
2008 	/* HDMI state machine */
2009 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2010 		.name = "hsm",
2011 		.ctl_reg = CM_HSMCTL,
2012 		.div_reg = CM_HSMDIV,
2013 		.int_bits = 4,
2014 		.frac_bits = 8,
2015 		.tcnt_mux = 22),
2016 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2017 		.name = "pcm",
2018 		.ctl_reg = CM_PCMCTL,
2019 		.div_reg = CM_PCMDIV,
2020 		.int_bits = 12,
2021 		.frac_bits = 12,
2022 		.is_mash_clock = true,
2023 		.low_jitter = true,
2024 		.tcnt_mux = 23),
2025 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2026 		.name = "pwm",
2027 		.ctl_reg = CM_PWMCTL,
2028 		.div_reg = CM_PWMDIV,
2029 		.int_bits = 12,
2030 		.frac_bits = 12,
2031 		.is_mash_clock = true,
2032 		.tcnt_mux = 24),
2033 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2034 		.name = "slim",
2035 		.ctl_reg = CM_SLIMCTL,
2036 		.div_reg = CM_SLIMDIV,
2037 		.int_bits = 12,
2038 		.frac_bits = 12,
2039 		.is_mash_clock = true,
2040 		.tcnt_mux = 25),
2041 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2042 		.name = "smi",
2043 		.ctl_reg = CM_SMICTL,
2044 		.div_reg = CM_SMIDIV,
2045 		.int_bits = 4,
2046 		.frac_bits = 8,
2047 		.tcnt_mux = 27),
2048 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2049 		.name = "uart",
2050 		.ctl_reg = CM_UARTCTL,
2051 		.div_reg = CM_UARTDIV,
2052 		.int_bits = 10,
2053 		.frac_bits = 12,
2054 		.tcnt_mux = 28),
2055 
2056 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2057 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2058 		.name = "vec",
2059 		.ctl_reg = CM_VECCTL,
2060 		.div_reg = CM_VECDIV,
2061 		.int_bits = 4,
2062 		.frac_bits = 0,
2063 		/*
2064 		 * Allow rate change propagation only on PLLH_AUX which is
2065 		 * assigned index 7 in the parent array.
2066 		 */
2067 		.set_rate_parent = BIT(7),
2068 		.tcnt_mux = 29),
2069 
2070 	/* dsi clocks */
2071 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2072 		.name = "dsi0e",
2073 		.ctl_reg = CM_DSI0ECTL,
2074 		.div_reg = CM_DSI0EDIV,
2075 		.int_bits = 4,
2076 		.frac_bits = 8,
2077 		.tcnt_mux = 18),
2078 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2079 		.name = "dsi1e",
2080 		.ctl_reg = CM_DSI1ECTL,
2081 		.div_reg = CM_DSI1EDIV,
2082 		.int_bits = 4,
2083 		.frac_bits = 8,
2084 		.tcnt_mux = 19),
2085 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2086 		.name = "dsi0p",
2087 		.ctl_reg = CM_DSI0PCTL,
2088 		.div_reg = CM_DSI0PDIV,
2089 		.int_bits = 0,
2090 		.frac_bits = 0,
2091 		.tcnt_mux = 12),
2092 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2093 		.name = "dsi1p",
2094 		.ctl_reg = CM_DSI1PCTL,
2095 		.div_reg = CM_DSI1PDIV,
2096 		.int_bits = 0,
2097 		.frac_bits = 0,
2098 		.tcnt_mux = 13),
2099 
2100 	/* the gates */
2101 
2102 	/*
2103 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2104 	 * you have the debug bit set in the power manager, which we
2105 	 * don't bother exposing) are individual gates off of the
2106 	 * non-stop vpu clock.
2107 	 */
2108 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2109 		.name = "peri_image",
2110 		.parent = "vpu",
2111 		.ctl_reg = CM_PERIICTL),
2112 };
2113 
2114 /*
2115  * Permanently take a reference on the parent of the SDRAM clock.
2116  *
2117  * While the SDRAM is being driven by its dedicated PLL most of the
2118  * time, there is a little loop running in the firmware that
2119  * periodically switches the SDRAM to using our CM clock to do PVT
2120  * recalibration, with the assumption that the previously configured
2121  * SDRAM parent is still enabled and running.
2122  */
2123 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2124 {
2125 	struct clk *parent = clk_get_parent(sdc);
2126 
2127 	if (IS_ERR(parent))
2128 		return PTR_ERR(parent);
2129 
2130 	return clk_prepare_enable(parent);
2131 }
2132 
2133 static int bcm2835_clk_probe(struct platform_device *pdev)
2134 {
2135 	struct device *dev = &pdev->dev;
2136 	struct clk_hw **hws;
2137 	struct bcm2835_cprman *cprman;
2138 	struct resource *res;
2139 	const struct bcm2835_clk_desc *desc;
2140 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2141 	size_t i;
2142 	int ret;
2143 
2144 	cprman = devm_kzalloc(dev, sizeof(*cprman) +
2145 			      sizeof(*cprman->onecell.hws) * asize,
2146 			      GFP_KERNEL);
2147 	if (!cprman)
2148 		return -ENOMEM;
2149 
2150 	spin_lock_init(&cprman->regs_lock);
2151 	cprman->dev = dev;
2152 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2153 	cprman->regs = devm_ioremap_resource(dev, res);
2154 	if (IS_ERR(cprman->regs))
2155 		return PTR_ERR(cprman->regs);
2156 
2157 	memcpy(cprman->real_parent_names, cprman_parent_names,
2158 	       sizeof(cprman_parent_names));
2159 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2160 			   ARRAY_SIZE(cprman_parent_names));
2161 
2162 	/*
2163 	 * Make sure the external oscillator has been registered.
2164 	 *
2165 	 * The other (DSI) clocks are not present on older device
2166 	 * trees, which we still need to support for backwards
2167 	 * compatibility.
2168 	 */
2169 	if (!cprman->real_parent_names[0])
2170 		return -ENODEV;
2171 
2172 	platform_set_drvdata(pdev, cprman);
2173 
2174 	cprman->onecell.num = asize;
2175 	hws = cprman->onecell.hws;
2176 
2177 	for (i = 0; i < asize; i++) {
2178 		desc = &clk_desc_array[i];
2179 		if (desc->clk_register && desc->data)
2180 			hws[i] = desc->clk_register(cprman, desc->data);
2181 	}
2182 
2183 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2184 	if (ret)
2185 		return ret;
2186 
2187 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2188 				      &cprman->onecell);
2189 }
2190 
2191 static const struct of_device_id bcm2835_clk_of_match[] = {
2192 	{ .compatible = "brcm,bcm2835-cprman", },
2193 	{}
2194 };
2195 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2196 
2197 static struct platform_driver bcm2835_clk_driver = {
2198 	.driver = {
2199 		.name = "bcm2835-clk",
2200 		.of_match_table = bcm2835_clk_of_match,
2201 	},
2202 	.probe          = bcm2835_clk_probe,
2203 };
2204 
2205 builtin_platform_driver(bcm2835_clk_driver);
2206 
2207 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2208 MODULE_DESCRIPTION("BCM2835 clock driver");
2209 MODULE_LICENSE("GPL v2");
2210