1 /* 2 * Copyright (C) 2010,2015 Broadcom 3 * Copyright (C) 2012 Stephen Warren 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 */ 16 17 /** 18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) 19 * 20 * The clock tree on the 2835 has several levels. There's a root 21 * oscillator running at 19.2Mhz. After the oscillator there are 5 22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", 23 * and "HDMI displays". Those 5 PLLs each can divide their output to 24 * produce up to 4 channels. Finally, there is the level of clocks to 25 * be consumed by other hardware components (like "H264" or "HDMI 26 * state machine"), which divide off of some subset of the PLL 27 * channels. 28 * 29 * All of the clocks in the tree are exposed in the DT, because the DT 30 * may want to make assignments of the final layer of clocks to the 31 * PLL channels, and some components of the hardware will actually 32 * skip layers of the tree (for example, the pixel clock comes 33 * directly from the PLLH PIX channel without using a CM_*CTL clock 34 * generator). 35 */ 36 37 #include <linux/clk-provider.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk.h> 40 #include <linux/debugfs.h> 41 #include <linux/delay.h> 42 #include <linux/module.h> 43 #include <linux/of.h> 44 #include <linux/platform_device.h> 45 #include <linux/slab.h> 46 #include <dt-bindings/clock/bcm2835.h> 47 48 #define CM_PASSWORD 0x5a000000 49 50 #define CM_GNRICCTL 0x000 51 #define CM_GNRICDIV 0x004 52 # define CM_DIV_FRAC_BITS 12 53 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0) 54 55 #define CM_VPUCTL 0x008 56 #define CM_VPUDIV 0x00c 57 #define CM_SYSCTL 0x010 58 #define CM_SYSDIV 0x014 59 #define CM_PERIACTL 0x018 60 #define CM_PERIADIV 0x01c 61 #define CM_PERIICTL 0x020 62 #define CM_PERIIDIV 0x024 63 #define CM_H264CTL 0x028 64 #define CM_H264DIV 0x02c 65 #define CM_ISPCTL 0x030 66 #define CM_ISPDIV 0x034 67 #define CM_V3DCTL 0x038 68 #define CM_V3DDIV 0x03c 69 #define CM_CAM0CTL 0x040 70 #define CM_CAM0DIV 0x044 71 #define CM_CAM1CTL 0x048 72 #define CM_CAM1DIV 0x04c 73 #define CM_CCP2CTL 0x050 74 #define CM_CCP2DIV 0x054 75 #define CM_DSI0ECTL 0x058 76 #define CM_DSI0EDIV 0x05c 77 #define CM_DSI0PCTL 0x060 78 #define CM_DSI0PDIV 0x064 79 #define CM_DPICTL 0x068 80 #define CM_DPIDIV 0x06c 81 #define CM_GP0CTL 0x070 82 #define CM_GP0DIV 0x074 83 #define CM_GP1CTL 0x078 84 #define CM_GP1DIV 0x07c 85 #define CM_GP2CTL 0x080 86 #define CM_GP2DIV 0x084 87 #define CM_HSMCTL 0x088 88 #define CM_HSMDIV 0x08c 89 #define CM_OTPCTL 0x090 90 #define CM_OTPDIV 0x094 91 #define CM_PCMCTL 0x098 92 #define CM_PCMDIV 0x09c 93 #define CM_PWMCTL 0x0a0 94 #define CM_PWMDIV 0x0a4 95 #define CM_SLIMCTL 0x0a8 96 #define CM_SLIMDIV 0x0ac 97 #define CM_SMICTL 0x0b0 98 #define CM_SMIDIV 0x0b4 99 /* no definition for 0x0b8 and 0x0bc */ 100 #define CM_TCNTCTL 0x0c0 101 # define CM_TCNT_SRC1_SHIFT 12 102 #define CM_TCNTCNT 0x0c4 103 #define CM_TECCTL 0x0c8 104 #define CM_TECDIV 0x0cc 105 #define CM_TD0CTL 0x0d0 106 #define CM_TD0DIV 0x0d4 107 #define CM_TD1CTL 0x0d8 108 #define CM_TD1DIV 0x0dc 109 #define CM_TSENSCTL 0x0e0 110 #define CM_TSENSDIV 0x0e4 111 #define CM_TIMERCTL 0x0e8 112 #define CM_TIMERDIV 0x0ec 113 #define CM_UARTCTL 0x0f0 114 #define CM_UARTDIV 0x0f4 115 #define CM_VECCTL 0x0f8 116 #define CM_VECDIV 0x0fc 117 #define CM_PULSECTL 0x190 118 #define CM_PULSEDIV 0x194 119 #define CM_SDCCTL 0x1a8 120 #define CM_SDCDIV 0x1ac 121 #define CM_ARMCTL 0x1b0 122 #define CM_AVEOCTL 0x1b8 123 #define CM_AVEODIV 0x1bc 124 #define CM_EMMCCTL 0x1c0 125 #define CM_EMMCDIV 0x1c4 126 127 /* General bits for the CM_*CTL regs */ 128 # define CM_ENABLE BIT(4) 129 # define CM_KILL BIT(5) 130 # define CM_GATE_BIT 6 131 # define CM_GATE BIT(CM_GATE_BIT) 132 # define CM_BUSY BIT(7) 133 # define CM_BUSYD BIT(8) 134 # define CM_FRAC BIT(9) 135 # define CM_SRC_SHIFT 0 136 # define CM_SRC_BITS 4 137 # define CM_SRC_MASK 0xf 138 # define CM_SRC_GND 0 139 # define CM_SRC_OSC 1 140 # define CM_SRC_TESTDEBUG0 2 141 # define CM_SRC_TESTDEBUG1 3 142 # define CM_SRC_PLLA_CORE 4 143 # define CM_SRC_PLLA_PER 4 144 # define CM_SRC_PLLC_CORE0 5 145 # define CM_SRC_PLLC_PER 5 146 # define CM_SRC_PLLC_CORE1 8 147 # define CM_SRC_PLLD_CORE 6 148 # define CM_SRC_PLLD_PER 6 149 # define CM_SRC_PLLH_AUX 7 150 # define CM_SRC_PLLC_CORE1 8 151 # define CM_SRC_PLLC_CORE2 9 152 153 #define CM_OSCCOUNT 0x100 154 155 #define CM_PLLA 0x104 156 # define CM_PLL_ANARST BIT(8) 157 # define CM_PLLA_HOLDPER BIT(7) 158 # define CM_PLLA_LOADPER BIT(6) 159 # define CM_PLLA_HOLDCORE BIT(5) 160 # define CM_PLLA_LOADCORE BIT(4) 161 # define CM_PLLA_HOLDCCP2 BIT(3) 162 # define CM_PLLA_LOADCCP2 BIT(2) 163 # define CM_PLLA_HOLDDSI0 BIT(1) 164 # define CM_PLLA_LOADDSI0 BIT(0) 165 166 #define CM_PLLC 0x108 167 # define CM_PLLC_HOLDPER BIT(7) 168 # define CM_PLLC_LOADPER BIT(6) 169 # define CM_PLLC_HOLDCORE2 BIT(5) 170 # define CM_PLLC_LOADCORE2 BIT(4) 171 # define CM_PLLC_HOLDCORE1 BIT(3) 172 # define CM_PLLC_LOADCORE1 BIT(2) 173 # define CM_PLLC_HOLDCORE0 BIT(1) 174 # define CM_PLLC_LOADCORE0 BIT(0) 175 176 #define CM_PLLD 0x10c 177 # define CM_PLLD_HOLDPER BIT(7) 178 # define CM_PLLD_LOADPER BIT(6) 179 # define CM_PLLD_HOLDCORE BIT(5) 180 # define CM_PLLD_LOADCORE BIT(4) 181 # define CM_PLLD_HOLDDSI1 BIT(3) 182 # define CM_PLLD_LOADDSI1 BIT(2) 183 # define CM_PLLD_HOLDDSI0 BIT(1) 184 # define CM_PLLD_LOADDSI0 BIT(0) 185 186 #define CM_PLLH 0x110 187 # define CM_PLLH_LOADRCAL BIT(2) 188 # define CM_PLLH_LOADAUX BIT(1) 189 # define CM_PLLH_LOADPIX BIT(0) 190 191 #define CM_LOCK 0x114 192 # define CM_LOCK_FLOCKH BIT(12) 193 # define CM_LOCK_FLOCKD BIT(11) 194 # define CM_LOCK_FLOCKC BIT(10) 195 # define CM_LOCK_FLOCKB BIT(9) 196 # define CM_LOCK_FLOCKA BIT(8) 197 198 #define CM_EVENT 0x118 199 #define CM_DSI1ECTL 0x158 200 #define CM_DSI1EDIV 0x15c 201 #define CM_DSI1PCTL 0x160 202 #define CM_DSI1PDIV 0x164 203 #define CM_DFTCTL 0x168 204 #define CM_DFTDIV 0x16c 205 206 #define CM_PLLB 0x170 207 # define CM_PLLB_HOLDARM BIT(1) 208 # define CM_PLLB_LOADARM BIT(0) 209 210 #define A2W_PLLA_CTRL 0x1100 211 #define A2W_PLLC_CTRL 0x1120 212 #define A2W_PLLD_CTRL 0x1140 213 #define A2W_PLLH_CTRL 0x1160 214 #define A2W_PLLB_CTRL 0x11e0 215 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) 216 # define A2W_PLL_CTRL_PWRDN BIT(16) 217 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 218 # define A2W_PLL_CTRL_PDIV_SHIFT 12 219 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff 220 # define A2W_PLL_CTRL_NDIV_SHIFT 0 221 222 #define A2W_PLLA_ANA0 0x1010 223 #define A2W_PLLC_ANA0 0x1030 224 #define A2W_PLLD_ANA0 0x1050 225 #define A2W_PLLH_ANA0 0x1070 226 #define A2W_PLLB_ANA0 0x10f0 227 228 #define A2W_PLL_KA_SHIFT 7 229 #define A2W_PLL_KA_MASK GENMASK(9, 7) 230 #define A2W_PLL_KI_SHIFT 19 231 #define A2W_PLL_KI_MASK GENMASK(21, 19) 232 #define A2W_PLL_KP_SHIFT 15 233 #define A2W_PLL_KP_MASK GENMASK(18, 15) 234 235 #define A2W_PLLH_KA_SHIFT 19 236 #define A2W_PLLH_KA_MASK GENMASK(21, 19) 237 #define A2W_PLLH_KI_LOW_SHIFT 22 238 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) 239 #define A2W_PLLH_KI_HIGH_SHIFT 0 240 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) 241 #define A2W_PLLH_KP_SHIFT 1 242 #define A2W_PLLH_KP_MASK GENMASK(4, 1) 243 244 #define A2W_XOSC_CTRL 0x1190 245 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) 246 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) 247 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) 248 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) 249 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) 250 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) 251 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) 252 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) 253 254 #define A2W_PLLA_FRAC 0x1200 255 #define A2W_PLLC_FRAC 0x1220 256 #define A2W_PLLD_FRAC 0x1240 257 #define A2W_PLLH_FRAC 0x1260 258 #define A2W_PLLB_FRAC 0x12e0 259 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) 260 # define A2W_PLL_FRAC_BITS 20 261 262 #define A2W_PLL_CHANNEL_DISABLE BIT(8) 263 #define A2W_PLL_DIV_BITS 8 264 #define A2W_PLL_DIV_SHIFT 0 265 266 #define A2W_PLLA_DSI0 0x1300 267 #define A2W_PLLA_CORE 0x1400 268 #define A2W_PLLA_PER 0x1500 269 #define A2W_PLLA_CCP2 0x1600 270 271 #define A2W_PLLC_CORE2 0x1320 272 #define A2W_PLLC_CORE1 0x1420 273 #define A2W_PLLC_PER 0x1520 274 #define A2W_PLLC_CORE0 0x1620 275 276 #define A2W_PLLD_DSI0 0x1340 277 #define A2W_PLLD_CORE 0x1440 278 #define A2W_PLLD_PER 0x1540 279 #define A2W_PLLD_DSI1 0x1640 280 281 #define A2W_PLLH_AUX 0x1360 282 #define A2W_PLLH_RCAL 0x1460 283 #define A2W_PLLH_PIX 0x1560 284 #define A2W_PLLH_STS 0x1660 285 286 #define A2W_PLLH_CTRLR 0x1960 287 #define A2W_PLLH_FRACR 0x1a60 288 #define A2W_PLLH_AUXR 0x1b60 289 #define A2W_PLLH_RCALR 0x1c60 290 #define A2W_PLLH_PIXR 0x1d60 291 #define A2W_PLLH_STSR 0x1e60 292 293 #define A2W_PLLB_ARM 0x13e0 294 #define A2W_PLLB_SP0 0x14e0 295 #define A2W_PLLB_SP1 0x15e0 296 #define A2W_PLLB_SP2 0x16e0 297 298 #define LOCK_TIMEOUT_NS 100000000 299 #define BCM2835_MAX_FB_RATE 1750000000u 300 301 /* 302 * Names of clocks used within the driver that need to be replaced 303 * with an external parent's name. This array is in the order that 304 * the clocks node in the DT references external clocks. 305 */ 306 static const char *const cprman_parent_names[] = { 307 "xosc", 308 "dsi0_byte", 309 "dsi0_ddr2", 310 "dsi0_ddr", 311 "dsi1_byte", 312 "dsi1_ddr2", 313 "dsi1_ddr", 314 }; 315 316 struct bcm2835_cprman { 317 struct device *dev; 318 void __iomem *regs; 319 spinlock_t regs_lock; /* spinlock for all clocks */ 320 321 /* 322 * Real names of cprman clock parents looked up through 323 * of_clk_get_parent_name(), which will be used in the 324 * parent_names[] arrays for clock registration. 325 */ 326 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)]; 327 328 /* Must be last */ 329 struct clk_hw_onecell_data onecell; 330 }; 331 332 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) 333 { 334 writel(CM_PASSWORD | val, cprman->regs + reg); 335 } 336 337 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) 338 { 339 return readl(cprman->regs + reg); 340 } 341 342 /* Does a cycle of measuring a clock through the TCNT clock, which may 343 * source from many other clocks in the system. 344 */ 345 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman, 346 u32 tcnt_mux) 347 { 348 u32 osccount = 19200; /* 1ms */ 349 u32 count; 350 ktime_t timeout; 351 352 spin_lock(&cprman->regs_lock); 353 354 cprman_write(cprman, CM_TCNTCTL, CM_KILL); 355 356 cprman_write(cprman, CM_TCNTCTL, 357 (tcnt_mux & CM_SRC_MASK) | 358 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT); 359 360 cprman_write(cprman, CM_OSCCOUNT, osccount); 361 362 /* do a kind delay at the start */ 363 mdelay(1); 364 365 /* Finish off whatever is left of OSCCOUNT */ 366 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 367 while (cprman_read(cprman, CM_OSCCOUNT)) { 368 if (ktime_after(ktime_get(), timeout)) { 369 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n"); 370 count = 0; 371 goto out; 372 } 373 cpu_relax(); 374 } 375 376 /* Wait for BUSY to clear. */ 377 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 378 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) { 379 if (ktime_after(ktime_get(), timeout)) { 380 dev_err(cprman->dev, "timeout waiting for !BUSY\n"); 381 count = 0; 382 goto out; 383 } 384 cpu_relax(); 385 } 386 387 count = cprman_read(cprman, CM_TCNTCNT); 388 389 cprman_write(cprman, CM_TCNTCTL, 0); 390 391 out: 392 spin_unlock(&cprman->regs_lock); 393 394 return count * 1000; 395 } 396 397 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base, 398 struct debugfs_reg32 *regs, size_t nregs, 399 struct dentry *dentry) 400 { 401 struct dentry *regdump; 402 struct debugfs_regset32 *regset; 403 404 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL); 405 if (!regset) 406 return -ENOMEM; 407 408 regset->regs = regs; 409 regset->nregs = nregs; 410 regset->base = cprman->regs + base; 411 412 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry, 413 regset); 414 415 return regdump ? 0 : -ENOMEM; 416 } 417 418 struct bcm2835_pll_data { 419 const char *name; 420 u32 cm_ctrl_reg; 421 u32 a2w_ctrl_reg; 422 u32 frac_reg; 423 u32 ana_reg_base; 424 u32 reference_enable_mask; 425 /* Bit in CM_LOCK to indicate when the PLL has locked. */ 426 u32 lock_mask; 427 428 const struct bcm2835_pll_ana_bits *ana; 429 430 unsigned long min_rate; 431 unsigned long max_rate; 432 /* 433 * Highest rate for the VCO before we have to use the 434 * pre-divide-by-2. 435 */ 436 unsigned long max_fb_rate; 437 }; 438 439 struct bcm2835_pll_ana_bits { 440 u32 mask0; 441 u32 set0; 442 u32 mask1; 443 u32 set1; 444 u32 mask3; 445 u32 set3; 446 u32 fb_prediv_mask; 447 }; 448 449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { 450 .mask0 = 0, 451 .set0 = 0, 452 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK), 453 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), 454 .mask3 = (u32)~A2W_PLL_KA_MASK, 455 .set3 = (2 << A2W_PLL_KA_SHIFT), 456 .fb_prediv_mask = BIT(14), 457 }; 458 459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { 460 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK), 461 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), 462 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK), 463 .set1 = (6 << A2W_PLLH_KP_SHIFT), 464 .mask3 = 0, 465 .set3 = 0, 466 .fb_prediv_mask = BIT(11), 467 }; 468 469 struct bcm2835_pll_divider_data { 470 const char *name; 471 const char *source_pll; 472 473 u32 cm_reg; 474 u32 a2w_reg; 475 476 u32 load_mask; 477 u32 hold_mask; 478 u32 fixed_divider; 479 u32 flags; 480 }; 481 482 struct bcm2835_clock_data { 483 const char *name; 484 485 const char *const *parents; 486 int num_mux_parents; 487 488 /* Bitmap encoding which parents accept rate change propagation. */ 489 unsigned int set_rate_parent; 490 491 u32 ctl_reg; 492 u32 div_reg; 493 494 /* Number of integer bits in the divider */ 495 u32 int_bits; 496 /* Number of fractional bits in the divider */ 497 u32 frac_bits; 498 499 u32 flags; 500 501 bool is_vpu_clock; 502 bool is_mash_clock; 503 bool low_jitter; 504 505 u32 tcnt_mux; 506 }; 507 508 struct bcm2835_gate_data { 509 const char *name; 510 const char *parent; 511 512 u32 ctl_reg; 513 }; 514 515 struct bcm2835_pll { 516 struct clk_hw hw; 517 struct bcm2835_cprman *cprman; 518 const struct bcm2835_pll_data *data; 519 }; 520 521 static int bcm2835_pll_is_on(struct clk_hw *hw) 522 { 523 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 524 struct bcm2835_cprman *cprman = pll->cprman; 525 const struct bcm2835_pll_data *data = pll->data; 526 527 return cprman_read(cprman, data->a2w_ctrl_reg) & 528 A2W_PLL_CTRL_PRST_DISABLE; 529 } 530 531 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, 532 unsigned long parent_rate, 533 u32 *ndiv, u32 *fdiv) 534 { 535 u64 div; 536 537 div = (u64)rate << A2W_PLL_FRAC_BITS; 538 do_div(div, parent_rate); 539 540 *ndiv = div >> A2W_PLL_FRAC_BITS; 541 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); 542 } 543 544 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, 545 u32 ndiv, u32 fdiv, u32 pdiv) 546 { 547 u64 rate; 548 549 if (pdiv == 0) 550 return 0; 551 552 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); 553 do_div(rate, pdiv); 554 return rate >> A2W_PLL_FRAC_BITS; 555 } 556 557 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, 558 unsigned long *parent_rate) 559 { 560 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 561 const struct bcm2835_pll_data *data = pll->data; 562 u32 ndiv, fdiv; 563 564 rate = clamp(rate, data->min_rate, data->max_rate); 565 566 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); 567 568 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); 569 } 570 571 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, 572 unsigned long parent_rate) 573 { 574 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 575 struct bcm2835_cprman *cprman = pll->cprman; 576 const struct bcm2835_pll_data *data = pll->data; 577 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); 578 u32 ndiv, pdiv, fdiv; 579 bool using_prediv; 580 581 if (parent_rate == 0) 582 return 0; 583 584 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; 585 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; 586 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; 587 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & 588 data->ana->fb_prediv_mask; 589 590 if (using_prediv) { 591 ndiv *= 2; 592 fdiv *= 2; 593 } 594 595 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); 596 } 597 598 static void bcm2835_pll_off(struct clk_hw *hw) 599 { 600 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 601 struct bcm2835_cprman *cprman = pll->cprman; 602 const struct bcm2835_pll_data *data = pll->data; 603 604 spin_lock(&cprman->regs_lock); 605 cprman_write(cprman, data->cm_ctrl_reg, 606 cprman_read(cprman, data->cm_ctrl_reg) | 607 CM_PLL_ANARST); 608 cprman_write(cprman, data->a2w_ctrl_reg, 609 cprman_read(cprman, data->a2w_ctrl_reg) | 610 A2W_PLL_CTRL_PWRDN); 611 spin_unlock(&cprman->regs_lock); 612 } 613 614 static int bcm2835_pll_on(struct clk_hw *hw) 615 { 616 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 617 struct bcm2835_cprman *cprman = pll->cprman; 618 const struct bcm2835_pll_data *data = pll->data; 619 ktime_t timeout; 620 621 cprman_write(cprman, data->a2w_ctrl_reg, 622 cprman_read(cprman, data->a2w_ctrl_reg) & 623 ~A2W_PLL_CTRL_PWRDN); 624 625 /* Take the PLL out of reset. */ 626 cprman_write(cprman, data->cm_ctrl_reg, 627 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); 628 629 /* Wait for the PLL to lock. */ 630 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 631 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { 632 if (ktime_after(ktime_get(), timeout)) { 633 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 634 clk_hw_get_name(hw)); 635 return -ETIMEDOUT; 636 } 637 638 cpu_relax(); 639 } 640 641 return 0; 642 } 643 644 static void 645 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) 646 { 647 int i; 648 649 /* 650 * ANA register setup is done as a series of writes to 651 * ANA3-ANA0, in that order. This lets us write all 4 652 * registers as a single cycle of the serdes interface (taking 653 * 100 xosc clocks), whereas if we were to update ana0, 1, and 654 * 3 individually through their partial-write registers, each 655 * would be their own serdes cycle. 656 */ 657 for (i = 3; i >= 0; i--) 658 cprman_write(cprman, ana_reg_base + i * 4, ana[i]); 659 } 660 661 static int bcm2835_pll_set_rate(struct clk_hw *hw, 662 unsigned long rate, unsigned long parent_rate) 663 { 664 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 665 struct bcm2835_cprman *cprman = pll->cprman; 666 const struct bcm2835_pll_data *data = pll->data; 667 bool was_using_prediv, use_fb_prediv, do_ana_setup_first; 668 u32 ndiv, fdiv, a2w_ctl; 669 u32 ana[4]; 670 int i; 671 672 if (rate > data->max_fb_rate) { 673 use_fb_prediv = true; 674 rate /= 2; 675 } else { 676 use_fb_prediv = false; 677 } 678 679 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); 680 681 for (i = 3; i >= 0; i--) 682 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); 683 684 was_using_prediv = ana[1] & data->ana->fb_prediv_mask; 685 686 ana[0] &= ~data->ana->mask0; 687 ana[0] |= data->ana->set0; 688 ana[1] &= ~data->ana->mask1; 689 ana[1] |= data->ana->set1; 690 ana[3] &= ~data->ana->mask3; 691 ana[3] |= data->ana->set3; 692 693 if (was_using_prediv && !use_fb_prediv) { 694 ana[1] &= ~data->ana->fb_prediv_mask; 695 do_ana_setup_first = true; 696 } else if (!was_using_prediv && use_fb_prediv) { 697 ana[1] |= data->ana->fb_prediv_mask; 698 do_ana_setup_first = false; 699 } else { 700 do_ana_setup_first = true; 701 } 702 703 /* Unmask the reference clock from the oscillator. */ 704 cprman_write(cprman, A2W_XOSC_CTRL, 705 cprman_read(cprman, A2W_XOSC_CTRL) | 706 data->reference_enable_mask); 707 708 if (do_ana_setup_first) 709 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 710 711 /* Set the PLL multiplier from the oscillator. */ 712 cprman_write(cprman, data->frac_reg, fdiv); 713 714 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); 715 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; 716 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; 717 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; 718 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; 719 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); 720 721 if (!do_ana_setup_first) 722 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); 723 724 return 0; 725 } 726 727 static int bcm2835_pll_debug_init(struct clk_hw *hw, 728 struct dentry *dentry) 729 { 730 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); 731 struct bcm2835_cprman *cprman = pll->cprman; 732 const struct bcm2835_pll_data *data = pll->data; 733 struct debugfs_reg32 *regs; 734 735 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL); 736 if (!regs) 737 return -ENOMEM; 738 739 regs[0].name = "cm_ctrl"; 740 regs[0].offset = data->cm_ctrl_reg; 741 regs[1].name = "a2w_ctrl"; 742 regs[1].offset = data->a2w_ctrl_reg; 743 regs[2].name = "frac"; 744 regs[2].offset = data->frac_reg; 745 regs[3].name = "ana0"; 746 regs[3].offset = data->ana_reg_base + 0 * 4; 747 regs[4].name = "ana1"; 748 regs[4].offset = data->ana_reg_base + 1 * 4; 749 regs[5].name = "ana2"; 750 regs[5].offset = data->ana_reg_base + 2 * 4; 751 regs[6].name = "ana3"; 752 regs[6].offset = data->ana_reg_base + 3 * 4; 753 754 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry); 755 } 756 757 static const struct clk_ops bcm2835_pll_clk_ops = { 758 .is_prepared = bcm2835_pll_is_on, 759 .prepare = bcm2835_pll_on, 760 .unprepare = bcm2835_pll_off, 761 .recalc_rate = bcm2835_pll_get_rate, 762 .set_rate = bcm2835_pll_set_rate, 763 .round_rate = bcm2835_pll_round_rate, 764 .debug_init = bcm2835_pll_debug_init, 765 }; 766 767 struct bcm2835_pll_divider { 768 struct clk_divider div; 769 struct bcm2835_cprman *cprman; 770 const struct bcm2835_pll_divider_data *data; 771 }; 772 773 static struct bcm2835_pll_divider * 774 bcm2835_pll_divider_from_hw(struct clk_hw *hw) 775 { 776 return container_of(hw, struct bcm2835_pll_divider, div.hw); 777 } 778 779 static int bcm2835_pll_divider_is_on(struct clk_hw *hw) 780 { 781 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 782 struct bcm2835_cprman *cprman = divider->cprman; 783 const struct bcm2835_pll_divider_data *data = divider->data; 784 785 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); 786 } 787 788 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw, 789 unsigned long rate, 790 unsigned long *parent_rate) 791 { 792 return clk_divider_ops.round_rate(hw, rate, parent_rate); 793 } 794 795 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, 796 unsigned long parent_rate) 797 { 798 return clk_divider_ops.recalc_rate(hw, parent_rate); 799 } 800 801 static void bcm2835_pll_divider_off(struct clk_hw *hw) 802 { 803 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 804 struct bcm2835_cprman *cprman = divider->cprman; 805 const struct bcm2835_pll_divider_data *data = divider->data; 806 807 spin_lock(&cprman->regs_lock); 808 cprman_write(cprman, data->cm_reg, 809 (cprman_read(cprman, data->cm_reg) & 810 ~data->load_mask) | data->hold_mask); 811 cprman_write(cprman, data->a2w_reg, 812 cprman_read(cprman, data->a2w_reg) | 813 A2W_PLL_CHANNEL_DISABLE); 814 spin_unlock(&cprman->regs_lock); 815 } 816 817 static int bcm2835_pll_divider_on(struct clk_hw *hw) 818 { 819 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 820 struct bcm2835_cprman *cprman = divider->cprman; 821 const struct bcm2835_pll_divider_data *data = divider->data; 822 823 spin_lock(&cprman->regs_lock); 824 cprman_write(cprman, data->a2w_reg, 825 cprman_read(cprman, data->a2w_reg) & 826 ~A2W_PLL_CHANNEL_DISABLE); 827 828 cprman_write(cprman, data->cm_reg, 829 cprman_read(cprman, data->cm_reg) & ~data->hold_mask); 830 spin_unlock(&cprman->regs_lock); 831 832 return 0; 833 } 834 835 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, 836 unsigned long rate, 837 unsigned long parent_rate) 838 { 839 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 840 struct bcm2835_cprman *cprman = divider->cprman; 841 const struct bcm2835_pll_divider_data *data = divider->data; 842 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS; 843 844 div = DIV_ROUND_UP_ULL(parent_rate, rate); 845 846 div = min(div, max_div); 847 if (div == max_div) 848 div = 0; 849 850 cprman_write(cprman, data->a2w_reg, div); 851 cm = cprman_read(cprman, data->cm_reg); 852 cprman_write(cprman, data->cm_reg, cm | data->load_mask); 853 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); 854 855 return 0; 856 } 857 858 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw, 859 struct dentry *dentry) 860 { 861 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); 862 struct bcm2835_cprman *cprman = divider->cprman; 863 const struct bcm2835_pll_divider_data *data = divider->data; 864 struct debugfs_reg32 *regs; 865 866 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL); 867 if (!regs) 868 return -ENOMEM; 869 870 regs[0].name = "cm"; 871 regs[0].offset = data->cm_reg; 872 regs[1].name = "a2w"; 873 regs[1].offset = data->a2w_reg; 874 875 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry); 876 } 877 878 static const struct clk_ops bcm2835_pll_divider_clk_ops = { 879 .is_prepared = bcm2835_pll_divider_is_on, 880 .prepare = bcm2835_pll_divider_on, 881 .unprepare = bcm2835_pll_divider_off, 882 .recalc_rate = bcm2835_pll_divider_get_rate, 883 .set_rate = bcm2835_pll_divider_set_rate, 884 .round_rate = bcm2835_pll_divider_round_rate, 885 .debug_init = bcm2835_pll_divider_debug_init, 886 }; 887 888 /* 889 * The CM dividers do fixed-point division, so we can't use the 890 * generic integer divider code like the PLL dividers do (and we can't 891 * fake it by having some fixed shifts preceding it in the clock tree, 892 * because we'd run out of bits in a 32-bit unsigned long). 893 */ 894 struct bcm2835_clock { 895 struct clk_hw hw; 896 struct bcm2835_cprman *cprman; 897 const struct bcm2835_clock_data *data; 898 }; 899 900 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) 901 { 902 return container_of(hw, struct bcm2835_clock, hw); 903 } 904 905 static int bcm2835_clock_is_on(struct clk_hw *hw) 906 { 907 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 908 struct bcm2835_cprman *cprman = clock->cprman; 909 const struct bcm2835_clock_data *data = clock->data; 910 911 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; 912 } 913 914 static u32 bcm2835_clock_choose_div(struct clk_hw *hw, 915 unsigned long rate, 916 unsigned long parent_rate, 917 bool round_up) 918 { 919 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 920 const struct bcm2835_clock_data *data = clock->data; 921 u32 unused_frac_mask = 922 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1; 923 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; 924 u64 rem; 925 u32 div, mindiv, maxdiv; 926 927 rem = do_div(temp, rate); 928 div = temp; 929 930 /* Round up and mask off the unused bits */ 931 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0)) 932 div += unused_frac_mask + 1; 933 div &= ~unused_frac_mask; 934 935 /* different clamping limits apply for a mash clock */ 936 if (data->is_mash_clock) { 937 /* clamp to min divider of 2 */ 938 mindiv = 2 << CM_DIV_FRAC_BITS; 939 /* clamp to the highest possible integer divider */ 940 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS; 941 } else { 942 /* clamp to min divider of 1 */ 943 mindiv = 1 << CM_DIV_FRAC_BITS; 944 /* clamp to the highest possible fractional divider */ 945 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, 946 CM_DIV_FRAC_BITS - data->frac_bits); 947 } 948 949 /* apply the clamping limits */ 950 div = max_t(u32, div, mindiv); 951 div = min_t(u32, div, maxdiv); 952 953 return div; 954 } 955 956 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, 957 unsigned long parent_rate, 958 u32 div) 959 { 960 const struct bcm2835_clock_data *data = clock->data; 961 u64 temp; 962 963 if (data->int_bits == 0 && data->frac_bits == 0) 964 return parent_rate; 965 966 /* 967 * The divisor is a 12.12 fixed point field, but only some of 968 * the bits are populated in any given clock. 969 */ 970 div >>= CM_DIV_FRAC_BITS - data->frac_bits; 971 div &= (1 << (data->int_bits + data->frac_bits)) - 1; 972 973 if (div == 0) 974 return 0; 975 976 temp = (u64)parent_rate << data->frac_bits; 977 978 do_div(temp, div); 979 980 return temp; 981 } 982 983 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, 984 unsigned long parent_rate) 985 { 986 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 987 struct bcm2835_cprman *cprman = clock->cprman; 988 const struct bcm2835_clock_data *data = clock->data; 989 u32 div; 990 991 if (data->int_bits == 0 && data->frac_bits == 0) 992 return parent_rate; 993 994 div = cprman_read(cprman, data->div_reg); 995 996 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); 997 } 998 999 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) 1000 { 1001 struct bcm2835_cprman *cprman = clock->cprman; 1002 const struct bcm2835_clock_data *data = clock->data; 1003 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); 1004 1005 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { 1006 if (ktime_after(ktime_get(), timeout)) { 1007 dev_err(cprman->dev, "%s: couldn't lock PLL\n", 1008 clk_hw_get_name(&clock->hw)); 1009 return; 1010 } 1011 cpu_relax(); 1012 } 1013 } 1014 1015 static void bcm2835_clock_off(struct clk_hw *hw) 1016 { 1017 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1018 struct bcm2835_cprman *cprman = clock->cprman; 1019 const struct bcm2835_clock_data *data = clock->data; 1020 1021 spin_lock(&cprman->regs_lock); 1022 cprman_write(cprman, data->ctl_reg, 1023 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); 1024 spin_unlock(&cprman->regs_lock); 1025 1026 /* BUSY will remain high until the divider completes its cycle. */ 1027 bcm2835_clock_wait_busy(clock); 1028 } 1029 1030 static int bcm2835_clock_on(struct clk_hw *hw) 1031 { 1032 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1033 struct bcm2835_cprman *cprman = clock->cprman; 1034 const struct bcm2835_clock_data *data = clock->data; 1035 1036 spin_lock(&cprman->regs_lock); 1037 cprman_write(cprman, data->ctl_reg, 1038 cprman_read(cprman, data->ctl_reg) | 1039 CM_ENABLE | 1040 CM_GATE); 1041 spin_unlock(&cprman->regs_lock); 1042 1043 /* Debug code to measure the clock once it's turned on to see 1044 * if it's ticking at the rate we expect. 1045 */ 1046 if (data->tcnt_mux && false) { 1047 dev_info(cprman->dev, 1048 "clk %s: rate %ld, measure %ld\n", 1049 data->name, 1050 clk_hw_get_rate(hw), 1051 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux)); 1052 } 1053 1054 return 0; 1055 } 1056 1057 static int bcm2835_clock_set_rate(struct clk_hw *hw, 1058 unsigned long rate, unsigned long parent_rate) 1059 { 1060 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1061 struct bcm2835_cprman *cprman = clock->cprman; 1062 const struct bcm2835_clock_data *data = clock->data; 1063 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false); 1064 u32 ctl; 1065 1066 spin_lock(&cprman->regs_lock); 1067 1068 /* 1069 * Setting up frac support 1070 * 1071 * In principle it is recommended to stop/start the clock first, 1072 * but as we set CLK_SET_RATE_GATE during registration of the 1073 * clock this requirement should be take care of by the 1074 * clk-framework. 1075 */ 1076 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC; 1077 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0; 1078 cprman_write(cprman, data->ctl_reg, ctl); 1079 1080 cprman_write(cprman, data->div_reg, div); 1081 1082 spin_unlock(&cprman->regs_lock); 1083 1084 return 0; 1085 } 1086 1087 static bool 1088 bcm2835_clk_is_pllc(struct clk_hw *hw) 1089 { 1090 if (!hw) 1091 return false; 1092 1093 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0; 1094 } 1095 1096 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw, 1097 int parent_idx, 1098 unsigned long rate, 1099 u32 *div, 1100 unsigned long *prate, 1101 unsigned long *avgrate) 1102 { 1103 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1104 struct bcm2835_cprman *cprman = clock->cprman; 1105 const struct bcm2835_clock_data *data = clock->data; 1106 unsigned long best_rate = 0; 1107 u32 curdiv, mindiv, maxdiv; 1108 struct clk_hw *parent; 1109 1110 parent = clk_hw_get_parent_by_index(hw, parent_idx); 1111 1112 if (!(BIT(parent_idx) & data->set_rate_parent)) { 1113 *prate = clk_hw_get_rate(parent); 1114 *div = bcm2835_clock_choose_div(hw, rate, *prate, true); 1115 1116 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div); 1117 1118 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) { 1119 unsigned long high, low; 1120 u32 int_div = *div & ~CM_DIV_FRAC_MASK; 1121 1122 high = bcm2835_clock_rate_from_divisor(clock, *prate, 1123 int_div); 1124 int_div += CM_DIV_FRAC_MASK + 1; 1125 low = bcm2835_clock_rate_from_divisor(clock, *prate, 1126 int_div); 1127 1128 /* 1129 * Return a value which is the maximum deviation 1130 * below the ideal rate, for use as a metric. 1131 */ 1132 return *avgrate - max(*avgrate - low, high - *avgrate); 1133 } 1134 return *avgrate; 1135 } 1136 1137 if (data->frac_bits) 1138 dev_warn(cprman->dev, 1139 "frac bits are not used when propagating rate change"); 1140 1141 /* clamp to min divider of 2 if we're dealing with a mash clock */ 1142 mindiv = data->is_mash_clock ? 2 : 1; 1143 maxdiv = BIT(data->int_bits) - 1; 1144 1145 /* TODO: Be smart, and only test a subset of the available divisors. */ 1146 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) { 1147 unsigned long tmp_rate; 1148 1149 tmp_rate = clk_hw_round_rate(parent, rate * curdiv); 1150 tmp_rate /= curdiv; 1151 if (curdiv == mindiv || 1152 (tmp_rate > best_rate && tmp_rate <= rate)) 1153 best_rate = tmp_rate; 1154 1155 if (best_rate == rate) 1156 break; 1157 } 1158 1159 *div = curdiv << CM_DIV_FRAC_BITS; 1160 *prate = curdiv * best_rate; 1161 *avgrate = best_rate; 1162 1163 return best_rate; 1164 } 1165 1166 static int bcm2835_clock_determine_rate(struct clk_hw *hw, 1167 struct clk_rate_request *req) 1168 { 1169 struct clk_hw *parent, *best_parent = NULL; 1170 bool current_parent_is_pllc; 1171 unsigned long rate, best_rate = 0; 1172 unsigned long prate, best_prate = 0; 1173 unsigned long avgrate, best_avgrate = 0; 1174 size_t i; 1175 u32 div; 1176 1177 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw)); 1178 1179 /* 1180 * Select parent clock that results in the closest but lower rate 1181 */ 1182 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) { 1183 parent = clk_hw_get_parent_by_index(hw, i); 1184 if (!parent) 1185 continue; 1186 1187 /* 1188 * Don't choose a PLLC-derived clock as our parent 1189 * unless it had been manually set that way. PLLC's 1190 * frequency gets adjusted by the firmware due to 1191 * over-temp or under-voltage conditions, without 1192 * prior notification to our clock consumer. 1193 */ 1194 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc) 1195 continue; 1196 1197 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate, 1198 &div, &prate, 1199 &avgrate); 1200 if (rate > best_rate && rate <= req->rate) { 1201 best_parent = parent; 1202 best_prate = prate; 1203 best_rate = rate; 1204 best_avgrate = avgrate; 1205 } 1206 } 1207 1208 if (!best_parent) 1209 return -EINVAL; 1210 1211 req->best_parent_hw = best_parent; 1212 req->best_parent_rate = best_prate; 1213 1214 req->rate = best_avgrate; 1215 1216 return 0; 1217 } 1218 1219 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index) 1220 { 1221 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1222 struct bcm2835_cprman *cprman = clock->cprman; 1223 const struct bcm2835_clock_data *data = clock->data; 1224 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK; 1225 1226 cprman_write(cprman, data->ctl_reg, src); 1227 return 0; 1228 } 1229 1230 static u8 bcm2835_clock_get_parent(struct clk_hw *hw) 1231 { 1232 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1233 struct bcm2835_cprman *cprman = clock->cprman; 1234 const struct bcm2835_clock_data *data = clock->data; 1235 u32 src = cprman_read(cprman, data->ctl_reg); 1236 1237 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT; 1238 } 1239 1240 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = { 1241 { 1242 .name = "ctl", 1243 .offset = 0, 1244 }, 1245 { 1246 .name = "div", 1247 .offset = 4, 1248 }, 1249 }; 1250 1251 static int bcm2835_clock_debug_init(struct clk_hw *hw, 1252 struct dentry *dentry) 1253 { 1254 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); 1255 struct bcm2835_cprman *cprman = clock->cprman; 1256 const struct bcm2835_clock_data *data = clock->data; 1257 1258 return bcm2835_debugfs_regset( 1259 cprman, data->ctl_reg, 1260 bcm2835_debugfs_clock_reg32, 1261 ARRAY_SIZE(bcm2835_debugfs_clock_reg32), 1262 dentry); 1263 } 1264 1265 static const struct clk_ops bcm2835_clock_clk_ops = { 1266 .is_prepared = bcm2835_clock_is_on, 1267 .prepare = bcm2835_clock_on, 1268 .unprepare = bcm2835_clock_off, 1269 .recalc_rate = bcm2835_clock_get_rate, 1270 .set_rate = bcm2835_clock_set_rate, 1271 .determine_rate = bcm2835_clock_determine_rate, 1272 .set_parent = bcm2835_clock_set_parent, 1273 .get_parent = bcm2835_clock_get_parent, 1274 .debug_init = bcm2835_clock_debug_init, 1275 }; 1276 1277 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) 1278 { 1279 return true; 1280 } 1281 1282 /* 1283 * The VPU clock can never be disabled (it doesn't have an ENABLE 1284 * bit), so it gets its own set of clock ops. 1285 */ 1286 static const struct clk_ops bcm2835_vpu_clock_clk_ops = { 1287 .is_prepared = bcm2835_vpu_clock_is_on, 1288 .recalc_rate = bcm2835_clock_get_rate, 1289 .set_rate = bcm2835_clock_set_rate, 1290 .determine_rate = bcm2835_clock_determine_rate, 1291 .set_parent = bcm2835_clock_set_parent, 1292 .get_parent = bcm2835_clock_get_parent, 1293 .debug_init = bcm2835_clock_debug_init, 1294 }; 1295 1296 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman, 1297 const struct bcm2835_pll_data *data) 1298 { 1299 struct bcm2835_pll *pll; 1300 struct clk_init_data init; 1301 int ret; 1302 1303 memset(&init, 0, sizeof(init)); 1304 1305 /* All of the PLLs derive from the external oscillator. */ 1306 init.parent_names = &cprman->real_parent_names[0]; 1307 init.num_parents = 1; 1308 init.name = data->name; 1309 init.ops = &bcm2835_pll_clk_ops; 1310 init.flags = CLK_IGNORE_UNUSED; 1311 1312 pll = kzalloc(sizeof(*pll), GFP_KERNEL); 1313 if (!pll) 1314 return NULL; 1315 1316 pll->cprman = cprman; 1317 pll->data = data; 1318 pll->hw.init = &init; 1319 1320 ret = devm_clk_hw_register(cprman->dev, &pll->hw); 1321 if (ret) 1322 return NULL; 1323 return &pll->hw; 1324 } 1325 1326 static struct clk_hw * 1327 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, 1328 const struct bcm2835_pll_divider_data *data) 1329 { 1330 struct bcm2835_pll_divider *divider; 1331 struct clk_init_data init; 1332 const char *divider_name; 1333 int ret; 1334 1335 if (data->fixed_divider != 1) { 1336 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, 1337 "%s_prediv", data->name); 1338 if (!divider_name) 1339 return NULL; 1340 } else { 1341 divider_name = data->name; 1342 } 1343 1344 memset(&init, 0, sizeof(init)); 1345 1346 init.parent_names = &data->source_pll; 1347 init.num_parents = 1; 1348 init.name = divider_name; 1349 init.ops = &bcm2835_pll_divider_clk_ops; 1350 init.flags = data->flags | CLK_IGNORE_UNUSED; 1351 1352 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); 1353 if (!divider) 1354 return NULL; 1355 1356 divider->div.reg = cprman->regs + data->a2w_reg; 1357 divider->div.shift = A2W_PLL_DIV_SHIFT; 1358 divider->div.width = A2W_PLL_DIV_BITS; 1359 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO; 1360 divider->div.lock = &cprman->regs_lock; 1361 divider->div.hw.init = &init; 1362 divider->div.table = NULL; 1363 1364 divider->cprman = cprman; 1365 divider->data = data; 1366 1367 ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw); 1368 if (ret) 1369 return ERR_PTR(ret); 1370 1371 /* 1372 * PLLH's channels have a fixed divide by 10 afterwards, which 1373 * is what our consumers are actually using. 1374 */ 1375 if (data->fixed_divider != 1) { 1376 return clk_hw_register_fixed_factor(cprman->dev, data->name, 1377 divider_name, 1378 CLK_SET_RATE_PARENT, 1379 1, 1380 data->fixed_divider); 1381 } 1382 1383 return ÷r->div.hw; 1384 } 1385 1386 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman, 1387 const struct bcm2835_clock_data *data) 1388 { 1389 struct bcm2835_clock *clock; 1390 struct clk_init_data init; 1391 const char *parents[1 << CM_SRC_BITS]; 1392 size_t i, j; 1393 int ret; 1394 1395 /* 1396 * Replace our strings referencing parent clocks with the 1397 * actual clock-output-name of the parent. 1398 */ 1399 for (i = 0; i < data->num_mux_parents; i++) { 1400 parents[i] = data->parents[i]; 1401 1402 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) { 1403 if (strcmp(parents[i], cprman_parent_names[j]) == 0) { 1404 parents[i] = cprman->real_parent_names[j]; 1405 break; 1406 } 1407 } 1408 } 1409 1410 memset(&init, 0, sizeof(init)); 1411 init.parent_names = parents; 1412 init.num_parents = data->num_mux_parents; 1413 init.name = data->name; 1414 init.flags = data->flags | CLK_IGNORE_UNUSED; 1415 1416 /* 1417 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate 1418 * rate changes on at least of the parents. 1419 */ 1420 if (data->set_rate_parent) 1421 init.flags |= CLK_SET_RATE_PARENT; 1422 1423 if (data->is_vpu_clock) { 1424 init.ops = &bcm2835_vpu_clock_clk_ops; 1425 } else { 1426 init.ops = &bcm2835_clock_clk_ops; 1427 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; 1428 1429 /* If the clock wasn't actually enabled at boot, it's not 1430 * critical. 1431 */ 1432 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE)) 1433 init.flags &= ~CLK_IS_CRITICAL; 1434 } 1435 1436 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); 1437 if (!clock) 1438 return NULL; 1439 1440 clock->cprman = cprman; 1441 clock->data = data; 1442 clock->hw.init = &init; 1443 1444 ret = devm_clk_hw_register(cprman->dev, &clock->hw); 1445 if (ret) 1446 return ERR_PTR(ret); 1447 return &clock->hw; 1448 } 1449 1450 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman, 1451 const struct bcm2835_gate_data *data) 1452 { 1453 return clk_register_gate(cprman->dev, data->name, data->parent, 1454 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, 1455 cprman->regs + data->ctl_reg, 1456 CM_GATE_BIT, 0, &cprman->regs_lock); 1457 } 1458 1459 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman, 1460 const void *data); 1461 struct bcm2835_clk_desc { 1462 bcm2835_clk_register clk_register; 1463 const void *data; 1464 }; 1465 1466 /* assignment helper macros for different clock types */ 1467 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \ 1468 .data = __VA_ARGS__ } 1469 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \ 1470 &(struct bcm2835_pll_data) \ 1471 {__VA_ARGS__}) 1472 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \ 1473 &(struct bcm2835_pll_divider_data) \ 1474 {__VA_ARGS__}) 1475 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \ 1476 &(struct bcm2835_clock_data) \ 1477 {__VA_ARGS__}) 1478 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \ 1479 &(struct bcm2835_gate_data) \ 1480 {__VA_ARGS__}) 1481 1482 /* parent mux arrays plus helper macros */ 1483 1484 /* main oscillator parent mux */ 1485 static const char *const bcm2835_clock_osc_parents[] = { 1486 "gnd", 1487 "xosc", 1488 "testdebug0", 1489 "testdebug1" 1490 }; 1491 1492 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \ 1493 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \ 1494 .parents = bcm2835_clock_osc_parents, \ 1495 __VA_ARGS__) 1496 1497 /* main peripherial parent mux */ 1498 static const char *const bcm2835_clock_per_parents[] = { 1499 "gnd", 1500 "xosc", 1501 "testdebug0", 1502 "testdebug1", 1503 "plla_per", 1504 "pllc_per", 1505 "plld_per", 1506 "pllh_aux", 1507 }; 1508 1509 #define REGISTER_PER_CLK(...) REGISTER_CLK( \ 1510 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \ 1511 .parents = bcm2835_clock_per_parents, \ 1512 __VA_ARGS__) 1513 1514 /* 1515 * Restrict clock sources for the PCM peripheral to the oscillator and 1516 * PLLD_PER because other source may have varying rates or be switched 1517 * off. 1518 * 1519 * Prevent other sources from being selected by replacing their names in 1520 * the list of potential parents with dummy entries (entry index is 1521 * significant). 1522 */ 1523 static const char *const bcm2835_pcm_per_parents[] = { 1524 "-", 1525 "xosc", 1526 "-", 1527 "-", 1528 "-", 1529 "-", 1530 "plld_per", 1531 "-", 1532 }; 1533 1534 #define REGISTER_PCM_CLK(...) REGISTER_CLK( \ 1535 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \ 1536 .parents = bcm2835_pcm_per_parents, \ 1537 __VA_ARGS__) 1538 1539 /* main vpu parent mux */ 1540 static const char *const bcm2835_clock_vpu_parents[] = { 1541 "gnd", 1542 "xosc", 1543 "testdebug0", 1544 "testdebug1", 1545 "plla_core", 1546 "pllc_core0", 1547 "plld_core", 1548 "pllh_aux", 1549 "pllc_core1", 1550 "pllc_core2", 1551 }; 1552 1553 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \ 1554 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \ 1555 .parents = bcm2835_clock_vpu_parents, \ 1556 __VA_ARGS__) 1557 1558 /* 1559 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI 1560 * analog PHY. The _inv variants are generated internally to cprman, 1561 * but we don't use them so they aren't hooked up. 1562 */ 1563 static const char *const bcm2835_clock_dsi0_parents[] = { 1564 "gnd", 1565 "xosc", 1566 "testdebug0", 1567 "testdebug1", 1568 "dsi0_ddr", 1569 "dsi0_ddr_inv", 1570 "dsi0_ddr2", 1571 "dsi0_ddr2_inv", 1572 "dsi0_byte", 1573 "dsi0_byte_inv", 1574 }; 1575 1576 static const char *const bcm2835_clock_dsi1_parents[] = { 1577 "gnd", 1578 "xosc", 1579 "testdebug0", 1580 "testdebug1", 1581 "dsi1_ddr", 1582 "dsi1_ddr_inv", 1583 "dsi1_ddr2", 1584 "dsi1_ddr2_inv", 1585 "dsi1_byte", 1586 "dsi1_byte_inv", 1587 }; 1588 1589 #define REGISTER_DSI0_CLK(...) REGISTER_CLK( \ 1590 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \ 1591 .parents = bcm2835_clock_dsi0_parents, \ 1592 __VA_ARGS__) 1593 1594 #define REGISTER_DSI1_CLK(...) REGISTER_CLK( \ 1595 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \ 1596 .parents = bcm2835_clock_dsi1_parents, \ 1597 __VA_ARGS__) 1598 1599 /* 1600 * the real definition of all the pll, pll_dividers and clocks 1601 * these make use of the above REGISTER_* macros 1602 */ 1603 static const struct bcm2835_clk_desc clk_desc_array[] = { 1604 /* the PLL + PLL dividers */ 1605 1606 /* 1607 * PLLA is the auxiliary PLL, used to drive the CCP2 1608 * (Compact Camera Port 2) transmitter clock. 1609 * 1610 * It is in the PX LDO power domain, which is on when the 1611 * AUDIO domain is on. 1612 */ 1613 [BCM2835_PLLA] = REGISTER_PLL( 1614 .name = "plla", 1615 .cm_ctrl_reg = CM_PLLA, 1616 .a2w_ctrl_reg = A2W_PLLA_CTRL, 1617 .frac_reg = A2W_PLLA_FRAC, 1618 .ana_reg_base = A2W_PLLA_ANA0, 1619 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, 1620 .lock_mask = CM_LOCK_FLOCKA, 1621 1622 .ana = &bcm2835_ana_default, 1623 1624 .min_rate = 600000000u, 1625 .max_rate = 2400000000u, 1626 .max_fb_rate = BCM2835_MAX_FB_RATE), 1627 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV( 1628 .name = "plla_core", 1629 .source_pll = "plla", 1630 .cm_reg = CM_PLLA, 1631 .a2w_reg = A2W_PLLA_CORE, 1632 .load_mask = CM_PLLA_LOADCORE, 1633 .hold_mask = CM_PLLA_HOLDCORE, 1634 .fixed_divider = 1, 1635 .flags = CLK_SET_RATE_PARENT), 1636 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV( 1637 .name = "plla_per", 1638 .source_pll = "plla", 1639 .cm_reg = CM_PLLA, 1640 .a2w_reg = A2W_PLLA_PER, 1641 .load_mask = CM_PLLA_LOADPER, 1642 .hold_mask = CM_PLLA_HOLDPER, 1643 .fixed_divider = 1, 1644 .flags = CLK_SET_RATE_PARENT), 1645 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV( 1646 .name = "plla_dsi0", 1647 .source_pll = "plla", 1648 .cm_reg = CM_PLLA, 1649 .a2w_reg = A2W_PLLA_DSI0, 1650 .load_mask = CM_PLLA_LOADDSI0, 1651 .hold_mask = CM_PLLA_HOLDDSI0, 1652 .fixed_divider = 1), 1653 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV( 1654 .name = "plla_ccp2", 1655 .source_pll = "plla", 1656 .cm_reg = CM_PLLA, 1657 .a2w_reg = A2W_PLLA_CCP2, 1658 .load_mask = CM_PLLA_LOADCCP2, 1659 .hold_mask = CM_PLLA_HOLDCCP2, 1660 .fixed_divider = 1, 1661 .flags = CLK_SET_RATE_PARENT), 1662 1663 /* PLLB is used for the ARM's clock. */ 1664 [BCM2835_PLLB] = REGISTER_PLL( 1665 .name = "pllb", 1666 .cm_ctrl_reg = CM_PLLB, 1667 .a2w_ctrl_reg = A2W_PLLB_CTRL, 1668 .frac_reg = A2W_PLLB_FRAC, 1669 .ana_reg_base = A2W_PLLB_ANA0, 1670 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE, 1671 .lock_mask = CM_LOCK_FLOCKB, 1672 1673 .ana = &bcm2835_ana_default, 1674 1675 .min_rate = 600000000u, 1676 .max_rate = 3000000000u, 1677 .max_fb_rate = BCM2835_MAX_FB_RATE), 1678 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV( 1679 .name = "pllb_arm", 1680 .source_pll = "pllb", 1681 .cm_reg = CM_PLLB, 1682 .a2w_reg = A2W_PLLB_ARM, 1683 .load_mask = CM_PLLB_LOADARM, 1684 .hold_mask = CM_PLLB_HOLDARM, 1685 .fixed_divider = 1, 1686 .flags = CLK_SET_RATE_PARENT), 1687 1688 /* 1689 * PLLC is the core PLL, used to drive the core VPU clock. 1690 * 1691 * It is in the PX LDO power domain, which is on when the 1692 * AUDIO domain is on. 1693 */ 1694 [BCM2835_PLLC] = REGISTER_PLL( 1695 .name = "pllc", 1696 .cm_ctrl_reg = CM_PLLC, 1697 .a2w_ctrl_reg = A2W_PLLC_CTRL, 1698 .frac_reg = A2W_PLLC_FRAC, 1699 .ana_reg_base = A2W_PLLC_ANA0, 1700 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1701 .lock_mask = CM_LOCK_FLOCKC, 1702 1703 .ana = &bcm2835_ana_default, 1704 1705 .min_rate = 600000000u, 1706 .max_rate = 3000000000u, 1707 .max_fb_rate = BCM2835_MAX_FB_RATE), 1708 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV( 1709 .name = "pllc_core0", 1710 .source_pll = "pllc", 1711 .cm_reg = CM_PLLC, 1712 .a2w_reg = A2W_PLLC_CORE0, 1713 .load_mask = CM_PLLC_LOADCORE0, 1714 .hold_mask = CM_PLLC_HOLDCORE0, 1715 .fixed_divider = 1, 1716 .flags = CLK_SET_RATE_PARENT), 1717 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV( 1718 .name = "pllc_core1", 1719 .source_pll = "pllc", 1720 .cm_reg = CM_PLLC, 1721 .a2w_reg = A2W_PLLC_CORE1, 1722 .load_mask = CM_PLLC_LOADCORE1, 1723 .hold_mask = CM_PLLC_HOLDCORE1, 1724 .fixed_divider = 1, 1725 .flags = CLK_SET_RATE_PARENT), 1726 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV( 1727 .name = "pllc_core2", 1728 .source_pll = "pllc", 1729 .cm_reg = CM_PLLC, 1730 .a2w_reg = A2W_PLLC_CORE2, 1731 .load_mask = CM_PLLC_LOADCORE2, 1732 .hold_mask = CM_PLLC_HOLDCORE2, 1733 .fixed_divider = 1, 1734 .flags = CLK_SET_RATE_PARENT), 1735 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV( 1736 .name = "pllc_per", 1737 .source_pll = "pllc", 1738 .cm_reg = CM_PLLC, 1739 .a2w_reg = A2W_PLLC_PER, 1740 .load_mask = CM_PLLC_LOADPER, 1741 .hold_mask = CM_PLLC_HOLDPER, 1742 .fixed_divider = 1, 1743 .flags = CLK_SET_RATE_PARENT), 1744 1745 /* 1746 * PLLD is the display PLL, used to drive DSI display panels. 1747 * 1748 * It is in the PX LDO power domain, which is on when the 1749 * AUDIO domain is on. 1750 */ 1751 [BCM2835_PLLD] = REGISTER_PLL( 1752 .name = "plld", 1753 .cm_ctrl_reg = CM_PLLD, 1754 .a2w_ctrl_reg = A2W_PLLD_CTRL, 1755 .frac_reg = A2W_PLLD_FRAC, 1756 .ana_reg_base = A2W_PLLD_ANA0, 1757 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, 1758 .lock_mask = CM_LOCK_FLOCKD, 1759 1760 .ana = &bcm2835_ana_default, 1761 1762 .min_rate = 600000000u, 1763 .max_rate = 2400000000u, 1764 .max_fb_rate = BCM2835_MAX_FB_RATE), 1765 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV( 1766 .name = "plld_core", 1767 .source_pll = "plld", 1768 .cm_reg = CM_PLLD, 1769 .a2w_reg = A2W_PLLD_CORE, 1770 .load_mask = CM_PLLD_LOADCORE, 1771 .hold_mask = CM_PLLD_HOLDCORE, 1772 .fixed_divider = 1, 1773 .flags = CLK_SET_RATE_PARENT), 1774 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV( 1775 .name = "plld_per", 1776 .source_pll = "plld", 1777 .cm_reg = CM_PLLD, 1778 .a2w_reg = A2W_PLLD_PER, 1779 .load_mask = CM_PLLD_LOADPER, 1780 .hold_mask = CM_PLLD_HOLDPER, 1781 .fixed_divider = 1, 1782 .flags = CLK_SET_RATE_PARENT), 1783 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV( 1784 .name = "plld_dsi0", 1785 .source_pll = "plld", 1786 .cm_reg = CM_PLLD, 1787 .a2w_reg = A2W_PLLD_DSI0, 1788 .load_mask = CM_PLLD_LOADDSI0, 1789 .hold_mask = CM_PLLD_HOLDDSI0, 1790 .fixed_divider = 1), 1791 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV( 1792 .name = "plld_dsi1", 1793 .source_pll = "plld", 1794 .cm_reg = CM_PLLD, 1795 .a2w_reg = A2W_PLLD_DSI1, 1796 .load_mask = CM_PLLD_LOADDSI1, 1797 .hold_mask = CM_PLLD_HOLDDSI1, 1798 .fixed_divider = 1), 1799 1800 /* 1801 * PLLH is used to supply the pixel clock or the AUX clock for the 1802 * TV encoder. 1803 * 1804 * It is in the HDMI power domain. 1805 */ 1806 [BCM2835_PLLH] = REGISTER_PLL( 1807 "pllh", 1808 .cm_ctrl_reg = CM_PLLH, 1809 .a2w_ctrl_reg = A2W_PLLH_CTRL, 1810 .frac_reg = A2W_PLLH_FRAC, 1811 .ana_reg_base = A2W_PLLH_ANA0, 1812 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, 1813 .lock_mask = CM_LOCK_FLOCKH, 1814 1815 .ana = &bcm2835_ana_pllh, 1816 1817 .min_rate = 600000000u, 1818 .max_rate = 3000000000u, 1819 .max_fb_rate = BCM2835_MAX_FB_RATE), 1820 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV( 1821 .name = "pllh_rcal", 1822 .source_pll = "pllh", 1823 .cm_reg = CM_PLLH, 1824 .a2w_reg = A2W_PLLH_RCAL, 1825 .load_mask = CM_PLLH_LOADRCAL, 1826 .hold_mask = 0, 1827 .fixed_divider = 10, 1828 .flags = CLK_SET_RATE_PARENT), 1829 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV( 1830 .name = "pllh_aux", 1831 .source_pll = "pllh", 1832 .cm_reg = CM_PLLH, 1833 .a2w_reg = A2W_PLLH_AUX, 1834 .load_mask = CM_PLLH_LOADAUX, 1835 .hold_mask = 0, 1836 .fixed_divider = 1, 1837 .flags = CLK_SET_RATE_PARENT), 1838 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV( 1839 .name = "pllh_pix", 1840 .source_pll = "pllh", 1841 .cm_reg = CM_PLLH, 1842 .a2w_reg = A2W_PLLH_PIX, 1843 .load_mask = CM_PLLH_LOADPIX, 1844 .hold_mask = 0, 1845 .fixed_divider = 10, 1846 .flags = CLK_SET_RATE_PARENT), 1847 1848 /* the clocks */ 1849 1850 /* clocks with oscillator parent mux */ 1851 1852 /* One Time Programmable Memory clock. Maximum 10Mhz. */ 1853 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK( 1854 .name = "otp", 1855 .ctl_reg = CM_OTPCTL, 1856 .div_reg = CM_OTPDIV, 1857 .int_bits = 4, 1858 .frac_bits = 0, 1859 .tcnt_mux = 6), 1860 /* 1861 * Used for a 1Mhz clock for the system clocksource, and also used 1862 * bythe watchdog timer and the camera pulse generator. 1863 */ 1864 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK( 1865 .name = "timer", 1866 .ctl_reg = CM_TIMERCTL, 1867 .div_reg = CM_TIMERDIV, 1868 .int_bits = 6, 1869 .frac_bits = 12), 1870 /* 1871 * Clock for the temperature sensor. 1872 * Generally run at 2Mhz, max 5Mhz. 1873 */ 1874 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK( 1875 .name = "tsens", 1876 .ctl_reg = CM_TSENSCTL, 1877 .div_reg = CM_TSENSDIV, 1878 .int_bits = 5, 1879 .frac_bits = 0), 1880 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK( 1881 .name = "tec", 1882 .ctl_reg = CM_TECCTL, 1883 .div_reg = CM_TECDIV, 1884 .int_bits = 6, 1885 .frac_bits = 0), 1886 1887 /* clocks with vpu parent mux */ 1888 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK( 1889 .name = "h264", 1890 .ctl_reg = CM_H264CTL, 1891 .div_reg = CM_H264DIV, 1892 .int_bits = 4, 1893 .frac_bits = 8, 1894 .tcnt_mux = 1), 1895 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK( 1896 .name = "isp", 1897 .ctl_reg = CM_ISPCTL, 1898 .div_reg = CM_ISPDIV, 1899 .int_bits = 4, 1900 .frac_bits = 8, 1901 .tcnt_mux = 2), 1902 1903 /* 1904 * Secondary SDRAM clock. Used for low-voltage modes when the PLL 1905 * in the SDRAM controller can't be used. 1906 */ 1907 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK( 1908 .name = "sdram", 1909 .ctl_reg = CM_SDCCTL, 1910 .div_reg = CM_SDCDIV, 1911 .int_bits = 6, 1912 .frac_bits = 0, 1913 .tcnt_mux = 3), 1914 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK( 1915 .name = "v3d", 1916 .ctl_reg = CM_V3DCTL, 1917 .div_reg = CM_V3DDIV, 1918 .int_bits = 4, 1919 .frac_bits = 8, 1920 .tcnt_mux = 4), 1921 /* 1922 * VPU clock. This doesn't have an enable bit, since it drives 1923 * the bus for everything else, and is special so it doesn't need 1924 * to be gated for rate changes. It is also known as "clk_audio" 1925 * in various hardware documentation. 1926 */ 1927 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK( 1928 .name = "vpu", 1929 .ctl_reg = CM_VPUCTL, 1930 .div_reg = CM_VPUDIV, 1931 .int_bits = 12, 1932 .frac_bits = 8, 1933 .flags = CLK_IS_CRITICAL, 1934 .is_vpu_clock = true, 1935 .tcnt_mux = 5), 1936 1937 /* clocks with per parent mux */ 1938 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK( 1939 .name = "aveo", 1940 .ctl_reg = CM_AVEOCTL, 1941 .div_reg = CM_AVEODIV, 1942 .int_bits = 4, 1943 .frac_bits = 0, 1944 .tcnt_mux = 38), 1945 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK( 1946 .name = "cam0", 1947 .ctl_reg = CM_CAM0CTL, 1948 .div_reg = CM_CAM0DIV, 1949 .int_bits = 4, 1950 .frac_bits = 8, 1951 .tcnt_mux = 14), 1952 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK( 1953 .name = "cam1", 1954 .ctl_reg = CM_CAM1CTL, 1955 .div_reg = CM_CAM1DIV, 1956 .int_bits = 4, 1957 .frac_bits = 8, 1958 .tcnt_mux = 15), 1959 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK( 1960 .name = "dft", 1961 .ctl_reg = CM_DFTCTL, 1962 .div_reg = CM_DFTDIV, 1963 .int_bits = 5, 1964 .frac_bits = 0), 1965 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK( 1966 .name = "dpi", 1967 .ctl_reg = CM_DPICTL, 1968 .div_reg = CM_DPIDIV, 1969 .int_bits = 4, 1970 .frac_bits = 8, 1971 .tcnt_mux = 17), 1972 1973 /* Arasan EMMC clock */ 1974 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK( 1975 .name = "emmc", 1976 .ctl_reg = CM_EMMCCTL, 1977 .div_reg = CM_EMMCDIV, 1978 .int_bits = 4, 1979 .frac_bits = 8, 1980 .tcnt_mux = 39), 1981 1982 /* General purpose (GPIO) clocks */ 1983 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK( 1984 .name = "gp0", 1985 .ctl_reg = CM_GP0CTL, 1986 .div_reg = CM_GP0DIV, 1987 .int_bits = 12, 1988 .frac_bits = 12, 1989 .is_mash_clock = true, 1990 .tcnt_mux = 20), 1991 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK( 1992 .name = "gp1", 1993 .ctl_reg = CM_GP1CTL, 1994 .div_reg = CM_GP1DIV, 1995 .int_bits = 12, 1996 .frac_bits = 12, 1997 .flags = CLK_IS_CRITICAL, 1998 .is_mash_clock = true, 1999 .tcnt_mux = 21), 2000 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK( 2001 .name = "gp2", 2002 .ctl_reg = CM_GP2CTL, 2003 .div_reg = CM_GP2DIV, 2004 .int_bits = 12, 2005 .frac_bits = 12, 2006 .flags = CLK_IS_CRITICAL), 2007 2008 /* HDMI state machine */ 2009 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK( 2010 .name = "hsm", 2011 .ctl_reg = CM_HSMCTL, 2012 .div_reg = CM_HSMDIV, 2013 .int_bits = 4, 2014 .frac_bits = 8, 2015 .tcnt_mux = 22), 2016 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK( 2017 .name = "pcm", 2018 .ctl_reg = CM_PCMCTL, 2019 .div_reg = CM_PCMDIV, 2020 .int_bits = 12, 2021 .frac_bits = 12, 2022 .is_mash_clock = true, 2023 .low_jitter = true, 2024 .tcnt_mux = 23), 2025 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK( 2026 .name = "pwm", 2027 .ctl_reg = CM_PWMCTL, 2028 .div_reg = CM_PWMDIV, 2029 .int_bits = 12, 2030 .frac_bits = 12, 2031 .is_mash_clock = true, 2032 .tcnt_mux = 24), 2033 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK( 2034 .name = "slim", 2035 .ctl_reg = CM_SLIMCTL, 2036 .div_reg = CM_SLIMDIV, 2037 .int_bits = 12, 2038 .frac_bits = 12, 2039 .is_mash_clock = true, 2040 .tcnt_mux = 25), 2041 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK( 2042 .name = "smi", 2043 .ctl_reg = CM_SMICTL, 2044 .div_reg = CM_SMIDIV, 2045 .int_bits = 4, 2046 .frac_bits = 8, 2047 .tcnt_mux = 27), 2048 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK( 2049 .name = "uart", 2050 .ctl_reg = CM_UARTCTL, 2051 .div_reg = CM_UARTDIV, 2052 .int_bits = 10, 2053 .frac_bits = 12, 2054 .tcnt_mux = 28), 2055 2056 /* TV encoder clock. Only operating frequency is 108Mhz. */ 2057 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK( 2058 .name = "vec", 2059 .ctl_reg = CM_VECCTL, 2060 .div_reg = CM_VECDIV, 2061 .int_bits = 4, 2062 .frac_bits = 0, 2063 /* 2064 * Allow rate change propagation only on PLLH_AUX which is 2065 * assigned index 7 in the parent array. 2066 */ 2067 .set_rate_parent = BIT(7), 2068 .tcnt_mux = 29), 2069 2070 /* dsi clocks */ 2071 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK( 2072 .name = "dsi0e", 2073 .ctl_reg = CM_DSI0ECTL, 2074 .div_reg = CM_DSI0EDIV, 2075 .int_bits = 4, 2076 .frac_bits = 8, 2077 .tcnt_mux = 18), 2078 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK( 2079 .name = "dsi1e", 2080 .ctl_reg = CM_DSI1ECTL, 2081 .div_reg = CM_DSI1EDIV, 2082 .int_bits = 4, 2083 .frac_bits = 8, 2084 .tcnt_mux = 19), 2085 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK( 2086 .name = "dsi0p", 2087 .ctl_reg = CM_DSI0PCTL, 2088 .div_reg = CM_DSI0PDIV, 2089 .int_bits = 0, 2090 .frac_bits = 0, 2091 .tcnt_mux = 12), 2092 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK( 2093 .name = "dsi1p", 2094 .ctl_reg = CM_DSI1PCTL, 2095 .div_reg = CM_DSI1PDIV, 2096 .int_bits = 0, 2097 .frac_bits = 0, 2098 .tcnt_mux = 13), 2099 2100 /* the gates */ 2101 2102 /* 2103 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if 2104 * you have the debug bit set in the power manager, which we 2105 * don't bother exposing) are individual gates off of the 2106 * non-stop vpu clock. 2107 */ 2108 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE( 2109 .name = "peri_image", 2110 .parent = "vpu", 2111 .ctl_reg = CM_PERIICTL), 2112 }; 2113 2114 /* 2115 * Permanently take a reference on the parent of the SDRAM clock. 2116 * 2117 * While the SDRAM is being driven by its dedicated PLL most of the 2118 * time, there is a little loop running in the firmware that 2119 * periodically switches the SDRAM to using our CM clock to do PVT 2120 * recalibration, with the assumption that the previously configured 2121 * SDRAM parent is still enabled and running. 2122 */ 2123 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc) 2124 { 2125 struct clk *parent = clk_get_parent(sdc); 2126 2127 if (IS_ERR(parent)) 2128 return PTR_ERR(parent); 2129 2130 return clk_prepare_enable(parent); 2131 } 2132 2133 static int bcm2835_clk_probe(struct platform_device *pdev) 2134 { 2135 struct device *dev = &pdev->dev; 2136 struct clk_hw **hws; 2137 struct bcm2835_cprman *cprman; 2138 struct resource *res; 2139 const struct bcm2835_clk_desc *desc; 2140 const size_t asize = ARRAY_SIZE(clk_desc_array); 2141 size_t i; 2142 int ret; 2143 2144 cprman = devm_kzalloc(dev, sizeof(*cprman) + 2145 sizeof(*cprman->onecell.hws) * asize, 2146 GFP_KERNEL); 2147 if (!cprman) 2148 return -ENOMEM; 2149 2150 spin_lock_init(&cprman->regs_lock); 2151 cprman->dev = dev; 2152 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2153 cprman->regs = devm_ioremap_resource(dev, res); 2154 if (IS_ERR(cprman->regs)) 2155 return PTR_ERR(cprman->regs); 2156 2157 memcpy(cprman->real_parent_names, cprman_parent_names, 2158 sizeof(cprman_parent_names)); 2159 of_clk_parent_fill(dev->of_node, cprman->real_parent_names, 2160 ARRAY_SIZE(cprman_parent_names)); 2161 2162 /* 2163 * Make sure the external oscillator has been registered. 2164 * 2165 * The other (DSI) clocks are not present on older device 2166 * trees, which we still need to support for backwards 2167 * compatibility. 2168 */ 2169 if (!cprman->real_parent_names[0]) 2170 return -ENODEV; 2171 2172 platform_set_drvdata(pdev, cprman); 2173 2174 cprman->onecell.num = asize; 2175 hws = cprman->onecell.hws; 2176 2177 for (i = 0; i < asize; i++) { 2178 desc = &clk_desc_array[i]; 2179 if (desc->clk_register && desc->data) 2180 hws[i] = desc->clk_register(cprman, desc->data); 2181 } 2182 2183 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk); 2184 if (ret) 2185 return ret; 2186 2187 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, 2188 &cprman->onecell); 2189 } 2190 2191 static const struct of_device_id bcm2835_clk_of_match[] = { 2192 { .compatible = "brcm,bcm2835-cprman", }, 2193 {} 2194 }; 2195 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); 2196 2197 static struct platform_driver bcm2835_clk_driver = { 2198 .driver = { 2199 .name = "bcm2835-clk", 2200 .of_match_table = bcm2835_clk_of_match, 2201 }, 2202 .probe = bcm2835_clk_probe, 2203 }; 2204 2205 builtin_platform_driver(bcm2835_clk_driver); 2206 2207 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); 2208 MODULE_DESCRIPTION("BCM2835 clock driver"); 2209 MODULE_LICENSE("GPL v2"); 2210